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Abstract. Ce papier élabore une preuve théorique et experimentale de l’existence d’une for-
mule de convexité énergie/fréquence. On a opéré sur un smartphone avec un noyau à calcul
intensif de plusieurs boucles écrites en C en utilisant un jauge de puissance à haute résolu-
tion. Les informations collectées pendant une semaine assument que l’énergie consommée
en entrée par unité est forcément corrélée avec la fréquence CPU, et, la courbe fait appa-
raître un minimum entre 0.2 et 1.6 GHz. On montre que, à part la puissance statique, le
comportement assymptotique du temps d’exécution joue un rôle important dans la convex-
ité énergie/fréquence. On fournit un modèle analytique pour ce comportement qui s’adapte
bien avec les données. Notre travail doit être intéressant pour les chercheurs qui se concen-
trent à l’utilisation et la minimisation de l’énergie des systèmes embarquées, et fournit des
nouvelles opportunités d’optimisation.



Technical Report
Energy Consumption Modeling and Experimental

Validation on Mobile Devices

Karel De Vogeleer1, Gerard Memmi1, Pierre Jouvelot2, and Fabien Coelho2

1 TELECOM ParisTech – INFRES – CNRS LTCI - UMR 5141 – Paris, France
2 MINES ParisTech – CRI – Fontainebleau, France

{karel.devogeleer,gerard.memmi}@telecom-paristech.fr,
{pierre.jouvelot,fabien.coelho}@mines-paristech.fr

Abstract. This paper elaborates on theoretical and experimental evidence for the existence
of an Energy/Frequency Convexity Rule, which relates energy consumption and CPU fre-
quency on mobile devices. We monitored a typical smartphone running a specific computing-
intensive kernel of multiple nested loops written in C using a high-resolution power gauge.
Data gathered during a week-long acquisition campaign suggest that energy consumed per
input element is strongly correlated with CPU frequency, and, more interestingly, the curve
exhibits a clear minimum over a 0.2 GHz to 1.6 GHz window. We show that, besides static
power, the asymptotic behavior of the execution time plays a large role in the energy/fre-
quency convexity. We provide and motivate an analytical model for this behavior, which
fits well with the data. Our work should be of clear interest to researchers focusing on en-
ergy usage and minimization for mobile devices, and provide new insights for optimization
opportunities.

Keywords: energy consumption and modeling, DVFS, power measurements, execution time
modeling, smartphone, bit-reverse algorithm.

1 Introduction

The service uptime of battery-powered devices, e.g., smartphones, is a sensitive issue for nearly
any user. This has been shown by academic studies [1] as well as by surveys conducted by
retail information channels [2, 3]. Even though battery capacity and performance are hoped to
increase steadily over time, improving the energy efficiency of current battery-powered systems
is essential because power demands are outpacing the developments in battery capacities. Un-
derstanding the energy consumption of the different features of (battery-powered) computer
systems is thus a key issue. Providing models for energy consumption can pave the way to
energy optimization, by design and at run time.

The power consumption of Central Processing Units (CPUs) and external memory systems
is application and user behavior dependent [4]. Moreover, for cache-intensive and CPU-bound
applications, or for specific Dynamic Voltage and Frequency Scaling (DVFS) settings, the CPU
energy consumption may dominate the external memory consumption [5]. For example, Aaron
and Carroll [4] showed that, for an embedded system running equake, vpr, and gzip from the
SPEC CPU2000 benchmark suite, the CPU energy consumption exceeds the RAM memory con-
sumption, whereas crafty and mcf from the same suite showed to be straining more energy
from the device RAM memory. Another example is Intel’s Data Direct I/O (DDIO) feature, in-
troduced with the E5 Xeon chip, which allows the Ethernet Network Interface Cards (NICs) to
load data directly into the CPU’s cache [6], minimizing Random Access Memory (RAM) memory
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accesses. By avoiding input/output (I/O) operations, the performance is improved but also the
energy consumption of the system.

Providing an accurate model of energy consumption for embedded and, more generally,
energy-limited devices such as mobile phones is of key import to both users and system de-
signers. To reach that goal, our paper provides both theoretical and first experimental evidence
for the existence of an Energy/Frequency Convexity Rule, that relates energy consumption and
CPU frequency on mobile devices. This convexity property seems to ensure the existence of an
optimal frequency where energy usage is minimal.

This existence claim is based on both theoretical and practical evidence. More specifically, we
monitored a Samsung Galaxy SII smartphone running Gold-Rader’s Bit Reverse algorithm [7],
a small kernel based on multiple nested loops written in C, with a high-resolution power gauge
from Monsoon Solutions Inc. Data gathered during a week-long acquisition campaign suggest
that energy consumed per input element is strongly correlated with CPU frequency and, more
interestingly, that the corresponding curve exhibits a clear minimum over a 0.2 GHz to 1.6 GHz
window. We also provide and motivate an analytical model of this behavior, which fits well
with the data. Our work should be of clear interest to researchers focusing on energy usage and
minimization on mobile devices, and provide new insights for optimization opportunities.

