

A survey of middleware
for mobile ad hoc networks

Un état de l’art des intergiciels

pour les réseaux mobiles ad hoc

Guilhem Paroux

Isabelle Demeure
Deborah Baruch

2007D004

2007

Département Informatique et Réseaux
Groupe Systèmes, Logiciels, Services

 1

Ecole Nationale Supérieure des Télécommunications

A survey of middleware
for mobile ad hoc networks

Un état de l'art des intergiciels pour les

réseaux mobiles ad hoc

Authors:

Guilhem Paroux (ENST – France Télécom R&D)
Isabelle Demeure (ENST)
Deborah Baruch (France Télécom R&D)

 2

RESUME
Ce document présente un état de l'art des intergiciels (middleware) pour les réseaux
mobile ad hoc. Son objectif est de répertorier les principales solutions existantes afin
d'identifier les fonctionnalités usuelles des intergiciels pour réseaux mobiles ad hoc,
mais aussi pour en répertorier les manques.
L'étude couvre les principaux intergiciels identifiés en s'attachant à les étudier suivant
un même plan, établit après l'étude de JXTA, un framework de référence en
environnement fixe.
L'étude montre qu'il existe un groupe de fonctionnalités communes aux différents
intergiciels, même si leurs réalisations varient d'un intergiciel à l'autre. Ces
fonctionnalités de communication et d'organisation du réseau constituent le noyau dur
de tout intergiciel. L'étude montre également que les fonctionnalités de gestion
d'énergie et de sécurité sont manquantes pour l'ensemble des intergiciels.
Suite à l'étude de chaque intergiciel, nous dressons une rapide comparaison des
solutions apportées pour gérer différentes caractéristiques des réseaux mobiles ad hoc,
avant de conclure.

ABSTRACT
This document surveys middleware for MANETs. Its goal is to study the existing
solutions in order to identify the functionalities that are usually found in middleware
for MANETs and the ones that are obviously missing.
All identified middleware are studied following the same outline derived from a study
of JXTA, a reference framework for peer-to-peer systems in fixed environments.
The study concludes that all middleware for MANETs implement a set of functions
such as group management and communication facilities. However power
management facilities and security that are two key issues in MANETs are not
addressed.
The document concludes on a comparative study of the identifies middleware for
MANETs.

 3

1 Introduction...4

2 JXTA..5
2.1 Context .. 5
2.2 Objectives.. 5
2.3 Architecture.. 5
2.4 Device management ... 6
2.5 Communication .. 6
2.6 Logical network organization ... 8
2.7 Security ... 8
2.8 Additional functionalities .. 9
2.9 Discussion.. 9

3 Survey of middleware for Mobile Ad hoc networks...9
3.1 JXME .. 9
3.2 Selma ... 12
3.3 Proem .. 15
3.4 Steam... 19
3.5 JMobiPeer & Expeerience... 22
3.6 InfoWare... 25
3.7 MESHMdl... 28
3.8 Emma .. 31
3.9 MPP... 33
3.10 MIN ... 36

4 Comparison ...38
4.1 Communication .. 39
4.2 Shared resources .. 40
4.3 Fault tolerance.. 41
4.4 Groups – proximity.. 41
4.5 Device management ... 42
4.6 Security ... 42

5 Conclusion...43

6 References ...44

 4

1 Introduction
Mobile Ad hoc NETworks (MANETs) are infrastructure-less networks composed of
mobile devices with limited resources [Chlamtac, 2004]. In a MANET, the devices
must therefore organize themselves in order to create the network. They cannot rely
on a pre-configured infrastructure. This is both an advantage and a drawback. The
main advantage is the possibility to deploy the network everywhere. Moreover, the
network can be created spontaneously when devices are able to communicate together.
However, since the network is organized "on the fly" by the participating devices, the
organization is slow and can change during the network life. The applications have to
take into account the dynamic changes in the network topology and the limited
resources of participating devices. The most studied issue in MANETs is routing (see,
for example, [Abolhasan, 2004] for a survey of routing protocols in MANETs). In this
paper, we do not focus on routing but rather on higher layers, and more specifically
on the middleware.

The middleware is a software layer that typically stands between the operating system
and the network on the one hand and the distributed applications on the other hand.
The middleware aims to provide applications designers with an abstraction of the
complexity introduced by distribution. In fixed environment, middleware technologies
are well known and used successfully. They provide functionalities such as object or
component distribution, communication, and resource discovery. Examples of
middleware are OpenCORBA [Ledoux, 1999] and Globe [Van Steen, 1999]. Another
example is JXTA, an open-sourced middleware initiated by Sun Microsystems to
support peer-to-peer (P2P) applications [Jxta].

In this paper, we survey mobile ad hoc network middleware. All middleware are
studied following the same plan. Although it is not designed for MANETs, in Section
2, we first present JXTA, as a reference middleware for peer-to-peer applications in
fixed environment. In section 3, we survey middleware for MANETS. We start with
JXME, an adaptation of JXTA for mobile devices [Jxme]. We then review various
middleware for mobile ad hoc networks: Selma, Proem, Steam, JMobiPeer and
Expeerience, Infoware, MeshMdl, Emma, MPP, MIN. In Section 4, we propose a
comparison of the previously introduced middleware for MANETs; we put forward a
list of desired functionalities that have not been addressed or have been insufficiently
addressed by existing middleware. Section 5 concludes this survey paper.

 5

2 JXTA
In this section, we present JXTA, a middleware for Peer-to-peer applications in fixed
environments [Jxta], [Jxta, 2003], [Gong, 2001a], [Gong, 2001b]. Although JXTA
was not designed for MANETs, we choose to study it as a reference system for
decentralized peer-to-peer applications.

2.1 Context
JXTA is a Peer-to-peer (P2P) middleware initiated by Sun Microsystems in 2001 and
now supported by a large community of developers. New versions are regularly
produced.
As of today, there are more than 90 ongoing projects in the JXTA community.
Projects aim to improve JXTA portability or to provide new additional services.

2.2 Objectives
JXTA is designed after three objectives: interoperability, platform independence and
ubiquity. A more detailed description can be found on the official website. [Jxta]

2.2.1 Interoperability

Traditionally, a peer-to-peer application provides only one type of service and uses
specific protocols. This is the case for Gnutella [Clip2, 2001] and Skype [Skype]
which define their private protocols. Gnutella is designed to support p2P file
exchange whilst Skype supports Internet telephony. Users from the Gnutella and the
Skype communities cannot collaborate in order to increase the connectivity and the
efficiency of the two networks. JXTA aims to provide a common layer to all P2P
applications in order to allow them to share resources and to improve the reliability of
the network.

2.2.2 Platform independence

Heterogeneity is an important issue in large decentralized systems. JXTA aims to
provide platform-independent protocols to avoid this kind of problem. Any
application complying with the JXTA protocols specification can be implemented on
a variety of hardware and operating systems.

2.2.3 Ubiquity

JXTA is said to be working on "every device with a digital heartbeat". The
performance heterogeneity implies that JXTA protocols have to be designed in order
to work on the smallest devices without overloading them.

2.3 Architecture
JXTA is organized in three layers. JXTA core regroups the basic functionalities
offered by JXTA in order to develop P2P applications. The other layers are not
necessary, but often useful. JXTA creates a common layering structure at the
conceptual level as depicted in Figure 1.

 6

Figure 1: JXTA architecture (extracted from SUN's website)

2.3.1 Core layer

The core layer regroups the basics of P2P applications and allows developing higher
level applications. Communication mechanisms, security management and resource
identification are examples of functionalities available in the core layer.

2.3.2 Services Layer

Built on the JXTA core protocols' foundation, peer services are the building blocks of
full-blown P2P applications. The services are not necessary in order to build P2P
applications but they can improve application performances.

2.3.3 Applications Layer

Here live P2P applications. The possibilities offered by JXTA are numerous as the
variety of projects we can found on the JXTA web pages shows it. These projects are
independent and are not necessary in JXTA.

2.4 Device management
JXTA is designed to work on workstations which do not have particular constraints
for resources. Energy is not limited, memory quantity is sufficient for many
applications and CPU power is important.

2.5 Communication

2.5.1 Communication model

At the physical level, JXTA uses classical protocols to allow peers to communicate.
On local area network, JXTA uses UDP and TCP depending on the type of the
message that has to be sent. In larger networks, JXTA uses HTTP in order to allow
communication through firewalls and NATs.

 7

JXTA offers mechanisms for communication between peers, namely pipes. Pipes are
virtual communication channels used to send and receive messages between services
and applications. They provide an abstraction over the peer endpoints and can connect
two or more peer endpoints. They offer two modes of communication:

• Point-to-point pipes connect exactly two pipe ends with a unidirectional and
asynchronous channel.

• Propagate pipes connect one output pipe to multiple input pipes. Messages are
sent to all listening input pipe ends in the current peer group context.

Basically, communication is performed thanks to advertisements. When a peer creates
a new service, it publishes an advertisement for it. The advertisement is sent to the
rendezvous peer and to every peer directly connected to the sender. The connections
are done thanks to pipes.

2.5.2 Resource identification

JXTA uses UUID, a 128-bit datum, to refer uniquely to a resource, such as a peer, an
advertisement or a service. The identifiers are expected to be "statistically" unique, i.e.
the probability to generate randomly two similar identifiers is almost null.

2.5.3 Shared resource management

All network resources are represented by advertisements. Basically, advertisements
are metadata structures resource descriptors represented as XML documents. The use
of XML and the advertisement standardization ensure JXTA language and platform
independence.
Project JXTA has defined the six following protocols over transport protocols in order
to improve the efficiency of the peer network organization.
• The Peer Discovery Protocol enables a peer to find advertisements on other peers.
• The Peer Resolver Protocol provides P2P applications with a generic request and

response format to use when communicating with other peers.
• The Peer Information Protocol allows a peer to learn about other peers capabilities

and status.
• The Rendezvous Protocol allows peers to connect to the rendezvous.
• The Pipe Binding Protocol allows a peer to bind a pipe advertisement to a pipe

endpoint.
• The Endpoint Routing Protocol allows a peer to ask a peer router for available

routes for sending a message to a destination peer.

2.5.4 Resource discovery

In JXTA v2.0, a Shared Resource Distributed Index (SRDI) has been implemented in
order to improve search efficiency. The SRDI works as follows. When an edge-peer
sends a query, the rendezvous peers to which it is connected search in its local cache
to determine if its indices contain the requested information. If not, a default limited-
range walker algorithm is used to walk the set of rendezvous looking for a rendezvous
which contains the index. When a rendezvous contains the index, it notifies the edge-
peer which publishes and owns the requested information and that peer will answer
directly to the requesting peer.

