

Multiple intersections adaptive traffic lights
control using a wireless sensor networks

Contrôle adaptatif des feux de circulation
 sur de multiples intersections à l’aide

d’un réseau de capteurs sans fil

Sébastien Faye
Claude Chaudet

Isabelle Demeure

août 2013

Département Informatique et Réseaux
Groupe RMS : Réseaux, Mobilité et Services

2013D005

Contrôle adaptatif des feux de circulation sur de multiples

intersections à l’aide d’un réseau de capteurs sans fil

Sébastien Faye, Claude Chaudet, Isabelle Demeure

Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI UMR 5141, Paris, France

{prenom.nom@telecom-paristech.fr}

Août 2013

Abstract

Dans cet article, nous détaillons et étudions TAPIOCA (distribuTed and AdaPtive In-
tersectiOns Control Algorithm), un algorithme distribué qui défini les séquences et durées
des feux verts dans un système de transport intelligent. TAPIOCA s’appuie sur les données
recueillies par un réseau de capteurs sans fil déployé aux intersections afin de décider lo-
calement de son programme. TAPIOCA ne se reposant pas sur une entité centrale, il est
réactif et facile à installer. Nous exposons tout d’abord une version simple intersection de
TAPIOCA, qui a pour but d’améliorer la longueur des files d’attente et la probabilité de
famine. Nous étendons ensuite TAPIOCA au cas des multiples intersections en définissant
des mécanismes facilitant la circulation entre intersections proches afin de créer des vagues
vertes. Les algorithmes sont évalués à l’aide du simulateur SUMO par le biais de trois
scénarios: données réelles issues de la ville d’Amiens, le projet TAPASCologne et une grille
d’intersections. Les résultats montrent que TAPIOCA génère un temps moyen d’attente
inférieur à d’autres stratégies, adaptatives ou non.

1

Multiple Intersections Adaptive Traffic Lights

Control using a Wireless Sensor Networks

Abstract

In this paper, we detail and study TAPIOCA (distribuTed and AdaPtive IntersectiOns
Control Algorithm), a distributed algorithm to define the green light sequences and dura-
tions in an urban intelligent transportation system. TAPIOCA relies on data gathered by
a hierarchical wireless sensors and actuators network deployed at intersections to decide
locally of an intersection schedule. As TAPIOCA does not rely on a central entity, it is
responsive and easy to install. We first expose a single-intersection version of TAPIOCA,
which aims at improving the queues lengths and the starvation probability and then extend
TAPIOCA to the multi-intersection case by defining mechanisms to ease offloading between
close intersections and to create green waves. Both algorithms are evaluated with the SUMO
simulator in three scenarios: real data from Amiens, the TAPASCologne project, and a grid.
The results show that TAPIOCA achieves a low average waiting time compared to other
dynamic strategies and to a fixed schedule pre-determined by experts.

1 Introduction

We consider the problem of reducing road congestions and delays experienced by drivers in a city
by letting a wireless sensor and actuators network dynamically control traffic lights. In 2012,
according to the Inrix Institute1, drivers wasted on average 90.3 hours in Brussels, 72.6 hours in
Milano, or 63.6 hours in Los Angeles. During the peak hours, users suffered an additional average
travel time of 30.2 % in Paris and 27 % in London. Besides travel times, congestion increases
pollution and on noise, which makes it a key issue in metropolis. Congestions can have multiple
causes (e.g. roadworks, accident, or simple overload) but they tend to expand from their starting
point in a first phase. We believe that a reactive and adaptive management of traffic lights could
prevent such expansion and help to resorb the situation faster.

Operators often manage each intersection statically: the sequence and durations of the green
lights are pre-determined and do not adapt dynamically to the traffic conditions. Detectors can
count vehicles on each lane of an intersection, but an operator only uses the data they collect to
choose between a few static sequences and timings setups. However, with such data, a dynamic
algorithm could take proper local decisions. For example, turning a light green for a blocked
direction at an intersection is, at best useless, and can even worsen the problem, as impatient
drivers will eventually try to use every available space. In such situations, offloading intersections
that are on the border of the congested zone seems more efficient.

In large cities, operators use systems like SCOOT ([11]) or SCATS ([12]) to manage the traffic
lights dynamically. These systems are centralized in a control center and require a regular mon-
itoring of the traffic through a network of detectors. These systems have a limited scalability, as
they require interconnecting all the detectors through a communication backbone and important
computation capabilities. This restricts the deployment of these systems at large intersections
and side roads are not considered. The city of London, for example, has about 1600 SCOOT
nodes and yet appears as one of the most congested cities according to the Inrix Institute. A
decentralized wireless sensor network could manage the capillary network by keeping the data
locally.

1http://www.inrix.com/scorecard/

2

http://www.inrix.com/scorecard/

A wireless sensor network is composed of small and cheap embedded devices that can estimate
how many vehicles are present on the different lanes of the intersection, communicate with close
nodes, and make simple calculations. The low cost and the ease of installation of these devices,
compared to induction loops, permit the creation of a dense network. Once deployed, these
devices can exchange information with all the relevant intersections and solve quickly a given
situation without involving a central server. The set of relevant intersections can be adapted
dynamically to the situation and multihop communication can support data dissemination even
when no WAN is available, or when the operator cannot afford wireless data subscriptions for
all its devices. In this paper, we present and evaluate a distributed algorithm, TAPIOCA (dis-
tribuTed and AdaPtive IntersectiOns Control Algorithm) that uses a distributed networks such
as a wireless sensor network to acquire data on the vehicles distribution at intersections and to
compute and apply a green lights policy.

Section 2 presents classical usage of sensors in ITS and typical deployments at an intersection
before looking at related works. We then present a possible hierarchical architecture in Section 3.
We then detail, in section 4, a first adaptive traffic lights control algorithm that dynamically se-
lects movements and green light times to reduce the Average Waiting Time (AWT) of users
without introducing starvation. In Section 5, we present a generalization of this algorithm that
allows collaboration and synchronization between close intersections to create green waves (se-
quences of successive green lights). The general algorithm, TAPIOCA, is presented in Section 6.
Simulations results obtained through the SUMO simulator are presented in section 7. They
compare the AWT and queues lengths achieved by TAPIOCA with state of the art algorithms
and with pre-defined plans designed by operational centers.

