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pour la gestion de la circulation routière
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Abstract

Dans un futur proche, les réseaux sans fil seront l’une des technologies clés pour la gestion de la circulation
routière dans les villes intelligentes. Les véhicules et systèmes routiers devraient être reliés, par exemple à travers
l’extension IEEE 802.11p. En parallèle, nous pouvons nous attendre à ce que les feux de circulation et les signaux
routiers aient leur place dans cette architecture, formant un réseau distribué à grande échelle composé essentielle-
ment de petits appareils peu coûteux. En ce sens, ce réseau partage beaucoup de points communs avec les réseaux
de capteurs sans fil classiques, y compris sont organisation autour d’un centre de contrôle unique. Cependant, la
topologie de ce réseau est fortement influencée par les caractéristiques propres à chaque ville.

Dans cet article, nous classons et caractérisons les topologies probables de ces réseaux. Le but de ce travail est de
fournir des modèles de réseaux qui peuvent être utilisés pour évaluer des protocoles et algorithmes sur un scénario
réaliste, plutôt que sur des graphes aléatoires génériques. Nous appliquons des méthodes de déploiement du réseau
sur plus de 52 cartes de villes extraites de OpenStreetMap et caractérisons les graphes en résultant, en terme
d’échelle (nombre de noeuds, diamètre), de densité (distribution de degré), de qualité de liaison (distance entre
les noeuds) et de connectivité (nombre de composantes connexes). Les résultats montrent que les villes peuvent
raisonnablement être classées en trois catégories qui constituent une base pour les outils aléatoires de génération
de scénarios. Les outils, notre jeu de données complet et les modèles OMNeT++ en résultant sont disponibles en
ligne.
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Characterizing the Topology of a Urban Wireless Sensor Network

for Road Traffic Management

Abstract

In a near future, wireless networks will be one of the key
technologies for road traffic management in smart cities.
Vehicles and dedicated roadside units should be inter-
connected for example through the IEEE 802.11p exten-
sion. In parallel, we can expect that traffic light and
road signs will also take their place in this architecture,
forming a distributed large-scale network composed es-
sentially of small inexpensive devices. In this sense, this
network shares many similarities with classical wireless
sensor networks, including its organization around a sin-
gle control center. However, the topology of this network
shall be strongly influenced by each city characteristics.

In this article, we classify and characterize the proba-
ble topologies of these networks. The aim of this work is
to provide network models that can be used to evaluate
protocols and algorithms over a realistic scenario, rather
than on generic random graphs. We apply network de-
ployment methods over 52 city maps extracted from
OpenStreetMaps and characterize the resulting graphs in
terms of scale (number of nodes, diameter), density (de-
gree distribution), link quality (inter-nodes distance) and
connectivity (number of connected components). The
results show that cities can reasonably be classified into
three categories that form a basis for random scenarios
generation tools. The tools, the complete datasets and
the resulting OMNeT++ models are available online.

1 Introduction

As more and more people move to cities, the drastic in-
crease in urban population density has begun to pose
several challenges regarding vehicle traffic management.
Town planners and researchers are designing digital mon-
itoring and control systems to help reduce congestion,
prevent accidents, limit the environmental cost of trans-
portation, as well as to reduce nuisances. This evo-
lution towards smart cities is an active research do-
main [30, 31, 32, 7] with ongoing large experimental
projects. For example, the city of Pittsburgh, Pennsylva-
nia, acts as a pilot deployment for the Traffic21 research
program, which includes the design and deployment of
an adaptive traffic light control system. This program
has successfully proven that such systems are efficient
and has received full support from the city mayor and
from the U.S. Secretary of Transportation.

If such systems, in the past, were limited by the cost of
vehicle detection systems, today, the success of embed-
ded systems allows deploying a dense network of detec-
tors and actuators that communicate using wireless in-
terfaces. Tiny devices capable of counting vehicles with
a magnetometer or a camera, but also to measure CO2,
micro-particle and noise level, can be installed at traf-
fic lights and on urban lighting systems without complex
roadwork.

Today’s cheap devices are powerful enough to auto-
organize, report measurements to a central SCADA soft-
ware such as SCOOT ([26]) or SCATS ([27]) and receive
global policies in return. This pledges for a dense de-
ployment of nodes over traffic lights and even road signs.
Deploying such a large-scale network would, in addition,
provide a fixed infrastructure to foster the development
of vehicular applications that need a minimal amount of
users to form an infrastructure.