The paper is organized as follows. Section 2 introduces the notions of energy and power,
and how these can be decomposed in different components on electronic devices. Section 3
describes the power measurement protocol and methodology driving our experiments, and the
C benchmark we used. Section 4 introduces our CPU energy consumption model, and shows
that it fits well with the data. Section 5 outlines the Energy/Frequency Rule derived from our
experiment and modeling. Related work is surveyed in Section 7. We conclude and discuss
future work in Section 8.

2 Power Usage in Computer Systems

The total power Ptotal consumed by a computer system, including a CPU, may be separated into
two components:

Ptotal = Psystem + PCPU, (1)

where PCPU is consumed by the CPU itself and Psystem by the rest of system. For Example, Psystem
may include the Global Positioning System (GPS) sensor, consuming power when it is polling for
signals, or the AMOLED LCD displays consuming power not only relative to the brightness level
as is relative to the kind of color that is displayed [8], and other sources of power consumption,
e.g., maintenance of I/O devices (including memory), sensor power supply (gyro-sensors etc).
In this work, however, we focus on the power consumption of the CPU (PCPU) and refer to Psystem
as static power as we deem these power sources constant over time.

The power consumption PCPU of the CPU can be divided into two parts: Pdynamic and Pleak,
where Pdynamic is the power consumed by the CPU during the switching activities of transistors
through useful computation. Pleak is power originating from leakage effects inherent to silicon-
based transistors, and is in essence not useful for the CPU’s purposes. Pdynamic may be split into
the power Pshort lost when transistors briefly short-circuit during gate state changes and Pcharge,
needed to charge the gates’ capacitors:

Pdynamic = Pshort + Pcharge. (2)

In the literature Pcharge is usually [9] defined as

Pcharge = αC f VCCVswing, (3)

where α is a proportional constant indicating the percentage of the system that is active or
switching, C the capacitance of the system, f the frequency at which the system is switching,
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VCC the supply voltage, and Vswing the voltage swing across C (usually Vswing ≈ VCC, the
operating voltage of the CPU).

Pshort originates during the toggling of a logic gate. During this switching, the transistors
inside the gate may conduct simultaneously for a very short time, creating a direct path between
VCC and the ground. Even though this peak current happens over a very small time interval,
given current high clock frequencies and large amount of logic gates, the short-circuit current
may be non-negligible. For example, for a complementary metal-oxide-semiconductor (CMOS)
inverter [10] the Pshort can be approximated by

Pshort = H(VCC − 2VTH)
3τ f , (4)

where H is a technology-dependent scaling factor, τ is the input signal rise time, VCC is the
supply voltage, VTH is the threshold voltage, and f is the switching frequency. Formulas of
Pshort for all types of gates are not always available3 and an aggregated value of Pshort is tedious
to compute for fast clock-rates and complex CPUs. The aggregated effect of Pshort may, however,
be captured by a generalized equation. Given that K, τ, and VCC/VTH are constant, Pshort is
proportional to the switching activity α and the frequency f in Equation 3. A first-order general
model may approximate the short-circuit power by deeming it proportional to Pcharge. Thus the
power Pdynamic stemming from the switching activities and the short-circuit currents in a CPU is
thus

Pdynamic = Pcharge + Pshort

= Pcharge + (η − 1)Pcharge

= η · αCL f V2, (5)

where η is a scaling factor representing the effects of short-circuit power.
Pleak originates from leakage currents that flow between differently doped parts of a metal-

oxide semiconductor field-effect transistor (MOSFET), the basic building block of CPUs. The en-
ergy in these currents are lost and do not contribute to the information that is held by the tran-
sistor. The leakage current are electrons that move between the transistor’s differently doped
areas which doesn’t directly affect the transistor’s amplification characteristics. Some leakage
currents are induced during the on or off -state of the transistor, or both. Six distinct sources
of leakage are identified [11]: reverse-bias pn-junction leakage, sub-threshold leakage, oxide tunnel-
ing current, gate current due to hot-carrier injection, gate-induced drain leakage, and channel punch-
through current. Despite the presence of multiple sources of leakage in MOSFET transistors, the
sub-threshold leakage current, gate leakage, and band-to-band tunneling (BTBT) dominate the
others for sub-100 nm technologies [12]. Leakage current models, e.g., as incorporated in the
Berkeley Short-channel IGFET Model (BSIM) [11] micro models, are accurate, nevertheless com-
plex since they depend on multiple variables. Moreover, Pleak fluctuates constantly as it also
depends on the temperature of the system. Consequently Pleak cannot be considered a static
part of the system’s power consumption. Given the different sources of power consumption in
a MOSFET-based CPU, the total power can be rewritten as

Ptotal = Psystem + Pleak + Pdynamic. (6)

The leakage power and short-circuit power loss can be minimized, e.g., by superior Very-
Large-Scale Integration (VLSI) technology, by voltage gating of function units, memory, and
cache [13, 14]. For example You et al. [15] extended an Instruction Set Architecture (ISA) with
instructions to support the control of power-gating at the component level. Via simulations the
authors claim to reduce the power consumption of their benchmarks on the average by 23.05%.