2 Related Works

2.1 Using wireless sensors in ITS

Sensor nodes in adaptive ITS ([15, 13, 17, 16, 18]) generally feed a queueing model with the
number of vehicles present on each lane of an intersection, or with the vehicle arrival process
intensity. If these sensors are often radars or induction loops, their cost reserves them to main
roads. On smaller roads, magnetometers can record a unique signature for 99 % of the vehicles
passing over them ([2]) by measuring the changes on Earth’s magnetic field. Corredor et al.
[4] shows that using these devices can lead to better results than induction loops. They are
responsive, easy to install and can be deployed densely, multiplying the number of measurement
and action points. Knaian [10] evokes a manufacturing cost lower than $ 30 per unit with a 16-bit
micro-controller and a size comparable to a coin. Cameras represent an even cheaper solution,
as they do not require roadworks for installation and can achieve a fair accuracy with image
processing techniques, even if their angle of vision is limited and sensitive to obstruction. [3]
proposes to combine magnetic sensors and cameras in ITS. Both types of sensors can take power
out of a battery, or can be connected to the power grid.

Adding a wireless transceiver to these devices allows building a classical WSN. WSNs usually
rely on short-range, low cost, low speed, and low power wireless communications. Among the
multiple suitable communication standards, IEEE 802.15.4 [8], the Zigbee link-layer technology,
provides coverage of about 50-100 meters in the 2.4 GHz band for a maximum data rate of
250 Kbps and a low power consumption [3]. IEEE 802.11p [7] (WAVE – Wireless Access in
Vehicular Environments) also represents a viable candidate, as it is expected to be deployed in
numerous vehicles and infrastructure devices and operates in the 5.9 GHz DSRC band. 433 MHz
technologies are also interesting, as they provide low-throughput and high range communication
interfaces. All these technologies share some common characteristics in terms of performance and

3

yield to similar network designs: the communication network formed has all the characteristics of
a wireless local area network and may be used as a multihop network, or interconnected through
WAN interfaces. The technology is therefore ready for supporting a distributed application like
TAPIOCA.

2.2 Sensors deployment

The classical intersection model, used in several academic works, is represented on Figure 1. It
is composed of four directions (N, E, S, W). In this article, we consider that each direction has
two incoming lanes and two outgoing lanes. For an incoming direction, vehicles turning left use
the leftmost lane, while the rightmost lane is for vehicles going straight or turning right. We
place ourselves in a scenario in which people drive on the right side of the road.

Controller

Interface

External	Network

Figure 1: A 4-lanes intersection monitored by 2 sensor nodes per lane

At each intersection, a controller defines and enforces a sequence of green and red lights called
a cycle. A cycle is composed of successive periods called phases. In each phase, a subset of the
lights is lit green during a certain time, allowing some movements to occur simultaneously. Each
movement is represented by the cardinal directions of its origin and destination (e.g. WE: from
West to East). A phase is therefore defined by a set of allowed movements and a duration. We
suppose here that a traffic light controls each movement or, at least, each direction.

The traffic on every incoming lane is generally monitored by two sensors: one located close to
the traffic light, counting the vehicles departures from the intersection and another one placed
at an appropriate distance before the light, counting vehicles arrivals. [13] found that using one
sensor is not enough to achieve the best performance: the number of detected vehicles have to be
accurate. The distance between these two sensors has an influence on the system performance.
[15] propose to set this distance to 8 vehicles. [17] proposes to base this distance on the maximum
authorized green time. A single sensor can be used per lane, but results are less accurate. One
single sensor can even be positioned per direction, but the vision of the traffic is then limited by
the sensors detection range.

However, this architecture is not fully efficient in the multi-intersection case. Figures 1 and 2
shows three different deployments of sensors at a given intersection. These scenarios essentially
differ by the number and the positions of the destination nodes that monitor and count departures
from the intersection. The roles affected to destination nodes will be explained in section 3. In
the lane-oriented architecture (figure 1), destination nodes are located on the same lane as arrival
nodes. Such a deployment does not distinguish outgoing directions when multiple movements
originate on the same lane and also fails to count vehicles blocked in the middle of the intersection.
In the direction-oriented architecture (figure 2(a)), destination nodes are located at the entry of
the outgoing lanes. Such a deployment better differentiates vehicles exiting the intersection and

4

(a) Direction-oriented architecture (b) Full actuated architecture

Direc�on	agregator	(layer	3)

Arrivals	detec�on	(layer	1)

Departures	detec�on	(layer	2)

Decision	(layer	4)

Source	Nodes	(SN):

Addi�onal	departures	detec�on	(layer	1)

Des�na�on	Nodes	(DN):

Figure 2: Two other examples of architectures.

Architecture Lane-oriented Direction-
oriented

Full actuated

Minimum number of
nodes

Incoming lanes·
2

Incoming lanes +
Outgoing lanes

Incoming lanes +
Outgoing lanes

Maximum number of
nodes

Incoming lanes·
2

Incoming lanes +
Outgoing lanes

Incoming lanes·2+
Outgoing lanes

Number of communica-
tions to count vehicles
on a lane

2 1 +
lane destinations

2

Queue length method Naturally on
lanes

With vehicle IDs Naturally on lanes

Additional gap time
when new vehicles come

Yes Approximately Yes

Red lights passage de-
tection

Yes Approximately Yes

Detection of vehicles
blocked on the intersec-
tion

No Approximately Yes

Identify multiple move-
ments on a single lane

No Yes Yes

Finality Isolated inter-
sections

Multiple small inter-
sections

Multiple intersec-
tions

Table 1: Architectures qualitative comparison

5

allows warning neighbor intersections about the coming flow. However, fully characterizing the
vehicle flow requires being capable of recording the electromagnetic signature of each vehicle.
The full actuated architecture (figure 2(b)) composes the two previous cases and provides the
best detection accuracy. It requires a denser deployment, though. Table 1 compares qualitatively
these three scenarios.

2.3 Adaptive traffic lights control systems

Using such a sensors deployment, Yousef et al. [15] define the scheduling policy at a single
intersection by modeling each movement as an M/M/1 queue. Based on a matrix that identifies
conflicting movements, they propose an algorithm that selects the combination of compatible
movements that exhibits the highest number of incoming vehicles and computes the green light
time proportionally to the total number of vehicles. They then extend their work to a mesh of
intersections by selecting first, when the phase begins, the movements that are expected to receive
the most vehicles from close intersections. They compute this number by taking into account
the time needed to go from one intersection to the other, including stops and slowdowns.

