

Parsing images with finite state machines

for object class segmentation and annotation

Automates à états finis stochastiques
pour l’annotation et la segmentation

d’images en classes d’objets

Hichem Sahbi

juin 2013

Département Traitement du Signal et des Images

Groupe TII : Traitement et Interprétation des Images

2013D003

Parsing Images with Finite State Machines for Object
Class Segmentation and Annotation

Hichem SAHBI
CNRS LTCI ; Télécom ParisTech

46 rue Barrault, 75013 Paris
hichem.sahbi@telecom-paristech.fr

Abstract

We introduce in this work a stochastic inference process, for scene annotation
and object class segmentation, based on finite state machines (FSMs). The de-
sign principle of our framework is generative and based on building, for a given
scene, finite state machines that encode annotation lattices, and inference consists
in finding and scoring the best configurations in these lattices.
Different operations are defined using our FSM framework including reordering,
segmentation, visual transduction, and label-language modeling. All these opera-
tions are combined together in order to achieve annotation as well as object class
segmentation.

Keywords: Finite State Machines, Statistical Machine Learning, Object Class Segmentation, Image
Annotation.

1

Automates à États Finis Stochastiques pour l’Annotation
et la Segmentation d’Images en Classes d’Objets

Résumé

On introduit dans cette contribution un processus d’inférence stochastique basé
sur les automates à états finis pour l’annotation et la segmentation de scènes en
classes d’objets. La méthode proposée est générative et permet de construire pour
une scène donnée des automates à états finis codant les treillis de l’ensemble des
annotations possibles de cette scène ainsi que leurs scores.
Différentes opérations sont définies à travers des automates incluant le ré-
ordonnancement, la segmentation, la transduction visuelle et la modélisation du
langage des labels. Toutes ces opérations sont combinées afin de réaliser le pro-
cessus global d’annotation et segmentation en classes d’objets.

2

1 Introduction

The general problem of image annotation is usually converted into classification. Many existing
state of the art methods (see for instance [5, 19, 14, 34, 30, 24, 25, 19, 5, 7, 15, 22, 18, 11, 21]) treat
each keyword (also referred to as category or concept) as a class, and then build the corresponding
concept-specific classifier in order to identify images or image regions belonging to that class,
using a variety of machine learning techniques such as Markov models [19, 24], latent Dirichlet
allocation [1], probabilistic latent semantic analysis [23], support vector machines [13, 24, 29], etc.
Annotation methods may also be categorized into: region-based requiring a preliminary step of
image segmentation ([20, 33, 17, 26, 28, 32], etc.), and holistic ([15, 36], etc.) operating directly on
the entire image space. In both cases, training is achieved in order to learn how to attach concepts
with the corresponding visual features.

Object class segmentation (OCS) is particularly challenging and has many potential applications
including object recognition and image retrieval. Most of the OCS methods are considered as
labelling problems working either on individual pixels or on constellations of spatially homoge-
neous ones, referred to as superpixels. Accordingly, state of the art methods may be categorized
depending on their partitioning strategies; some of them perform label prediction directly at
the pixel level [33] (as the finest partitioning), while others rely on superpixels or preexisting
segmentations [2, 12, 38, 32, 17], and variants of them use grouping and intersection [27, 26]. A
key issue of OCS is how to model dependencies between pixels, superpixels or objects. In general,
dependencies are defined as unary and (possibly high order) interaction potential functions. The
former measures the likelihood of a pixel belonging to a particular class, while the latter encodes
the dependency information which enforces label consistency or geometrical relationships among
neighboring pixels or objects. Dependencies or relationships, in the space of the image in particular,
are crucial and they are intuitively modeled by graphs. Such graphs, created at different levels
of the processing, may encode the spatial relationship between neighboring points in the image
(local geometry, etc.), or between different parts/components of an object (to model the topology or
the shape of the object), or between different objects observed in a scene to take into account the
context during the annotation process. Recent advances in these aspects usually rely on graphical
models, mainly Conditional Random Fields and Markov Random Fields [10], in order to model
unary and interaction potentials and learn the conditional distribution over the classes. The most
widely used interaction potential function is formulated as a pairwise one [33] and higher-order
Potts models [16]. Other related techniques apply logic and stochastic grammars; for a survey of
these methods see [39, 35, 31, 6, 37] and references within for detailed discussions.

In this paper, we introduce an original object class segmentation method based on finite state
machines (FSMs). Our OCS approach is Bayesian; it finds superpixel labels that maximize a
posterior probability, but its key-novelty resides in the representational power of FSMs in order to
build a comprehensive model for scene segmentation and labeling. Indeed, we translate our OCS
into searching implicitly, via FSMs, the optimum of a discrete energy function mixing i) a standard
unary term that models conditional probability of visual features given their (possible) labels, ii)
a standard interaction potential (context prior) which provides joint statistics, of co-occurrence,
between those labels, and iii) a novel reordering and grouping term. The latter allows us, via FSMs,
to examine (generate, label, score and rank) many partitions of segments in a given scene, and to
return only the most likely ones.

At least three reasons drove us to apply FSMs for object class segmentation:

-Firstly, as FSMs can model huge (even infinite) languages1, with finite memory and time resources,
our method does not require explicit generation of all possible segmentations and labelings. Instead,
it first models them implicitly by combining (composing) different FSMs and then efficiently finds
the shortest path (i.e., the most likely segmentation and labeling) in a global FSM. Moreover, sparse
statistics about unary and interaction potentials allow us to further simplify the individual FSMs
and this makes finding the shortest path in the global FSM even faster while maintaining highly

1The alphabet of this language corresponds to all the superpixels of a given scene.

