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Abstract
Transductive inference techniques are nowadays becoming standard in machine

learning due to their relative success in solving many real-world applications. Among
them, kernel-based methods are particularly interesting but their success remains
highly dependent on the choice of kernels. The latter are usually handcrafted or
designed in order to capture better similarity in training data.

In this paper, we introduce a novel transductive learning algorithm for kernel
design and classification. Our approach is based on the minimization of an energy
function mixing i) a reconstruction term that factorizes a matrix of input data
as a product of a learned dictionary and a learned kernel map ii) a fidelity term
that ensures consistent label predictions with those provided in a ground-truth and
iii) a smoothness term which guarantees similar labels for neighboring data and
allows us to iteratively diffuse kernel maps and labels from labeled to unlabeled
data. Solving this minimization problem makes it possible to learn both a decision
criterion and a kernel map that guarantee linear separability in a high dimensional
space and good generalization performance. Experiments conducted on object class
segmentation, show improvements with respect to baseline as well as related work
on the challenging VOC database.

c©2012 Dinh-Phong Vo and Hichem Sahbi.
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Résumé

Les techniques d’inférence transductive sont devenus des standards incontournables en ap-
prentissage automatique pour la résolution de problèmes multiples en reconnaissance des
formes. Parmi ces techniques, les méthodes à noyaux sont particulièrement intéressantes
mais leur succès dépend principalement du bon choix des noyaux. Ces derniers sont
sélectionnés d’une façon add-hoc ou conçus afin de mieux caractériser la similarité entre
les données.

Dans cet article, on introduit une nouvelle méthode d’apprentissage transductif pour

la conception des noyaux. Cette approche est basée sur la minimisation d’une énergie qui

mélange i) un terme de reconstruction qui factorise une matrice des données de départ

comme un produit de deux matrices l’une correspond à un dictionnaire et l’autre au map-

ping du noyau appris, ii) un terme d’attache aux données qui garantit la consistance des

labels prédits par rapport à ceux fournis par une vérité terrain et enfin iii) un terme de

lissage garantissant une variation progressive des labels prédits pour des données similaires

et permettant ainsi de diffuser itérativement le noyau appris et les labels vers les données

non-étiquetées. La résolution de ce problème d’optimisation permet d’apprendre une fonc-

tion de décision et un noyau garantissant la séparabilité linéaire des données ainsi que

de bonnes performances de généralisation. Les expériences effectuées, en segmentation en

classes d’objets sur la base Pascal VOC, montrent des performances supérieures par rapport

aux différentes “baselines” ainsi que des méthodes de l’état de l’art.

Keywords: Kernel Design and Learning, Transductive Inference, Matrix Factor-
ization, Object Class Segmentation, Object Recognition.

1. Introduction

Existing machine inference techniques may be categorized into inductive and trans-
ductive (Vapnik, 1998). The former consists in finding a decision function from a
labeled training set, and uses that function in order to generalize across unlabeled
data. Among popular inductive techniques support vector machines (SVMs) (Vapnik,
1998; Schölkopf and Smola, 2001) are well studied and proved to be performant in
many real-world applications including object recognition, text analysis and bioinfor-
matics (Maji et al., 2008; Joachims, 2002; Asa et al., 2008). The success of SVMs is
highly dependent on the choice of kernels; existing ones include the linear, the gaus-
sian and the histogram intersection. However, usual kernels may not be appropriate
in order to capture the actual and the “semantic” similarity between data for some
specific tasks. Variants known as multiple kernels (MKL) (Rakotomamonjy et al.,
2008; Lanckriet et al., 2004; Varma and Ray, 2007) consider convex (and possibly
sparse) linear combinations of elementary kernels and proved to be more suitable.
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Even-though performant, the success of these methods, also depends on cardinality
of the labeled data. In many applications such as object class segmentation (Duchenne
et al., 2008), labeled data is rare and expensive; only a very small fraction of training
data is labeled and the unlabeled data may not follow the same distribution as the
labeled one, so learning kernels using inductive inference techniques is clearly not ap-
propriate. Alternative approaches (Chapelle et al., 2006) may include the unlabeled
data as a part of the learning process and this is known as transductive inference.
The concept of transductive inference, or transduction, was pioneered by Vapnik (see
for instance Vapnik (1998)). It relates to semi-supervised learning and relies on the
i) smoothness assumption which states that close data in a high-density area of the
input space, should have similar labels (Chapelle et al., 2006; Belkin et al., 2006) and
ii) the cluster assumption which finds decision rules in low density areas of the input
space (Seeger, 2001; Duchenne et al., 2008). In that context, transductive versions of
SVMs were also introduced (Joachims, 1999); they build decision functions by opti-
mizing the parameters of a learning model together with the labels of the unlabeled
data. This turned out to be very useful in order to overcome the limited cardinality
of the labeled data w.r.t the number of training parameters.