For an isolated intersection with four directions, Tubaishat et al. define a phase selection
method based on queues sizes in [13]. Zou et al. [18] define green light time using fuzzy logic
on the vehicle count per minute. None of these three contributions really allows conflicting
movements to happen simultaneously. Moreover, they all only take into account the queues size,
which may lead to a well-known scheduling problem: starvation.

Zhou et al. [17] propose an algorithm that selects the sequence of phases among a set
of conflict-free situations according to multiple criteria: the presence of priority vehicles, the
duration of the periods when no vehicle is detected, the starvation degree, the total waiting time
and the queues lengths. However, this algorithm requires all vehicles to travel at the same speed.
[16] extend this work to the multiple intersections case and take into account more parameters.
They mix local objectives with the expected traffic flow coming from neighbor intersections. A
minimum green time is computed based on the number of vehicles to be treated locally and can
be extended depending on incoming flows.

In all these papers, sensors are used as simple detectors that report measurements to a central
entity. However, such an organization does not scale and has a low fault tolerance: the controller
is a single point of failure. There are multiple possibilities to organize the network formed by the
sensors and to distribute the computation and storage duties over this local network. Not only
does it improve fault tolerance, but also communication and decision latency, as data is processed
and decisions are taken close to the information collection point and to the lights controller.

3 TAPIOCA: network organization

TAPIOCA can run on any of the architectures represented on Figures 1 and 2. By default,
TAPIOCA distributes tasks among the different sensors present at an intersection. The destina-
tion nodes (DN) nodes measure departures when the light is green. They are typically located
at the traffic light on each input lane or at the entrance of each output lane (case of Figures 2(a)
and 2(b)). The source nodes (SN) measure arrivals continuously. They can be located at a fixed
distance of the light, to consider as soon as possible the entrances on the intersection (but not
too far away, to avoid errors due to lane changes). The ideal distance of SN depends on the
traffic conditions, therefore these nodes could also be mobile (e.g. mounted on rails) or could be
dynamically selected among a large set of deployed sensors.

According to the literature, the distance between SN and DN nodes should correspond to
the number of vehicles that can cross the intersection when the traffic light green duration is at

6

its maximum allowed (denoted by Tmax). Tmax is generally bounded to limit waiting time badly
perceived by users. This distance should be set to N ∗ Lveh, where N denotes the number of
vehicles able to pass in Tmax seconds and Lveh the average length of a vehicle. If Ts denotes
the startup time of a vehicle and if TH represents the headway time that separates two vehicles,
N = Tmax−Ts

TH
. According to [14], Lveh = 6, Ts = 4 s and TH = 2 s are realistic values and can be

adjusted empirically. Based on previous results ([5, 6]) and [14], a typical value for this distance
would be 75 meters, which corresponds to a Tmax value of 30 s.

Among the DN nodes, one direction aggregator is elected per direction to collect, process
and aggregate the traffic of all DN nodes located lanes emmiting in the same direction. These
aggregators then report to a single decision point, possibly elected among the sensors, which is
in charge of computing the schedule and communicating it to the lights controller.

This organization, which not mandatory for TAPIOCA, presents certain advantages. First,
direction aggregators possess the information on the total number of vehicles going out of the
intersection in a given destination. They are able to send this information to all the next
intersections and are good candidates to act as gateways towards these neighboring intersections
if the network functions in a multihop manner. Second, all the aggregators roles are exchangeable.
This means that a distributed election protocol can be in charge of selecting the best candidates.
Such election algorithms have a reasonable cost ([9] operates in log(n) time) and can be based
on nodes capabilities (memory, computation power, etc.). Finally, these roles can be passed
over between sensors when failures happen and this architecture provides a certain level of fault-
tolerance.

4 The isolated intersection case

In [5], we proposed a WSN architecture and an algorithm for controlling green lights on a single
intersection. The sensor nodes deployed at each intersection exchange information using wireless
communications and agree on the intersection schedule. Instead of defining cycles, the algorithm
works at the phase granularity, selecting dynamically movements with two objectives in mind:
reducing the average waiting time and avoiding starvation. It allows lightly conflicting movements
to happen simultaneously. Such movements are movements that do not impact users safety, i.e.
when obvious priority rule between the movements exist. This algorithm yields to a reduced
average waiting time. As this algorithm is the basis of the multiple intersections control algorithm
presented below, this section presents an improved version that follows the following principles:
movements are first classified by evaluating and weighting (Sec. 4.1) multiple objectives. Then,
a phase is created by associating movements together, taking into account potential conflicts
with other lanes or with pedestrians (Sec. 4.2, 4.3 and 4.4). Finally, the green lights duration is
calculated in function of the traffic (Sec. 4.5).

4.1 Ranking movements based on two objectives

Let us consider a possible movement (s, d) going from direction s to direction d ∈ D, D denoting
the set of all possible directions (N, W, S, E in a 4 directions intersection). The decision node
(layer 4) knows the whole vehicles distribution at the intersection. It is thus able to associate a
local score S(s, d) to the movement (s, d). This score depends on the number of vehicles present
on the incoming lanes that compose the movement (N (s,d)) and on the time since the movement

was last selected (T
(s,d)
F), i.e. since it last had a green light.

We need to combine the metrics reflecting both objectives (load and interval between succes-
sive selections) in a single expression to define formally this score. To this extent, we normalize

7

both objectives using a generic function, γ(o(s,d)), whose aim is to bring an objective o ∈ {TF , N}
in the [0; 1] and to make it dimension-free so that they can be compared. If o(s,d) denotes one
objective value for the movement (s, d), γ(o(s,d)) is defined naturally as the ratio of the movement
objective value over the cumulated objective value of all movements:

γ(o(s,d)) =
o(s,d)∑

{a,b}∈D

o(a,b)
.

Once normalization is realized, the classical approach would be to define the score as a linear

combination of γ(T
(s,d)
F) and γ(N (s,d)). However, as we seek a ranking rather than a notation,

we would like to give more weight to the movements that have a number of vehicles significantly
higher than the other ones, or that have not been selected since a long time. That’s why we
define the score as a weighted sum of the squares of the normalized metrics:

S(s, d) = WN ·
(
γ(N (s,d))

)2
+WTF

·
(
γ(T

(s,d)
F)

)2
,

where WN and WTF
are user-defined weights, which can be defined and changed by operators

empirically to favor performance (AWT) or users experience (starvation). By default, these
weights are identical.