3

effective labeling process (see Section 3).

-Secondly, superpixel reordering allows us to examine all the possible segmentations at different
orders and makes it possible, using the chain rule, to maximize the interaction potentials resulting
into better labeling performance. For that purpose, scenes are first described with graphs where
nodes correspond to superpixels and edges connect neighboring superpixels. Then, reordering is
achieved by generating random (Hamiltonian) walks on these graphs using FSMs. Note that graphs
with very low connectivity (≤ 4 immediate neighbors for each superpixel) dramatically reduce the
complexity of this reordering and also grouping (again see Section 3).

-Finally, the number of possible labels and the non-uniqueness of the solution of our energy function
makes it difficult to solve. Indeed, only sub-optimal solutions can be found if standard optimization
techniques, such as belief propagation or graph-cut [4, 3], are applied. Instead, FSMs explore larger
sets of possible solutions resulting into a more effective and also efficient scene labeling machinery
as discussed later in this paper.

The remainder of this paper is organized as follows, In Section 2, we describe our Bayesian model
and how to learn its statistics. In Section 3, we describe our main contribution; the inference model
based on finite state machines and the integration of those statistics in object class segmentation.

2 Scene Labeling Model

Consider X as the union of all the possible images of the world. Given n lattice points V =
{1, . . . , n}, we define X = {X1, . . . , Xn} ⊂ X as a set of observed random variables, correspond-
ing to a subdivision of X into smaller units, referred to as superpixels. Let C = {ci : ci ⊆ V}ki=1
be a random partition of V (i.e., ∀i, ∀j 6= i, ci 6= ∅, ci ∩ cj = ∅ and ∪i ci = V); an el-
ement Xci ⊆ X is defined as a collection of conditionally independent random variables, i.e.,
Xci = {Xk ∈ X : k ∈ ci}. For each partition {ci ⊆ V}i, we define a set of random variables
Y = {Yc1 , . . . ,Yck}, here Yci corresponds to the (unknown) label of Xci taken from a label set
C = {`i}i.
For a given observed superpixel set X, our scene labeling is based on a source-channel model. It
defines a joint probability distribution over multiple superpixel reorderings, groupings (segmenta-
tions), labelings and finds the best tuple

argmaxY,C,k,π P (X,Y,C,k, π), (1)
where

P (X,Y,C,k, π) = (2)
P (π). Superpixel Reordering Model (3)

P (C,k|π). Superpixel Grouping Model (4)
P (Y|C,k, π). Label Dependency Model (5)

P (X|Y,C,k, π). Visual Model. (6)

Here π ∈ G(V) denotes a permutation (reordering) that maps each element i ∈ V to πi ∈ V and
G(V) denotes the symmetric group on V including all the bijections (permutations) from V to it-self.
The model above illustrates a generative scene labeling process which first (i) reorders (in multiple
ways) the lattice V resulting into π1 . . . πn, (ii) partitions/groups (in multiple ways) π1 . . . πn into k
subsets c1 . . . ck, then (iii) emits (in multiple ways) label hypotheses Yc1 . . .Yck for the segments
Xc1 . . .Xck and finally (iv) estimates their visual likelihood so only relevant labels will be strength-
ened. Example shown in Fig. (1, left) illustrates one realization of this stochastic process.
Note that a naive and brute force generation of all the possible reorderings, groupings, labelings
would be out of hand; a variant of this process has been achieved in closely related work (see for in-
stance [26]) but turned out to be either tedious or “suboptimal”, i.e., none of segments generated are
guaranteed to correspond to the actual objects of the scene. As detailed in the subsequent sections,
our approach does not explicitly generate all the possible configurations of reordering, grouping and
labeling, but instead implicitly specifies these configurations using finite state machines in order to
build a scored lattice of possible segmentations and labelings.

4

Feature scoring

Superpixel grouping

Superpixel reordering

Label generation and scoring

Xc1 Xc3 Xc2

s1 s2 s3 s4 s5 s6 s7

c1 c3 c2

s1 s2 s3 s6 s7 s4 s5

Yc1 = sky Yc3 = sea Yc2 = tree

s1 s2 s3 s6 s7 s4 s5

s6

s7

s1
s2

s3

s4

s5

s6

s7

s1
s2

s3

s4

s5

Figure 1: (Left) this figure shows one realization of the stochastic image labeling process. (Right)
this figure shows two parsing possibilities corresponding to two different superpixel permutations.

2.1 Reordering & Grouping Models for Multiple Image Segmentation

Multiple image segmentation is the process of finding multiple partitions of an image lattice V . It
is easy to see that the generation of all the possible partitions of V is out of hand; in practice for a
lattice including n superpixels, the number of all possible partitions, known as the bell number, is
1
e

∑∞
k=0

kn

k! (this number grows fast and reaches 115, 975 partitions with only n = 10 superpixels).
A majority of these partitions correspond to disconnected segments, with small cardinalities and
heterogeneous contents.