In this paper we introduce a novel transductive learning algorithm, for classifica-
tion and kernel learning. Our method is based on a constrained matrix factorization
which produces a kernel map that takes data from the input space into a high di-
mensional space in order to guarantee their linear separability while maximizing their
margin. This margin property, however, and as known (Vapnik, 1998; Duchenne
et al., 2008), does not necessarily guarantee good generalization performance on the
unlabeled set, if the latter is drawn from a different probability distribution compared
to the labeled data (see Fig. 1). Therefore and beside maximizing the margin, our
transductive approach includes a regularization term that enforces smoothness in the
resulting kernel map in order to correctly diffuse labels to the unlabeled data. Follow-
ing our formulation, and in contrast to MKL, our learning model is not restricted to
only convex linear combinations of existing kernels; indeed it is model-free. Further-
more, it also takes advantage from both labeled and unlabeled data and this results
into better generalization performances as corroborated by our experiments.

The remainder of this paper is organized as follows. We introduce our transductive
learning approach and kernel design in Section 2 and the implementation of our
optimization procedure in Section 3. We illustrate the application of our method to
object class segmentation in Section 4. We conclude the paper in Section 5 while
providing a possible extension for a future work.

2. Inference and Kernel Design

Define X ⊆ Rn as an input space corresponding to all the possible image features and
let S = {x1, . . . ,x`, . . . ,xm} be a finite subset of X with an arbitrary order. This order
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Figure 1: This figure shows classification results on the “two moon” example in Belkin
et al. (2006). (Left) An inductive method is used for classification (right)
a transductive technique is used instead that also exploits the density of
the unlabeled data. In this example labeled data are marked with “dia-
mond” and “circle” and correspond to the positive and the negative classes
respectively.

is defined so only the first ` labels of S, denoted {y1, . . . , y`} (with yi ∈ {−1,+1}),
are known. In many real-world applications only a few data is labeled (i.e., ` � m)
and its distribution may be different from the unlabeled data.
We can view S as a matrix X in which the ith column corresponds to xi. Our objective
is to build both a decision criterion and an optimal kernel map in order to infer the
unknown labels {y`+1, . . . , ym}.

2.1 Max-margin Inference and Kernel Design

Inductive learning aims to build a decision function f that predicts a label y for any
given input data x; this function is trained on S ′ = {x1, . . . ,x`} and used in order
to infer labels on S\S ′. In the max-margin classification (Vapnik, 1998), we consider
φ as a mapping of the input data (in X ) into a high dimensional space H. The
dimension of H is usually sufficiently large (possibly infinite) in order to guarantee
linear separability of data.

Assuming data linearly separable in H, the max-margin inductive learning finds
a hyperplane f (with a normal w and shift b) that separates ` training samples
{(xi, yi)}`i=1 while maximizing their margin. The margin is defined as twice the dis-
tance between the closest training samples w.r.t f and the optimal (ŵ, b̂) correspond
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to
argmin

w,b

1
2
‖w‖22

s.t yi (w
′φ(xi) + b) ≥ 1, i = 1, . . . , `,

(1)

which is the primal form of the hard margin support vector machine (Vapnik, 1998),
‖.‖22 is the `2-norm and w′ is the transpose of w. Given xi ∈ S\S ′, the class
of xi in {−1,+1} is decided by the sign of f(xi) = w′φ(xi) + b. Following the
kernel trick (Vapnik, 1998), one may show that f(xi) can also be expressed as∑`

j=1 αjyjκ(xi,xj) + b, here (α1 . . . α`)
′ is a vector of positive real-valued training

parameters and κ(xi,xj) = 〈φ(xj), φ(xi)〉 is a symmetric, continuous, positive (semi-
definite) kernel function (Schölkopf and Smola, 2001). The closed form of κ(xi,xj)
is defined among a collection of existing kernels including linear, gaussian and his-
togram intersection; but the underlying mapping φ(x) ∈ H is usually implicit, i.e., it
does exist but it is not necessarily known and may be infinite dimensional.