Indeed, when the vehicles traffic load is high, a small
event can easily and rapidly escalade into a severe con-
gestion [13] and communicating with a central decision
point may not be the most efficient solution. Taking
advantage of the distributed computing results, such de-
vices can easily communicate together and rapidly adapt
the traffic light plans to solve a situation. Finally, the
density of devices increases fault tolerance, as measure-
ments and communication paths impaired by the failure
of a device can be replaced by neighbor devices.

However, the huge amount of research in ad-hoc, mesh
and sensor networks has shown that the network topol-
ogy has a strong effect on the network performance
and identified which network protocols suite was most
adapted to various situations. The network density has
an effect on local congestion and on nodes energy con-
sumption. It influences the medium access control pro-
tocol and the possibility of deploying a few autonomous
nodes. Path diversity influences fault tolerance and the
network global capacity. The network diameter has an
effect on the end-to-end delay. The network partition-
ing defines whether the distributed network can work in
autonomy or needs to be interconnected to a cellular or
wired backbone.

No real city-wide network is deployed yet, and such
deployments will happen at a very slow pace until the
technology prove itself efficient. In this paper, we char-
acterize plausible network topologies and we derive graph
models that are more realistic than the generic random
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graph models to serve as a basis for protocols and ap-
plications performance evaluation. Based on a few de-
ployment strategies that we explain in Sec. 3, we cre-
ate the communication graphs that result from the sen-
sors deployment over 52 city maps extracted from Open-
StreetMap, as explained in Sec. 4. We then analyze the
resulting graphs structural properties in Sec. 5 and dis-
cuss the networking aspects in Sec. 6.

2 Related Works

Using embedded devices to help managing smart cities
is not a novel idea. Press-covered research results show
the interest of traffic monitoring (through a sensor or
a vehicular network) for suppressing instability in traf-
fic flows [12] and for reducing the congestion level. The
ramp metering systems that have been widely deployed
show that an active management of traffic lights could
reduce drastically the traffic jams, even though the Min-
neapolis ramp meters were highly contested by users who
had the feeling that waiting times increased. This prac-
tical case shows that simulations and experiments are
necessary prior to operational deployments.

In parallel, several projects and initiatives have
reached an experimental phase and a few medium-scale
deployment have begun. CitySense [20] is an urban wire-
less network testbed deployed all over the city of Cam-
bridge (MA, USA), forming a mesh network. It is com-
posed of 100 linux-based computers that can be pro-
grammed directly by end users. Even though the primary
focus was to foster mesh networks applications develop-
ment, nodes have been augmented with environmental
and pollution sensors.

In the Cambridge experiments, nodes were deployed
to provide a good wireless coverage of the area. How-
ever, for application-specific networks, the questions of
the best deployment strategy has attracted the attention
of the scientific community. Corredor et al. [3] look at the
deployment of magnetometers for monitoring road traffic
over smart highways. They propose to deploy such sen-
sors on every lane to maximize vehicles detection proba-
bility and couple the sensors with roadside units to solve
connectivity problems. Hu et al. [14] proposes to deploy
sensors across the 2nd ring road of Beijing (China) for
road traffic monitoring. They influence the deployment
so that the resulting topology conforms to a small world
graph in order to take advantage of this type of struc-
tures. The article proposes to optimize transmission ra-
diuses of the nodes and to refine the location of high
coverage nodes using an evolutionary algorithm. City-
See [17] is a project to deploy a sensor network in the
city of Wuxi (China) to measure the CO2 level in real-
time. The paper models the deployment issue as a relay

node placement problem and evaluates the number of
additional nodes deployed for connectivity purposes.