In this work, we restrict image partitions to include only connected segments with homogeneous
superpixels. More specifically, we generate multiple image segmentations (i) by reordering
superpixels and (ii) by grouping them into connected segments; note that pixels inside superpixels
are not reordered. Reordering corresponds to permutations that transform an image lattice V into
many words in {π}π∈G(V), while grouping breaks every word π into k subwords. Applying all
the permutations {π}π∈G(V), followed by all the possible grouping makes it possible to generate
all the possible partitions of V . Subsets in each partition (again denoted C = {ci}i) are defined
as ci = π`k; here π`k refers to a non empty subsequence (or subword) in π1 . . . πn that begins with
the kth element and ends with the `th (with k ≤ `), for instance if π corresponds to the sequence
”2341”, then π3

2 = ”34”.
These steps (i)+(ii), also shown in Eqs. 3 and 4, are necessary not only to delimit segment bound-
aries with a high precision but also to evaluate label dependencies between segments at multiple
orders (see Section 2.2). Example in Fig. (1, right) illustrates the principle from reordering three
segments c1 = {s1, s2, s3}, c2 = {s4, s5} and c3 = {s6, s7}. If the underlying labels (Yc1 = sky,
Yc2 = tree) are less likely to co-occur than (Yc1 = sky, Yc3 = sea), then one should reorder
them as c1, c3, c2 prior to estimate their dependency statistics using the chain rule; i.e., assuming
a first order Markov process, one should consider P (Yc1).P (Yc3 |Yc1).P (Yc2 |Yc3) instead of
P (Yc1).P (Yc2 |Yc1).P (Yc3 |Yc2). Note also that parsing (2D) images should not be achieved as
1D patterns (such as speech or text) since the order in images is obviously not unique2.

Reordering & Grouping Models. In order to restrict image partitions to include only connected
segments, we consider a random walk generator. First, a given scene is modeled with a graph
G = (V,E) where nodes in V correspond to superpixels and edges in E connect superpixels
that share common boundaries. Then, our superpixel grouping follows the random walk process:
it randomly visits superpixels in G, and groups only connected and visually similar ones. Each
random walk corresponds to a path in G which is not necessarily Hamiltonian. If one restricts
the random walk to include only permutations, then the resulting paths will be Hamiltonian3 and
correspond to partitions of V that necessarily include connected subsets.

2Note that reordering could be related to stochastic models of visual attention and the way the human visual
system parses scenes (see for instance [9].)

3Note that planar 4-connected graphs (including 4-connected regular grids) are necessarily Hamiltonian.

5

Considering the lattice V = {1, . . . , n}, our reordering & grouping model P (C,k, π) may be writ-
ten as

P (C,k, π) = P (C,k|π)P (π), (7)
here our reordering model P (π) equally weights permutations in G(V), i.e., ∀π ∈ G(V), P (π) = 1/
|G(V)|. Considering our grouping model P (C,k|π) as a first order Markov process, and assuming
all segments in a given partition conditionally independent given π, one may write

P (C,k|π) = P (k)

k∏
i=1

P (ci|π). (8)

All the partition sizes have the same mass, i.e., P (k) = 1/n, ∀ k ∈ {1, 2, . . . , n} and

P (ci|π) = P (πki)

`i−ki∏
j=1

P (πki+j |πki+j−1). (9)

Each partition C is defined a {ci = π`iki
}k
i=1

with
{

(ki, `i)
}k
i=1

satisfying k1 = 1, `k = n,
ki = `i−1 + 1, ∀i ∈ {2, . . . ,k} and ki ≤ `i. In the above probability, P (πki) is taken as uniform,
i.e., 1/n and P (πki+j |πki+j−1) is taken as the random walk transition probability from node (super-
pixel) πki+j−1 to node πki+j , which is positive only if the underlying superpixels share a common
boundary; and it is set to P (πki+j |πki+j−1) ∝ 1{(πki+j ,πki+j−1)∈E} · κ

(
ψ(πki+j), ψ(πki+j−1)

)
;

here κ is the histogram intersection kernel and ψ(πki+j) denotes a visual feature extracted at super-
pixel πki+j . Again, this conditional probability of transition between superpixels πki+j , πki+j−1
depends on whether they are neighbors in G and also on their visually similarity. Put differently, if
the transition between neighboring superpixels is achieved with a conditional probability larger than
uniform, then these superpixels are considered as visually similar and likely to come from the same
physical segment (object) in the scene.

2.2 Visual and Label Dependency Models

Once superpixels reordered and grouped in multiple ways, we use a unary visual model and label
interaction potentials, described below, in order to score the resulting partitions. As shown in the
remainder of this paper, only highly scored partitions are likely to correspond to correct object seg-
mentations.
Label Dependency Model. this model captures scene structure and a priori knowledge about seg-
ment/label relationships (either co-occurrence or geometric relationships) in order to consolidate
labels which are consistent with already observed scenes.
Considering a first order Markovian process and using the chain rule, our bi-gram label dependency
model is

P (Y|C,k, π) = P (Yc1)

k∏
i=2

P (Yci |Yci−1).

Given two disjoint segments ci = {πki , . . . , π`i}, cj = {πkj , . . . , π`j} as a union of superpixels
with arbitrary orders, we have

P (Yci) = P (Yπki
. . .Yπ`i

)

:= P (Yπki
)

`i−ki∏
q=1

P (Yπki+q
|Yπki+q−1

)

P (Yci |Ycj) = P (Yπki
. . .Yπ`i

|Yπkj
. . .Yπ`j

)

:=

(
P (Yπki

)

`i−ki∏
q=1

P (Yπki+q
|Yπki+q−1

)

)

P (Yπkj
|Yπ`i

)

(`j−kj∏
q=1

P (Yπkj+q
|Yπkj+q−1

)

)
.