We propose in the remainder of this section a new approach that builds explicit and
finite dimensional kernel map. In contrast to usual kernels, such as the gaussian, the
VC-dimension (Vapnik, 1998), related to a finite dimensional kernel map, is finite1.
According to Vapnik’s VC-theory (Vapnik and Sterin, 1977), the finiteness of the VC-
dimension avoids loose generalization bounds and may guarantee better performance.

Now, we turn the problem into finding the hyperplane f as well as a Gram (kernel)
matrix K = Φ′Φ where each column Φi corresponds to an explicit mapping of xi into
a high dimensional space (i.e., φ(xi) = Φi). This mapping is designed in order
to i) guarantee linear separability of data in S, ii) to ensure good generalization
performance by maximizing the margin, iii) to approximate the input data, and also
iv) to ensure positive definiteness of K by construction, i.e., without adding further
constraints. This results into the following constrained minimization problem

min
B,Φ,w

1
2
‖X−BΦ‖2F + 1

2
‖w‖22

s.t yiw
′Φi ≥ 1, i = 1, . . . , `

‖Bj‖2 ≤ 1, j = 1, . . . , p,

(2)

here ‖A‖2F = tr(AA′) stands for the square of the Frobenius norm and X ≈ BΦ is
factorized using an overcomplete basis B ∈ Rn×p (i.e., p > n) and a new kernel map
Φ ∈ Rp×m. Without a loss of generality b is omitted in the above expression as it can
be induced from w and the mapping Φ.

2.2 Enforcing Low Rank Kernels

As discussed earlier, and according to Vapnik (1998), the VC-dimension (related to a
family of classifiers) depends also on the dimension of the learned kernel map and this

1. The VC-dimension is the maximum number of data samples, that can be shattered, whatever
their labels.
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may affect generalization, especially if this dimension is very high. Since the actual
(intrinsic) dimension of the learned kernel map Φ is unknown, we choose the number
of basis p to be sufficiently large such that the first inequality constraint in (2) can be
satisfied and the left-hand side term tends to zero for an infinite number of solutions.
First, p is overestimated to max (`, n) + 1, and this guarantees that the above con-
strained minimization problem has a solution. Then, the actual (intrinsic) dimension
is found by regularizing Eq. 2 by the Frobenius norm ‖Φ‖2F which has similar effect
as the nuclear norm, (see Lemma 1 below).

Lemma 1 For any matrix Φ ∈ Rp×m, the following inequalities hold

‖Φ‖F ≤ ‖Φ‖∗ ≤
√
r‖Φ‖F , (3)

where the Frobenius norm ‖Φ‖F =

√∑min{p,m}
i=1 σ2

i ;

the nuclear norm ‖Φ‖∗ =
∑min{m,p}

i=1 σi; r = rank(Φ) = rank(Φ′Φ) and σi’s are
eigenvalues of the Gram matrix K = Φ′Φ.

Proof See for instance Horn and Johnson (1990); Golub and Loan (1996).

The problem is reformulated by adding an extra penalty µ
2
‖Φ‖2F to the objective

function (2) where µ ≥ 0 controls the rank of K. Indeed, the squared Frobenius
norm is exactly the `2-norm on the eigenvalues of K and it is less likely to shrink
these eigenvalues into zeros compared to the `1-norm (which is the nuclear norm).
Nevertheless, as will be shown later, it provides a closed form kernel solution and our
experiments show that it indeed reduces the rank of the kernel map while allowing
to learn effective classifiers.