Squaring the sub-objectives metrics keeps the values in the same interval but emphasizes
differences more and more as the values increase. This latest property has the desired effect: if
one of the sub-objectives has a high value for a given movement compared to the other ones, the
corresponding contribution to the score will be significant enough to favor its selection.

If no vehicle is present on the lanes originating at direction s, we force the score to be null
for all the relevant movements, even if the movement has not been selected for long: ∀d ∈
D,S(s, d) = 0.

4.2 Identifying conflicting movements

4.2.1 Based on a conflict matrix

once scores have been computed for each movement, the decision node examines which movements
can be combined in order to create a new phase. To this extent, it uses a conflict matrix, which
indicates the movements that can safely be performed simultaneously. Figure 3 represents one
such conflict matrix with three levels: green elements indicate non-conflicting movements and red
elements indicate that movements cannot happen together, e.g. for safety reasons. In between,
orange elements indicate conflicting movements with no real safety issue. If such cases, which
generally involve left-turn movements, do not pose safety issue, the conflict can however limit
the number of vehicles that can cross the intersection and potentially introduce inter-blocking
situations. That’s why such movements should ideally receive green light simultaneously only
when the number of vehicle is low. Section 4.3 describes how TAPIOCA allows to handle such
situations. This matrix also includes columns for the pedestrian crosswalks.

This matrix is utilized to combine individual movements that could compose a valid phase
by summing their scores. The selected phase is the one that achieves the highest score.

4.2.2 Based on a static phase

finding the best combination of movements when the conflict matrix allows multiple simultaneous
movements requires calculation. In our simulations – based on hundreds or some times thousands

8

Figure 3: Example of a conflict matrix

intersections (see 4.6, 7.1 and 7) – we propose an alternate solution that consists in defining the
list of possible phases based on the pre-determined light plans, which are realistic and optimized.
We suppose that, in the same way as the SUMO simulator ([1]), each light plan phase defines
which lanes have the green light. Based on each phase, we can easily retrieve each movement
(s, d) associated to the lanes having the green light and compute the score S(s, d). The selected
phase is the phase that achieve the highest score summation.

4.3 Letting lightly conflicting movements occur together

Vehicles turning left usually have the lowest priority, i.e. they are blocked whenever a vehicle
coming from the movement in the opposite direction passes. The opportunity to let the two
movements happen simultaneously therefore depends on the load of both movements.

Classical strategies consist either in letting each of these movements occur in a dedicated
phase, or to separate the phase into two sub-phases: the first sub-phase allowing concurrent
movements and the second one letting only the low priority movement happen. Such compound
phase is slightly different from the two successive phases case, as in introduces a dependency: the
second sub-phase should happen immediately after the first one. TAPIOCA adopts this second
solution and allows to create a sequence of phases.

4.4 Managing pedestrian crosswalks

Pedestrians crosswalks can easily be included into TAPIOCA’s model by adding entries to the
conflict matrix, as shown on Fig. 3. Crosswalks could be considered as classical vehicles lanes,
with their dependencies and included in the conflict matrix per se. However, they behave slightly
differently, as it is more difficult to count the number of awaiting “vehicles” on these lanes.
TAPIOCA adopts an alternate approach: crosswalks do not participate directly into the phase
selection algorithm, but once a phase composition is determined, all the crosswalks that are not
in conflict with any selected movement are selected as well. This rule can be lightened,a s we
could tolerate moderate conflicts (e.g. when vehicles turn right and have to give passage to the
pedestrians).

Considering pedestrian can be done very easily, by integrating pedestrian crossings in the
conflict matrix, as the example on Figure 3 show. When the phase is know, the pedestrian lights
that do not conflict with selected movements are added to the phase. In the same manner as
the movements, one pedestrian crossing may has one or more allowed conflict: in this case, some

9

vehicles can interfere with pedestrian crossings, but they are not considered dangerous or charged,
they are not prioritized. The conflict matrix must be configured to allow all crosswalks have the
green light. In this case, pedestrian crossings are not an obstacle to the phase composition: the
traffic lights are not set aside.

In special cases, no conflict with pedestrians is desired or it is impossible to configure a matrix
conflict with any conflict between the vehicle movements and the pedestrian crossings. In this
case, a pedestrian crossing Pn can has the same proprieties than a vehicle movement: TPn

F is the
last time the pedestrian light was green and NPn is a pedestrian presence indicator, which can
be computed accurately with cameras, piezoelectric sensors or more simply with pushbuttons.

In reality, light plans are defined with traffic lights but also with pedestrian lights. Therefore,
use a conflict matrix to manage pedestrian crossing is not mandatory: it can use the original
pre-determined light plan (see Section 4.2.2).

4.5 Defining a phase duration

The lifetime of an intersection is, in TAPIOCA, a succession of phases. Unlike most strategies,
there is no explicit notion of cycle, the phases succeed and TAPIOCA ensures that all movements
are selected regularly. When a phase ends, the lights are set orange during a time Torange,
traditionally fixed to 3 s. Then all light turn red during a guard time Tsecure. This leaves enough
time to the controller to determine which movements will compose the upcoming phase. Once
movements are selected with respect to the various criteria exposed in the previous paragraphs,
the controller compute the phase’s effective green time: Tp.

Let us denote by Ts the start-up time of the first vehicle in line, which is fixed to 4 s according
to [14]. Th represents the headway time that separates two vehicles passages. It is fixed to 4 s
according to [14]. Tmax represents a phase maximal time, which is either defined by the user,
or determined in order to balance performance and users experience aspects, as discussed in
section 3. Tp is then computed in function of the load on the largest selected incoming lane, as
if the intersection intended on emptying the lanes, as follows;

Tp = min(Ts +Nmax · Th, Tmax) ,

where Nmax is the number of vehicles on the most populated lane that will be granted green
light in the phase. This time is bounded by Tmax to avoid capturing the intersection. In the
case of Tp < Tmax, additional vehicles can arrive on these lanes. In this case, we choose to let
the green time increase by Th, until no new arrival happens, or until Tp = Tmax.

The value of Tmax has an influence on the overall performance. In [5], we found that the
optimal Tmax value for an intersection of Amiens (France) lied between 25 s and 35 s. The proper
Tmax is smaller when conflicts are forbidden, as letting all movements happen in this situation
requires more phases, leaving less time to a single phase. In these first simulations, we chose to
set empirically Tmax, by testing a set of values from 15 s to 70 s and using the best result.