Figure 1 provides an overview of the power breakdown that is assumed in this work.

3 The physical properties and dimensions of transistors and gates are not always publicly available. There-
fore we must often resort to macro-level modeling.
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Fig. 1. Power breakdown of a computer system as assumed in this work.

The relationship between the power P(t) (Watts or Joules/s) and the energy E (Joules) con-
sumed by an electrical system over a time period ∆t is given by

E =
∫ ∆t

0
P(t) dt =

∫ ∆t

0
I(t) ·V(t) dt, (7)

where I(t) is the current supplied to the system, and V(t) the voltage drop over the system.
Often V(t) is constant over time, hence dP(t)/dt only depends on I(t). If both current and
voltage are constant over time, the energy integral becomes the product of voltage, current and
time, or alternatively power and time:

E =
∫ ∆t

0
P(t) dt = V · I · t. (8)

3 Power Measurement Protocol on Mobile Devices

A Samsung Galaxy S2 is used in our testbed sporting the Samsung Exynos 4 Systems-on-
Chip (SoC) 45 nm dual-core. The Galaxy S2 has a 32 KB L1 data and instruction cache, and a
1 MB L2 cache. The mobile device runs Android 4.0.3 on the Siyah v3.2.6.4 kernel adopting
Linux 3.0.31. The frequency scaling governor in Linux was set to operate in userspace mode to
prevent frequency and voltage scaling on-the-fly. The second CPU core was disabled during mea-
surements. The smartphone is booted in clockwork recovery mode to minimize noisy side-effects
of the Operating System (OS) and other frameworks.

During the experiments, the phone’s battery was replaced by a power supply (Monsoon
Power Monitor) that measures the power consumption at 5 kHz with an accuracy of 1 mW. The
power of the system and the temperature of the CPU were simultaneously logged. The CPU
temperature traces were collected via the Exynos 4 build-in temperature sensor. The noise of
the temperature sensor shows an interquartile range (IQR) of 0.45◦C. The temperature samples
are accessible through the /proc file system. Also, the temperature is written periodically to
the kernel debug output with a default frequency of 1 sample per 30 s. We opted to patch
the kernel to print the temperature samples to the kernel output at a rate of 2 Hz and read
out the samples from there to obtain a milli-second timestamp accuracy. This was achieved by
amending the sec_therm_pdata struct in the arch/arm/mach-exynos/mach-u1.c file. Figure 2
shows a picture of the measurement setup. We stripped off the phone of as many components
as possible, e.g., the camera, GPS, and liquid crystal display (LCD) display, to reduce noise in the
power measurements. A computer fan, originally mounted on a Pentium 4 heat sink, was used
to control the temperature of the testbed by positioning the CPU under the spinning blades of
the cooling device. Note that the fan was able to cool down the CPU, working at 100% utilization,
for frequencies under 1.2 GHz. For larger frequencies the CPU heat generation was greater than
the cooling capabilities of the computer fan.
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Fig. 2. Measurement setup showing the power gauge (below), the disassembled Samsung Galaxy S2 (left),
the fan (right), and its switch, used to control the temperature of the testbed.

The bit-reverse algorithm is used as benchmark kernel. This is an important operation since it
is part of the ubiquitous Fast Fourier Transformation (FFT) algorithm, and rearranges determin-
istically elements in an array. The bit-reversal kernel is CPU intensive, induces cache effects, and
is economically pertinent. The Gold-Rader implementation of the bit-reverse algorithm, often
considered the reference implementation [7], is given below:

void bitreverse_gold_rader (int N, complex *data) {
int n = N;
int nm1 = n-1;
int i = 0, j = 0;

for (; i < nm1; i++) {
int k = n >> 1;
if (i < j) {

complex temp = data[i];
data[i] = data[j];
data[j] = temp;

}
while (k <= j) {

j -= k;
k >>= 1;

}
j += k;

}
}

The input of the bit-reversal algorithm is an array with a size of 2N ; the elements are pairs of 32 bit
integers, representing complex numbers. Note that array sizes up to 29 fit in the L1 cache, while sizes over
218 are too big to fit in the L2 cache. During the measurements, N is set between 6 and 20 in steps of 2,
while varying the CPU frequency from 0.2 GHz to 1.6 GHz in steps of 0.1.

