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Abstract

In many signal processing applications, recent techniques often rely on the estimation of a probabilistic model.
Many times, this model does not focus on the observed data itself, but rather on a spectral or time-frequency
transform of this data, such as the discrete Fourier transform (DFT) or the short-time Fourier transform (STFT). A
common statistical assumption regarding these transforms is that all spectral or time-frequency bins are uncorrelated.
However this assumption is generally inaccurate, either because of the intrinsic properties of the data, or because of
the transform itself. In this document, we aim to design transforms from the time domain to the spectral or time-
frequency domain, which best fit this statistical assumption. To formulate this idea, we introduce the concept of
preservation of whiteness, and we characterise the transforms that satisfy this property. We show that several widely
used transforms such as the discrete cosine transform (DCT), DFT, modified discrete cosine transform (MDCT),
and STFT belong to this class under some conditions.

Index Terms

Second order processes, proper complex processes, spectral transforms, time-frequency transforms, paraunitary
filter banks.

Résumé

Dans diverses applications de traitement du signal, les techniques récentes s’appuient souvent sur l’estimation
d’un modèle probabiliste. Dans de nombreux cas, le modèle ne représente pas directement les données observées
elles-mêmes, mais plutôt une transformée spectrale ou temps-fréquence de ces données, telle que la transformée de
Fourier discrète (TFD) ou la transformée de Fourier à court terme (TFCT). Une hypothèse statistique couramment
utilisée à propos de ces transformées est que tous les points fréquentiels ou temps-fréquence sont décorrélés.
Cependant cette hypothèse est généralement inexacte, soit en raison des propriétés intrinsèques des données, soit
en raison de la transformée elle-même. Dans ce document, nous cherchons à définir des transformations depuis le
domaine temporel vers le domaine spectral ou temps-fréquence, qui vérifient au mieux cette hypothèse statistique.
Pour formaliser cette idée, nous introduisons le concept de préservation de la blancheur, et nous caractérisons les
transformations qui satisfont cette propriété. Nous montrons que plusieurs transformations couramment utilisées
telles que la transformée en cosinus discrète (TCD), la TFD, la transformée en cosinus discrète modifiée (TCDM)
et la TFCT appartiennent à cette classe sous certaines conditions.

Mots clés

Processus du second ordre, Processus complexes propres, Transformations spectrales, Transformations temps-
fréquences, Bancs de filtres para-unitaires.
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I. INTRODUCTION

Spectral and time-frequency (TF) transforms are widely used in many signal processing applications, because
they provide a meaningful and often sparse representation of the input signal [1]. Besides, many modern signal
processing and machine learning techniques are based on probabilistic modelling and statistical inference [2]. For
these reasons, there is much interest today in the probabilistic modelling of TF data. Such models have been
proposed in the nonnegative matrix factorisation (NMF) literature for instance, among which NMF with additive
Gaussian noise [3], probabilistic latent component analysis (PLCA) [4], NMF as a sum of Poisson components [5],
and NMF as a sum of Gaussian components [6]. Usually, it is assumed that all spectral or TF bins are uncorrelated.
However, this assumption only holds approximately, for a limited range of random processes (excluding sinusoidal
processes for instance). Moreover, spurious correlation artefacts may also be induced by the transform itself, due
to spectral and temporal overlap of TF bins. For these reasons, new probabilistic approaches have been proposed
in order to model the existing correlation [7], [8], [9], [10], [11], [12], [13]. However these models do not make
the difference between the correlation originating from the data and that induced by the transform.

In this work, we investigate whether it is possible to design spectral and TF transforms that do not induce any
spurious correlation artefacts, in addition to the correlation inherent to the input process. The proposed approach
relies on the idea that if the input process contains no intrinsic TF correlation, then the output TF bins should
be uncorrelated. Actually, it turns out that the absence of TF correlation implies that the input process is white.
Indeed, in the case of wide sense stationary (WSS) processes, it is well known that the power spectral density (PSD)
dynamics is closely related to the temporal autocorrelation [2]. Reciprocally, in the case of uncorrelated processes
(whose samples are uncorrelated but may have different variances), temporal power dynamics induces spectral
correlation. Therefore a process which has neither temporal nor spectral correlation also has neither temporal nor
spectral dynamics, which means that this process is white. In other words, the desired property of the transform
is that any white noise is transformed into another white noise. This is what we call the preservation of whiteness
(PW) property. Besides, in some applications it is required that the transform be invertible, e.g. when a signal has
to be resynthesized from modified TF data (as in source separation [11], [12], time and pitch scaling [14], and
audio inpainting [11], [12], [14]). We will thus focus on transforms which satisfy both conditions of invertibility
and PW.