If such an empirical approach is always possible, we propose here to adjust Tmax by taking
into account the cycle length (Tc) defined by static light plans when available.

Tc is set to limit the time between two repetition of the same phase and is defined depending
on intersection traffic and configuration. On an arbitrary intersection, we set Tmax proportionally
to the number of vehicles composing the phase:

Tmax =
Nmax · Tc∑

{a,b}∈D

N (a,b)
max

.

10

Thus, we are assured to get a coherent Tmax value with respect to the diversity of intersections.
This method is applied in our simulations, and proves itself useful and efficient for large scenarios
such as TAPASCologne (Section 7).

4.6 Evaluation based on Amiens isolated intersection

The simulations presented on figure 4 are performed using SUMO ([1]) and are based on one
intersection of Amiens city (France), for which we have at our disposal the real traffic data,
the vehicle distribution and the figures of the static policy (cycles, phases and timings). Each
simulation lasts 7,200 program steps, which represents 7,200 s. Results presented on figure 4
are the average values calculated on the 4,381 vehicles that traverse the intersection during this
simulation time.

Figures 4(a) and 4(b) show that the improved version of TAPIOCA achieves the best average
waiting time compared to its previous version (40% reduction), to an adaptive algorithm from
the literature (55%), to the static light plan from Amiens city (62%) and to the SUMO generated
light plan (80%). Figure 4(c) shows that TAPIOCA also produces the shortest queues on average.

 0

 10

 20

 30

 40

 50

 60

 70

T
A

P
IO

C
A

 i
s
o
la

te
d
-i
n
te

rs
e
c
ti
o
n
s
 v

2

T
A

P
IO

C
A

 i
s
o
la

te
d
-i
n
te

rs
e
c
ti
o
n
s
 v

1

Y
o
u
s
e
f
e
t
a
l.

A
m

ie
n
s
 T

L
C

S
U

M
O

 T
L
C

a
v
e
ra

g
e
 w

a
it
in

g
 t
im

e

(a) Average waiting time.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

%

waiting time sum

TAPIOCA isolated-intersections v2
TAPIOCA isolated-intersections v1

Yousef et al.
Amiens TLC
SUMO TLC

(b) CDF of the waiting time (log scale).

 0

 0.5

 1

 1.5

 2

 2.5

T
A

P
IO

C
A

 i
s
o
la

te
d
-i
n
te

rs
e
c
ti
o
n
s
 v

2
 (

4
5
0
4
 v

e
h
ic

le
s
)

T
A

P
IO

C
A

 i
s
o
la

te
d
-i
n
te

rs
e
c
ti
o
n
s
 v

1
 (

4
4
9
7
 v

e
h
ic

le
s
)

Y
o
u
s
e
f
e
t
a
l.
 (

4
4
9
2
 v

e
h
ic

le
s
)

A
m

ie
n
s
 T

L
C

 (
4
4
8
0
 v

e
h
ic

le
s
)

S
U

M
O

 T
L
C

 (
4
3
8
1
 v

e
h
ic

le
s
)

a
v
e
ra

g
e
 q

u
e
u
e
 (

v
e
h
ic

le
s
)

(c) Average queue length.

Figure 4: Simulations on Amiens isolated intersection.

11

5 TAPIOCA : the multiple intersections case

In this section we propose a generalization of the previous algorithm to multiple adjacent in-
tersections, by defining a method to synchronize close intersections and to create green waves.
We assume that each intersection can communicate with its adjacent intersections through the
WSN. It may use additional relays, forming a multihop network, or a WAN connection if available
when the distance between two intersections is larger than the nodes transmission range. We
also assume that the clocks of nodes are synchronized with sufficient accuracy for the application
(i.e. approximatively one second).

In [6], we proposed a first approach to manage the multiple intersections case, by selecting,
similarly, the movements composing the upcoming phase based on local and distant measure-
ments combined in a global score, that mixed three objectives: first, a local score was computed
with the method described in section 4.1. Then, scores were exchanged between close inter-
sections so that an intersection favored movements that had the highest overload capacity (i.e.
avoid sending too many vehicles to already congested areas) and that tried to synchronize succes-
sive intersections to create green waves. This first algorithm will be designated by “TAPIOCA
multiple intersections v1” in the simulations.

Green waves are paths of successively green lights, synchronized so that vehicles do not slow
down. It is among the most efficient techniques to discharge a network, as it makes traffic
more fluid. The usual implementation of green waves supposes that vehicles travel at the limit
speed and synchronization needs to be adapted when congestion appears. TAPIOCA multiple
intersections v1 did not take into account the load and its performance was not optimal when
congestion level significantly delayed vehicles between two neighbor intersections.

In the version of TAPIOCA introduced in the present article, we chose to modify the philos-
ophy behind intersections synchronization. Instead of directly taking into account information
coming from neighbors in the calculation of a complex score, we let each intersection take its own
decisions locally, as if it were isolated. The result is a set of active movements and an expected
number of vehicles that will go, during the next phase, from the originating intersection (I1) to
some of its neighbors.

Let us denote by I2 one of these neighbors that should expect to receive an incoming flow
soon. I1 could send a message to ”warn” I2 about the incoming flow. However, this would
generate a high data traffic, increasing the congestion and loss probability in the communication
network, especially when using a limited bandwidth radio communication technology. That’s
why we choose to limit the transmission of these messages to the only case when I2 is less loaded
(i.e. has a smaller total number of vehicles) than I1. The intuition behind this filtering is a pure
greedy strategy: I2 should only consider interrupting its own cycle if it helps reduce the load of
a more loaded neighbor intersection. Otherwise, it should continue with its own local schedule.

This synchronization message contains the number of vehicles I1 expects to send to I2 and
an estimation of the time required by these vehicles to reach I2. This time can be evaluated
simply based on the distance between the two intersections, or by exchanging a sample of the
magnetic signatures of the individual vehicles between I1 DN nodes and I2 SN nodes, and by
taking into account the headway (TH), orange (Torange), secure (Tsecure) and startup (Ts) times
(see Sec. 3).