All these papers propose different deployment strate-
gies, and the resulting connectivity graphs should be
slightly different. In the literature, it is commonly as-
sumed that city maps are scale-free networks. Besides,
the complex networks analysis methods that are widely
used in social networks analysis are also applied in urban
networks [24, 4, 23]. However, the topology of the net-
work deployed over a city infrastructure depends on the
deployment method and this topology has a strong ef-
fect on the network protocols performance. Ishizuka and
Aida [15] examine the effect of the sensor topology on
fault tolerance and on the event detection probability.
[28] study the performance of various congestion con-
trol algorithms for wireless sensor networks over simple
topologies. [25] evaluate the impact of the topology on
the data collection process in a sensor network. Ducrocq
et al. [5] evaluate the impact of the network topology on
geographic routing. All these studies concern different
aspects of the communication process, but they unan-
imously conclude that the structural properties of the
network has a strong impact on the algorithms perfor-
mance.

Yet, very few contributions really tried to propose re-
alistic models of large scale urban sensor networks. [21]
examines the topology of a vehicular network, hence a
mobile network, in the city of Cologne (Germany). The
authors show the weaknesses that vehicular protocols
may encountered: mobility as an additional constraint
has the effect of creating a very volatile and fragmented
network. However, no contribution to our knowledge,
has characterized the topology of a fixed distributed net-
work of sensors and actuators that would be deployed
and managed by the city itself, even though the appli-
cations of such networks for traffic lights and adaptive
speed limits management is obvious.

3 Deploying Sensor Nodes in
Cities

3.1 Basic Strategy

Let us begin by detailing the sensors deployment meth-
ods we assume. We begin by acquiring a city map that
we suppose accurate enough to identify the intersections
with and without traffic light, the traffic directions, the
lanes and the distance between two intersections. Such
data can be obtained from pubic geographic information
systems such as OpenStreetMap.

The primary goal of the network we are building is to
count vehicles to feed an intelligent transportation sys-
tem. We did not assume any intelligent data correlation
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algorithm and we hence start by placing one sensor node
at the end of each lane. In other words, we deploy, at
each intersection, a number of sensors equal to the num-
ber of incoming lanes, as illustrated by the yellow dots
on Fig. 1(a). We focus on lanes rather than roads be-
cause we have in mind magnetometer-like sensors which
can accurately count vehicles passing over them.

Sensor (per-lane 
deployment)

(a) 1 sensor per lane (magnetometers)

Sensor location
(per-road  deployment)

(b) 1 sensor per road (cameras)

Figure 1: Sensors deployment strategies illustrated on an in-
tersection between a major road (4 lanes) and a
minor street (1 lane, 1 way).

We also considered an alternate strategy that con-
sists in deploying one sensor per road, as illustrated on
Fig 1(b). This strategy corresponds to the case where
sensors are overhead cameras, backed up by a video anal-
ysis software, that are able to capture all lanes simulta-
neously. Both strategies are possible, and they differ on
accuracy. The choice is beyond the scope of this article.

3.2 Reducing the number of sensors

Both strategies induce deploying a large number of sen-
sors and an infrastructure cost that would be consid-
ered too high by city planners. To reduce the num-
ber of sensors without impairing the monitoring capa-

bility, we decided to avoid deploying sensors between
two intersections that are too close. We tested different
threshold values (from 10 m to 100 m) and found that
the global number of sensors decreases linearly, as the
threshold increases. We therefore choose a value that
encompasses modern urbanism recommendations in ap-
plication in France and in Quebec city and only posi-
tioned sensors on intersections that are more than 50 m
away.

Figure 2 represents the number of nodes in six different
representative cities that belong to our dataset. The each
lane case, displayed in red, corresponds to the placement
of one sensor per-lane at all intersections. The second
(orange) bars represent the number of sensors that re-
main when removing one out of two close sensors. The
third bars, in yellow, represent the scenarios in which
one sensor is deployed per road rather than one per lane
and the fourth (green) bars combine both optimizations.
The fifth and final bars (in blue) represent the scenario
in which only one sensor is deployed per intersection (e.g.
with a fisheye camera).

3.3 Creating the connectivity graph

Each sensor positioning method produces a set of nodes,
N , with geographic coordinates. We then create an undi-
rected weighted graph G = (N,E), whose edge set (E)
is created by confronting inter-sensor distances to nodes
transmission range. E = {(i, j, δ)} is a set of unordered
weighted pairs of nodes, i and j, whose weight, δ ∈]0 : 1]
represents the strength of the connection (e.g. the wire-
less link quality).