To minimize overhead, 128 copies of the kernel are run sequentially. For time measurement purposes,
this benchmark is repeated 32 times for at least 3 seconds each time (this may require multiple runs of the
128 copies). For the power and temperature measurements, the benchmark is repeated in an infinite loop
until 32 samples can be gathered. The benchmark is compiled with GCC 4.6, included in Google’s NDK,
generating ARMv5 thumb code.
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The power samples were measured at a temperature of 37◦C. The CPU’s temperature was therefore
oscillated between 36◦C and 38◦C such that the power could be logged every time the temperature passed
37◦C. To achieve the temperature oscillation our fan was turned on and off for frequencies below 1.2 GHz.
For frequencies above, the fan was unable to cool down the CPU. Consequently, the temperature was
controlled by turning the testbed on and off, while the fan was spinning.

4 Modeling Energy Consumption

Energy is the product of time by power. We look at each of these factors in turn here.

4.1 Execution Time

Since applications run over an OS on top of hardware, we need to take account for those when estimating
computing time. Indeed, an OS needs a specific amount of time, or clock cycles, to perform (periodical)
tasks, e.g., interrupt handling, process scheduling and processing kernel events. The hardware halts the
execution of software sometimes momentarily, e.g., during pipe-line stalls or memory stalls. When the
processor is not spending time in kernel mode and the software is not halted, the processor is available for
user-space programs, e.g., our benchmark. From a heuristic point of view, it can be assumed that the OS
kernel and hardware need a fixed number of clock cycles cck per time unit to complete their tasks. Thus,
we propose to model the amount of clock cycles to complete a benchmark sequence of instructions ccb as

ccb = t( f β − cck), (9)

where cck are the number of clock cycles spent in the OS and on hardware halts, t the total time needed to
complete the program, f the system’s clock frequency and β an architecture-dependent scaling constant,
to be fitted later on with the data. The definition of ccb is rewritten to isolate the execution time:

t =
ccb

f β − cck
. (10)

Note that t tends to zero for f → ∞ and there is a vertical asymptote at β√cck. This formulation of time
can also be found in the work of Snowdon [16] (Equation 1) though presented differently and used in a
different context. We refer to cck and ccb

f whereas Snowdons refers to Ctick ftick and Twork, respectively.
Figure 3 shows the execution time of the benchmark for different clock frequencies. The dotted lines

are the data fitted on Equation 10. The data was fitted using the nls() function in R [17], with the port
algorithm enabled. Table 3 shows the fitting errors of Equation 10 on the execution time measurement
data, averaged over all tested input sizes. The fitting shows a vertical asymptote around 115 MHz. This
may indicate the minimum amount of clock cycles required by the OS of the device to operate. The
measurement data for input sizes 26 up to 216 are well described by Equation 10. However, sizes 218 and
220, too large to fit within cache L2, seem to operate under different laws. Therefore, from now on, the
attention is focused on data that fit in the cache of the CPU.

4.2 Power Consumption

If dynamic power modeling is rather easy (see §2), the case for leakage is more involved, and warrant a
longer presentation. In particular, leakage power is heavily temperature-dependent [11]. For example, our
CPU at 1.3 GHz shows an inflated power consumption of around 5% between a CPU temperature of 36◦C
and 46◦C. You et al. [15] shows similar results for a 0.1µm processor; a temperature increase from 30◦C to
40◦C leads to a 3% power increase. On the other hand, the power Pcharge required for a given computation
does not change with regards to the CPU temperature. Given that the system’s supply voltage and Psystem
is constant, it is the increasing leakage current Ileak that inflates the power consumption. The leakage
current is dependent on the temperature. The three most notable effects that constitute the leakage current
in MOSFET transistors are; the sub-threshold current, the gate leakage current, and the BTBT leakage. The
BSIM shows that the leakage current micro models depend on a multitude of variables. The models of these
currents contain variables that, inter alia, are technology-specific, e.g., transistor dimensions, gate oxide
capacitance. The transistor’s terminal voltages play also an important role. The temperature itself appears



8 K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho
1

frequency (GHz)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ex
ec

ut
io

n
ti

m
e

(u
s)

-1

0

1

2

3

4

5

6

input size (2N)

N=1
N=2

N=3
N=4

N=5
N=6

N=7
N=8

Fig. 3. Experimentally-measured execution time of
the benchmark given the system’s clock frequency.
The dotted lines represent the fitted curves on
Equation 10. The average vertical asymptote β√cck
is shown around 115 MHz.