When I2 receives such a message, it evaluates locally the opportunity to break its ongoing
cycle to favor a green wave. Indeed, the message filtering that was performed by I1 necessarily
relies on slightly outdated information. It compares both expected gains, i.e. the number of
vehicles that will cross the intersection if the current phase is maintained and if the green wave
interrupts the current phase. If the choice is in favor of the green wave, I2 determines a new
phase composition, applying the classical TAPIOCA algorithm with the additional constraint to

12

necessarily select movements that correspond to the incoming flow.
Synchronization messages arrive asynchronously at an intersection and one intersection could

have to deal with multiple requests during the same phase. In this case, it selects the strategy
that maximizes the expected number of vehicles that will cross the intersection during the next
phase.

Figure 5: Synchronization messages sent between intersections and filtered by the destination in a small
scenario

Figure 5 represents a small network of 9 intersections. Each of these intersections has an on-
going phase, composed by the movements materialized by the inner green arrows. The synchro-
nization messages that are effectively sent are represented by black arrows between intersections.
Note that an intersection neither sends messages to neighbors that are not the destination of the
current phase movements, nor to more loaded neighbors. Once these messages are received, the
destination intersections take decisions and ignore requests when the gain from local objectives
is higher than the gain from the green waves. Such ignored requests are represented by striked
arrows.

6 Under the Hood: TAPIOCA algorithm and communica-
tion flows

This section details the full TAPIOCA algorithm, which is distributed over the intersections
and gives additional precisions. TAPIOCA’s aim is to select the movements composing phase
P + 1 at the end of phase P , based on the principles exposed in sections 4 and 5). This version
of TAPIOCA is meant to be implemented on the architecture 1 or 2(b), i.e. with departure
detectors on the same lanes as the arrival detectors. The case of architecture 2(a) is detailed in
[6]. TAPIOCA is decomposed in 7 steps:

1. Counting the vehicles on each lane (SN and DN nodes): For each lane i, at the
end of phase P , every SN node (layer 1) sends NA

i (P), the count of arrivals that occurred
during phase P , to its corresponding DN node (layer 2). In parallel, each DN node has
monitored the number of departures during the phase (ND

i (P)). Each DN node updates
NP

i (P + 1), the number of vehicles that are present on the lane at the beginning of phase

13

P+1 according to the following formula:

NP+1
i = NP

i +NA
i (P)−ND

i (P) .

It then transmits all NP+1
i values to the direction aggregator (layer 3) node that manages

the incoming direction DN belongs to.

2. Per-direction aggregation (direction aggregator nodes): For each direction y, the
aggregator maintains the time elapsed since the last selection of the movements starting
at y, T y

F , to detect and prevent starvation. For each movement starting at y, it sums the
NP+1

i values received from every relevant lane to get N (a,b), the total queue length for the
movement (a, b).

If one lane i is the origin of M movements (M > 1), we choose to set by default for each

movement (a, b), N (a,b) =
NP+1

i

M , to avoid counting M times the vehicles of the lane i. If
additional sensors are installed on the output lanes, they can cooperate with the DN node
of the lane having multiple movements to determine a coefficient for each movement. For
example, if an average of 60% vehicles of the lane i follow the movement (a, b), then we

can set N (a,b) =
NP+1

i

0.6 .

Finally, the direction leader transmits these two values to the network leader (layer 4) sen-
sor. Aggregators, which also manage the synchronization messages received from neighbor
intersections, transmit at the same time their messages to the decision node.

3. Next phase composition (decision node): once it has received data from all aggre-
gators, the decision node computes the local scores S(s, d) of the different movements
(Section 4.1). It combines movements using the conflict matrix or a pre-determined set of
phases from the static light plan and select the combination that receives the best score.
At this stage, additional criteria can be considered (e.g. emergency vehicle detection,
combination avoiding in case of accident detection).

4. Next phase duration (decision node): once the movements have been selected, the
green light time is set according to Section 4.5.

5. Transmission to neighbor intersections (decision node, direction aggregators):
once the decision node has defined the next phase composition and timing, it transmits
this information to the aggregator nodes, alongside with a possible intersection synchro-
nization message and the number of vehicles on the intersection. Each aggregator node
then forwards this information to the neighbor intersections.

6. Phase application (decision node): the decision node instructs the controller to turns
the specified lights on for the specified time. This marks the beginning of phase P + 1.

7. During the phase P + 1 (decision node). If a synchronization message arrives and is
considered relevant, the decision node relaunches the phase selection process, forcing the
selection of the movements involved in the green wave. When the phase finishes, then the
decision node applies the left-turn gap process (Section 4.3) if required.

8. Inter-intersection vehicles monitoring (DN nodes): during phase P + 1, the DN
nodes of selected directions may send the vehicles timed signatures to the corresponding
DN nodes of the next intersections that should see these vehicles pass. This allows esti-
mating the time that is required to go from one intersection to the other. This delay can
be used to tune the green waves synchronization process, and its variations allow an early
detection of upcoming congestion.

14

This algorithm has been specified to allow easy improvement, taking for example into account
failure of a sensor or information coming from a vehicular network, or from cell phones or
connected GPS devices.

7 Simulations

We evaluated TAPIOCA using the SUMO 0.17 (Simulation of Urban MObility, [1]), open-source,
discrete time, continuous space and microscopic traffic flow simulator. Our simulations were
performed over more than 1,425,137 cumulated trips distributed into 32 distinct scenarios: the
complete results, and more figures, are available online1. We detail in this section representative
metrics and scenarios.

7.1 Scenario 1: Amiens multiple intersections

 0

 10

 20

 30

 40

 50

 60

 70

 80

T
A

P
IO

C
A

 m
u
lt
ip

le
-i
n
te

rs
e
c
ti
o
n
s
 v

2

T
A

P
IO

C
A

 m
u
lt
ip

le
-i
n
te

rs
e
c
ti
o
n
s
 v

1

T
A

P
IO

C
A

 i
s
o
la

te
d
-i
n
te

rs
e
c
ti
o
n
s
 v

1

Y
o
u
s
e
f
e
t
a
l.