In this document, we investigate this concept using simple mathematics based on linear algebra, and we provide
some examples of such transforms. Several cases are distinguished: the input process may be either real or complex-
valued, and the spectral or TF output may also be real (such as the DCT of a real input) or complex (such as
the DFT of a real or complex input). The document is structured as follows. In Section II, we define real to real,
complex to complex, real to complex, and complex to real transforms, we characterise the invertibility of such
transforms, and we formally define the PW property. In Section III, we characterise invertible real to real and
complex to complex transforms which satisfy the PW property, and we provide a few examples of such spectral
and TF transforms. The case of real to complex transforms is similarly addressed in Section IV. Section V provides
some additional insights about the whole study. Finally, conclusions are drawn in Section VI.

Notation

The following mathematical notation is used throughout this document:
• R (resp. C,Z): set of real (resp. complex, whole) numbers
• <: real part of a complex number
• F : complex conjugate of matrix F
• F T : transpose of matrix F
• FH : conjugate transpose of matrix F
• I (resp. 0): identity (resp. zero) matrix of appropriate dimension
• E[.]: mathematical expectation

II. BASIC DEFINITIONS

Definition 1. Let P,N ∈ {1, . . . ,+∞} and K = R or C. Then MP×N
K denotes the set of P × N matrices over

field K, such that every row contains a finite number of non-zeros entries if N = +∞.
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Let KN denote the set of column vectors of length N ∈ {1, . . . ,+∞} over field K. Then MP×N
K is the largest

set of matrices such that ∀F ∈MP×N
K , ∀w ∈ KN , the matrix-vector product Fw is well-defined (since only finite

sums are involved, even when N = +∞).

A. Real to real and complex to complex transforms

Below, we consider linear transforms between KN and KP (with K = R or C), and we characterise their
invertibility.

Definition 2 (Linear transform). Let P,N ∈ {1, . . . ,+∞}, K = R or C, and F ∈MP×N
K . The linear transform

defined by matrix F is denoted T F
KN→KP and transforms any vector w ∈ KN into T F

KN→KP (w) = Fw ∈ KP .

The next proposition is a well-known result from linear algebra:

Proposition 1 (Invertible linear transforms). Let P,N ∈ {1, . . . ,+∞}, K = R or C, and F ∈ MP×N
K . Then

T F
KN→KP is invertible if and only if N ≤ P and if there is G ∈MN×P

K such that GF = I . If this condition holds,
then T G

KP→KN is an inverse of T F
KN→KP .

B. Real to complex and complex to real transforms

Below, we define transforms between RN and CP , and we characterise their invertibility. For any column vector

x ∈ CP where P ∈ {1, . . . ,+∞}, we note ↓x =

[
x
x

]
.

Definition 3 (Real to complex transform). Let P,N ∈ {1, . . . ,+∞}, and F ∈ MP×N
C . The real to complex

transform defined by matrix F is denoted T F
RN→CP and transforms any vector w ∈ RN into T F

RN→CP (w) = Fw ∈

CP . If we note ↓F =

[
F

F

]
and x = T F

RN→CP (w), then we can equivalently write ↓x =↓Fw.

Definition 4 (Complex to real transform). Let P,N ∈ [1, . . . ,+∞], and G ∈MN×P
C . The complex to real transform

defined by matrix G is denoted T G
CP→RN and transforms any vector x ∈ CP into T G

CP→RN (x) = 2<(Gx) ∈ RN .
If we note

−→
G = [G,G], then we can equivalently write T G

CP→RN (x) =
−→
G ↓x.

The next proposition is a variant of Proposition 1.