2.3 Transductive Setting

For a better conditioning of (2), we implement in this section the smoothness assump-
tion discussed in Section 1. This makes it possible to design smooth kernel maps and
to assign similar predictions to neighboring data for a better generalization on the
unlabeled ones (see toy example in Fig. 2).

We model the input data S using an adjacency graph G = (V , E) where nodes
V = {v1, . . . , vm} correspond to samples {xi} and edges E = {ei,j} are the set of
weighted links of G. In the above definition, xi ∈ Rn is a feature vector (color,
texture, etc.) while ei,j = (vi, vj,Wij) defines a connection between vi, vj weighted
by Wi,j. The latter is defined as Wij = 1{vj∈Nk(vi)} · exp

(
−‖xi − xj‖22 /σ

2
)
, here the

neighborhood Nk(vi) of a given node vi, includes the set of the k-nearest neighbors
of vi. Notice that this neighborhood system is designed in order to guarantee that
∀vi, vj ∈ V , vj ∈ Nk(vi) implies vi ∈ Nk(vj) and vice-versa.

Considering f(xi) = w′Φi and f(xj) = w′Φj, we define our regularizer as
γs
4

∑m
i,j=1 (w′Φi −w′Φj)

2 Wij, which may be rewritten as γs
2

w′ΦLΦ′w, here γs ≥

6
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(a) t = 100 (b) t = 200 (c) t = 300

(d) t = 400 (e) t = 500 (f) t = 600

Figure 2: This figure shows the evolution of the learned kernel map through different
iterations of our method (see Algorithm 1). This map is found for the
popular “two moon” example in Belkin et al. (2006). The underlying 2D
input data are not linearly separable, while the learned kernel map makes
them linearly separable in a 3D space. In these experiments, only ` = 2
samples were labeled (shown in blue and yellow resp. for the positive and
the negative classes).

0 and L is the graph Laplacian defined by L = D − W and Dii =
∑m

j=1 Wij,
Dij = 0,∀i 6= j. When adding this regularizer in objective function (2) and replacing

inequality constraints with the squared loss
∑`

i=1(yi−w′Φi)
2, we obtain the complete

form of our transductive learning problem

min
B,Φ,w

1
2
w′
(
Ip + ΦL̃Φ′

)
w + 1

2
‖X−BΦ‖2F

−γcY′CΦ′w + µ
2
‖Φ‖2F ,

s.t ‖Bj‖2 ≤ 1, j = 1, . . . , p,

(4)

with Ip the p × p identity matrix, L̃ = (γcC + γsL) and C is the diagonal m × m
matrix for which the i-th diagonal element is fixed to 1 for a labeled sample, and 0
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Algorithm 1 TransRMF

Input: labeled {(xi, yi)} `i=1 and unlabeled data {xi}mi=`+1

Initialization: set the adjacency matrix W, t ← 0 and set Φ(0) to random full rank
matrices.
Repeat steps (1+2) until convergence

1. Update w(t+1) and B(t+1) using (5), (6) respectively.

2. Update Φ(t+1) by taking the limit Ψ̃ of (11), with Ψ(0) = Φ(t).

Output: kernel maps {Φ̃i} and labels {yi} with yi = w̃′Φ̃i.

for an unlabeled one, and similarly, Y is the m-dimensional vector for which the i-th
element is yi for a labeled data, and 0 for an unlabeled one.

3. Optimization

It is clear that the minimization problem in (4) is not convex jointly w.r.t B,Φ,w. We
consider an EM-like optimization procedure by solving three subproblems: we first
maximize the margin 2/ ‖w‖2 w.r.t w and we update the basis B, then we minimize
the regularization criterion, the rank and the reconstruction error w.r.t Φ. This
process is repeated until convergence; i.e., all the unknowns remain unchanged from
one iteration to another. Different steps of the algorithm are shown in Algorithm (1);
the superscript (t) is added to w, B and Φ in order to show the evolution of their
values through different iterations of the learning process.