The edges weight is calculated based on the Sen-
sys Networks VSN240 sensors1 model, which are used
on roads all around the world and can be deployed
densely [11]. These nodes use a nominal output power of
0 dBm and have a receiver sensitivity of −95 dBm in the
2.4 GHz band. We confront these values to a simplified
propagation model that corresponds to a 2.4 GHz IEEE
802.15.4 network interface ([1, 18]). This model defines
the path loss (in dB) across a distance of d meters as
follows:

PL(d) =

{
40.2 + 20 log10(d), 0.5m ≤ d ≤ 8m

58.5 + 33 log10(d/8), d > 8m
. (1)

Note that this model, which simply defines a transmis-
sion range at this level of analysis, should fit most tech-
nologies that operate in the S-band (2 GHz to 4 GHz),
which covers possible technologies and it can easily be
adapted to other narrow frequency bands such as the 5.9
GHz band utilized by IEEE 802.11p (WAVE).

1http://www.sensysnetworks.com/products/sensor/
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Figure 2: Comparison of the number of sensors deployed in different strategies on various scenarios.

3.4 Dealing with network partitioning

A graph can be partitioned into one or multiple connected
components. A connected component is a sub-graph in
which all couples of nodes are connected by a path, and
such that no path exists between nodes that belong to
the component and nodes outside the component. In our
deployment, a connected component models a group of
nodes that are connected together but disconnected from
the rest of the network, as represented on Figure 3. On
this figure, four intersections are monitored by one sensor
per lane and the resulting graph is partitioned due to a
too large distance between the left and right groups of
sensors.

As we will see in section 6.1, the basic strategy de-
scribed above produces a partitioned network with a high
number of connected components. Network partitioning
is not an issue per se, as the components can be intercon-
nected together by a cellular network or by a metropoli-
tan wired network. However, the number of independent
network components should remain reasonable to limit
the backbone complexity. That’s why we also evaluate a
strategy to interconnect close connected components that
we detail in section 7, after analyzing the raw graphs.

4 Dataset creation

4.1 Method and tools

We applied the graph creation method described in
section 3.1 on a set of 52 city maps extracted from
BBBike.org2, a service that offers to retrieve Open-

2http://download.bbbike.org/osm/

StreetMap3 maps data from more than 200 cities and
regions worldwide. OpenStreetMap is an international
project started in 2004 that intends on creating an open
access map of the world. The maps have gone through
several modifications, thanks to crowdsourcing, and are
now accurate enough for navigation software [10].

In order to filter the information contained in these
complete maps by removing elements that are not rel-
evant to our study (e.g. bike lanes, pedestrian areas),
we use NETCONVERT, a tool provided by the SUMO
microscopic traffic flow simulator4 [16] (version 0.19).
The resulting maps are easier to utilize than their Open-
StreetMaps counterparts. Besides, the SUMO simulator
can easily be coupled to a network simulator like OM-
NeT++5 [8]. In order to avoid overloading the network,
we kept only the main and the secondary streets, as de-
fined on the OpenStreetMap wiki6.

4.2 Selection of 6 representative scenar-
ios

We created the graphs for 52 cities that we extracted
from the public database. Among these 52 scenarios, we
selected 6 representative cities to illustrate our points.
All the datasets, the results and the OMNeT++ models
are however available online at http://g.sfaye.com/.
The scripts to generate the graph, invoking the different
tools in sequence with different configurable parameter
(path-loss model, deployment method, etc.), is also avail-
able for use through a web interface and for download at

3http://www.openstreetmap.org/
4http://sumo-sim.org/
5http://www.omnetpp.org/
6http://wiki.openstreetmap.org/wiki/Key:highway
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Figure 3: A 4-intersections network monitored by 1 sensor per lane

the same address.

The first property that influenced our choice is the area
covered by the city. It is independent of the deployment
method. We wanted to include large cities as well as
small cities to account of the diversity of urbanism rules.
The surfaces covered by all 52 cities are represented on
Fig. 4. We selected the largest and the smallest cities:
New Orleans and Beirut respectively.

The second selection criterion is the nodes density pro-
duced by the basic method. Density has a direct effect on
network performance, as it influences collision probabil-
ity at the medium access level, and congestion probabil-
ity. Figure 5 represents the average number of nodes de-
ployed per square kilometer in all 52 cities. We included
the densest and the sparsest networks in our dataset:
Miami and Cusco respectively.