Proposition 2 (Invertible real to complex transforms). Let P,N ∈ {1, . . . ,+∞} and F ∈MP×N
C . Then T F

RN→CP

is invertible if and only if N ≤ 2P and if there is G ∈MN×P
C such that

−→
G ↓F = I . If this condition holds, then

T G
CP→RN is an inverse of T F

RN→CP .

Proof. Firstly, it is easy to check that the inverse of T F
RN→CP , if it exists, is necessarily a complex to real transform

as defined in Definition 4. Therefore T F
RN→CP is invertible if and only if there is G ∈MN×P

C such that ∀w ∈ RN ,
T G
CP→RN (T F

RN→CP (w)) = w ⇔
−→
G ↓ F w = w, or equivalently

−→
G ↓ F = I . The inequality N ≤ 2P is a

consequence of this matrix equality.

C. Preservation of whiteness

Let N ∈ {1, . . . ,+∞}. A second order process X = {Xn}0≤n<N over field K is a random process such that
Xn ∈ K and E[|Xn|2] < +∞. Note that all transforms defined in Sections II-A and II-B transform any second
order process into another second order process.

Definition 5 (Real white noise). Let N ∈ {1, . . . ,+∞}. A real white noise W = {Wn}0≤n<N of variance σ2 > 0
is a real-valued second order process of mean vector µW = E[W ] = 0 and covariance matrix ΓW = E[WW T ] =
σ2I .

Definition 6 (Proper complex white noise). Let N ∈ {1, . . . ,+∞}. A proper complex white noise W = {Wn}0≤n<N
of variance σ2 > 0 is a complex-valued second order process of mean vector µW = E[W ] = 0, covariance matrix
ΓW = E[WWH ] = σ2I , and pseudo-covariance matrix ΦW = E[WW T ] = 0.
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Below, a real white noise will be referred to as a white noise on R, and a proper complex white noise as a white
noise on C.

Definition 7 (Preservation of whiteness). Let P,N ∈ {1, . . . ,+∞}, K1 = R or C, and K2 = R or C. A transform
from KN

1 to KP
2 preserves whiteness if and only if the output of any white noise on KN

1 is a white noise on KP
2 .

III. PRESERVATION OF WHITENESS IN REAL TO REAL AND COMPLEX TO COMPLEX TRANSFORMS

In this section, we characterise invertible whiteness-preserving transforms between KN and KP (with K = R or
C), and we provide a few examples of such spectral and TF transforms.

A. General study

Proposition 3 (PW in linear transforms). Let P,N ∈ {1, . . . ,+∞}, K = R or C, and F ∈ MP×N
K . The linear

transform T F
KN→KP preserves whiteness if and only if P ≤ N and FFH = I .

Proof. Let W = {Wn}0≤n<N be a white noise of variance σ2 over K, and let X = T F
KN→KP (W ). Then µX =

FµW = 0, and if K = C, ΦX = E[XXT ] = FΦWF
T = 0. Therefore X is a white noise of variance σ2 over K

if and only if ΓX = E[XXH ] = FΓWF
H = σ2I , which is equivalent to FFH = I .

Proposition 4 (PW in invertible linear transforms). Let P,N ∈ {1, . . . ,+∞}, K = R or C, and F ∈MP×N
K . The

linear transform T F
KN→KP is invertible and preserves whiteness if and only if N = P , FH ∈MN×N

K , and F is a
unitary matrix: FFH = FHF = I .

Proof. According to Proposition 1, T F
KN→KP is invertible if and only if N ≤ P and if there is G ∈MN×P

K such that
GF = I . Moreover, according to Proposition 3, T F

KN→KP preserves whiteness if and only if P ≤ N and FFH = I .
Both assertions hold if and only if N = P and GFFH = G = FH , which is equivalent to FH ∈ MN×N

K and
FFH = FHF = I .

B. Examples

1) Discrete cosine transform: Let N = P < +∞ and K = R. The discrete cosine transform (DCT) X of a
signal W of length N is a spectral transform defined as ∀k ∈ [0 . . . N − 1],

Xk =

√
2

N

N−1∑
n=0

Wn cos
( π
N

(k + φ)(n+ τ)
)
,

where φ, τ ∈ R. The entries of the corresponding matrix F ∈MN×N
R are Fkn =

√
2
N cos

(
π
N (k + φ)(n+ τ)

)
. It

can be verified that if φ = τ = 1
2 (which corresponds to the DCT-IV [15]), then F is a unitary matrix. Proposition 4

then proves that T F
RN→RN preserves whiteness and that its inverse is defined as ∀n ∈ [0 . . . N − 1],

Wn =

√
2

N

N−1∑
k=0

Xk cos

(
π

N

(
k +

1

2

)(
n+

1

2

))
.