(10)

Let I = {I1, . . . , IN} be a training set, of fixed size images, labeled at the pixel level (with labels
in C). Let fu(`, p) =

∑N
i=1 1{Ii(p)=`} be the frequency of co-occurrence of pixel p and label ` in

6

I. Similarly, we define fb(`, `
′, p, p′) as

∑N
i=1 1{Ii(p)=`}1{Ii(p′)=`′}. Let’s denote the labels of two

given superpixels s, s′ respectively as Ys, Ys′ , we define

P (Ys) =

∑
p∈s fu(Ys, p)∑

`∈C
∑
p∈s fu(`, p)

P (Ys|Ys′) =

∑
p∈s
∑
p′∈s′ fb(Ys,Ys′ , p, p

′)∑
`∈C
∑
p∈s
∑
p′∈s′ fb(`,Ys′ , p, p′)

.

(11)

Visual Model. this model defines the likelihood of X = {Xc1 , . . . ,Xck
} given the labels Y =

{Yc1 , . . . ,Yck
}. Assuming conditionally independent superpixels and segments given their labels,

and assuming that each Xci depends only on Yci , we define our visual model as

P (X|Y,C,k, π) =

k∏
i=1

∏
s∈ci

P (Xs|Yci) (12)

with P (Xs|Yci) ∝
1

1 + exp(−fYci
(Xs))

, (13)

here fYci
(.) is an SVM classifier (based on histogram intersection kernel) trained to discriminate

superpixels belonging to a category Yci from C\Yci . In practice, each superpixel Xs is described
using the bag-of-word SIFT representation. Precisely, SIFT features are extracted and quantized
using a codebook of 200 visual words and a two level spatial pyramid is extracted on each superpixel
resulting into a feature vector of 1,000 dimensions.

3 Finite State Machine Inference

In this section, we implement the models discussed earlier using finite state machines. We first
remind the definition of stochastic finite state machines, then we show how we design and combine
those machines in order to build a global transducer. The latter encodes in a compact way, the lattice
of possible annotations of a given scene and the best one corresponds to the best path in that lattice.

3.1 Probabilistic Finite State Machines

Some of the variables used for notation (mainly π, p, q, etc.) are reused and will not be confused
with the ones used earlier. In this section, we define two particular FSMs: finite state transducters
(FSTs) and finite state acceptors (FSAs).
A probabilistic finite state transducer is a tuple A = (Q,ΣI ,ΣO, δ, I, F), where Q is a finite set
of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, and ΣI , ΣO are two
alphabets (not necessarily equal). δ is a finite set of transitions of the form q

a:b/p−−−−→ q′ where q and
q′ are states in Q, a ∈ ΣI and b ∈ ΣO are two letters (a, b may also be the empty word ε) and p is a

probability; if the set of outgoing transitions from q is {q a1:b1/p1−−−−−−→ q1, . . . , q
am:bm/pm−−−−−−−→ qm}, then

m∑
i=1

pi = 1.

A path π of A is a sequence of transitions of the form

q1
a1:b1/p1−−−−−−→ q2

a2:b2/p2−−−−−−→ q3 · · · qm−1
am−1:bm−1/pm−1−−−−−−−−−−−−→ qm

labeled by (a1, b1) · · · (am−1, bm−1) with probability
∏m−1
i=1 pi.

π is accepting if q1 ∈ I is an initial state and qm ∈ F is a final state. A word w ∈ (ΣI × ΣO)∗ is
accepted by A with probability p iff there exists an integer k such that A has exactly k transitions
labeled by w, with probabilities p1, . . . , pk, respectively and p =

∏k
i=1 pi.

A probabilistic automaton A defines a distribution µ as follows: if w is accepted by A with proba-
bility p, then µ(w) = p. If w is not accepted by A, then µ(w) = 0. The language of A (denoted
L(A)) is the set of all the accepted words of A.
When all paths of A are unweighted and of the form q1

a1−−→ q2
a2−−→ q3 · · · qm−1

am−1−−−−→ qm, A will
be referred to as finite state acceptor and it is labeled by the word a1 · · · am−1; the alphabet of A is
denoted simply as Σ.

7

R1.fsa

0

2
3

1
1

2
3

R2.fsa

0

1
3

1
2

1
3

R3.fsa

0

1
2

1
3

1
2

R.fsa

0 1
1

2
2

3

3

4

2

5

3

1

6

3

1

2

7

3

2

1

Figure 2: This figure shows elementary FSAs combined (via intersection) in order to build the
reordering FSA R.

3.2 “Reordering” FSA

The “reordering” FSA (denoted R) makes it possible to generate superpixel permutations prior
to group them in order to generate multiple image segmentations. Let Ri denote an FSA which
generates all the possible superpixel sequences containing only one instance of a superpixel i at any
position in N+, the language of Ri is

L(Ri) =

(⋃
j 6=i

j

)∗
. i .

(⋃
j 6=i

j

)∗
,

here “.” stands for superpixel concatenation and ()∗ stands for zero or multiple concatenations of
superpixels. The alphabet set of Ri is defined as Σ = {1, . . . , n}, the initial and final states as
I = {q0}, F = {q1}, Q = {q0, q1}, and the underlying set of transitions is

δi =

{
q0

j−→ q0

}
j 6=i

⋃ {
q0

i−→ q1

} ⋃ {
q1

j−→ q1

}
j 6=i

.