3.1 Learning Basis and Classifier

Assuming fixed Φ(t) (denoted simply as Φ) and enforcing the gradient of (4) to vanish
(w.r.t w) leads to

w(t+1) = γc
(
Ip + ΦL̃Φ′

)−1
ΦCY. (5)

Similarly, we find B(t+1) as

argmin
B

1
2

∥∥X−BΦ
∥∥2
F

s.t ‖Bi‖22 ≤ 1, i = 1, . . . , p.
(6)

We define the Lagrangian of (6) as

L(B,λ) =
1

2
‖X−BΦ‖2F +

p∑
i=1

λi
(
‖Bi‖22 − 1

)
, (7)

where λi ≥ 0 is the Lagrange multiplier associated with the i-th inequality constraint
in (6). The dual function is given by g(λ) = infBL(B,λ) and the minimizer B∗ is

8
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obtained from (7) by taking derivative w.r.t B

B∗ := XΦ′ (ΦΦ′ + diag(λ))
−1

(8)

By replacing (8) into (7), the dual function is

min
λ≥0

tr (XΦ′(ΦΦ′ + diag(λ))−1ΦX′) + 1′λ (9)

This problem is solved using Newtons method as in Lee et al. (2006). After minimizing

g(λ), we obtain the optimal basis B(t+1) as XΦ′ (ΦΦ′ + diag(λ∗))
−1

.

3.2 Learning Kernel Map

Considering fixed B(t+1) and w(t+1) (denoted simply as B, w in the remainder of
this section), and the previous kernel map solution Φ(t), our goal is to find Φ(t+1) by
solving (4). Conditions for the existence of this new kernel map solution Φ(t+1) are
given in the following proposition.

Proposition 2 Let ‖.‖1 denote the entrywise `1-norm. Provided that the following
inequality holds,

γs < ‖ww′‖−11 .‖W‖−11 , (10)

the optimization problem (4) admits a unique solution Φ(t+1) = Ψ̃ as the limit of

Ψ(k+1) = ψ
(
Ψ(k)

)
, (11)

here ψ : Rp×m → Rp×m is defined as ψ(Ψ) =
(
ψ1(Ψ) . . . ψm(Ψ)

)
, with each column

vector ψi(Ψ) as

ψi(Ψ) =

(
B′B + (γsDii + γcCii)ww′ + µIp

)−1
.

[
B′X + γcwY′C + γsww′ΨW

]
i

,

(12)

[.]i stands for the i-th column of a matrix. Furthermore, the kernel maps Ψ(k) in (11)
satisfy the convergence property:∥∥Ψ(k) − Ψ̃

∥∥
1
≤ Lk

∥∥Ψ(0) − Ψ̃
∥∥
1
, (13)

with L = γs‖ww′‖1.‖W‖1 and Ψ(0) = Φ(t).

Proof Following (4), let us consider the function defined on the set of matrices in
Rp×m

E : Ψ 7→ 1
2
w′
(
Ip + ΨL̃Ψ′

)
w + 1

2
‖X−BΨ‖2F + µ

2
‖Ψ‖2F

−γcY′CΨ′w
(14)

9
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The necessary condition of the fixed-point relation in (11) results from ∂E/∂Ψ = 0
(details about derivative are omitted in this proof). We will now prove that the func-
tion ψ is L-Lipschitzian, with L = γs‖ww′‖1.‖W‖1.
Let us denote the left-hand side (inverse) matrix in (12) simply as Zi and introduce
g(Ψ) = (g1(Ψ) . . . gm(Ψ)) with gi(Ψ) = Z−1i ψi(Ψ).

Given two matrices Ψ(1) and Ψ(2) in Rp×m, we have

m∑
i=1

∥∥∥∥Z−1i ψi(Ψ
(1))− Z−1i ψi(Ψ

(2))

∥∥∥∥
1

=
m∑
i=1

∥∥∥∥gi(Ψ(1))− gi(Ψ(2))

∥∥∥∥
1

=
∥∥g(Ψ(1))− g(Ψ(2))

∥∥
1

= γs
∥∥ww′(Ψ(1) −Ψ(2))W

∥∥
1

≤ γs
∥∥ww′

∥∥
1
.
∥∥W∥∥

1
.
∥∥Ψ(1) −Ψ(2)

∥∥
1

≤ L
∥∥Ψ(1) −Ψ(2)

∥∥
1
, with L = γs

∥∥ww′
∥∥
1
.
∥∥W∥∥

1
.