 8

2.6 Logical network organization

2.6.1 Degree of distribution

Basically, there is no hierarchy between peers in the network. However, for technical
reasons like NATs (Network Address Translation) or firewalls, it is possible to
organize the peer network around nodes providing specific services. Three types of
peers are distinguished:

• Edge peers constitute the basic type of peer. They can perform everything in
the network but have no specific function for network management.

• Relay peers are used in order to traverse firewalls and NATs. They maintain
information about other peers and route the messages. They can also be used
as buffers.

Rendezvous peers are used to forward the discovery requests to other peers. They are
points of meeting for other peers. They constitute a sub-network which aims to
increase the speed of discovery in the network.

2.6.2 Peer groups

A peer group is a collection of peers that have agreed upon a common set of services.
Peers self-organize into peer groups, each identified by a unique peer group ID. Each
peer group can establish its own membership policy from open to highly secure and
protected. Peers may belong to more than one peer group simultaneously. Peer groups
are very useful to constitute secured domains in the network or to share information
about a common interest.

2.6.3 Localization

JXTA does not provide mechanisms for localization. Moreover, the localization in
fixed environment does not present the same interest than in wireless networks.

2.6.4 Proximity/Neighborhood

As JXTA works in fixed environment, each peer is aware of its physical
neighborhood composed of other peers on the same local network. When two peers on
the same network want to communicate, they use TCP protocol. When they are
distant, they use HTTP. However, this information is not more exploited by JXTA
which considers that every peer has the same position in the network.

2.7 Security
JXTA does not implement a complete security solution but what is called a trust
model. The JXTA trust model allows peers to be their own certification authorities.
JXTA has implemented a virtual transport based on TLS (Transport Layer Security)
to provide secure communications between peers. When a JXTA secure pipe is
created, a virtual TLS transport is instantiated. All data moved through secure pipes is
then multiplexed over this single instance of a virtual TLS transport. The transport is
bi-directionally secured end-to-end with TLS, independently of JXTA relays and the
underlying physical transport.

 9

2.8 Additional functionalities
As we have seen, JXTA includes in its architecture a service layer [Services]. This
layer aims to provide additional services to the core of the middleware. For instance
of available services, we can notice JXTA-RMI which aims to provide to JXTA a set
of Remote Method Invocation (RMI) functionalities to JXTA. Another example is
JxtaSpaces which provides JXTA with a distributed shared memory service.

2.9 Discussion
JXTA seems to be very complete by providing numerous functionalities for peer-to-
peer application designers. The functionalities are numerous and allow the developers
to deal with different aspect of peer-to-peer application design in fixed environment.
The different projects of the community let us hope that JXTA will be improved
regularly in the future.
However, JXTA present two main drawbacks. First, it is not well documented. Even
if it is not hard to understand its global working, several functionalities need to be
better explained. Second, the scalability is not ensured. There is no real experiment to
test the scalability. The experiments that we conducted are not encouraging.

3 Survey of middleware for Mobile Ad hoc networks

3.1 JXME

3.1.1 Main bibliographical references

[Jxme], [Jxme, 2002], [J2ME]

3.1.2 Context

Since JXTA aims to work on "every device with a digital heartbeat", it must be
compatible with small devices. JXME (JXTA for J2ME) is a specific project of the
JXTA community meant to provide JXTA on small constrained devices.
As of today, there is only one version of JXME developed for use with Java as
programming language. JXME is regularly updated; the last release was announced in
December 2005.

3.1.3 Objectives

JXME follows JXTA's objectives of interoperability, platform independence, and
ubiquity. However, JXME has additional objectives to reach:

• It must be compliant with devices with limited resources such as cellular
phones and PDAs.

• It must be compatible with JXTA in order to allow mobile devices to
communicate with devices in fixed environment.

• It must be compliant with the J2ME programming environment.

JXME is proposed in two versions: a "proxy" version and a "proxyless" version. In
the "proxy" version, mobile peers must be connected to a proxy peer to communicate.
A proxy peer is a wired environment peer that implements specific services. In the

 10

"proxyless" version, mobile peers can communicate like JXTA peers in wired
environment, using adapted mechanisms.

3.1.4 Architecture

In the proxied version, mobile peers only implement several core functionalities. The
major part of services necessary to participate to a JXTA network is available from
the proxy peers.
In the proxyless version, mobile peers implement more functionality similar to JXTA.
The architecture of the middleware does not include the service layer. Since these
services are not necessary, they are not included in the middleware.

Figure 2: Proxied JXME architecture Figure 3: Proxyless JXME architecture

3.1.5 Device management

JXME functionalities are adapted to mobile devices. Full services available on JXTA
peers are not implemented on mobile peers in order to reduce memory and energy
consumption. Functionalities available on mobile devices are light versions of
functionalities offered by JXTA.

3.1.6 Communication

3.1.6.1 Communication model

In the proxied version, JXME mobile peers use HTTP to communicate with proxy
peers in transmission range. Proxies work as relays to propagate the messages in the
fixed network. Proxies can be seen as points of centralization in the network, which
makes this version not suitable for MANETs.
In order to decrease resources' consumption, JXME manipulates binary messages in
place of the XML messages supported by JXTA. Proxies translate the message format
between wired and wireless environment.

 11

Figure 4: JXME proxied network (extracted from JXME website)

In the "proxyless" version, mobile peers implement more functionalities and can
communicate directly. TCP communication is supported. Advertisements are
formatted in XML and mobile peers can create pipes.

3.1.6.2 Resource identification
Resources are identified by unique identifiers and are represented by advertisements
like JXTA.

3.1.6.3 Shared resource management
JXME manages shared resources in the same way as JXTA. However, the protocols
are adapted to limited capabilities environments. In the proxied version, mobile peers
rely on a proxy peer to participate to a JXTA network. In the proxyless version,
mobile peers implement light versions of JXTA protocols.

3.1.6.4 Resource discovery
Resource discovery is performed in the same way as in a JXTA network. Mobile
peers can publish advertisements and initiate discoveries.
In the proxied JXME, the proxy peer plays a central role in resource discovery by
translating and transmitting the queries.
In the proxyless version, mobile peers can only act as edge peers (and cannot be
rendezvous peers). They support a light version of the Shared Resource Distributed
Index (SRDI).

3.1.7 Logical network organization

3.1.7.1 Degree of distribution
The main limitation with respect to JXTA is that in JXME mobile peers cannot be
rendezvous or relay peers.

 12

3.1.7.2 Peer groups
Groups are supported by JXME. In the proxied version, group mechanisms are
performed by proxy peers. In the proxyless version, group mechanisms are managed
by mobile peers. The notion of group is the same as in JXTA. Every peer can create a
group and apply the membership policy that it wishes.

3.1.7.3 Localization
JXME does not provide mechanisms to localize mobile peers.

3.1.7.4 Proximity/Neighborhood
JXME does not provide features for proximity or neighborhood management.

3.1.8 Security

In the proxied version of JXME, security is performed by proxy peers in order to keep
only light functionalities on mobile peers.
In the proxyless version JXME does not provide security features in order to be light
enough to work on constrained devices.

3.1.9 Additional functionalities

In the proxied version, additional functionalities are located on proxy peers. It is
exactly the same approach as in JXTA: the services are situated in the service layer
and are under development.
In the proxyless version, mobile peers do not offer additional functionalities, but as
long as they can communicate with peers on fixed environment, they can use services
available on them.

3.1.10 Discussion

JXME is a significant attempt at designing middleware for mobile devices. However,
in view of the available functionalities, JXME is not suitable for MANETs in its
proxied version.
In the proxyless version, the lack of documentation and the impossibility to test it for
the moment does not allow us to conclude. However, the network architecture seems
to be more suitable for MANETs.

3.2 Selma

3.2.1 Main bibliographical references

[Görgen, 2004], [SOUL]

3.2.2 Context of the project

SELMA stands for Self-organized Marketplace-based Middleware for Mobile Ad-hoc
Networks. It was developed by the members of the SOUL project at the University of
Trier, Germany in 2003-2004. SELMA is an open-source project, implemented in
Java.

 13

3.2.3 Objectives

SELMA is a middleware designed for MANETs. It provides functionalities such as
positioning, neighborhood discovery, wireless communication, routing protocols.

SELMA services are based on a communication pattern resembling traditional
marketplaces. Marketplaces are geographical regions in the network where peer
density is the most important. SELMA aims to locate the major part of peers’ activity
in marketplaces. To this purpose, SELMA uses mobile agents in order to help peers
reach distant marketplaces.

3.2.4 Architecture

The middleware architecture is divided in three layers. The communication
abstraction is the lowest layer and provides generic methods for positioning, wireless
communication and device discovery. The agent platform layer represents the major
part of the middleware functionalities. It includes routing protocols, localization and
marketplaces management. Finally, the highest layer regroups the specification of two
types of agent: application agents and service agents.

Figure 4: Architecture of SELMA [Görgen, 2004]

3.2.5 Device management

One of SELMA's goals is to save energy of mobile devices. The authors argue that the
marketplace pattern provides for reducing communication overhead. As a
consequence, the energy is saved thanks to the limitation of the number of messages
on the network. Positioning and geographic routing also contribute to the middleware
efficiency with respect to energy consumption. Nevertheless, the use of a positioning
system on mobile device is an additional source of energy consumption.

3.2.6 Communication

3.2.6.1 Communication model
SELMA provides two kinds of communications: message broadcasting and mobile
agent communication. Message broadcasting is used in order to discover the

 14

neighborhood. The authors do not give details about the messages. However, they say
that two basic wireless primitives are used: local unicast and local broadcast. At a
higher level, mobile agents, coupled to marketplaces, constitute the basic way for
applications to communicate. In order to communicate, the mobile agents use
broadcast and unicast. Marketplaces are locations in the network where application
activity is concentrated. They are created thanks to mobile agents which monitor the
network and determine the good location to deploy a marketplace. The coordinates
are then widespread in the network thanks to mobile agents. In marketplaces, mobile
agents use limited range broadcast or unicast addressing to communicate.
Mobile agents support logical mobility in SELMA. They transport information and
represent their host in remote places. In order to reach marketplaces, mobile agents
use geographic routing to avoid useless movements. Mobile agents also have a
dedicated transport protocol to manage their movements.