1

frequency (GHz)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ex
ec

ut
io

n
ti

m
e

(s
)

0

1

2

3

4

5

6

7

8

9

10
refernece
β

cck

-40%
+40%

Fig. 4. Impact of the parameters β and cck on the
time definition t = ccb/( f β − cck). (Default values
β = 1, cck = 1, and ccb = 1)

several times in the sub-threshold and BTBT leakage models; the gate leakage however is not temperature
dependent. Mukhopadhyay et al. [18] showed via simulation that for 25 nm technology the sub-threshold
leakage current is dominant over the BTBT leakage current, but the latter cannot be neglected.

Under forced cooling, the CPU temperature T at time t can be approximated with Newton’s Law of
cooling [19] where T(t) approaches Te for t→ ∞. Here Te is the equilibrium temperature at which the heat
generation of the CPU equals the heat convection of the forced cooling:

dT
dt

= ᾱ(Te − T(t))

T(t) = Te − (Te − T0)e−ᾱt, (11)

where T0 is the temperature at t = 0, Te is the equilibrium temperature. The dotted lines in Figure 5
represent the temperature fitted on Equation 11. Unfortunately, in these traces the current temperature
measurements are too noisy to model the temperature by fitting its derivative, and providing statistically-
significant results.

Under normal conditions, the temperature of the CPU’s silicon varies continuously depending on the
load of the CPU and the system’s ambient temperature. Therefore, to have a fair comparison of energy
consumption between different code pieces one needs to compare the measurements at a reference tem-
perature. In our measurements the CPU temperature difference of 10◦C increases the power by about 7% in
the worst case scenario. Ideally, to model the temperature dependence of the power, a formulation for Ileak
is needed where the temperature T can be isolated from the other variables: Ileak(T, ·) = f (T) f (·). In such
a formulation f (T) is a scaling factor of f (·), and hence of Ileak, that is independent of the transistor’s tech-
nicalities, e.g., state or physical dimensions. Finding a temperature scaling factor for the leakage current
is however not a straightforward task. Nevertheless, approximative scaling factors have been analytically
obtained or experimentally defined via simulations (mainly SPICE):

– Su et al. [20]:
∆Ileak
Ileak

= 1 + a1∆T + a2∆T2,

– Liao et al. [21]: Ileak = I0T2ea1/T ,
– Liao et al. [22]: Ileak = I0e−a1/(T−a2),
– Ferre et al. [23] and Sinha et al. [24]: Ileak = I0ea1/T ,

where I0 is the leakage current at a given reference temperature, and a. is a constant. After analysis on
our data, we discovered that none of the cited approximations would fit well. This is because the rationale
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Table 1. Frequency and voltage relationship for the Dynamic Voltage and Frequency Scaling (DVFS) pro-
cess in the default Siyah kernel.

f (MHz) 25 50 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
V (mV) 850 875 900 925 950 950 950 975 1000 1025 1075 1125 1175 1225 1250 1275 1325 1350

on which these approximations are based assume conditions, which are not entirely realistic, to simplify
the leakage current micro models. Most previous research works focus solely on the sub-threshold leakage
effect, neglecting other leakage effects. This may be appropriate for technologies larger than the 45 nm
technology we use. Moreover, these models require the knowledge of multiple parameters and I0 which is
not always available at hand or on the fly. Skadron et al. [25] studied the temperature dependence of Ileak as
well. Skadron et al. deducted a relationship between the leakage power Pleak and dynamic power Pdynamic
based on International Technology Roadmap for Semiconductors (ITRS) measurement traces (variables
indexed with 0 are reference values):

RT =
Pleak

Pdynamic
=

R0

V0T2
0

e
B

T0 VT2e
−B
T . (12)

If the temperature T is stable across different operating voltages, then the value of RT is a function of
V multiplied by a constant, lets say γ, which includes the temperature-dependent variables and other
constants. Total power Ptotal is thus:

Ptotal = Psystem + Pleak + Pdynamic

= Psystem + γVPdynamic + Pdynamic

= Psystem + (1 + γV) · ηαC f V2. (13)

This formulation of Ptotal incorporates three parameters: Psystem, γ, and ηαC. Experimental values of these
variables can be obtained via fitting power traces on Equation 13. V and f are linked via the DVFS process
inherent to the Linux kernel and the hardware technicalities. The values for our CPU are found inside the
kernel source code; they are shown in Table 1 and plotted in Figure 6.

Equation 13 is fit on our benchmark power measurements. The power fitting errors are shown in
Table 3 for a 37◦C CPU temperature. The fitting errors are on the average not larger than 3 % except for the
measurement point at 1.5 GHz. This measurement point was obtained at different independent occasions
but appears, for obscure reasons, to disobey persistently the model in Equation 13.
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Given a linear relationship between f and V Equation 13 can be expanded, resulting a 4th order
polynomial

Ptotal = a4 f 4 + a3 f 3 + a2 f 2 + a1 f 1. (14)

It is noted that this formulation does not have a constant term a0. Equation 13 is sometimes approximated
by a third-order polynomial. This is referred to as the cube root rule [14]: Ptotal ≈ KvV3 ≈ K f f 3, where Kv
and K f are constants. Equation 13 however suggests a relationship between Ptotal and V or f of the fourth
order. Comparing fitting errors of a fourth order polynomial and lower order polynomials indeed support
the claim that for our testbed the 4th-order is most appropriate.