Finally, we added to the dataset two more networks of
average size and density, with different profiles of distri-
bution of the inter-distances between intersections. Fig-
ure 6 represents the diversity of distributions we found
in our datasets on a few scenarios. Analyzing all the
graphs, we came across three main distribution profiles:

1. Most cities (37 in our dataset) exhibit a unimodal
and asymmetric distances distribution skewed to the
left. Miami (Fig.6(a)), Beirut (Fig. 6(b)) and Paris
(Fig. 6(c)) belong to this category. This type of dis-
tribution indicates that these cities have a relatively
uniform intersections repartition and density. This
is typically the case for geometric cities (e.g. Mi-
ami), sparse cities (Beirut) or uniformly dense cities
(Paris). The width of the peak gives an indication
on how regular the city structure is. Its shift to-
wards smaller values is more pronounced in denser
road networks.

2. Some cities (11 in our dataset) show a bimodal dis-
tances distribution, like Madrid (Fig. 6(d)) or New

Orleans (Fig. 6(e)). This usually means that the ur-
ban rules are different for the city center and for the
peripheral area, and that the frontier between the
two zones is abrupt.

3. Finally, a few distributions (4 in our dataset) are
quasi-uniform. For example Bagdad (Fig. 6(g)) fol-
lows this type of profile and to some extent Cusco
(Fig. 6(f)) does too, even though a few peaks appear
at smaller distances. Note that if this type of distri-
bution is independent of the city size or density, it
is more frequently found for lower density networks.

Based on the inter-distance criterion, we added Madrid
and Paris to our set of representative maps. Figure 7
represents the number of nodes deployed in all scenarios.
In terms of network implementation, the network size
has a direct influence on the addressing scheme and on
the memory required for routing tables, as well as on the
deployment cost. The 6 scenarios that we selected reflect
quite well the diversity of the dataset, as we have large
networks (Paris), small networks (Cusco) and average
ones.

5 Connectivity graphs analysis

5.1 Nodes degrees

Figure 8 shows the average node degree for each network,
i.e. the average number of other nodes that are within its
transmission range. In terms of networking, node degree
represents the number of contenders each node has to
compete with for accessing the wireless channel. As a
node has to share the channel bandwidth with all its
neighbors, network planning should aim for a relatively
low degree. Yet, a too small value is not desirable, as a
fair degree offers path diversity and redundancy.
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Figure 4: City size (km2)
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Figure 6: Distribution of the distances between intersections in representative cities.

Figure 8 shows that all graphs have a similar aver-
age degree that lies between 5 and 7 neighbors. Given
the considerable amount of performance evaluations real-
ized on various wireless technologies and considering the
technological choices that standards (Bluetooth, Zigbee,

etc.) usually make, this fits quite well the classical use
case of today’s wireless standards. We can notice that
the average degrees of all networks are quite close from
each other. Cities like Beirut, whose road network is rel-
atively uniform, have a higher average degree than other
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Figure 7: Number of nodes
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Figure 8: Average node degree

cities like Paris, for example, who have a wide suburban
area.

The degree distribution is a classical measure to char-
acterize large graphs. The bar graphs on Figure 9 repre-
sents the empirical degree distributions measured on the
6 chosen scenarios. We can first notice on these graphs
that the maximum degree in the graph is relatively high
(close 35 for Cusco and Madrid), but not too high. The
empirical average and standard deviation are very dif-
ferent in all degree distributions, therefore these distri-
butions cannot be fitted by Poisson distributions. They
do not correspond to a power law distribution either, as
the log-log representation of the degree distribution is
far from linear, as shown on Figure 10 for Paris. We fi-
nally approximated the empirical degree distribution by
a gamma distribution whose scale parameter (θ) is cal-
culated, for each graph, as the ratio between the empiri-
cal variance (σ2) and the empirical average (µ), and the
shape parameter (k) is calculated as the ratio between
the empirical average and the scale parameter: θ = σ2/µ
and k = µ/θ.