2) Generalised discrete Fourier transform: Let N = P < +∞ and K = C. The generalised discrete Fourier
transform (GDFT) [16] X of a signal W of length N is a spectral transform defined as ∀k ∈ [0 . . . N − 1],

Xk =
1√
N

N−1∑
n=0

Wne
− i2π

N
(k+φ)(n+τ). (1)

where φ, τ ∈ R. The entries of the corresponding matrix F ∈ MN×N
C are Fkn = 1√

N
e−

i2π

N
(k+φ)(n+τ). The

particular case φ = τ = 0 corresponds to the regular DFT. It can be verified that ∀φ, τ ∈ R, F is a unitary matrix.
Proposition 4 then proves that T F

CN→CN preserves whiteness and its inverse is defined as ∀n ∈ [0 . . . N − 1],

Wn =
1√
N

N−1∑
k=0

Xke
+ i2π

N
(k+φ)(n+τ).
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3) Paraunitary filter banks: Let N = P = +∞, K = R or C, and consider a TF transform defined by an infinite
matrix F over K, which implements a uniform M -channel filter bank (uniform means that the same decimation
factor is applied in every subband). According to Definition 1, F ∈MN×N

K if and only if the filter bank involves
only finite impulse response (FIR) analysis filters. Moreover, according to Proposition 1, T F

KN→KN is invertible if
and only if perfect reconstruction (PR) 1 is provided by means of FIR synthesis filters. In addition, Proposition 4
shows that T F

KN→KN preserves whiteness if and only if F is a unitary matrix. Actually, it turns out that the only
uniform filter banks which define a unitary transform are critically decimated (CD) paraunitary filter banks [1,
sec. 6.4.3]. Moreover, since these filter banks involve matched2 analysis and synthesis filters, FIR analysis filters
lead to FIR synthesis filters. We conclude that the only filter banks which both guarantee PW and PR are CD-FIR
paraunitary filter banks.

In this category, two famous examples are worth citing:
• if K = R: CD-PR-FIR cosine modulated filter banks with matched analysis and synthesis filters [1, sec. 6.6],

e.g. modified DCT (MDCT) filter banks [17]: ∀k∈[0 . . .M -1], ∀t∈Z,

Xk,t =
∑
n∈Z

pnWMt−n cos

(
π

M

(
k +

1

2

)(
n+

M + 1

2

))
where pn is the impulse response of the prototype filter;

• if K = C: CD-PR-FIR-DFT filter banks involving matched analysis and synthesis filters [1, sec. 6.5]. It is
easy to check that if the DFT is replaced by a GDFT as defined in Section III-B2 with any φ, τ ∈ R, then the
resulting filter bank is still paraunitary: ∀k ∈ [0 . . .M − 1], ∀t ∈ Z,

Xk,t =
∑
n∈Z

pnWMt−ne
+ i2π

M
(k+φ)(n+τ). (2)

Whereas the design of the prototype filter is quite flexible in the first example [1, sec. 6.6], the second one is
much more constrained [1, sec. 6.5]. Indeed, it corresponds to a generalised STFT (GSTFT) involving contiguous,
non-overlapping windows, and the optimal design in terms of stop-band attenuation leads to rectangular windows
(i.e. in equation (2), p−n = 1√

M
if 0 ≤ n < M , and 0 otherwise). However, if a more flexible design is desired,

it is possible to resort to recursive3 analysis and synthesis filters [18] [1, sec. 6.5] and to a specific method for
designing the prototype filter [19].

Lastly, note that any product of unitary matrices is a unitary matrix. Consequently, it is possible to combine
any CD-PR-FIR paraunitary filter banks in order to produce tree-structured non-uniform PR multirate filter banks
which preserve whiteness. This approach is very flexible and allows us to design various TF transforms, including
wavelet transforms [1, chap. 8].