3.2.6.2 Resource identification
Resources are not explicitly addressed in SELMA. There is no information on
resource identification or agent identification. An identifier is assigned to every
device but no details are given on how to generate the identifiers.

3.2.6.3 Shared resource management
The shared resources and services are not clearly described in Selma. Mobile agents
seem to constitute the major part of the resources shared in the network. They provide
the peers with the ability to move shared resources to marketplaces and to be
represented into them. The agents constitute a shared resource because they can be
hosted by every peer in the network in order to perform their movements. We can also
notice that service agents are a resource shared by peers in the network. They are used
in order to manage marketplaces and contribute to the good work of the network.

3.2.6.4 Resource discovery
As we have seen, the most important resources are mobile agents and marketplaces
location. These two kinds of resources are advertised in the network thanks to the
positioning service. The positioning service allows to locate resources in the network
and to send mobile agents. The documentation on SELMA gives no specific details on
resource discovery.

3.2.7 Logical network organization

3.2.7.1 Degree of distribution
In SELMA all peers are equal. This is probably due to the fact that the most important
entity in SELMA is not the peer but the mobile agent. The network is completely
decentralized.

3.2.7.2 Peer groups
SELMA does not explicitly use group mechanisms. However, peers belonging to a
marketplace can be seen as a group of peers. They have common interest and they
host mobile agents participating to this marketplace.

 15

3.2.7.3 Localization
In order to allow peers to locate marketplaces and to send their mobile agents,
SELMA provides a localization service. Localization uses coordinates provided by
the positioning system (eg. GPS). SELMA computes a map of the network with
Cartesian coordinates. When a mobile device cannot use GPS, it calculates its current
position thanks to neighborhood coordinates.
Marketplace positions and applications available in these marketplaces are
disseminated over the network. Redundant information is avoided thanks to a specific
hash function which allows identifying uniquely a same resource available many
times in the network. There is no information about the hashing algorithm.

3.2.7.4 Proximity/Neighborhood
SELMA provides a neighbor discovery protocol. If the device is equipped with a
technology such as Bluetooth providing a device discovery protocol, SELMA uses it.
Otherwise, a periodic broadcast is sent in order to discover devices.

3.2.8 Security

As mentioned by the authors, there is no provision for security in SELMA.

3.2.9 Additional functionalities

SELMA is essentially based on the mobile agent paradigm. Additional services can be
found in service agents. The most interesting service is a load balancing mechanism.
When a marketplace is no longer used, service agents can decide to close it.
Conversely, when a marketplace is overloaded, service agents can divide it into two
or more marketplaces.

3.2.10 Discussion

The article does not give any detail on basic functionalities such as resource
identification and resource management. Everything seems to be done thanks to
mobile agents. SELMA seems to provide a good framework for the applications.

3.3 Proem

3.3.1 Main bibliographical references

[Kortuem, 2001a], [Kortuem, 2001b], [Proem]

3.3.2 Context of the project

Proem is a project developed in the early 2000s by a team of the Wearable Computing
Laboratory at the University of Oregon, USA.
It is developed in Java. The project is over and no information on the support is given.

 16

3.3.3 Objectives

Proem aims to provide a complete solution to develop and deploy collaborative peer-
to-peer applications on MANETs. The main objective is to provide functionalities
commonly used by mobile peer-to-peer applications. The authors give the following
list of objectives:

• Adaptability to the operating environment.
• Universality of applications supported by Proem.
• Interoperability between heterogeneous systems.
• Platform independence.
• Extensibility of components.
• High-level development support for application developers.

In order to reach these objectives, Proem provides applications with a complete
execution environment. Proem defines the notion of peerlets which are simple
structured applications that follow an event-based programming model. The services
and protocols available in Proem are used by peerlets during their execution. An
application wanting to run on Proem must therefore use peerlets.

3.3.4 Architecture

As depicted in Figure 2 the architecture of Proem is divided into four parts. The lower
layer is the protocol stack which contains the four Proem protocols. Over this layer,
we find two components. First, the peerlet engine which controls the execution of
peerlets. Second, a set of services which provide peerlets with commonly used
functionalities. The last part is constituted by the service API.

Figure 2: Proem architecture [Kortuem, 2001b]

3.3.5 Device resources management

The authors identify mobile device limitations as a characteristic of MANETs.
However, Proem does not provide functionalities to reduce energy consumption or to
manage memory. Protocols do not seem to take into account the limited capabilities in
their behavior.

 17

3.3.6 Communication

3.3.6.1 Communication model
Proem uses an event-based communication model. It defines four communication
protocols, one basic transport protocol and three higher-level protocols.
The transport protocol is connectionless and asynchronous and can be implemented
on top of various protocols like HTTP, TCP or UDP. Messages are the basic unit of
communication between peers. They are XML-formatted in order to guaranty
platform independence and interoperability.
Other protocols are:

• The presence protocol, which allows peers to announce their presence in the
network.

• The data protocol, which allows peers to share and synchronize data.
• The community protocol, which manages messages for community

membership.
At a higher level, the event bus service provides a publish-and-subscribe model.
Components and peerlets can announce the availability of data item by publishing an
event or express their interest in data by subscribing to update events.
The presence manager service also uses the event-based model. When a peer enters or
leaves the network, it sends a broadcast message. The presence manager notifies the
other peers when receiving the message.

3.3.6.2 Resource identification
Entities (e.g. peers, individuals, data spaces or communities) are identified by names.
The names are Uniform Resource Identifier (URI). Each name is unique and refers to
only one entity. Proem allows entities to have multiple names in order to guarantee a
certain form of anonymity. Proem also defines profiles which are XML-based data
structure to describe entities.

3.3.6.3 Shared resource management
Data spaces are collections of resources that are cooperatively owned and managed by
a set of peers. The data protocol allows peers to share and synchronize data. Proem
also provides the data spaces manager as a service.
Proem provides mechanisms for forming communities of entities as we will see it in
the next part.

3.3.6.4 Resource discovery
The presence protocol is the first way to discover resources in the network. Using this
protocol, peers announce their presence in the network and can be identified by other
ones.
The data spaces are another structure where peers may discover resources. A specific
protocol and the corresponding service are available to manage the data contained in
the spaces.
There are no other details on resource discovery mechanisms available in the
literature on Proem. In particular, the protocols for data space construction or
exploration are not presented.

 18

3.3.7 Logical network organization

3.3.7.1 Degree of distribution
In Proem networks, every peer plays the same role. There is no central entity and no
special type of peers. It is a pure, or flat, peer-to-peer architecture.

3.3.7.2 Peer groups
Proem introduces the notion of communities. A community is a set of entities, such as
peers, individuals, data spaces or other communities. The purpose of communities is
to regroup entities sharing a common interest. The authors argue that the notion of
community is different from the notion of group developed in other middleware.
Community membership is not owned by a particular entity. The membership is
conferred upon a membership token, circulating on the network. In order to enter a
community, an entity has to produce the token signed by a minimal number of
community members.

3.3.7.3 Localization
Proem provides no facilities for localization of resources in the network.

3.3.7.4 Proximity/Neighborhood
Proem does not consider relation of proximity in the network. The protocols work
independently from the distance between the peers.

3.3.8 Security

Proem does not address the security issue, even if the authors recognize that it is an
important issue in wireless networks.

3.3.9 Additional functionalities

Proem offers a peerlet development kit to developers. It allows them to easily develop
applications by providing a framework and a set of APIs in order to make applications
compatible with the peerlet execution environment.

3.3.10 Discussion

Proem provides mobile applications with a very complete set of functionalities for
shared resource management. The identifiers, names and profiles are good
mechanisms to clearly identify the resources.
With the peerlet framework, the peerlet mechanism is a more integrated approach
than JXTA which just provides applications with a set of protocols. However,
constrained resources are never taken into account by Proem. It constitutes a major
drawback of Proem.

 19

3.4 Steam

3.4.1 Main bibliographical references

[Meier, 2002], [Meier, 2003], [Meier, 2004], [Meier, 2005]

3.4.2 Context of the project

Steam (Scalable Timed Events And Mobility) is a middleware for mobile ad hoc
networks developed by a team of the Trinity College Dublin, Ireland, essentially
during the years 2002 to 2004. The middleware implementation is not available.

3.4.3 Objectives

Steam is an event-based middleware for mobile ad hoc networks. It aims to be used
by collaborative applications including small indoor and large outdoor environments.
It was designed for IEEE 802.11b-based wireless local area networks (WLANs).
Steam provides support for location awareness, proximity detection and distributed
events filtering. It addresses the very high dynamicity of the mobile ad hoc networks
and the need for completely distributed software in such networks.

3.4.4 Architecture

Steam was designed in order to exploit the proximity of the devices during the event
filtering. This implies the presence of a location service in Steam.
The location service works thanks to a positioning device like GPS and provides the
event service with location information.
The event service is the core of the middleware. It manages the event by publishing
local events and gathering remote events. The filter engine, which determines the
events relevance for the applications, is a part of the event service. The proximity
discovery service provides several protocols to allow the discovery of the mobile
devices in the host neighborhood.
The group communication service provides protocols to deal with group membership
and message delivery in the proximity-based groups.

Figure 3: Steam architecture [Meier, 2003]

 20

3.4.5 Device management

Steam does not deal explicitly with Device management. However, thanks to the use
of the proximity notion, we can argue that Steam reduces the consumption of energy.
Indeed, if the event are located and have a small range of dissemination, the resources
spent in forwarding messages are reduced.

3.4.6 Communication

3.4.6.1 Communication model
Steam is an event-based middleware and uses publish-subscribe communication. The
peers play two roles: event producers and event consumers. The consumers have to
subscribe to event types in order to be notified when an event of the good type is
received. Steam provides the consumers with an event filter which allows the
application to filter the events regarding their subject, content type, proximity. The
producers define their event types.
The proximity group is an important part in the communication model.
Communication between mobile devices is mainly performed in a limited proximity
group. We will give some details about these groups in a next part.

3.4.6.2 Resource identification
The services are identified thanks to the Proximity Discovery Service (PDS). The
PDS uses a hashing algorithm that generates 24 bit identifiers.
The events include fields like subject, content type and attribute list. The fields allow
the devices to identify the event types available in the network.
The proximity groups are uniquely identified thanks to their location, the interests of
their producers and consumers.

3.4.6.3 Shared resource management
Steam essentially focuses on events. The applications use events to advertise their
services and the data are exchanged in the attribute list of the events. There is no
detail about the nature of the services or data available in the network. It can be easily
understood if we consider that the events are data independent. The structure of the
events does not depend on what they carry.