The fitted distributions are represented by the black

City Shape (k) Scale (θ)
Beirut 2.397899 3.312492
Cusco 0.9380117 6.666784
Madrid 1.347767 4.933085
Miami 2.183021 3.192106
New Orleans 2.380301 2.52304
Paris 2.26065 2.558382

Table 1: Gamma distributions parameters

curves on Fig. 9 and the values of the parameters are
reported in Table 1. Except for a few high values (around
degree 23 in the Beirut scenario e.g.), the fitting is quite
accurate. Figure 11 represents the quantile vs. quantile
plot that compares the empirical and fitted distributions.
The closer the dots are of the diagonal line, the better
the matching is. This graph tells us that the fitting using
a gamma distribution is relatively accurate and deviates
slightly for higher degrees. If the lowest values and the
tail of the different distributions differ, their modes are
all located around a value of 5 nodes, which gives a good
idea on the expected congestion level in most parts of
the network.

5.2 Clustering coefficient

The clustering coefficient of a node in a graph is the prob-
ability that two neighbors of the node are themselves
mutual neighbors. It accounts for the presence of com-
munities in the graph and it is a classical measure to
characterize graphs. Small world networks, that model
several interaction graphs usually exhibit a high clus-
tering coefficient. Figure 12 represents the CDF of the
clustering coefficients in the different scenarios. Compar-
ing these values with the network density, we have the
confirmation that the graphs we generate do not possess
the small world property.
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Figure 9: Empirical and fitted degree distributions
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Figure 10: Degree distribution in the Paris scenario (log-log
scale)

5.3 Creating random graphs

As the degrees tend to follow a gamma distribution, none
of the state of the art random graphs model really fits
this type of networks. The models from Gilbert [9] pro-
duces a degree distribution that corresponds to a bi-
nomial distribution. Erdös and Rényi [6] model gen-
erates graphs whose degree distribution follows a Pois-
son distribution, as well as the random geometric graph
model [22], which is classically used to generate random
wireless networks. The preferential attachment method
proposed by Barabasi and Albert [2], as well as the Watts
and Strogatz model [29] both produce scale-free networks
whose degree distribution follows a power law.

Generating graphs that correspond to such deploy-
ments therefore requires to use models such as the Molloy
and Reed [19] method that allows to use an arbitrary de-
gree distribution. The experimenter should first decide
of the type of city he wishes to generate and decide of the
shape and scale parameters of the gamma distribution.
Smaller shape values shift the distribution towards low
degrees and hence model cities in which intersections are

9



Figure 11: Quantile-Quantile Plot of Degree distributions vs.
Gamma distributions
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Figure 12: CDF of the clustering coefficient

far away from each other. The scale parameter defines
the height of the peak and hence models how uniform
the degrees will be. It accounts to some extent for the
regularity of the distances between the intersections.

6 Network analysis

6.1 Connected components

The degree distribution accounts for local connectivity.
To evaluate the global connectivity of the networks, we
analyze the number of connected components that form
the network. This either means that each of these ar-
eas will be fully autonomous and disconnected from the

control center, or that it is necessary to deploy nodes or
links solely for connectivity purposes. The network man-
ager may choose to place, in each sub-network a gateway
through a cellular network or through a metropolitan
wired network, and/or to deploy additional sensors. We
will study the effect of such an extension in section 7.

Figure 13 shows the number of connected components
in the different networks. This number depends directly
on the dimension of the different networks as well as
on the number of nodes. We can see that Paris has
more than 5 500 components, which reflects a highly frag-
mented network and show a real difficulty in implement-
ing protocols that require the entire network without fur-
ther interconnection.
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Figure 13: Number of connected components

Figure 14 shows the percentage of connected compo-
nents that are only composed of one single node, i.e. the
number of sensors who are too far away to be connected
directly to the rest of the network through the same wire-
less technology. This proportion increases as the nodes
density decreases. Cusco, for example has around 25% of
connected components composed of a single node, while
Paris has around 12.5%, which represents 750 nodes.

Figure 15 shows the CDF of the distance between a
component and its neighbor component. To identify the
closest components, we first compute the coordinates of
the centroid of each connected component. This pro-
duces a set of points in the plan and we build the Voronoi
diagram of this set of points. A Voronoi diagram sepa-
rates the plan in zones centered on each node. A zone
is composed of all the points that are closer to the cen-
tral node than any other node. We then consider that
two components are neighbors if their Voronoi cells have
a common frontier. Figure 15 shows that a few com-
ponents are very far from the rest of the network, but
that most components are relatively close to each other,
which indicates that reducing the number of components
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Figure 14: Percentage of isolated nodes
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Figure 15: CDF of the distance between close connected com-
ponents

by inserting intermediate relays should be efficient.