4.3 Energy Consumption

Typical compute-intensive programs incur approximately a constant load on the CPU and system, barring
user interactions. Moreover, if the time to complete one program is also much smaller than the sampling
rate of the power gauge, then P(t) in Equation 7 is constant. Hence, it suffices to sample the power Pbench of
a benchmark at a given CPU temperature and multiply this value by the execution time of the benchmark
tbench to get an energy estimate. As a result the definition of time in Equation 10, and power in Equation 13,
can be used to model the energy of one benchmark kernel. The energy consumed by the CPU ECPU is given
by

ECPU = Eleak + Edynamic

= Pbench · tbench

=
(
(1 + γV) · ηαC f V2

)
· ccb

f β − cck
. (15)

Constants γ, ηαC, ccb, and cck in this formulation were evaluated before via fitting.

5 The Energy/Frequency Convexity Rule

Using the testbed and models described above, Figure 7 shows the measured and modeled energy ECPU
for our benchmark kernel over the different frequencies; data have been normalized over the benchmark
input size. Table 3 shows the average absolute energy error between our fitted model and the measured
data. The average fitting error stays below 6 % except for measurement points 1.5 GHz and 200 MHz.
The large fitting error in the 200 MHz case stems from the large execution time that amplifies the power
measurement fitting error (see Table 3). It can also be seen that, for larger benchmark input sizes, on the
average more energy is required. This is the result of higher level cache utilization.
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Fig. 7. Energy required by the CPU at 37◦C to complete our benchmark kernel given an input size. The
dashed lines denote the theoretical curve as per Equation 15.

Figure 7 exhibits a clear convex curve, with a minimum at Frequency fopt, suggesting the existence of
an Energy/Frequency Convexity Rule for compute-intensive programs. Why is the energy consumption
curve convex? The energy consumption of the benchmark kernel scales approximately linearly with the
number of instructions (see further). The time ∆t it takes to execute an instruction sequence increases more
than linearly with decreasing operating frequency (asymptotic behavior, see Figure 6). Pleak is independent
of the type of computation, and Eleak builds up linearly with time: Eleak = Pleak∆t. Pleak becomes increas-
ingly important in the part where the CPU frequency f is smaller than fopt. For the part where f > fopt,
the inflated ECPU can be attributed to the increasing supply voltage VCC affecting Pdynamic quadratically.
Furthermore, had Psystem been incorporated in the picture, then fopt would have moved to a higher fre-
quency because the additional consumed energy of the system could have been minimized by a faster
completion of the computations on the CPU.

Our proposal for the existence of an Energy/Frequency Convexity Rule can be further supported using
our previous models. Indeed, we can model the relationship in Table 1 between the frequency (GHz) and
voltage (V) in the Linux kernel with a linear approximation:‘

V = m1 f + m2, (16)

= 0.3304 · f · 10−9 + 0.8077.

Now the derivative of ECPU defined in Equation 15 over f or V can be computed. The energy curve shows
a global minimum ECPU,min for fopt when its derivative is equal to zero (∂ECPU/∂ f = 0) and its second
derivative is positive (∂2ECPU/∂ f 2 > 0). The formal definition of strict convexity is given by

ECPU(t f1 + (1− t) f2) < tECPU( f1) + (1− t)ECPU( f2), (17)

where t ∈ {0, 1}. We verified this inequality via a Monte Carlo simulation over the interval 0.2 Ghz < f <
1.6 Ghz. Within these boundaries it is shown that Equation 15 is strict convex whenever 0.2 > β√cck.

Given that ECPU only shows one minimum, fopt is the global minimum if the following equality holds:

(1 + γV)V f ββ

f β − cck
= f m1(3γV + 2) + (1 + γV)V. (18)

Four parameters appear in this formulation that affect the optimal frequency fopt: β and cck, which are
related to the execution time of the benchmark, m1 the slope between V and f , and γ related to the leakage
current ratio. Simulations show that, if β or cck decreases, ECPU,min will shift to a higher frequency, and, if
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Table 2. Relative influence of the parameters β, cck, γ, and m1 on fopt. The reference ECPU is calculated
given β = 1.27, γ = 3.14, ccb = 100, ηαC = 0.34 and cck = 0.07. The parameters are then scaled and the
relative change in fopt is then reported.