IV. PRESERVATION OF WHITENESS IN REAL TO COMPLEX TRANSFORMS

In this section, we characterise invertible whiteness-preserving transforms from RN to CP , and we provide a
few examples of such spectral and TF transforms.

A. General study

Proposition 5 (PW in real to complex transforms). Let P,N ∈ {1, . . . ,+∞}, and F ∈ MP×N
C . Then T F

RN→CP
preserves whiteness if and only if 2P ≤ N and ↓F ↓FH = I .

Proof. Let W = {Wn}0<≤n<N be a real white noise of variance σ2, and let X = T F
RN→CP (W ). Then µX =

FµW = 0, ΦX = E[XXT ] = FΓWF
T = σ2FF T and ΓX = E[XXH ] = FΓWF

H = σ2FFH . Therefore X is
a proper complex white noise of variance σ2 as defined in Definition 6 if and only if FF T = 0 and FFH = I ,
which is equivalent to ↓F ↓FH = I .

1In the literature, the term PR generally means that the output signal is a delayed and scaled version of the input. In this document, we
use this term in a restricted sense, i.e. the output is equal to the input.

2Two impulse responses hn and gn are matched when gn = h−n.
3When recursive filters are employed, matrix F no longer belongs to MN×N

K . Therefore GDFT filter banks based on stable recursive
filters can only be applied to a limited class of second order processes, which still includes white noise and WSS processes.
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Proposition 6 (PW in invertible real to complex transforms). Let P,N ∈ {1, . . . ,+∞}, and F ∈ MP×N
C . Then

T F
RN→CP is invertible and preserves whiteness if and only if N = 2P , FH ∈MN×N

C , and ↓F is a unitary matrix:
↓F ↓FH = ↓FH ↓F = I .

Proof. According to Proposition 2, T F
RN→CP is invertible if and only if N ≤ 2P and if there is G ∈MN×P

C such
that
−→
G ↓F = I . Moreover, according to Proposition 5, T F

RN→CP preserves whiteness if and only if 2P ≤ N and
↓F ↓FH = I . Both assertions hold if and only if N = 2P and

−→
G ↓F ↓FH =

−→
G =↓FH , which is equivalent to

FH ∈MN×N
C and ↓F ↓FH = ↓FH ↓F = I .

B. Examples

1) Generalised discrete Fourier transform: Let P < +∞ and N = 2P . The GDFT X of a real-valued signal
W of length N is defined as in equation (1), but only for k ∈ [0 . . . P − 1]. The entries of the corresponding
matrix F ∈MP×N

C are Fkn = 1√
N
e−

i2π

N
(k+φ)(n+τ). It can be easily verified that if φ = 1

2 (which encompasses the
odd-frequency DFT [20]), then ∀τ ∈ R, ↓F is a unitary matrix. Proposition 6 then proves that T F

RN→CP preserves
whiteness and that its inverse is defined as ∀n ∈ [0 . . . N − 1],

Wn =

√
2

P
<

(
P−1∑
k=0

Xke
+ iπ

P
(k+ 1

2
)(n+τ)

)
.

2) GDFT and MDFT filter banks: Let N = P = +∞. As mentioned in Section III-B3, CD-PR-FIR-GDFT filter
banks involving matched analysis and synthesis filters are a particular case of paraunitary filter banks. However,
if in equation (2) M is even (M = 2Q) and φ = 1

2 as in Section IV-B1, then the corresponding matrix can be
arranged in the form ↓F , where F is defined by keeping only the values of k in {0 . . . Q − 1}, and satisfies all
conditions in Proposition 6. Therefore F defines an invertible whiteness-preserving real to complex TF transform.

As mentioned in Section III-B3, the design of CD-PR-FIR-GDFT filter banks involving matched analysis and
synthesis filters is highly constrained, since the optimal solution is the GSTFT involving contiguous, non-overlapping
rectangular windows. If a more flexible design is desired, it is possible to resort to recursive filters. However, there
are other ways of designing uniform invertible real to complex TF transforms which preserve whiteness. One of
them consists in using tree-structured CD-PR-FIR filter banks. For instance, it is possible to connect the Q outputs
of a Q-channel MDCT filter bank, to Q two-channel GSTFT involving contiguous, non-overlapping rectangular
windows. The matrix corresponding to the resulting M = 2Q-channel filter bank can be arranged in the form
↓F , where F satisfies all conditions in Proposition 6. Thus it achieves an invertible, whiteness preserving real to
complex TF transform. It can be easily verified that this transform corresponds to the MDFT filter bank [21].