Now, the “reordering” finite state machine R is obtained via intersections4 as

R = R1 ∩ · · · ∩Rn

The graphical representation of the FSAs R1, R2, R3 (for n = 3) as well as their intersection R, is
depicted in Fig. 2. The FSA R makes it possible to generate all the reorderings each one includes n
superpixels.

3.3 “Superpixel Grouping” FST

Given a scene I, we define a graph (V,E) where each node vi ∈ V corresponds to a superpixel
i and an edge eij ∈ E connects two superpixels i, j if they share a common boundary in I. The

4Details about elementary algebra for automata including “intersection, union and composition” are of
course out of the scope of this work. Comprehensive reviews of these issues can be found, for instance, in [8].

8

G.fst

0 1
1:1/P(1)

22:2/P(2)

3

3:3/P(3)

2:2/P(2|1)

2:#2/P(2)

3:3/P(3|1)

3:#3/P(3)

1:1/P(1|2)

1:#1/P(1)

3:#3/P(3)

3:3/P(3|2)

1:1/P(1|3)

1:#1/P(1)

2:2/P(2|3)

2:#2/P(2)

Figure 3: This figure shows the grouping FST G.

GoR.fst

0

1

1:1/P(1)

6
2:2/P(2)

10

3:3/P(3)

22:2/P(2|1)

2:#2/P(2)

43:3/P(3|1)

3:#3/P(3)

7

1:1/P(1|2)

1:#1/P(1)

8
3:3/P(3|2)

3:#3/P(3)

111:1/P(1|3)

1:#1/P(1)

12

2:2/P(2|3)

2:#2/P(2)

3

3:3/P(3|2)

3:#3/P(3)

5

2:#2/P(2)

2:2/P(2|3)

3:3/P(3|1)

3:#3/P(3)

9

1:1/P(1|3)

1:#1/P(1)

2:2/P(2|1)

2:#2/P(2)

1:1/P(1|2)

1:#1/P(1)

Figure 4: This figure shows composition of the reordering FSA (R) and the grouping FST (G).

9

“grouping” FST (denoted G) generates random walks in (V,E) and enumerates the underlying
superpixels; the set of all possible superpixel enumerations is denoted L(G). When G is applied
to the outputs of the “reordering” R (see section 3.2), the resulting enumerations are referred to as
valid superpixel enumerations.

Multiple partitions of I are generated by splitting in multiple ways each valid superpixel enu-
meration in L(G). In practice, splitting is achieved by adding separators (denoted #) between
superpixels at random locations (in {1, . . . , n}) so superpixels delimited by two successive
separators will belong to the same segment. Note that when the graph (V,E) is not complete,
the partitions generated according to this process do not necessarily correspond to all the possible
segmentations of I as only a subset of them is kept in accordance with the random walk generator,
i.e., only partitions including connected segments are allowed. This restriction about the connec-
tivity of segments is very reasonable as real world objects are assumed connected, even though
exceptions may be found; furthermore the growth of the number of possible partitions of I with
respect to n is much slower than the total number of possible partitions of I (i.e., including those
which are not connected) and this makes the process of generating multiple partitions more efficient.

The definition of the “grouping” FST G is given as ΣI = {1, . . . , n} and ΣO = ΣI ∪ {#}.
Transitions of this FST are defined as

δ =

{
q0

i:i/P (i)−−−−−→ qi, qi
j:j/P (j|i)−−−−−−−→ qj

}
i∼j︸ ︷︷ ︸

Grouping actions

⋃{
qi

j:#j/P (j)−−−−−−−→ qj

}
i∼j︸ ︷︷ ︸

Splitting actions

,

here i ∼ j means that superpixels i, j share a common boundary in I. The set of initial and final
states are defined as I = {q0}, F = {qi}i and Q = {q0} ∪ {qi}i. This FST may either i) group
two superpixels j, i with a probability P (j|i) of a walk from i to j or ii) start a new sequence
of superpixels at j (separate j from i) with a probability P (j) (splitting action). The graphical
representation of this FST is depicted in example of Fig. 3. The FST resulting from the composition
G ◦R (see Fig. 4) makes it possible to achieve multiple grouping of superpixels taken at different
orders, so multiple partitions (of continuous segments) will be generated.

3.4 “Label Dependency” FST

The label dependency FST is designed in order to provide us with the probability of a sequence of
labels given a partition of superpixels. Using the chain rule as described earlier in section 2.2, this
may be written using unary and dependency statistics. The implementation of this dependency FST
(denoted D), is achieved by reading the outputs (partitions) of the FST (G ◦ R) and emitting for
each partition of superpixels a sequence of labels, resulting into the following transitions

δ =

{
qi

j:jci−−−→ qi

}
i︸ ︷︷ ︸

Read & assign superpixel j to ci

⋃{
q0

#:Yc1
/P (Yc1

)−−−−−−−−−−→ q1

}
︸ ︷︷ ︸
Return labels with unary statistics

⋃ {
qi−1

#:Yci
/P (Yci

|Yci−1
)

−−−−−−−−−−−−−−→ qi

}
i︸ ︷︷ ︸

Return labels with dependency statistics

.

Again # corresponds to segment end. The alphabet sets of G are ΣI = {1, . . . , n} ∪ {#}, ΣO =
{`i}i∪{jci}i,j (with jci stands for superpixel j belongs to segment ci) and I = {q0}, F = {qi}i 6=0,
Q = {qi}i while P (Yc1), P (Yci |Yci−1

) are described in section 2.2. Figure 5 shows an example
of this FST.