A
m

ie
n
s
 T

L
C

S
U

M
O

 T
L
C

a
v
e
ra

g
e
 w

a
it
in

g
 t
im

e

(a) Average waiting time.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

%

waiting time sum

TAPIOCA multiple-intersections v2
TAPIOCA multiple-intersections v1
TAPIOCA isolated-intersections v1

Yousef et al.
Amiens TLC
SUMO TLC

(b) CDF of the waiting time (log scale).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

T
A

P
IO

C
A

 m
u
lt
ip

le
-i
n
te

rs
e
c
ti
o
n
s
 v

2

T
A

P
IO

C
A

 m
u
lt
ip

le
-i
n
te

rs
e
c
ti
o
n
s
 v

1

T
A

P
IO

C
A

 i
s
o
la

te
d
-i
n
te

rs
e
c
ti
o
n
s
 v

1

Y
o
u
s
e
f
e
t
a
l.

A
m

ie
n
s
 T

L
C

S
U

M
O

 T
L
C

a
v
e
ra

g
e
 q

u
e
u
e
 (

v
e
h
ic

le
s
)

(c) Average queue length.

Figure 6: Performance comparison: Amiens multiple intersections scenario.

The simulations presented on figures 6, similarly as Section 4.6, are based on three intersec-
tions of Amiens city (France), for which we have at our disposal the real traffic data, vehicle
distribution and the true policy (cycles, phases, synchronizations and timings). Each simulation
ran during 7,200 program steps, which represents 7,200 s, and is traversed by 5,538 vehicles.

1http://tapioca.sfaye.com/

15

http://tapioca.sfaye.com/

Figures 6(a) and 6(b) show the comparison between this version of TAPIOCA, TAPIOCA
multiple intersections v1 ([6]), TAPIOCA isolated intersection ([5]), the algorithm of Yousef et
al. ([15]), the Amiens real light plan and the default SUMO traffic lights policy.

Simulation results show that TAPIOCA achieves the best average waiting time. It is 32%
better than TAPIOCA multiple intersections v1, 56% better than TAPIOCA isolated intersec-
tion, 45% better than Yousef et al.’s algorithm, 61% better than the Amiens light plan and 78%
better than SUMO default policy. Figure 6(c) shows that TAPIOCA also generates the shortest
average queues.

7.2 Scenario 2: TAPASCologne

TAPASCologne2 is one of the largest – if not the largest – freely available traffic simulation data
set for SUMO. It models the city of Cologne (Köln, Germany) based on the OpenStreetMap
cartography and two hours of traffic, i.e. 71,151 vehicles.

The results are presented on Figure 7 and show the average waiting time for the 71,151
vehicles alongside with the average queue length. We excluded previous TAPIOCA versions, as
the results were not different from the Amiens case. We can see, on Figures 7(a), 7(b) and 7(c),
that TAPIOCA still achieves the best waiting time, compared to Yousef et al.’s algorithm (36%
reduction) and to the pre-determined light plans of TAPASCologne / SUMO (48% reduction).
Figure 7(d) shows that TAPIOCA achieves also the lowest queue, on average. Finally, figures 7(e)
and 7(f) show the average time between two successive selections of the same movement: we can
see that TAPIOCA achieves also the lowest time, on average.

7.3 Scenario 3: grid networks

Figure 8 shows the performance of TAPIOCA on a square grid of 64 × 64 intersections (4,096
intersections). Each simulation lasts 7,200 s and sees 48,598 vehicles pass on average, with an
arrival process intensity of λ = 8 vehicles per second. Other simulations realized on 16, 64, 256,
1,024 and 4,096 intersections, with an intensity λ = 0.5, 1, 2, 4 and 8 are available online1.

Here, we can see on Figures 8(a), 8(b) and 8(c) a consequent difference between our algorithm
and SUMO pre-determined light plans: our algorithm create green waves and reduces the average
waiting time by 97%. Compared to Yousef et al., our algorithm reduces the average waiting time
by 85%.

8 Conclusion and future works

In this paper, we propose and evaluate a distributed adaptive traffic lights control algorithm
for multiple intersections that uses a WSN. Based on three different scenarios, we show that
this algorithm is able to achieve a better waiting time, travel time and queue length than a
predetermined solution, but also than adaptive solutions. Besides the raw performance of the
algorithm, these results show that there is an interest in managing the traffic at the intersection
granularity. The distributed architecture allows to react quickly to the congestion situations by
taking local decisions.

We are currently working on evaluating the communication network performance by using
co-simulation between SUMO and OMNeT++. This evaluation shall allow us to test the perfor-
mance of TAPIOCA under realistic radio conditions, i.e. when channel losses happen, or when
communication load increases. This study shall also allow us to determine a fault tolerance

2http://sumo.sourceforge.net/doc/current/docs/userdoc/Data/Scenarios/TAPASCologne.html

16

http://sumo.sourceforge.net/doc/current/docs/userdoc/Data/Scenarios/TAPASCologne.html

 0

 10

 20

 30

 40

 50

 60

 70

 80

T
A

P
IO

C
A

Y
o
u
s
e
f
e
t
a
l.

T
A

P
A

S
C

o
lo

g
n
e
 /
 S

U
M

O

a
v
e
ra

g
e
 w

a
it
in

g
 t
im

e

(a) Average waiting time.

 0

 20

 40

 60

 80

 100

 120

 21000 22000 23000 24000 25000 26000 27000 28000 29000

a
v
e
ra

g
e
 w

a
it
in

g
 t
im

e
 (

s
)

simulation time (s)

TAPIOCA
Yousef et al.

TAPASCologne / SUMO

(b) Waiting time evolution.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

%

waiting time sum

TAPIOCA
Yousef et al.

TAPASCologne / SUMO

(c) CDF of the waiting time (log scale).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

T
A

P
IO

C
A

Y
o
u
s
e
f
e
t
a
l.

T
A

P
A

S
C

o
lo

g
n
e
 /
 S

U
M

O

a
v
e
ra

g
e
 q

u
e
u
e
 (

v
e
h
ic

le
s
)

(d) Average queue length.

 0

 10

 20

 30

 40

 50

 60

 70

 80

T
A

P
IO

C
A

Y
o
u
s
e
f
e
t
a
l.

T
A

P
A

S
C

o
lo

g
n
e
 /
 S

U
M

O

a
v
e
ra

g
e
 s

u
c
c
e
s
s
iv

e
 p

h
a
s
e
 s

e
le

c
ti
o
n
 (

s
)

(e) Average movement selection interval.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

%

average successive phase selection (s) sum

TAPIOCA
Yousef et al.

TAPASCologne / SUMO

(f) CDF of the movement selection interval.

Figure 7: Performance comparison: TAPASColgogne scenario.