3.4.6.4 Resource discovery
The proximity discovery service and the events are the two ways to discover
resources. The proximity discovery service allows the hosts to discover the mobile
services available in the associated proximity group.

3.4.7 Logical network organization

3.4.7.1 Degree of distribution

Steam uses a totally distributed architecture. There is no need for an infrastructure and
every participant plays the same role in the network.

 21

3.4.7.2 Peer groups
Steam does not provide group functionalities. The notion of proximity groups
introduced by Steam is more complete. We present it in next part.

3.4.7.3 Localization
Steam uses positioning systems on mobile devices in order to provide the application
components with location information. The location information is computed in the
location service. The localization is used in different ways.
The events are location-aware, that is they are linked to a geographical area and are
assumed to be more relevant in this area.
The proximity groups, which we introduce in the next part, are geographical groups
and use the location service.

3.4.7.4 Proximity/Neighborhood
Steam introduces the notion of proximity groups. The idea is to provide the
applications with a local one-to-many communication model. A group is a local set of
application components hosted by mobile devices. It is identified both by the
functionalities it offers, i.e. the types of events, and its geographical position. To
apply for membership, a device must be in the geographical area of the group and
must be interested in the group topics.
The Proximity-based Group Communication Service (PGCS) allows the mobile
devices to create and join groups by managing the membership. A discovery service
allows the peers to find groups, thanks to the proximity group identification. The
authors argue it is more interesting to find local groups of interest than to look for a
particular device.

3.4.8 Security

Steam does not provide mechanisms for security.

3.4.9 Additional functionalities

No additional functionality is proposed in Steam.

3.4.10 Discussion

The notion of proximity presented in Steam is very interesting. The authors argue that
the relevance of the events is higher in a small range around the event producers. The
proximity groups allow the peers to receive only local events which are supposed to
be more relevant. This is probably due to the fact that the services generating the
events are geographically closer and so, easier to use.
The resources of mobile devices are not taken into consideration. The GPS consumes
a lot of energy and the resources are limited. What is the life time of a device running
Steam?

 22

3.5 JMobiPeer & Expeerience

3.5.1 Main bibliographical references

[Bisignano, 2003], [Bisignano, 2004a], [Bisignano, 2004b], [Bisignano, 2005]

3.5.2 Context of the project

We present the two projects at the same time because JMobiPeer is an improvement
of Expeerience. The two projects are leaded by a team of the University of Catania,
Italy, during the years 2002 to 2005. The objective is to adapt JXTA to mobile ad hoc
networks. The development is done in Java, but the source code is not available.

3.5.3 Objectives

Expeerience and JMobiPeer are very closed in their conception. We distinguish
between the two middleware only when necessary since most of the functionalities are
common to Expeerience and JMobiPeer.
Both systems aim to adapt JXTA to mobile ad hoc networks, in order to support P2P
applications on mobile ad hoc networks. As a consequence, the main objectives are
the same than in JXTA: interoperability, ubiquity, platform independence. In order to
deal with MANET requirements, the JXTA core is adapted and new services are
introduced when necessary. Nevertheless, the compatibility with JXTA networks is
ensured.

3.5.4 Architecture

The two projects may look like JXME: a JXTA adaptation for mobile devices (see
Section 3.1). However, the most important difference with JXME is that Expeerience
has been designed for mobile ad hoc networks, while JXME was only available in its
proxied version, only suitable for wireless networks with an
infrastructure.Architecture
The middleware are organized in layers like JXTA or JXME. In Expeerience, the core
layer contains the transport protocol. It introduces an adaptation of TCP managing
intermittent connections. The JXTA transport protocol works over the basic TCP
transport. The service layer offers different JXTA protocols, adapted to mobile
environments. It also provides a new service managing code mobility.

Figure 4: Expeerience architecture [Bisignano, 2004a]

 23

The first difference between Expeerience and JMobiPeer is that in JmobiPeer all
layers are J2ME-compliant. The middleware itself is organized into two layers; a third
layer represents the applications running over the middleware. The core layer contains
a virtual messenger which implements the communication core. The virtual
messenger supports the HTTP, TCP and datagram protocols. The endpoint service is
the basis of the JXTA protocols and supports an endpoint routing protocol and a
propagation protocol. In the core layer, we also find the protocols managing the peer
identities, the peer groups and the advertisements. The service layer offers higher
level services such as pipes management or resources discovery.

Figure 5: JMobiPeer architecture [Bisignano, 2005]

3.5.5 Device management

Expeerience does not provide solutions for constrained device management. The
similarities with JXTA are important and the new services added do not deal with
resource consumption except for the advertisement storage as we will seelater.
JMobiPeer is based on J2ME, specifically conceived for mobile devices with low
capacities. This implies that the middleware better exploits the limited resources of
the mobile devices. However, JMobiPeer does not provide specific features to deal
with resource consumption.

3.5.6 Communication

3.5.6.1 Communication model

The two middleware rely on classic protocols: TCP for Expeerience and HTTP, TCP
and datagram for JMobiPeer. JMobiPeer extends the possibilities offered by J2ME by
using a light HTTP server in order to accept incoming connections.
Over these low level protocols, the middleware provides an endpoint routing service
which manages the connection between two peers not directly connected. This
protocol searches for a path, replies to path request and routes the message. The
choice of such a reactive routing protocol was made in order to limit the consumption
of memory by routing tables.
At a higher level, the propagate service allows to send messages within a group. The
group notion is fundamental in JXTA and these two middleware. Every peer belongs
to at least one group and all communications are performed within a group structure.
This allows sending messages with a limited propagation range.

 24

3.5.6.2 Resource identification
All resources (peers, groups, pipes, services …) are uniquely identified , using the
same model as in JXTA.

3.5.6.3 Shared resource management
All resources can be advertised in the network. The advertisements are XML-
formatted messages. J2ME does not support XML, but a light XML-parser is
integrated in the middleware. The advertisements are stored in a binary format in the
peers local cache, in order to reduce the amount of memory used. The storage is
organized as a vector of three fields: the binary format of the advertisement, the class
of membership, the TTL of the advertisement.

3.5.6.4 Resource discovery
In order to discover the available resources, a peer must find the corresponding
advertisements. When looking for advertisements, a peer sends a query message in the
network. The other peers reply by sending the advertisements matching the query.
When the advertisements are received, the requesting peer stores them for future use.
In order to use a service, the peer uses the information of the advertisements to find
the owner of the service. After that, it sends a query to the owner and begins to use the
service. It can also download the service thanks to code mobility. We will present
these features later.

3.5.7 Logical network organization

3.5.7.1 Degree of distribution
Every peer in the network plays the same role. The various kinds of peer found in
JXTA are not available in the two middleware. They only support edge peers, offering
the same functionality as in JXTA.

3.5.7.2 Peer groups
The peer groups are the same as in JXTA. The group is an important structure in the
middleware; the authors insist that it is a key point. Every peer belongs to the
NetPeerGroup by default. The services are associated to a peer group. It is possible
for every peer to create and join groups. The middleware provides the peers with
membership functionalities.

3.5.7.3 Localization
The two middleware do not provide functionalities for localization.

3.5.7.4 Proximity/Neighborhood
The two middleware do not support proximity discovery.

3.5.8 Security

The security management is performed as in JXTA. No additional functionality is
implemented in the middleware, but it provides support for adding a specific security
policy.

 25

3.5.9 Additional functionalities

Expeerience and JMobiPeer support code mobility. A peermay download or upload a
service by code migration. As a result, a service available on a distant peer can be
copied by another peer in order to be executed locally. The services are really shared
in the network and not only accessible thanks to the network. As a consequence, the
number of messages circulating on the network decreases and the problems of multi-
hop connections are avoided as soon as the service has been copied locally.

3.5.10 Discussion

The evolution from JXTA to JMobiPeer and Expeerience to support mobile devices is
done in a good way. The use of J2ME allows JMobiPeer to be more compliant with
the mobile devices.
The compatibility with JXTA enables bridges with applications running on a fixed
network: for example, Internet access is possible for applications running over
JMobiPeer.
The architecture of JMobiPeer is well organized. The virtual messenger offers
communication protocols encapsulated in a common component in the core. The other
protocols using transport protocols are situated outside the virtual messenger.
The code mobility opens new possibilities. In particular, it could be useful when
considering energy consumption: remote execution could be a way to save energy
provided it does not generate too many messages.

3.6 InfoWare

3.6.1 Main bibliographical references

[Plagemann, 2003], [Plagemann, 2004].

3.6.2 Context of the project

Infoware is a project from the University of Oslo, Norway, in collaboration with
Thales Communications AS and the Oregon Health Science University. The project is
under development since 2003 and is expected to be finished in 2007. No information
is available about the implementation and the source code is not free.

3.6.3 Objectives

Infoware is a middleware for information sharing in mobile ad hoc networks. The
goal of the authors is to provide support for emergency and rescue operations with the
following requirements:

• The mobile ad hoc network constituted during a rescue operation may be a
hybrid network where several devices act as gateways to the Internet.

• The data shared among participants must be replicated in order to ensure their
availability at any time.

• The resources must be efficiently used.
• Information access must be controlled following security and privacy policies

defined.

 26

The authors describe a complete rescue operation scenario. The different phases of the
operation are well described and give an interesting overview of the use of the mobile
devices.

3.6.4 Architecture

Infoware is organized as a set of five components which provide services to
applications:

• The "knowledge manager" handles ontology, metadata and integrates
information from different sources.

• The "distributed event notification" component decouples subscribers and
publishers through mediating nodes.

• The "watchdogs" notifies the participants about local events.
• The "resource manager" keeps track of neighbors and their resources. It also

includes the replication mechanisms.
• The "security and privacy manager" provides access control, key management

for messages signing and encryption. The mechanisms are based on
certificates shared before the use of the middleware during the operation.

Figure 6: Infoware architecture [Plagemann, 2003]

3.6.5 Device management

Infoware takes into account the low amount of available resources. The middleware is
organized into a set of components and is configurable: resource-weak devices only
run a subset of the components while more powerful devices may run all components.
The Resource Manager (RM) is a distributed service which manages information
about resources available in the network. It allows the mobile devices to share their
physical resources. For instance, the memory can be shared in order to constitute a
common storage space. So it is possible for an overloaded device to store data on
another device.

 27

3.6.6 Communication

3.6.6.1 Communication model
The communication follows an event-based model. The peers may act as publishers
and subscribers. Peers exchange messages. Every event generates a message which is
sent on the network.