3.5 “Visual” FST

Different FSTs are introduced in the previous sections allowing to generate multiple segmentations
and to label each of them. Among these segmentations and labeling, only few of them are “likely to
occur” according to the visual model. As described in section 2.2, for each label Yci ∈ {`i}i, we
train a visual model, that provides for every superpixel j ∈ ci, its likelihood conditioned by Yci .
The implementation of this visual FST (denoted V) is achieved by parsing all the superpixels j ∈ ci
generated by the FST (D ◦G ◦ R), and returning their labels and visual likelihoods P (Xj |Yci).
This results into the following rules

10

D.fst

0

1:1c1
2:2c1
3:3c1

1
#:Yc1/P(Yc1)

1:1c2
2:2c2
3:3c2

2
#:Yc2/P(Yc2|Yc1)

2:2c3
3:3c3

1:1c3

3
#:Yc3/P(Yc3|Yc2)

Figure 5: This figure shows the dependency FST (D); 3c1 stands for 3rd superpixel belongs to
segment c1.

δ =

{
q0

jci:ε/P (Xj |Yci
)−−−−−−−−−−−→ q0

}
i,j︸ ︷︷ ︸

Read & score the jth superpixel in ci

⋃{
q0

Yci
:Yci−−−−−−→ q0

}
i︸ ︷︷ ︸

Return labels

.

In this FST V, ΣI = {`i}i ∪ {jci}i,j , ΣO = {`i}i, and Q = I = F correspond to the singleton
{q0}. Figure 6 shows an example of this FST.

11

V.fst

0

1c1:e/P(X1|Yc1)
2c1:e/P(X2|Yc1)

Yc2:Yc2
Yc3:Yc3

3c1:e/P(X3|Yc1)
1c2:e/P(X1|Yc2)
2c2:e/P(X2|Yc2)
3c2:e/P(X3|Yc2)
1c3:e/P(X1|Yc3)
2c3:e/P(X2|Yc3)
3c3:e/P(X3|Yc3)

Yc1:Yc1

Figure 6: This figure shows the visual model FST (V). Again, 3c1 stands for 3rd superpixel belongs
to segment c1 (the empty word ε is also denoted as e).

VoD.fst

0

1:e/P(X1|Yc1)
2:e/P(X2|Yc1)
3:e/P(X3|Yc1)

1
#:Yc1/P(Yc1)

1:e/P(X1|Yc2)
2:e/P(X2|Yc2)
3:e/P(X3|Yc2)

2
#:Yc2/P(Yc2|Yc1)

2:e/P(X2|Yc3)
3:e/P(X3|Yc3)

1:e/P(X1|Yc3)

3
#:Yc3/P(Yc3|Yc2)

Figure 7: This figure shows the composition of the dependency FST (D) and the visual model FST
(V).

3.6 The “Global” FSM

Given a scene paved with a collection of non-overlapping superpixels, our labeling model first
reorders these superpixels (via the “reordering FSA” R) and group them (via the “grouping FST”
G). These two FSMs when composed together, allow us to generate many reordered partitions of
segments5. Among these partitions, only a few of them are relevant and correspond to meaningful
objects in the scene. Therefore, and in order to find these relevant partitions, we combine the R and
G FSMs with another FSM (resulting from V ◦D; see example in Fig. 7) that scores segments in
all possible partitions, depending on their unary and high order interactions, and returns only the
most likely partition and its labels. The most likely solution (partition and its labels) corresponds to
the best (shortest) path in the global FSM (V ◦D ◦G ◦ R) provided that negative log-likelihood
transform is applied to all FSM transition probabilities; this solution also minimizes the energy
function − logP (X,Y,C,k, π) (see Eq. 1). Figure 8 shows an example of this global FSM.

5Each segment in these partitions is seen as a “phrase” in a “language”. The alphabet of this language
corresponds to all the superpixels of that scene.

12

Again, the global FSM (denoted F) results from the composition of all the previous FSMs (F =
V◦D◦G◦R) and this order of application is strict, i.e., first reordering of superpixels is generated,
then superpixel grouping is achieved in order to generate multiple segmentations, followed by mul-
tiple label generation for every partition, and finally only a few of these labels are kept according
to both the label dependency and the visual models. Notice that this process may end-up with a
complex FSM F (i.e., the composition process is time and memory demanding). One may reduce
the complexity of different transducers (and thereby the global one) at different levels including the
visual and the label dependency models by only keeping sparse transitions (related to strictly posi-
tive or large statistics). Another possible simplification consists in reducing the number of possible
labels, especially if one is interested in domain specific applications with restricted labels.

4 Conclusion

In this paper, we introduced a complete framework for scene parsing and annotation based on finite
state machines. The approach is complete and allows us to examine and score more “exhaustive”
configurations in order to achieve segmentation as well as annotation.
Future work includes the application of the proposed method using real-world and challenging
benchmarks.

13

Figure 8: This figure shows the global finite state machine V ◦D ◦G ◦R.