6.2 Inside connected components

Figure 16(a) represents the average diameter of the con-
nected components of each network. The diameter is
the length of the longest of the shortest paths between
couples of nodes that belong to the same component,
expressed in number of hops. This distance accounts
for the transmission delay between pairs of nodes within
the connected component. It depends on the component
size and, to a lower extent on the nodes density. We can
see that this diameter remains very low, essentially due
to the presence of several small sized components. Fig-
ure 16(b), which represents the CDF of the diameters,
confirms this result. Networks are mainly composed of
small-sized connected components and a few large ones.

Let us now focus on the maximum connected compo-
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Figure 16: Connected components diameter

nent (max-component), which is the connected compo-
nent that contains the highest number of nodes. Fig-
ure 17(a) represents the number of nodes that belong
to this max-component and ranges from 33 nodes (New
Orleans) to more than 130 nodes (Miami). Nodes that
belong to the same connected component can be seen
as belonging to the same broadcast domain, hence this
figure gives an indication on the cost of broadcasts and
on how many nodes can be reached by control packets
(ARP, routing protocols, etc.).

Figure 17(b) shows the CDF of the distances (in num-
ber of hops) that separates couples of nodes within this
max-component. It gives an indication on the delays. We
can see here that the distributions range from low diame-
ter components (about 4 hops) to larger components (10
hops) and that these distributions do not always follow
the trend defined by the size of the component, or from
the average density. Madrid, for example, is sparser than
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Figure 17: Analysis of the max-component

Paris (Fig. 5) but its maximum connected components
has shorter path for a comparable number of nodes. The
answer lies in the inter-distances distribution (Fig. 6):
the mode of the Paris distribution is located at a higher
distance than the first mode of the Madrid distribution,
which indicates that the intersections density is higher
in downtown Madrid than in Paris.

Figure 17(c) shows the CDF of the edge lengths. This
parameter is important for evaluating the attenuation
on the wireless links and hence the links quality or the
expected number of transmissions. The distribution is
globally uniform, as the CDF is almost linear for all net-
works. Differences come from the architectural specifici-
ties of the cities.

6.3 Reliability analysis
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Figure 18: Number of connected and bi-connected compo-
nents

Figure 18 compares the number of connected compo-
nents (red bars) with the number of biconnected com-
ponents (green bars) in each network. A biconnected
component is a connected component in which there are
at least two paths between each couple of nodes. It re-

flects the proportion of sub-networks that can tolerate
any single node failure. The values show that there is
only a small proportion of the sub-networks who exhibit
such structural weakness and that few additional deploy-
ments will be required to comply to the classical N-1
reliability criterion.
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Figure 19 shows the cumulative distribution function
(CDF) of the number of components that have a given
percentage (represented on the X-axis) of their nodes
that are articulation points. An articulation point is a
node whose removal disconnects the component it be-
longs to, increasing the number of connected compo-
nents. This definition implies that the graph only con-
cerns components formed by at least 3 nodes.

First, the graphs are fairly redundant, as in the worst
case (Madrid), almost 94 % of the components have no
articulation point. In the worst case, a connected com-
ponent had 50 % of its nodes who are critical for connec-
tivity, which corresponds to a chain of nodes. A network
like Paris, for example, tends to have a large number of
articulation points, as the suburban area is large. Madrid
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has the same characteristics as the city of Paris, without
the scattered suburbs, but with several areas of high den-
sity around the city centre. In this case, the rise in the
rate of articulation points is not as sudden.

7 Improving connectivity

The analysis in the previous section was conducted on
“raw” graphs, created by only positioning sensors that
had a monitoring role. As no effort was made to im-
prove connectivity, these graphs are composed of many
connected components and an operator willing to acquire
data or to disseminate policies across its whole network
shall interconnect these components.