-75% -50% -25% -10% -5% -1% +1% +5% +10% +25% +50% +70% +100%
β 0.37 0.37 0.48 0.78 0.89 0.98 1.02 1.11 1.24 1.63 2.46 2.96 2.96

cck 0.67 0.80 0.91 0.96 0.98 1.00 1.00 1.02 1.04 1.09 1.17 1.22 1.31
m1 2.96 1.69 1.22 1.07 1.04 1.00 1.00 0.96 0.94 0.87 0.78 0.72 0.67
γ 1.09 1.04 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98

m1 or γ decreases, ECPU,min will decrease as well. γ is temperature dependent; if the temperature increases,
γ will increase accordingly. Hence, fopt increases with temperature as well. Table 2 shows the relative
influence of the parameters β, cck, γ, and m1 on fopt. For the presented measurements Equation 15 shows
a minimum on the average around 700 MHz. This holds for all input sizes of the benchmark between 26

and 216. As a result, this implies that there exists an operating frequency, which is neither the maximum
nor the minimum operating frequency, at which the CPU would execute a code sequence on the top of the
OS in the most energy efficient way.

6 Energy and Execution Time

Figure 6 shows the relationship between energy consumption and the execution time of the benchmark,
based on Equation 15. It can be observed that for this benchmark the energy consumption and the execution
time exhibit a linear relationship. This implies that performance optimization is the same as optimizing for
energy in this case. Such findings have been pointed out before in the literature. Pallister et al. [26] showed
via different compiler settings that the energy needed to execute a sequence of code is approximately lin-
early proportional to the time needed to execute that sequence. Bellosa [27] showed similar measurements
for integer and floating point operations. This is in line with the observation that the energy needed to
execute a single instructions doesn’t differ largely [24, 28]. The total CPU energy consumption however
also depends on the length and the state of the pipeline, inter-instruction Hamming distance, number of
operands, or the inter-instruction effects [28]. A random sequence of instructions will nonetheless yield a
total energy consumption that is approximately proportional to the number of instructions in the sequence.

We point out that increasing the CPU frequency from 0.2 GHz to 0.4 GHz speeds up the program
by a factor of 4, whereas a frequency increase from 0.8 GHz to 1.6 GHz improves execution time by a
factor of 2.5. Thus halving the execution time requires an increasing frequency need. Moreover, the energy
required to sustain this frequency increase becomes relatively increasingly larger than the time gain. For
example, for an input size of 4 KiB, to speed-up by three-fold between 0.7 GHz and 1.6 GHz 1.46 times more
energy is required. Similarly, to speed up the benchmark three-fold from 1.6 GHz the processor needs to
be theoretically clocked at 3.6 GHz, that would require 1.9 times more energy per array element. These
conclusion can also be deducted from Equation 15.

7 Related Work

The convex property of the energy consumption curve has been hinted at before in the literature. A series
of papers, approaching the problem from an architectural point of view, have shown a convex energy
consumption curve with respect to DVFS [5, 29, 30]. The authors put forward some motivation, but do
not provide an analytical framework. Other studies, e.g., Hager et al. [31] and Freeh et al. [32], discuss
what the consequences are of said behaviour and how to exploit it, from a high-level point of view. Other
research have also shown energy measurements under DVFS processes but no convexity is shown by
the measurements, e.g., Sinha and Chandrakasan [24], and Šimunić et al. [33] who are not running their
benchmark on top of an OS.

In the VLSI design domain voltage scaling has also been discussed but usually for a fixed frequency [34,
35]. The aim of the voltage scaling is to find a minimum energy operation point where the digital circuit
yields the correct output. The major trade-off is between increasing circuit latency and leakage power, and
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Fig. 8. Energy consumption and execution time relationship for different frequencies. A dashed lines is the
benchmark performance with a given input size (data size).

decreasing dynamic power. This trade-off yields also a convex energy consumption curve, but for a fixed
frequency.

8 Conclusion

We provide an analytical model to describe the energy consumption of a code sequence running on top of
the OS of a mobile device. The energy model is parametrized over five parameters abstracting the specifics
of the Dynamic Voltage and Frequency Scaling (DVFS) process, the execution time related parameters,
and the power specifications of the CPU. Measurement traces from a mobile device were used to validate
the appropriately fitted model. It is shown that the model is on the average more than 6 % accurate. The
importance of power samples obtained at a reference temperature is also pointed out.

It is also shown that the analytical energy model is convex (representing what we call the Energy/Fre-
quency Convexity Rule) and yields a minimum energy consumption of a code sequence for a given CPU
operation frequency. This minimum is a function of the temperature, execution time related parameters,
and technical parameters related to the hardware.