V
o
D
o
G
o
R
.f
st

0

1
1
:e
/P
(1
).
P
(X
1
|Y
c1
)

2
2
:e
/P
(2
).
P
(X
2
|Y
c1
)

3

3
:e
/P
(3
).
P
(X
3
|Y
c1
)

4
e
:Y
c1
/P
(Y
c1
)

5

2
:e
/P
(2
|1
).
P
(X
2
|Y
c1
)

6

3
:e
/P
(3
|1
).
P
(X
3
|Y
c1
)

7
e
:Y
c1
/P
(Y
c1
)

8

1
:e
/P
(1
|2
).
P
(X
1
|Y
c1
)

9

3
:e
/P
(3
/2
).
P
(X
3
|Y
c1
)

1
0

e
:Y
c1
/P
(Y
c1
)

1
1

1
:e
/P
(1
|3
).
P
(X
1
|Y
c1
)

1
2

2
:e
/P
(2
|3
).
P
(X
2
|Y
c1
)

1
3

2
:e
/P
(2
).
P
(X
2
|Y
c2
)

1
4

3
:e
/P
(3
).
P
(X
3
|Y
c2
)

1
5

e
:Y
c1
/P
(Y
c1
)

1
6

3
:e
/P
(3
|2
).
P
(X
3
|Y
c1
)

1
7

e
:Y
c1
/P
(Y
c1
)

1
8

2
:e
/P
(2
|3
).
P
(X
2
|Y
c1
)

1
9

1
:e
/P
(1
).
P
(X
1
|Y
c2
)

2
0

3
:e
/P
(3
).
P
(X
3
|Y
c2
)

3
:e
/P
(3
|1
).
P
(X
3
|Y
c1
)

2
1

e
:Y
c1
/P
(Y
c1
)

2
2

e
:Y
c1
/P
(Y
c1
)

2
3

1
:e
/P
(1
|3
).
P
(X
1
|Y
c1
)

2
4

1
:e
/P
(1
).
P
(X
1
|Y
c2
)

2
5

2
:e
/P
(2
).
P
(X
2
|Y
c2
)

2
:e
/P
(2
|1
).
P
(X
2
|Y
c1
)

2
6

e
:Y
c1
/P
(Y
c1
)

1
:e
/P
(1
|2
).
P
(X
1
|Y
c1
)

2
7

e
:Y
c1
/P
(Y
c1
)

2
8

e
:Y
c2
/P
(Y
c2
|Y
c1
)

2
9

3
:e
/P
(3
|2
).
P
(X
3
|Y
c2
)

3
0

e
:Y
c2
/P
(Y
c2
|Y
c1
)

3
1

2
:e
/P
(2
|3
).
P
(X
2
|Y
c2
)

3
:e
/P
(3
).
P
(X
3
|Y
c2
)

3
2

e
:Y
c1
/P
(Y
c1
)

2
:e
/P
(2
).
P
(X
2
|Y
c2
)

3
3

e
:Y
c1
/P
(Y
c1
)

3
:e
/P
(3
|1
).
P
(X
3
|Y
c2
)

3
4

e
:Y
c2
/P
(Y
c2
|Y
c1
)

3
5

e
:Y
c2
/P
(Y
c2
|Y
c1
)

3
6

1
:e
/P
(1
|3
).
P
(X
1
|Y
c2
)

3
:e
/P
(3
).
P
(X
3
|Y
c2
)

1
:e
/P
(1
).
P
(X
1
|Y
c2
)

3
7

e
:Y
c1
/P
(Y
c1
)

2
:e
/P
(2
|1
).
P
(X
2
|Y
c2
)

3
8

e
:Y
c2
/P
(Y
c2
|Y
c1
)

1
:e
/P
(1
|2
).
P
(X
1
|Y
c2
)

3
9

e
:Y
c2
/P
(Y
c2
|Y
c1
)

2
:e
/P
(2
).
P
(X
2
|Y
c2
)

1
:e
/P
(1
).
P
(X
1
|Y
c2
)

4
0

3
:e
/P
(3
).
P
(X
3
|Y
c3
)

4
1

e
:Y
c2
/P
(Y
c2
|Y
c1
)

4
2

2
:e
/P
(2
).
P
(X
2
|Y
c3
)

4
3

e
:Y
c2
/P
(Y
c2
|Y
c1
)

3
:e
/P
(3
).
P
(X
3
|Y
c3
)

4
4

1
:e
/P
(1
).
P
(X
1
|Y
c3
)

4
5

e
:Y
c2
/P
(Y
c2
|Y
c1
)

2
:e
/P
(2
).
P
(X
2
|Y
c3
)

1
:e
/P
(1
).
P
(X
1
|Y
c3
)

4
6

e
:Y
c3
/P
(Y
c3
|Y
c2
)

4
7

e
:Y
c3
/P
(Y
c3
|Y
c2
)

4
8

e
:Y
c3
/P
(Y
c3
|Y
c2
)

14

References

[1] K. Barnard, P.Duygululu, D. Forsyth, D. Blei, and M. Jordan. Matching words and pictures.
The Journal of Machine Learning Research, 2003.

[2] D. Batra, R. Sukthankar, and C. Tsuhan. Learning class-specific affinities for image labelling.
in Proc. CVPR, 2008.

[3] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in vision. In IEEE Transactions on PAMI, 26(9):1124–1137, sep 2004.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. In
IEEE transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[5] G. Carneiro and N. Vasconcelos. Formulating semantic image annotation as a supervised
learning problem. in Proc. of CVPR, 2005.

[6] L.-B. Chang, Y. Jin, W. Zhang, E. Borenstein, and S. Geman. Context, computation, and
optimal roc performance in hierarchical models. International journal of computer vision,
93(2):117–140, 2011.