3.6.6.2 Resource identification
The resource identification mechanism is not explicitly detailed in the avaible
Infoware documentation. However, the Resource Manager deals with physical
devices resources as well as software registered as shared resources. The Resource
Monitor therefore needs some resource identification mechanism.

3.6.6.3 Shared resource management
The Knowledge Manager (KM) and the Resource Manager (RM) are the two major
components that deal with resource management. The Resource Manager allows the
devices to monitor their local resources and to share them with the devices in the
neighborhood. The information about local resource is frequently updated. The
Knowledge Manager is a component that provides high level resource descriptions.
The resources are structured and stored thanks to the KM. It also provides global
distributed data dictionaries in order to provide a global view of the information
shared in the network.

3.6.6.4 Resource discovery
The resource discovery is ensured by the Resource Manager. The RM monitors the
local resources available for sharing. The RM also provides functionalities to share
the resources between devices in range. The information is disseminated to the other
nodes using the Replication Manager component.

3.6.7 Logical network organization

3.6.7.1 Degree of distribution

Every peer plays the same role in the network in order to ensure network robustness.
However, several peers connected to the Internet may provide other peers with a
connection. Nevertheless, this capability is more a service than a key role in the
network structure.

3.6.7.2 Peer groups
Infoware allows the peers to form groups. The groups are used to limit the search for
resources to a defined community such as a rescue team. The security manager
provides the groups with access control.

3.6.7.3 Localization
Infoware does not provide facilities for device localization. The authors argue that a
positioning system like GPS is not interesting in a rescue operation. For example, if
the rescue field is underground, the positioning system will not work. Moreover, the
field is supposed not to be too extended and the different teams are aware of their
location.

 28

3.6.7.4 Proximity/Neighborhood
The notion of neighborhood is used in the resource manager. Considering one node,
the closest nodes around are neighbors. These neighbors will be particularly
monitored in order to maintain information about available resources. The adjacency
monitor is the part of the resource manager which aims to gather information about
neighbors. However, the neighborhood is an internal notion and does not constitute an
entity directly usable by the applications.

3.6.8 Security

Infoware provides a security manager. It separates the nodes into two groups: the
authorized nodes and the foreign nodes. Some information is supposed to be shared
prior the use of the mobile devices on the rescue field. The approach adopted consists
in using a public key infrastructure (PKI) associated with a common certificate
authority. All the messages sent on the network are signed thanks to the key. Thus, the
traffic is limited to authorized devices and non-signed messages are not considered by
the mobile devices. The security mechanisms are supposed to be transparent to users.

3.6.9 Additional functionalities

Infoware does not provide additional functionalities.

3.6.10 Discussion

Infoware brings a solution to a very specific use of mobile ad hoc networks. It results
in a set of functionalities that are not found in other middleware. For instance, the
global objective of robustness is addressed through security management and data
replication.

3.7 MESHMdl

3.7.1 Main bibliographical references

[Herrmann, 2003]

3.7.2 Context of the project

MESHMdl is the middleware developed in the MESH (Mesh Enables Self-organized
Hosts) project at the Technical University of Berlin, Germany. The project also
involves the development of a simulator for mobile ad hoc networks. . It was started
in 2003 and seems to be ongoing. The software is distributed under a free software
license and is implemented in J2ME.

3.7.3 Objectives

The main objective of MESHMdl is to allow mobile ad hoc networks to self-organize.
In order to do so, the middleware uses mobile agents and tuple space communication.
The role of mobile agents is to introduce logical mobility to complete the physical
mobility of the devices. In the same way, tuple spaces represent a logical organization
of the information. They introduce a high degree of decoupling. As a result, two

 29

communicating devices do not have to be in the same location in order to
communicate. The communication is done through the tuple space.

3.7.4 Architecture

MESHMdl is organized into five layers above the "physical" network. This one can
be Bluetooth, IEEE 802.11 or even Internet. The five layers are as follows:

• The generic connection layer provides a generic interface to discover and
connect to neighbor devices.

• The interaction layer is the communication layer with neighbor devices.
• The space layer provides the decoupling expected by tuple spaces:

asynchronous, anonymous, associative communication.
• The agent runtime manages the mobile agent: start, migration, agent

repository …
• The agent application layer instantiates mobile agents.

Figure 7: MESHMdl architecture

3.7.5 Device management

MESHMdl does not deal explicitly with device resources management. It only
provides information about hardware and software properties of the device, but
without managing their restrictions. However, since it is implemented using J2ME, it
is well designed for constrained devices.

3.7.6 Communication

3.7.6.1 Communication model
The applications are implemented as groups of mobile agents which collaborate
thanks to tuple spaces. The mobile agents can migrate to every node in the network.
They are autonomous and do not need controlling entities to take decisions. The inter-
agent communication is performed thanks to the tuple spaces. The tuple spaces are
used in order to supply the applications with an asynchronous and non-located
communication paradigm.

 30

3.7.6.2 Resource identification
MESHMdl introduces the notion of node entries. A node entry contains a universally
unique identifier and a series of attributes which describe the hardware and software
properties of the device. Consequently, a peer and its properties are identified and are
accessible to other peers.

3.7.6.3 Shared resource management
The resources are represented by tuples. A tuple contains typed data items. They are
shared in the spaces and can be consulted by the agents. The mobile agents can write
into and read from the tuple spaces. MESHMdl also supports information diffusion
thanks to Xectors. Xectors allow the devices to disseminate information using other
devices in range.

3.7.6.4 Resource discovery
The resource discovery mechanism is not explicitly described. When two nodes
become neighbors, they share their entries. As a consequence, and due to the fact the
devices are mobile, the information is disseminated. The mobile agents also play an
important role in resource discovery. As they are mobile, they can explore the
resources represented as tuples and stored in the spaces everywhere in the network.
In order to find appropriate information, the mobile agents perform searches using
templates.

3.7.7 Logical network organization

3.7.7.1 Degree of distribution
In MESHMdl, every peer plays the same role. The communication is done thanks to
mobile agents and tuple and the peers have the same capabilities to use them.

3.7.7.2 Peer groups
MESHMdl does not provide peers with group structure. Nevertheless, the tuple spaces
can be considered as group structure. Only the peers using a same space are able to
communicate. The spaces are communication areas like JXTA groups.

3.7.7.3 Localization

MESHMdl does not support any localization mechanism.

3.7.7.4 Proximity/Neighborhood
MESHMdl considers the notion of neighborhood. When two devices are in
communication range, an engagement protocol is initiated thanks to mobile agents.
The two devices exchange their node entries and store them in their local space. When
a device leaves the transmission range, its entry is removed from the local space. A
peer can send its mobile agents on a neighbor peer in order to disseminate them. The
mobile agent stays alive even if the neighborhood link is broken.

 31

3.7.8 Security

MESHMdl allows the peers to exchange data anonymously via tuple spaces. It also
ensure the security of inter agent collaborations. These are the two main features for
security in MESHMdl.

3.7.9 Additional functionalities

MESHMdl does not provide other particular functionalities.

3.7.10 Discussion

The first advantage of MESHMdl is the availability of source code and the good
documentation associated.
The proximity is quite restrictive, but interesting. The possibility for a peer to send its
agents on other peers in its communication range permits to disseminate information
without flooding the network. This constitutes a good example of the collaboration
between logical and physical mobility.
However the article does not describe the basic mechanisms like resource discovery.
It focuses essentially on decoupling, agent mobility and the interest of the spaces
without specifying how to use these mechanisms.

3.8 Emma

3.8.1 Main bibliographical references

[Musolesi, 2005]

3.8.2 Context of the project

Emma stands for Epidemic Messaging Middleware for Ad hoc networks. The project
is developed in the department of computer science in the University College London.
There is no detail available about the implementation or the availability of the source
code.

3.8.3 Objectives

Emma is designed to provide mobile ad hoc networks with an efficient epidemic
messaging protocol. The authors argue that synchronous communication protocols are
not suitable to mobile ad hoc networks. They propose to develop an asynchronous
protocol, using an epidemic dissemination of the information. The mechanisms are
based on an adaptation of Java Message Service (JMS) for mobile ad hoc networks. It
uses an event-based model.

3.8.4 Architecture

The architecture is not detailed explicitly in the available documentation. It is
centered on an event-based communication scheme. The mobile devices support some
kind of routing tables and can manage queues in order to fulfill the point to point
model requirements. The events are treated by an unspecified entity.

 32

3.8.5 Device management

Emma does not provide features to manage device resources. Moreover, Emma does
not seem mind about resource limitation and takes up a lot of resources by using
multiple tables to disseminate the information.

3.8.6 Communication

3.8.6.1 Communication model
Emma is a Message-Oriented Middleware (MOM) representing an adaptation of JMS
for mobile ad hoc networks. At the lowest level, in order to send the messages
between the mobile devices, Emma can use both a synchronous protocol, if available,
and an epidemic protocol specifically developed for the middleware. The protocol is
detailed in the section "additional functionalities". The communication follows the
event-based model. An event is represented by a uniquely identified message. There
are two models to disseminate the events in the network: point to point model and
publish-subscribe model. The point to point model is based on queues. The events are
sent to the queues and stored on the queue host. The queues are advertised in the
network using the synchronous protocol in the neighborhood of the queue host. In the
publish-subscribe model, a topic is created and hosted by a peer. The peers interested
in this topic subscribe to the topic and wait for events. The topic holder sends the
events to the subscribers.

3.8.6.2 Resource identification
There is no detail about mobile device identification. However, the events are
uniquely identified using a hashing algorithm. Thanks to this identification, the
communication protocol can avoid the replicas in the network. The dissemination
mechanisms are also based on the event identification.

3.8.6.3 Shared resource management
There is no information about the management of shared resources. The resources are
advertised in the network thanks to events. The events are disseminated thanks to
different protocols and models as we have seen in a previous part. There is no
information about the resource structure, the identification or the storage.

3.8.6.4 Resource discovery
As we have seen, the resources shared in the network are advertised thanks to events.
In the point to point model, the events are stored in queues; in the publish-subscribe
model they are sent in the network . The queues or the topic hosts are advertised in the
network through a synchronous communication protocol between neighbor nodes.

3.8.7 Logical network organization

3.8.7.1 Degree of distribution
The peers generally play the same role in Emma. Every peer can be a publisher or can
host a queue. However, regarding a particular topic, the topic holder plays a central
role and its disappearance is critical for the topic subscribers. Emma does not give
information about the processing of such a disappearance.