(15)

By taking the free parameter µ (in Zi) sufficiently large

m∑
i=1

∥∥∥∥Z−1i ψi(Ψ
(1))− Z−1i ψi(Ψ

(2))

∥∥∥∥
1

=
m∑
i=1

∥∥∥∥[ψi(Ψ(1))− ψi(Ψ(2))
]
.Z−1i

∥∥∥∥
1

≥
m∑
i=1

∥∥∥∥ψi(Ψ(1))− ψi(Ψ(2))

∥∥∥∥
1

=
∥∥ψ(Ψ(1))− ψ(Ψ(2))

∥∥
1

(16)

Combining (15), (16), we get∥∥ψ(Ψ(1))− ψ(Ψ(2))
∥∥
1
≤ L

∥∥Ψ(1) −Ψ(2)
∥∥
1

The process described in equation (11) allows us to recursively diffuse the kernel
maps from the labeled to the unlabeled data, through the neighborhood system de-
fined in the graph G. This process is iterative and may require many steps before
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iterations

Figure 3: This figure illustrates the convergence process on the particular example of
Fig. 1, i.e., the difference between current and previous estimate of kernel
maps through different iterations.

convergence. The latter is reached when ‖Ψ(k) −Ψ(k−1)‖ ≤ ε; (in practice, ε = 10−2,
and convergence usually happens in less than 100 iterations, see Fig. 3).

4. Experiments

We use the Pascal VOC 2011 dataset2 in order to evaluate the performance of our
transductive inference method on object class segmentation (OCS). For that purpose,
we use 556 images from this dataset belonging to 21 categories; given an image, the
goal is to assign each group of pixels (referred to as superpixel) to one of these 21 cat-
egories. In practice, a given image is subdivided into an irregular grid (neighborhood
system) of 700 superpixels, each one is processed in order to extract various features
(Tighe and Lazebnik, 2010) (see Table. 1 for more details).

For each image in VOC, we turn OCS into a transductive inference problem where
only a small fraction of its underlying superpixels is labeled (see Fig. 4, third column).
We train one transductive classifier (referred to as TransRMF) for each category and
we combine these classifiers using the “winner-take-all” strategy in order to infer the
category of a given unlabeled superpixel.
Following the evaluation protocol of Pascal VOC 2011, we use the standard segmen-
tation accuracy for assessment. This measure is defined for each category C using
intersection/union score, defined as the number of correctly labeled pixels of C, di-

2. http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/index.html
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Table 1: This table shows the list of features used to describe superpixels. All fea-
ture vectors, excepting position, are normalized using `1-norm prior to their
concatenation.

Type Description Dimension
Position Absolute Mask 8× 8 = 64

Top Height 1
Bottom Height 1

Texture Interior texton histogram 100
SIFT Interior SIFT histogram 100
Color RGB mean 3

RGB std. dev. 3
RGB Color Histograms 11× 3 = 33

vided by the number of pixels labeled with that category into different images and
the ground truth. This accuracy is expressed as

accuracy =
true pos.

true pos. + false pos. + false neg.
(17)

A mean accuracy is also considered as the expectation through different categories.

4.1 Settings and Performance

Different settings were experimented for our method including the size of the neigh-
borhood (denoted k) when building the graph G. The choice of these parameters will
be discussed in the remainder of this section.

Graph topology. the degree of the graph k is very dependent on the topology of
the data. An appropriate selection of k should avoid short-cuts (overestimated k)
and missing-connections (under-estimated k).
In practice, we compared OCS accuracy for different values of k. The results show
that the best performance is achieved when k = 6 (see Table 2).

Regularization & Rank reduction. Fig. (5) reports average accuracy for different
values of the regularization parameter γs; note that γs = 0 corresponds to the base-
line inductive setting (i.e., no regularization is applied). Fig. 4, shows the evolution
of the underlying segmentation results w.r.t γs. According to these results, an un-
derestimated γs results into noisy segmentation while an overestimated γs makes the
segmentation results very smooth (with possibly lost details). In other word, as the
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10% 15% 20% 25%
k=12 61.95 66.26 69.06 70.88
k=6 66.27 69.58 72.58 74.24
k=3 65.97 69.16 72.54 74.12

Table 2: This table shows the average accuracy of OCS, with respect to k (degree of
the graph G) and for different percentage of labeled pixels.

regularization applies for both foreground and background classes, the smoothness
favors the one with larger number of examples, i.e. likely to occupy more image area.