V. DISCUSSION

In TF analysis, the conclusion in Section III-B3 was that PR and PW are guaranteed by CD-FIR paraunitary filter
banks. However, by focusing only on the PW property, we have lost sight of one important concern: What about
the frequency selectivity of the filters? Indeed, paraunitarity does not necessarily imply high frequency selectivity.
Actually, frequency (and time) selectivity is important when we deal with processes which slightly deviate from
strict whiteness.

A. Wide sense stationary processes

If the input is a WSS process whose PSD has low dynamics and slow variations, then frequency-selective CD-FIR
paraunitary filter banks tend to produce an output where TF bins are decorrelated:
• Decorrelation between remote, non-overlapping subbands is due to the low dynamics of the PSD and high

attenuation in the stop-band. Indeed, the resulting spectral overlap is negligible, and it is well-known that
spectral representations of WSS processes are uncorrelated on non-overlapping frequency intervals [2].

• Decorrelation between adjacent, overlapping subbands, as well as decorrelation over time, is due to the PW
property and to the slow variations of the PSD. Indeed, the process can be considered as approximately white
in a local area of the spectral domain.



INSTITUT MINES-TÉLÉCOM; TÉLÉCOM PARISTECH; CNRS LTCI, TECHNICAL REPORT 7

B. Uncorrelated random processes

The case of uncorrelated processes (i.e. processes whose samples are uncorrelated but may have different
variances) is easily addressed. Indeed, it is obvious that any FIR filter bank produces a TF output where remote,
non-overlapping time frames are uncorrelated. If moreover the input is an uncorrelated process whose temporal
power variations are slow, then decorrelation between adjacent, overlapping time frames, as well as decorrelation
over frequency, is due to the PW property. Indeed, the process can be considered as approximately white in a local
area of the time domain.

VI. CONCLUSIONS

In this document, we were interested in designing transforms from the time domain to the spectral or TF domain,
which introduce as little correlation as possible in the spectral or TF output. In order to properly formulate this
idea, we formally defined the concept of preservation of whiteness (PW), that was firstly used in [13] in a restricted
framework. We have listed a number of invertible transforms which satisfy this property, such as the unitary DCT
and GDFT, and CD-FIR paraunitary filter banks, including MDCT filter banks and some GDFT filter banks. Often, a
complex-valued output is desired while the input signal is real-valued. The proposed study gave us some interesting
insights about how to design such a transform. In the case of GDFT or GSTFT for instance, the frequency index
is shifted by 1

2 in order to produce a proper complex output distribution. Finally, it is useful to mention that in the
particular case of Gaussian processes, the above results can be interpreted in a stronger sense: uncorrelated random
variables are independent, a (real or proper complex) white noise is an independent and identically distributed (IID)
Gaussian process, and a proper complex random process is a circularly-symmetric complex Gaussian process [22].

Regarding future work, we have shown in Section V that applying CD-FIR paraunitary filter banks, either to
WSS processes having a smooth PSD, or to uncorrelated processes having smooth temporal power variations, tends
to produce an output where TF bins are decorrelated. However, it would be helpful to mathematically prove and
accurately quantify this decorrelation property, and to extend its study to non-stationary processes having a smooth
power density over both time and frequency. In other respects, we have noticed in Sections III-B3 and IV-B2 that
the design of CD-FIR-GDFT filter banks which guarantee both PR and PW is highly constrained and that some
flexibility can be brought in by using stable recursive filters. However such filters can only be applied to a limited
class of second order processes (those whose power does not increase too fast as a function of the time index).
Therefore an appropriate mathematical framework is needed in order to properly handle recursive filters. Finally, the
initial motivation for introducing the PW property was to produce a spectral or TF transform which better fits the
statistical decorrelation assumption used in a number of probabilistic frameworks designed for various applications.
Therefore some numerical simulations should be carried out, in order to check whether using whiteness-preserving
transforms actually improves the performance of existing methods in such applications.
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