 33

3.8.7.2 Peer groups
Emma does not provide mechanisms to constitute groups of peers. However, in the
publish-subscribe model, the set of the subscribers to a particular topic can be viewed
as a group by the topic holder. Nevertheless, these subscribers do not have the
possibility to know each other.

3.8.7.3 Localization
Emma does not provide functionalities for localization.

3.8.7.4 Proximity/Neighborhood
Emma supports the notion of proximity. When two devices become neighbors, they
start a so called "anti-entropy protocol". This protocol allows the dissemination of
information and the destruction of useless message replicas. However, it is the only
use of proximity context done in Emma.

3.8.8 Security

Emma does not provide features for security or privacy.

3.8.9 Additional functionalities

The main functionality of Emma is the epidemic routing protocol. It allows a better
diffusion of the events in the network. The epidemic protocol works as follows. First,
the message is replicated on peers in the neighborhood of the sender. The replication
is done thanks to the underlying transport protocol. The replicas are stored in tables.
When two peers enter in each other neighborhood, they compare their tables and
exchange the replicas they do not have. When all the recipients of the message are
reached, the message is deleted from the tables. An acknowledgment is sent to the
sender for the persistent messages. The acknowledgment uses the epidemic protocol
to come back to the sender.

3.8.10 Discussion

Emma can be seen as a good communication model that is to be included in a more
complete middleware. The epidemic routing protocol is very efficient even if its cost
seems to be too high for mobile ad hoc networks. However, we lack details about
other basic functionalities besides the communication model.

3.9 MPP

3.9.1 Main bibliographical references

[Schollmeier, 2003], [Gruber, 2004]

3.9.2 Context of the project

MPP is a project of the Munich University of Technology. It was developed during
the years 2003 and 2004. There is no information available on the implementation of
MPP and it does not seem to be still under development.

 34

3.9.3 Objectives

The objective of MPP is to provide a set of protocols in order to combine P2P
networks and mobile ad hoc networks. The two types of network offer similarities in
their organization but the differences must be addresses by an inter-layer protocol.
MPP is a set of three protocols:
• EDSR (Enhanced Dynamic Source Routing), is a protocol suitable for mobile ad

hoc networks at the network layer.
• MPP (Mobile Peer-to-peer Protocol), a protocol for P2P applications at the

application layer.
MPCP (Mobile Peer Control Protocol) is a synchronous interlayer protocol which

computes information received from the two other protocols and help the two
layers to communicate.

MPP is therefore a cross-layering system.

3.9.4 Architecture

EDSR (Enhanced Dynamic Source Routing) works at the network layer. It is a
network routing protocol based on DSR with additional request and reply message
Functions. However, it does not change the behavior of DSR and is compatible with it.
MPCP (Mobile Peer Control Protocol) is a synchronous interlayer protocol. It
provides the following functionalities:

• Registration: MPCP allows the services to register at the network layer. This
enables EDSR to notify the appropriate service about incoming messages.

• Search: MPCP transmits the search parameters to EDSR in order to reach
remote peers.

• Requests: MPCP transmits incoming requests to the different services.
• Responses: MPCP informs the services about incoming responses.

MPP (Mobile Peer-to-peer Protocol) is the protocol at the application layer. It allows
peers to directly exchange data. It is responsible for file transfers within the P2P
network. It uses HTTP thanks to a light http server.

Figure 8: MPP architecture [Schollmeier, 2003]

3.9.5 Device management

The authors do not specify any management of the mobile device resources. None of
the three protocols deals with memory or energy. However, the authors mention that

 35

the combination of the three protocols helps in reducing the number of messages sent
on the network. It results in a decrease of the energy and bandwidth consumption.

3.9.6 Communication

3.9.6.1 Communication model
The communication is based on an on-demand model. The EDSR protocol provides a
set of messages which enable the peers to discover each other and the services shared
on the network. At the lowest level, EDSR sends query and reply messages. When
receiving a reply message, EDSR transmit it to MPCP which transmits the message to
the appropriate application. At the highest level, MPP allows communication between
distant peers and can initiate and manage data transfers thanks to the use of http.

3.9.6.2 Resource identification
MPP does not provide an explicit identification of shared resources. However, the
applications have to register in order to work. The registration might identify the
application in order to allow MPCP to transmit the incoming messages. But no detail
is given.

3.9.6.3 Shared resource management
The shared resource management is not detailed in the available documentation. The
application is identified by a service of MPCP and can send requests in the network
using MPCP and EDSR. The resources are not advertised in the network and the
communication scheme uses an on-demand model.

3.9.6.4 Resource discovery
When a peer looks for specific resources, it sends a request containing the wanted
type of service. The messages are transmitted thanks to EDSR. When a peer holds a
resource that matches the request, it replies to the requesting peer. MPCP notifies the
requesting application that a service is available on a specific peer. MPP can initiate a
communication between the requester and the service owner.

3.9.7 Logical network organization

3.9.7.1 Degree of distribution

Every peer plays the same role in the network, there is no hierarchy.

3.9.7.2 Peer groups
MPP does not support group structures. The whole network is always taken into
consideration.

3.9.7.3 Localization

MPP does not provide features for localization.

3.9.7.4 Proximity/Neighborhood
MPP does not provide features for proximity discovery.

 36

3.9.8 Security

MPP does not provide security features.

3.9.9 Additional functionalities

MPP does not provide additional functionalities.

3.9.10 Discussion

MPP provides an interesting point of view about the association of P2P networks and
mobile ad hoc networks. The set of three protocols provides a good solution for
communication between the physical and the logical layer. It provides the applications
with a good abstraction of the changing topology of the physical network. However,
MPP looks like a communication middleware, providing interlayer communication
feature but no facilities to exploit the networks.

3.10 MIN

3.10.1 Main bibliographical references

[Yan, 2004]

3.10.2 Context of the project

MIN is a project from the Tirku Centre for Computer Science (TUCS) and Abo
Akademi University in Turku, Finland, in collaboration with the Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands. The only documentation
available is an article published in 2004. Objectives
The motivation of MIN is to study the convergence of peer-to-peer and mobile ad hoc
networks technologies. The authors argue that the two technologies have many
similarities. For instance, dynamic network topology, multi-hop connection or routing
protocols are performed in a similar way in both technologies. The main objective is
to build a structured peer-to-peer network upon the basic connectivity provided by
mobile ad hoc networks. In the first version, the authors have chosen to focus on self-
organization and integrated routing.

3.10.3 Architecture

MIN is composed of multiple blocks organized into three layers. MIN relies on a
network layer providing basic and advanced network services. These services are not
specified in the documentation.
Over the network layer, which provides network services over the physical network,
we find the link layer. It is composed of three components:
• The Network Manager is the manager of node connections.
• The Awareness allows peers to be aware of their context. It includes node

awareness and message awareness.
• The Interaction concerns communication links between peers.
The application layer provides three services:
• The connect service establishes a connection between hosts.

 37

• The lookup service allows the peers to lookup the contents of the peer-to-peer
network.

• The exchange service allows peers to exchange data.
Finally, the routing stands between the link layer and the application layer. That is
called the integrated routing by the authors.

Figure 9: MIN architecture [Yan, 2004]

3.10.4 Device management

Min does not provide functionalities to deal with the limited resources of the mobile
devices.

3.10.5 Communication

3.10.5.1 Communication model
At the lowest level, MIN uses an unspecified protocol in order to allow the peers in
radio range to communicate. The network layer provides network services, but no
details are given. MIN implements a component called Connector. We can imagine
that it allows synchronous connections between peers in radio range. The integrated
routing is not clearly explained in the documentation. At the link layer, the different
services use essentially the communication between neighbors. The messages, whose
format is not specified, are disseminate using a flooding protocol.

3.10.5.2 Resource identification
The peers have an identifier. However, no details are given neither about the nature of
the identifiers nor about the identification of other resources.

3.10.5.3 Shared resource management
A lookup service and an exchange service are involved, but there no details are given
about the resource identification, the replicas management and the advertisement of
new services.

3.10.5.4 Resource discovery
The resource discovery is performed at the application layer. After connecting to the
network thanks to the connect service, a peer uses the lookup service in order to

 38

lookup the contents in the network. The lookup messages are sent in the network
using flooding. When a peer shares a resource that matches the query, it transmits the
information to the sender. There is no resource advertisement in the network.

3.10.6 Logical network organization

3.10.6.1 Degree of distribution
The peers play the same role in the network. There is no special function concerning
the network organization or the communication organization.

3.10.6.2 Peer groups
MIN does not provide group functionalities.

3.10.6.3 Localization
MIN does not provide functionalities to localize the mobile devices.

3.10.6.4 Proximity/Neighborhood
MIN uses the notion of neighborhood as part of the node awareness functionality. The
node awareness is divided into local awareness and remote awareness. In the local
awareness, a peer discovers other peers in the radio range. The neighbors are used to
update the knowledge about the network topology. The remote awareness allows a
peer to find a specific peer in the network, using its ID.

3.10.7 Security

MIN does not deal with security issues in mobile ad hoc networks.

3.10.8 Additional functionalities

MIN does not provide additional functionalities.

3.10.9 Discussion

Min provides a minimal set of services for service support in mobile ad hoc networks.
It is communication oriented . Other features concerning network organization are not
provided (or are not detailed in the documentation).
The flooding search must be improved in order to satisfy the bandwidth, memory and
energy consumption constraints.
The global architecture is hard to understand. The message awareness is used to detect
the message type and can report a broken link. However, the integrated routing
component can do the same, depending on the message type.

4 Comparison
In this section, we attempt a comparison and a synthesis of the systems previously
described. We proceed functionality by functionality, following the outline used to
describe the systems.

 39

4.1 Communication

4.1.1 Communication mechanisms

We noticed that a majority of the studied middleware are "Message Oriented
Middleware" (MOM), which means that communications among peers are done
through message exchange. It is the case of Emma, Proem, JMobiPeer, Jxme, MIN
and Steam. These MOMs are often improved by the inclusion of more elaborate
communication schemes such as events or advertisements.
Advertisements are used in middleware inspired from Jxta such as Jxme and
JMobiPeer. A peer sharing a resource creates a message advertising the resource and
sends it in the network. Peers may store the received requests in a local register. A
peer looking for resources, sends a request in the network. When a peer receives a
request, it looks in its local register for an advertisement that matches the request. If
he finds one, he tells the requesting peer to contact the owner of the matching
advertisement.
Steam, Proem, Infoware and Emma are event-based middleware. The use of events is
associated with filtering services: peer may subscribe to a particular event type, event
subject or event sender. In "publish/suscribe" systems, events are notified only to their
subscribers. This is in particular the case in the Emma system.