It is also clear that the transductive setting (i.e., γs > 0) outperforms the inductive
one (i.e., γs → 0). Fig. 5 also reports the average accuracy as an increasing function
of γc (almost quasi-constant for larger values of γc). According to these experiments,
we found that the best performances are achieved when γs = 0.1, γc = 10 and this
satisfies our convergence criterion in Eq. (10) (see example in Fig. 3).

Finally, Fig. (5, right) and Fig. (6) show the evolution of accuracy and kernel rank
w.r.t to the parameter µ. From these figures, it is clear that larger values of µ favor
low rank kernels while maintaining high accuracy.

4.2 Comparison

We compare our TransRMF approach w.r.t to inductive as well as transductive ap-
proaches. Fig. (7) shows the average accuracies and comparison. For all these com-
parisons, γs = 10−1, γc = 10, and µ = 10−10.

TransRMF vs inductive learning. In our experiments, inductive approaches in-
clude SVM classifiers (Vapnik, 1998) with four different kernels (linear, RBF, χ2, and
histogram intersection) and their linear combination using multiple kernel learning
via SimpleMKL3 (Rakotomamonjy et al., 2008) (see Fig. 7). Note that MKL has
been extensively trained using several Gram matrices resulting from the combination
of the four kernels mentioned earlier and the descriptors in Table 1.
As shown in Fig. 7-left, TransRMF outperforms the inductive classifiers, with various
kernels as well as their combination using MKL, and the accuracy of the inductive
techniques and TransRMF become more and more similar as the percentage of la-
beled data increases. Our first conclusion is that TransRMF is very suitable to learn
a classifier especially when the fraction of labeled data is very small and the second
conclusion is that the learned kernel map is more appropriate for classification than
linear combination of kernels.

3. http://asi.insa-rouen.fr/enseignants/∼arakotom/code/mklindex.html
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TransRMF vs related transductive methods. Transductive approaches, used
for comparison, include Laplacian-SVM4 (Melacci and Belkin, 2011) and transductive
SVM5 (Joachims, 1999). According to the result presented in Fig. 7-right, TransRMF
consistently outperforms Transductive SVMs and Laplacian SVMs; note that the
latter also relies on regularization with a setting similar to our, (i.e., the same graph
Laplacian and graph G) but our method has an extra advantage of optimizing the
kernel map resulting into a more suitable data representation for classification.

Figure 4: Left to right: original image; ground truth; annotation; segmentation
results with γs = 10−3, 10−2, 10−1, 1, 10.
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Figure 5: The evolutions of the average accuracy w.r.t the regularization term (left)
and the fidelity term (middle) and the rank term (right) respectively.

5. Conclusion

We introduced in this paper, a new transductive learning approach for kernel design
and classification. The strength of our contribution resides in the variational frame-
work that allows us to explicitly design an optimal kernel map as a part of the learning
process. When compared to baseline inductive methods, multiple kernel learning and

4. http://www.dii.unisi.it/∼melacci/lapsvmp/

5. http://svmlight.joachims.org/
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Figure 6: Figures above show the rank density of learned Φ’s after every iteration
of Alg. (1). Squares show the ranks of kernel maps Φ (related to 556
segmentation problems) over t ≤ 15 iterations. In very first iterations,
rank distribution is spanned over a wide range of low rank-numbers, i.e.
25 - 200, then it jumps to a more stable rank and finally approaches (not
equal) to the upper-bound max(`, n) + 1 (blue line). For large values of
µ (Fig. 6(a)), TransRMF requires more iterations to achieve stable rank
while smaller values of µ (Fig. 6(b)) help TransRMF cut off iterations as
the rank converges faster, i.e. shorter strides of square dots compared to
(Fig. 6(a)).

also related transductive methods, our approach shows superior accuracy on the chal-
lenging object class segmentation task.
As a future extension of this work, we will investigate the application of this method
to other tasks including interactive image retrieval.
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