Future work includes checking the validity of our model and its parameters over a wide range of
compute-intensive benchmarks. Also, extending the presented model to better handle memory access op-
erations, in particular the impact of caches, is deserved. Finally a generalization of the model to encompass
the impact of other programs running in parallel with benchmarks or system power effects would be use-
ful.
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Table 3. Execution time fitting errors (%) of Equation 10 on the measured data given different CPU fre-
quencies ( f ) and input size (2N) at a 37◦C core temperature.

frequency f (GHz)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

N = 6 0.67 -1.90 -0.19 0.48 -0.27 -0.68 -1.11 -1.83 4.80 4.68 1.49 2.42 -6.14 0.82 -2.70
N = 8 1.26 -3.05 -1.49 -0.30 -0.94 5.71 -1.60 -1.97 4.15 4.28 1.02 1.95 -6.03 0.52 -2.84
N = 10 0.53 -1.08 -1.02 -0.40 -1.47 4.49 -2.24 -2.62 3.98 4.59 1.40 1.06 -6.03 1.50 -2.09
N = 12 1.58 -2.06 -4.08 -2.89 -0.42 3.20 2.34 0.72 6.39 7.06 3.77 -4.65 -4.28 -1.24 -4.39
N = 14 1.54 -4.00 -1.20 -0.61 -0.17 5.44 -0.72 -1.72 4.13 4.44 1.08 0.31 -6.25 0.76 -2.34
N = 16 1.49 -4.21 -1.31 0.41 -0.09 7.12 -0.41 -2.38 4.83 -2.97 2.40 1.57 -6.48 2.16 -1.30
|average| 1.18 2.71 1.55 0.55 0.56 4.21 0.62 1.63 4.71 3.68 1.86 0.44 5.87 0.75 2.6

Table 4. Power fitting errors (%) of Equation 13 on the measured data given different CPU frequencies
frequencies ( f ) and input size (2N) at a 37◦C core temperature.

frequency f (GHz)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

N = 6 3.00 0.94 -0.01 -1.05 -1.31 -1.33 -1.04 -0.52 0.29 0.49 0.46 0.86 0.26 -7.52 -0.60
N = 8 2.89 0.96 0.02 -1.06 -1.26 -1.35 -0.99 -0.44 0.24 0.50 0.36 0.87 0.29 -7.39 -0.60
N = 10 2.60 0.69 0.27 -0.80 -1.13 -1.22 -1.01 -0.32 -0.34 0.70 0.34 0.93 0.31 -7.52 -0.61
N = 12 2.43 0.52 0.05 -0.86 -1.07 -1.31 -0.90 0.15 -0.16 0.76 0.85 0.68 -0.59 -7.16 -0.26
N = 14 3.32 1.43 0.48 -1.07 -1.52 -1.72 -1.87 -0.81 -0.03 0.73 1.59 0.80 -0.01 -7.23 -0.71
N = 16 3.40 1.46 0.42 -1.11 -1.60 -1.85 -1.61 -0.98 -0.13 1.03 1.57 0.77 -0.09 -7.60 -0.69
|average| 2.94 1.00 0.20 0.99 1.31 1.46 1.24 0.49 0.02 0.70 0.86 0.82 0.03 7.40 0.58

Table 5. Energy fitting errors (%) of Equation 15 on the measured data given different CPU frequencies
frequencies ( f ) and input size (2N) at a 37◦C core temperature.

frequency f (GHz)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

N = 6 15.11 1.06 -0.27 -2.20 -3.23 -3.49 -3.31 -3.16 4.55 4.56 1.17 2.48 -6.92 -9.35 -4.72
N = 8 22.92 2.48 -0.05 -1.98 -2.99 3.41 -3.08 -2.58 4.47 4.82 1.20 2.67 -6.17 -8.87 -4.20
N = 10 8.63 0.46 -0.37 -2.50 -4.18 1.43 -4.83 -4.25 1.94 3.77 -0.21 -0.06 -8.05 -10.13 -5.70
N = 12 16.56 -1.90 -5.50 -6.07 -3.31 0.51 1.14 1.82 7.54 10.08 7.19 -1.38 -2.19 -6.58 -1.24
N = 14 22.89 1.22 0.26 -3.02 -3.12 2.35 -3.54 -2.56 4.57 6.05 3.80 2.04 -5.50 -6.87 -2.22
N = 16 24.23 1.69 0.41 -1.82 -3.03 3.82 -2.78 -3.51 5.04 -1.22 4.92 3.02 -6.11 -6.33 -1.53
|average| 18.39 0.83 0.92 2.93 3.31 1.34 2.73 2.37 4.69 4.68 3.01 1.46 5.83 8.02 3.27
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Fig. 9. Power trace for a CPU frequency of 1.0 GHz and a benchmark input size of 28 elements.

Fig. 10. Power trace for a CPU frequency of 1.2 GHz and a benchmark input size of 212 elements.

Fig. 11. Power trace for a CPU frequency of 1.5 GHz and a benchmark input size of 214 elements.
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