Some middleware use mobile agents as one of their communication features. In
MESHMdl, the agents deposit tuples in tuple spaces and move to these places to
consult shared data. This allows the peers to communicate anonymously (because the
tuples are anonymous). Direct exchanges between peers or agents are not allowed. In
Selma, the agents may move to marketplaces that are places of exchange but may also
communicate with other agents through messages. Apart from MESHMdl, all the
studied middleware are message-based.

4.1.2 Underlying protocols

In order to communicate in a MANET, the devices need to implement at least two
kinds of protocols: a routing protocol and a transport protocol. The middleware is
very often running on top of the routing and the transport protocols.

The routing protocol is rarely specified; it may be a proactive or a reactive protocol.
We can understand it since the middleware just relies on the protocol and remains
independent from them. Emma specifies that it uses an existing routing protocol or
can use its epidemic dissemination in order to replace it. However, a "cross-layering"
approach allows the middleware to integrate the routing protocol and to take
advantage of its information. MPP is an illustration of this approach. It provides three
protocols: a routing protocol, an application level protocol and a protocol acting as
intermediary between the routing and the application level protocol. The advantage of
this approach relies in the adaptability of the protocols behaviour.

Regarding the transport protocol, some middleware, like Jxme, JMobiPeer and Proem,
operate on top of a transport protocol such as UDP, TCP or HTTP. These protocols
bring a lot of improvements: for example, HTTP allows resuming interrupted
transfers. However, contrary to UDP, TCP and HTTP are not well suited for

 40

MANETs as they are connected protocols. They are more costly and may alter the
global communication performance.

4.2 Shared resources

4.2.1 Resource management

As explained before, by "resource management" we mean resource identification and
the means implemented to advertise them in the network.
The identification of the resources is made in a distributed way. It is important to
guarantee that two distinct resources will not have the same identifier. The
middleware may, for example, use identifier generators based on hashing functions or
on long random byte strings. It is also possible to use MAC addresses, which are
unique, in order to perform peer identification. The hashing algorithm allows many
peers to generate a unique resource identifier available on several peers which do not
know each other. It is the approach chosen by middleware such as Emma and Steam.
The second solution works on the principle that a long random string is statistically
unique. It is the case in Jxta, Jxme and JMobiPeer. However, it would identify the
same resource differently, depending on the host that generates it. Finally, let us note
that several middleware do not explain their way for identifying the resources.

In order to advertise the resources in the network, the strategy generally relies on
advertisement messages sent in the network. The message format is variable. Some
use XML and offer the advantage of a common structured format but they are heavy.
It is the choice of Jxta, JMobiPeer and Infoware. Other middleware use a binary
format that is lighter but does not offer the same structuring possibilities. It is the
case of Jxme, Proem, Steam and Emma.

Finally, let us note that the concept of proximity is used in the shared resource
management in some middleware like Steam. The policy is to take into account only
the resources available locally in order not to overload the network by employing
multi-hop communication. The same applies to groups of interest that make it
possible to restrict the advertisements made on the resources to the most interested
peers.

4.2.2 Resource discovery

The resource discovery is carried out in different ways. Some middleware propose
protocols specifically dedicated to resource discovery. In Proem, the peers discover
each other thanks to the presence protocol and the associated service. Steam provides
a component that detects the peers in the neighbourhood in a transparent way.
Infoware provides a component that regularly updates the resources shared by the
peers and discovers those available in the neighbourhood.
In the other studied systems, the resource discovery is performed thanks to specific
requests. The peer interested in a resource must initiate a search in the network. A
peer sharing a resource corresponding to the request calls the requesting peer and the
communication can start. In the "publish-subscribe" model, the requesting peer
subscribes to an information flow (becomes a subscriber) and waits for the messages
coming from the source (the publisher). However, there is always a resource
discovery step in order to find the available sources. The resource discovery generally

 41

works "on-demand" when a peer is seeking the sources and subjects available in the
network. In the case of systems based on mobile agents, like Selma, the searches are
carried out by the agents.

4.3 Fault tolerance
In mobile ad hoc networks, the peers may disappear in an unpredictable way due to
the fact they move away, or because the battery runs low and the terminal "dies" or
because the terminal is switched off. Specific mechanisms must therefore be designed
in order to react to the disappearance of a peer. We may want to distinguish between
two kinds of disappearances: predictable ones such as the lack of energy and
unpredictable ones such as when a mobile device does not have any more neighbours
and is "out of the network". The studied middleware do not bring a satisfactory
solution to these situations.

Proem, for example, provides a presence protocol. When a new peer joins the network,
an event is broadcast in the network in order to inform the other peers. The presence
is associated to a TTL (Time To Live). When a peer disappears, the TTL expires and
other peers may consider the peer leaved the network.
Emma implements the publish-suscribe model. In Emma a peer may be a persistent
subscriber or not. If a persistent peer disappears the messages sent to him are stored
while waiting for its return. However, nothing is proposed to address situations in
which a disappearing peer acts as a sender.
Mobile agents based systems such as Selma are naturally robust to disappearance. The
agents move in the network by "jumping" from peer to peer and may remain active in
the network even if their owner disappears. Moreover, agent replication may be used
to improve fault tolerance.

JMobiPeer and Expeerience introduce code mobility. If a peer anticipates that it is
going to be cut from the network, for example because its energy level goes below a
threshold, it may decide to move services to a remote peer.

4.4 Groups – proximity
Group management and proximity management are often intertwined mechanisms,
which explains why we discuss the two issues in the same section.
The study shows that groups may be either established based on common interest or
on geographical proximity.

Steam and Selma are examples of middleware in which groups are related to peer
proximity. The idea is to facilitate and favour the exchanges among neighbour peers
by building neighbour groups. The peers communicate primarily within these groups.
The assumption is that that local information is more relevant than remote information.
This naturally limits the messages transmission range and therefore the
communication cost is reduced. The groups of proximity are highly dynamic because
of the peers mobility. Access control mechanisms are often associated with these
groups.

The groups of interest give more freedom to the peers. They allow peers located
anywhere in the network to form groups. We name them "group of interest" because
their principal use is to make it possible for peers interested in the same activity or
subject to communicate within a restricted group. Group management may involve

 42

access management mechanisms. Jxme, JMobiPeer and Proem implement groups of
interest. In Jxme and JMobiPeer, the groups are virtual entities to which a peer may
choose to belong to or not. The main benefit of the group lies in the limitation of the
messages range that it offers. Let us note that in these middleware, inspired by Jxta,
the concept of group is central because communication relies on the group concept.
Finally, in Proem the groups are called communities and correspond to what we have
called "groups of interest".

4.5 Device management
When used in the context of mobile ad hoc networks the devices (PDA, laptops and
cell phones) often operate on their batteries. Therefore they have limited energy
resources, but are often also limited in terms of memory and computing power
capabilities. Mechanisms to limit energy and memory consumption have been
proposed. For example, in order to save energy, the operating systems manage the
luminosity of the screen and the frequency of some processor can be adjusted.
However, a great part of the resource consumption is due to the applications and to
the network operation.
The control of the resource consumption can be obtained by reducing the number of
messages sent in the network as it is done in MPP, Selma and Steam. This reduces the
amount of bandwidth and computing time used as well as the energy consumption.
The reduction of the number of message sent is obtained, for example, by using the
concept of proximity which reduces the transmission range.
The use of J2ME (Java 2 Mobile Edition) in JMobiPeer naturally limits the resources
consumption because J2ME was especially conceived for mobile devices with low
capacities.
Infoware uses software components in a modular approach that makes it possible to
adapt the middleware behaviour to the device capacities. For example, it is possible to
load only a reduced number of components in order to limit resource consumption.

It should be noted that some middleware ignore the potential mobile devices
capability constraints . It is the case, for instance, of Emma whose epidemic protocol
is an important resource consumer.

4.6 Security
Security is only very seldom taken into account in the studied middleware. The
principal reason is the complexity of security in ad hoc mobile networks: the lack of a
central control device does not make it possible to check the identity of a user. The
protection of shared contents is also lacking. It is possible for devices to intercept a
communication and to exploit the data contained in the messages. The messages must
be encrypted. As the devices share data, the user's privacy has to be enforced by
hiding unshared data from other users' sight.

Some of the studied middleware propose solutions for security management. For
example, MESHMdl proposes to exchange the data in an anonymous way within
shared tuple spaces. JMobiPeer offers components to support various security
protocols such as SSL. Finally Infoware proposes the most complete approach by
using PKI keys and by encrypting the messages. This effort on security is justified by
the nature of the medical data shared in Infoware.

 43

5 Conclusion
The growing interest for mobile ad hoc networks leads to design middleware in order
to provide the applications with distribution facilities. In this survey, we have
presented an overview of the solutions exploited in the middleware. We have
identified a list of useful functionalities which could be incorporated in a middleware
for MANET and presented each studied system following this list. Many of the
functionalities listed are not addressed by a majority of middleware, but they
constitute original features in other middleware.

The first point we can notice after this study is the youth of the research field. All the
middleware studied in this paper were developed within the past five years. All come
from university laboratories, there is no industrial middleware or application for the
moment. Many of these middleware are not developed anymore. However, it is
interesting to notice that projects associated to JXTA, like JXME or JMobiPeer, are
still supported.

We can notice some similarities between the studied middleware. The communication
scheme used in the studied middleware is almost the same. The majority uses
message-oriented communication. The messages are often "improved" by events. This
scheme suits very well to MANETs as it supports asynchronous communication.
Other methods, like remote procedure call, are more complex to use in MANETs
because of the lack of reliability between the mobile devices.
Our study also pointed out several functionalities, which are common to the
middleware. Most of them constitute the middleware core in order to allow the mobile
devices to communicate and share resources. These functionalities are shared resource
identification, resource advertisement and discovery, communication protocols, group
structure management.

There are also lacks of functionalities, common to a large majority of middleware.
The documentation available for each middleware is often light. It is difficult to
conclude if the proposed solutions are not complete or are not completely described.
Nevertheless, they lack two main functionalities in a very large majority of the
middleware: security and resource management.
Security is a major issue for MANETs. The wireless communication is very
vulnerable; there is a lack of confidence between the mobile devices. These problems
are clearly identified by many authors. However, no middleware proposes a solution
to address the security issue.
Resource management also constitutes an important issue for MANETs. The devices
have limited resources (energy, memory, CPU, bandwidth) and their management has
to be performed in a distributed manner. The middleware seems to be the good layer
to enforce resource manager. However, we noticed that in many middleware, the issue
is clearly identified, but never addressed.