In this section, we examine the effect of such an in-
terconnection strategy that relies on the insertion of re-
lay nodes that we suppose identical to the sensor nodes.
These relay nodes are positioned in order to merge two
connected components. We define the distance that sep-
arates two arbitrary connected components as the min-
imum of the distance between couple of nodes that be-
long to each component. Depending on this distance,
we would need one or more intermediate relays to merge
both sub-graphs.

We supposed that the operator imposes a limit on the
maximum number of intermediate nodes that could be
deployed for interconnection purposes between two com-
ponents and study the effect of setting this limit from 1
to 10 relays. Indeed, a value of 10 is most unlikely, as
it would result in relying on chains of 10 nodes to inter-
connect components, knowing that the failure of any of
these nodes would result in partitioning the component.
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Figure 20: Paris. Empirical and fitted degree distributions
when adding at most 4 relays between connected
components

Fig. 20 shows the updated degree distribution for the
Paris network. All scenarios go through similar evolu-
tion. We can see that the gamma distribution fitting is

City Shape (k) Scale (θ)
Beirut 3.463977 3.030837
Cusco 1.222276 5.911105
Madrid 2.321423 3.584129
Miami 3.682748 2.584144
New Orleans 2.929175 2.5145
Paris 3.955912 2.024664

Table 2: Parameters of the fitted gamma distributions in the
improved connectivity deployment

still valid. Table 2 shows the new gamma distribution pa-
rameter values for the 6 representative scenarios when 4
relays at most are added. Comparing these values with
Table 1, we can notice globally a decrease in the scale
parameter and an increase in the scale parameter. This
indicates that the resulting networks are less uniform due
to the presence of chains of nodes. The distribution also
shifts towards the right value, which means that the av-
erage degree increases.

Figure 21(a) represents the evolution of the number
of connected components. The X-axis value of −1 rep-
resents the inverse situation in which the articulation
points in the graph (see Sec. 6.3) are removed. We can
see that inserting a single relay has a limited impact,
while increasing the threshold to 2 or 3 has a notable in
very scattered graphs. All values seem to converge to
comparable values around 200components.

Figure 21(b) represents the evolution of the number of
deployed nodes with the value of the threshold. We can
notice that the value tends to increase faster and faster
in scattered networks, as the reduction of the number
of components slows down. In the case of Paris – the
network with the most components – we need to add
around 60 000 nodes to obtain less than 1 000 connected
components. This indicates a strong diminishing returns
effect.

Figure 21(c) represents the evolution of the average de-
gree in the graph. It shows that the effect of this nodes
addition on the degree is very different depending on the
network initial density (see Fig. 5). Networks with higher
initial density (Beirut, Miami, Paris) see a steepest in-
crease in the nodes degrees than others.

Finally, Figure 21(d) shows the evolution of the num-
ber of nodes that belong to the maximum connected com-
ponent. This graph shows that even though the improve-
ment is not the same for all cities, this component is able
to gather up to 90 % of the nodes.

8 Conclusions and future works

In this paper, we examined a strategy to deploy a sen-
sor network at the intersections of various cities. We
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Figure 21: Improving the connectivity of the networks

presented the graph generation method we used, that is
based on operational constraints, and analyze the result-
ing graphs. We show that the classical random graphs
models do not model these networks, whose degree distri-
bution corresponds to a gamma distribution. We propose
hints to generate random distributions and show that the
resulting graph is highly partitioned and comprises up
to 25 % isolated node. However, the resulting network
presents a good redundancy level. The average diameter
of connected component is low, but can rise to fair values.
Looking at the distances between close connected com-
ponents, we motivate a method to insert relays between
connected components to increase the network connec-
tivity.

The effect on various network protocols and algorithms
remains to be evaluated for example through simulation.
However, the few conclusions that we draw in this article
should help selecting the most appropriate protocols for
this class of scenarios. Besides, for a particular setup, the
tools we developed, which are available online under the
LGPL licence, allow to create models for various deploy-
ment strategies based on a real city map. OMNeT++
models can be directly generated and simulations using,
for example, the MiXiM framework, can help city plan-

ners evaluate and compare protocols and algorithms.

In future works, we intend on studying formally
correlations between geographic parameters and net-
work graph parameters to improve the graph generation
method we sketched. We also intend bringing the analy-
sis to the networking level by comparing state of the art
protocols and algorithms using simulation tools.
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