[7] P. Duygulu, K. Barnard, J. deFreitas, and D. Forsyth. Object recognition as machine transla-
tion: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M.,
Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97-112. Springer, Heidelberg, 2002.

[8] S. Eilenberg. Automata, languages, and machines, volume 1. Academic press, 1974.
[9] W. Einhaeuser, T. N. Mundhenk, P. F. Baldi, C. Koch, and L. Itti. A bottom-up model of

spatial attention predicts human error patterns in rapid scene recognition. Journal of Vision,
7(10):1–13, 2007.

[10] A. Farag, A. El-Baz, and G. Gimel’farb. Precise segmentation of multi-modal images. IEEE
Trans. on Image Processing, 15(4):952–968, 2006.

[11] S. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and
video annotation. In: Proc. of ICCV, pp. 1002-1009, 2004.

[12] C. Galleguillos, A. Rabinovich, and S. Belongie. Object categorization using co-occurrence,
location and appearance. in Proc. CVPR, 2008.

[13] Y. Gao, J. Fan, X. Xue, and R. Jain. Automatic image annotation by incorporating feature
hierarchy and boosting to scale up svm classifiers. in Proc. of ACM MULTIMEDIA, 2006.

[14] X. He, R. Zimel, and M. Carreira. Multiscale conditional random fields for image labeling. In
CVPR, 2004.

[15] J. Jeon, V. Lavrenko, and R.Manmatha. Automatic image annotation and retrieval using cross-
media relevance models. in Proc. of ACM SIGIR, pages 119–126, 2003.

[16] P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency.
in Proc. CVPR, 2008.

[17] L. Ladicky, C. Russell, and P. Kohli. Associative hierarchical crfs for object class image
segmentation. in Proc ICCV, 2009.

[18] V. Lavrenko, R. Manmatha, and J. Jeon. A model for learning the semantics of pictures. In:
Proc. of NIPS, 2004.

[19] J. Li and J. Z. Wang. Automatic linguistic indexing of pictures by a statistical modeling ap-
proach. IEEE Trans. on PAMI, 25(9):1075–1088, 2003.

[20] X. Li and H. Sahbi. Superpixel based object class segmentation using conditional random
fields. In the International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2011.

[21] J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma. Image annotation via graph learning. Pattern Recog-
nition, 42(2):218–228, 2009.

[22] J. Liu, B. Wang, M. Li, Z. Li, W. Ma, H. Lu, and S. Ma. Dual cross-media relevance model
for image annotation. In Proc. of ACM MULTIMEDIA, pp. 605-614, 2007.

[23] F. Monay and D. GaticaPerez. Plsa-based image autoannotation: Constraining the latent space.
in Proc. of ACM International Conference on Multimedia, 2004.

[24] G. Moser and B. Serpico. Combining support vector machines and markov random fields in
an integrated framework for contextual image classification. In TGRS, 2012.

[25] S. Nowak and M. Huiskes. New strategies for image annotation: Overview of the photo anno-
tation task at imageclef 2010. in The Working Notes of CLEF 2010, 2010.

[26] C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by integrating multiple image
segmentations. in Proc. ECCV, 2008.

15

[27] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie. Objects in context.
in Proc. ICCV, 2007.

[28] J. Reynolds and K. Murphy. Figure-ground segmentation using a hierarchical conditional
random field. in Proc. Fourth Canadian Conference on Computer and Robot Vision, 2007.

[29] H. Sahbi and X. Li. Context based support vector machines for interconnected image annota-
tion (the saburo tsuji best regular paper award). In the Asian Conference on Computer Vision
(ACCV), 2010.

[30] D. Semenovich and A. Sowmya. Geometry aware local kernels for object recognition. In
ACCV, 2010.

[31] V. D. Shet, J. Neumann, V. Ramesh, and L. S. Davis. Bilattice-based logical reasoning for
human detection. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Con-
ference on, pages 1–8. IEEE, 2007.

[32] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and
segmentation. in Proc. CVPR, 2008.

[33] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and
context modeling for multi-class object recognition and segmentation. in Proc. ECCV, pages
1–15, 2006.

[34] A. Singhal, L. Jiebo, and Z. Weiyu. Probabilistic spatial context models for scene content
understanding. In CVPR, 2003.

[35] S. Todorovic and N. Ahuja. Learning subcategory relevances for category recognition. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–
8. IEEE, 2008.

[36] C. Wang, S. Yan, L. Zhang, and H. Zhang. Multi-label sparse coding for automatic image
annotation. in Proc. of CVPR, 2009.

[37] T. Wu and S.-C. Zhu. A numerical study of the bottom-up and top-down inference processes
in and-or graphs. International journal of computer vision, 93(2):226–252, 2011.

[38] L. Yang, P. Meer, and D. Foran. Multiple class segmentation using a unified framework over
mean-shift patches. in Proc CVPR, 2007.

[39] S. C. Zhu and D. Mumford. A stochastic grammar of images, volume 2. Now Pub, 2007.

16

Dépôt légal : 2013 - 2
e
 trimestre

Imprimé à Télécom ParisTech – Paris
ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

Télécom ParisTech

Institut Mines-Télécom - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.telecom-paristech.fr

Département TSI

©

In
s
ti
tu

t
M

in
e

s
-T

é
lé

c
o

m
 -

T
é

lé
c
o

m
 P

a
ri

s
T

e
c
h

 2
0

1
3