To conclude on this study, we can argue that no middleware for MANETs provides
the applications with a complete set of functionalities. The most useful functionalities,
concerning communication for instance, are provided, but some important lacks
remain. The research field is always very active and solutions to address security and
resource management issues exist. It is reasonable to think that in the near future new
middleware for MANETs will be proposed, providing the applications with full
functionalities.

 44

6 References

[Abolhasan, 2004] Abolhasan M., Wysocki T., Dutkiewicz E.: "A review of routing

protocols for mobile ad hoc networks". Ad Hoc Networks, Elsevier, Vol.
2, Issue 1, p. 1-22 (2004).

[Bisignano, 2003] Bisignano M., Calvagna A., Di Modica G., Tomarchio O.: "Expeerience:
a Jxta middleware for mobile ad-hoc networks". Proceedings of the Third
International Conference on Peer-to-Peer Computing, p. 214 - 215
(2003).

[Bisignano, 2004a] Bisignano M., Di Modica G., Tomarchio O.: "An infrastructure-less peer-
to-peer framework for mobile handled devices". Special Issue of
European Transactions on Telecommunications on P2P Networking and
P2P Services, Vol. 15, Issue 6, p. 599-612 (2004).

[Bisignano, 2004b] Bisignano M., Calvagna A., Di Modica G., Tomarchio O.: "Design and
development of a Jxta middleware for mobile ad-hoc networks".
Proceedings of the IASTED International Conference on Parallel and
Distributed Computing and Networks (2004).

[Bisignano, 2005] Bisignano M., Di Modica G., Tomarchio O.: "JMobiPeer: A Middleware
for Mobile Peer-to-Peer Computing in MANETs". Proceedings of the
25th IEEE International Conference on Distributed Computing Systems
Workshops, p. 785 – 791 (2005).

[Chetan, 2004] Chetan S., Al-Muhtadi J., Campbell R., Mickunas M. D.: "A Middleware
for Enabling Personal Ubiquitous Spaces". Proceedings of UbiSys:
System Support for Ubiquitous Computing Workshop at Sixth Annual
Conference on Ubiquitous Computing, Nottingham, England (2004).

[Chetan, 2005] Chetan S., Al-Muhtadi J., Campbell R., Mickunas M. D.: "Mobile Gaia:
A Middleware for Ad-hoc Pervasive Computing". Proceedings of the
IEEE Consumer Communications & Networking Conference, Las Vegas,
USA (2005).

[Chlamtac, 2003] Chlamtac I., Conti M., Liu J. J.-N.: "Mobile ad hoc networking:
imperatives and challenges". Ad Hoc Networks, Elsevier, Vol. 1, Issue 1,
p. 13-64 (2003).

[Clip2, 2001] Clip2: "The gnutella protocol specification v0.4" (document revision
1.2). http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf.
(2001).

 45

[Frodigh, 2000] Frodigh M., Johansson P., Larsson P.: "Wireless ad hoc networking: The
art of networking without a network". Ericsson Review. (2000).

[Gong, 2001a] Gong L.: "Project JXTA: A technology overview". Technical Paper, Sun
Microsystems,
http://www.jxta.org/project/www/docs/jxtaview_01nov02.pdf (2001).

[Gong, 2001b] Gong L.: "JXTA: A Network Programming Environment". In IEEE
Internet Computing, v. 5, p. 88-95, (2001).

[Görgen, 2004] Görgen D., Frey H., Lehnert J. K., Sturm P.: "SELMA: A Middleware
Platform for Self-Organzing Distributed Applications in Mobile
Multihop Ad-hoc Networks". Communication Networks and Distributed
Systems Modeling and Simulation, San Diego, USA (2004).

[Gruber, 2004] Gruber I., Schollmeier R., Kellerer W.: "Performance evaluation of the
mobile peer-to-peer service". Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid, p. 363-371, (2004).

[Hayes, 2004] Hayes A., Wilson D.: "Peer-to-Peer Information Sharing in a Mobile Ad
Hoc Environment". Proceedings of the 6th IEEE Workshop on Mobile
Computing Systems and Applications, p. 154-162, (2004).

[Herrmann, 2003] Herrmann K.: "MESHMdl - A Middleware for Self-Organization in Ad
hoc Networks". Proceedings of the 1st International Workshop on Mobile
Distributed Computing, Providence, Rhode Island, USA (2003).

[J2ME] Sun Microsystems: "Java 2 Mobile Edition website".
http://java.sun.com/j2me/index.jsp

[Jxme] JXME Community: "JXME's website". http://jxme.jxta.org

[Jxme, 2002] Arora A.: "JXTA for J2ME - Extending the Reach of Wireless With
JXTA Technology". Technical paper, Sun microsystems,
http://www.jxta.org/project/www/docs/JXTA4J2ME.pdf (2002).

[Jxta] JXTA community: "JXTA's website". http://www.jxta.org

[Jxta, 2003] Jxta community: "JXTA Protocol Specification v2.0". Technical paper,
Sun Microsystems,
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html (2003).

 46

[Kortuem, 2001a] Kortuem G., Schneider J., Preuitt D., Thompson T. G. C., Fickas S.,
Segall Z.: "When Peer-to-Peer comes Face-to-Face: Collaborative Peer-
to-Peer Computing in Mobile Ad hoc Networks". Proceedings of the 1st
International Conference on Peer-to-Peer Computing, Lingköping,
Sweden (2001).

[Kortuem, 2001b] Kortuem G.: "Proem: A Peer-to-Peer Computing Platform for Mobile
Ad-hoc Networks". Technical Report.

[Kotilainen, 2005] Kotilainen N., Weber M., Vapa M., Vuori, J.: "Mobile Chedar - A peer-
to-peer middleware for mobile devices". Proceedings of the 3rd IEEE
International Conference on Pervasive Computing and Communications
Workshops. P. 86-90, (2005).

[Ledoux, 1999] Ledoux T.: "OpenCorba: A Reflektive Open Broker". In Proceedings of
the Second international Conference on Meta-Level Architectures and
Reflection. P. Cointe, Ed. Lecture Notes In Computer Science, vol. 1616.
Springer-Verlag, London, 197-214, (1999).

[Meier, 2002] Meier R., Cahill V.: "STEAM: Event-Based Middleware for Wireless Ad
Hoc Network". Proceedings of the International Workshop on Distributed
Event-Based Systems, Vienna, Austria, p. 639-644 (2002).

[Meier, 2003] Meier R., Cahill V.: "Location-Aware Event-Based Middleware: A
paradigm for Collaborative Mobile Applications". 8th CaberNet Radicals
Workshop, Ajaccio, France (2003).

[Meier, 2004] Meier R., Cahill V.: "Exploiting Proximity in Event-Based Middleware
for Collaborative Mobile Applications". First Workshop on Middleware
for Network Eccentric and Mobile Applications (MiNEMA), Dublin,
Ireland (2004).

[Meier, 2005] Meier R., Cahill V., Nedos A., Clarke S.: "Proximity-Based Service
Discovery in Mobile Ad Hoc Networks". Proceedings of the 5th IFIP
International Conference on Distributed Applications and Interoperable
Systems, LNCS 3543, p. 115-129, Athens, Greece (2005).

[Musolesi, 2005] Musolesi M., Mascolo C., Hailes S.: "EMMA: Epidemic Messaging
Middleware for Ad hoc networks". Personal and Ubiquitous Computing
Journal. Vol. 9. September 2005.

[Papadopouli, 2000] Papadopouli M., Schulzrinne H.: "Seven Degrees of Separation in Mobile
Ad Hoc Networks". IEEE GLOBECOM, San Fransisco, USA (2000).

 47

[Papadopouli, 2001] Papadopouli M., Schulzrinne H.: "Design and Implementation of a Peer-
to-Peer Data Dissemination and Prefetching Tool for Mobile Users".
Proceedings of the 1st NY Metro Area Networking Workshop, IBM TJ
Watson Research Center, Hawthorne, New York, USA (2001).

[Plagemann, 2003] Plagemann T., Goebel V., Griwodz C., Halvorsen P.: "Towards
middleware services for mobile ad-hoc network applications".
Proceedings of the 9th IEEE Workshop on Future Trends of Distributed
Computing Systems, p. 249-255, (2003).

[Plagemann, 2004] Plagemann T., Andersson J., Drugan O., Goebel V., Griwodz C.,
Halvorsen P., Munthe-Kaas E., Puzar M., Sanderson N., Skjelsvik K.:
"Middleware Services for Information Sharing in Mobile Ad-Hoc
Networks: Challenges and Approaches". Proceedings of IFIP Workshop
Challenges of Mobility, Kluwer (2004).

[Proem] Proem's website: http://www.cs.uoregon.edu/research/wearables/proem/

[Schollmeier, 2003] Schollmeier R., Gruber I., Niethammer F.: "Protocol for Peer-to-Peer
Networking in Mobile Environments". Proceedings of the 12th
International Conference on Computer Communications and Networks,
Dallas, USA (2003).

[Services] JXTA services home page: http://services.jxta.org/

[Skype] Skype website: http://www.skype.com

[SOUL] SOUL project website: http://www.syssoft.uni-trier.de/soul/

[Van Steen, 1999] Van Steen M., Homburg P., Tanenbaum A.: "Globe: A Wide-Area
Distributed System". IEEE Concurrency, 7(1), p. 70-78, (1999).

[Yan, 2004] Yan L., Sere K., Zhou X., Pang J.: "Towards an Integrated Architecture
for Peer-to-Peer and Ad Hoc Overlay Network Applications".
Proceedings of the 10th IEEE International Workshop on Future Trends
of Distributed Computing Systems, p. 312-318, (2004).

Dépôt légal : 2007 – 1er trimestre
Imprimé à l’Ecole Nationale Supérieure des Télécommunications – Paris

ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

©
 G

ET
-T

él
éc

om
 P

ar
is

 2
00

7

Ecole Nationale Supérieure des Télécommunications

Groupe des Ecoles des Télécommunications - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.enst.fr

Département INFRES

	2007D004.doc
	
	
	
	
	
	2007
	
	Département Informatique et Réseaux
	Ecole Nationale Supérieure des Télécommunications
	Département INFRES

	2007D004O.pdf