17

 0

 100

 200

 300

 400

 500

 600

 700

 800

T
A

P
IO

C
A

Y
o
u
s
e
f
e
t
a
l.

S
U

M
O

 T
L
C

a
v
e
ra

g
e
 w

a
it
in

g
 t
im

e

(a) Average waiting time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

%

waiting time sum

TAPIOCA
Yousef et al.
SUMO TLC

(b) CDF of the waiting time (log scale).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000 8000

a
v
e
ra

g
e
 w

a
it
in

g
 t
im

e
 (

s
)

simulation time (s)

TAPIOCA
Yousef et al.
SUMO TLC

(c) Waiting time evolution.

Figure 8: Performance comparison: Grid scenario.

18

strategy and discuss about security issues, when the vehicles are not correctly identified by mag-
netometers or when there is no information coming from sensors or from an adjacent intersection.
In this second version of TAPIOCA, we also limited the communication between intersections to
direct neighbors. However, we could benefit from information coming from a greater distance,
especially when building green waves. The question of the appropriate communication distance
remains open, and its answer will probably depend on the considered scenario, which would plead
in favor of a dynamic approach, the communication distance being set according to the current
transportation system congestion level. At a longer term, we also plan on integrating a vehicular
network or cell phones as additional sources of data.

Acknowledgments

The authors thank Thierry Delaporte – head of the traffic control center of Amiens – and the
TAPASCologne project team, who provided the data needed by our simulations.

References

[1] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. Sumo - simulation of urban
mobility: An overview. In The Third International Conference on Advances in System
Simulation (SIMUL 2011), pages 63–68, Barcelona, Spain, Oct. 2011.

[2] S. Cheung, S. Coleri, B. Dundar, S. Ganesh, C. Tan, and P. Varaiya. Traffic measurement
and vehicle classification with single magnetic sensor. Transportation Research Record:
Journal of the Transportation Research Board, 1917(-1):173–181, Dec. 2005.

[3] M. Collotta, G. Pau, V. Salerno, and G. Scatá. Wireless sensor networks to improve road
monitoring. InTechOpen, 2012.

[4] I. Corredor, A. Garćıa, J. Mart́ınez, and P. López. Wireless sensor network-based system
for measuring and monitoring road traffic. In 6th Collaborative Electronic Communications
and eCommerce Technology and Research (CollECTeR 2008), Madrid, Spain, June 2008.

[5] S. Faye, C. Chaudet, and I. Demeure. A distributed algorithm for adaptive traffic lights con-
trol. In 15th IEEE Intelligent Transportation Systems Conference (ITSC 2012), Anchorage,
USA, Sept. 2012.

[6] S. Faye, C. Chaudet, and I. Demeure. A distributed algorithm for multiple intersections
adaptive traffic lights control using a wireless sensor networks. In UrbaNe Workshop (held
in conjunction with ACM CoNEXT 2012), pages 13–18, Nice, France, Dec. 2012.

[7] IEEE Standard for Information technology. Part 11: Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications – Amendment 6: Wireless Access in
Vehicular Environments, 2010.

[8] IEEE Standard for Local and metropolitan area networks. Part 15.4: Low-Rate Wireless
Personal Area Networks (LR-WPANs), 2011.

[9] T. Jurdziński, M. Kuty lowski, and J. Zatopiański. Efficient algorithms for leader election
in radio networks. In 21th annual symposium on Principles of distributed computing, pages
51–57. ACM, 2002.

19

[10] A. N. Knaian. A wireless sensor network for smart roadbeds and intelligent transportation
systems. Master’s thesis, Massachusetts Institute of Technology, June 2000.

[11] D. Robertson and R. Bretherton. Optimizing networks of traffic signals in real time-the
scoot method. IEEE Transactions on Vehicular Technology, 40(1):11 –15, Feb. 1991.

[12] A. Sims and K. Dobinson. The sydney coordinated adaptive traffic (scat) system philosophy
and benefits. IEEE Transactions on Vehicular Technology, 29(2):130 – 137, May 1980.

[13] M. Tubaishat, Q. Qi, Y. Shang, and H. Shi. Wireless sensor-based traffic light control. In
5th IEEE Conference on Consumer Communications and Networking (CCNC 2008), Las
Vegas, USA, Feb. 2008.

[14] US Dept. of Transportation, Federal Highway Administration, Office of Operations. Traffic
control systems handbook. 2005. http://ops.fhwa.dot.gov/publications/fhwahop06006/.

[15] K. M. Yousef, J. N. Al-Karaki, and A. M. Shatnawi. Intelligent traffic light flow control
system using wireless sensors networks. Journal of Information Science and Engineering,
26(3), May 2010.

[16] B. Zhou, J. Cao, and H. Wu. Adaptive traffic light control of multiple intersections in wsn-
based its. In 73rd IEEE Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE,
2011.

[17] B. Zhou, J. Cao, X. Zeng, and H. Wu. Adaptive traffic light control in wireless sensor
network-based intelligent transportation system. In 72nd IEEE Vehicular Technology Con-
ference Fall (VTC 2010-Fall), Ottawa, Canada, Sept. 2010.

[18] F. Zou, B. Yang, and Y. Cao. Traffic light control for a single intersection based on wireless
sensor network. In 9th International Conference on Electronic Measurement & Instruments
(ICEMI 2009), Beijing, China, Aug. 2009.

20

Dépôt légal : 2013 – 3e trimestre
Imprimé à Télécom ParisTech – Paris

ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

Télécom ParisTech

Institut TELECOM - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.telecom-paristech.frfr

Département INFRES

©

In
st

it
u
t

T
E

L
E

C
O

M
 -

T
é

lé
c
o
m

 P
a

ri
s
T

e
c
h

 2
0
1
3

	Introduction
	Related Works
	Using wireless sensors in ITS
	Sensors deployment
	Adaptive traffic lights control systems

	TAPIOCA: network organization
	The isolated intersection case
	Ranking movements based on two objectives
	Identifying conflicting movements
	Based on a conflict matrix
	Based on a static phase

	Letting lightly conflicting movements occur together
	Managing pedestrian crosswalks
	Defining a phase duration
	Evaluation based on Amiens isolated intersection

	TAPIOCA : the multiple intersections case
	Under the Hood: TAPIOCA algorithm and communication flows
	Simulations
	Scenario 1: Amiens multiple intersections
	Scenario 2: TAPASCologne
	Scenario 3: grid networks

	Conclusion and future works

