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[Abstract] 

Human language is still an embarrassment for evolutionary theory, as the speaker’s benefit 
remains unclear. The willingness to communicate information is shown here to be an 
evolutionary stable strategy (ESS), even if acquiring original information from the 
environment involves significant cost and communicating it provides no material benefit to 
addressees. In this study, communication is used to advertise the emitter’s ability to obtain 
novel information. We found that communication strategies can take two forms, 
competitive and uniform, that these two strategies are stable and that they necessarily 
coexist. 
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[Résumé] 

Le langage humain demeure une énigme dans le cadre de la théorie de l’évolution, car le 
bénéfice du locuteur demeure incertain. Je montre que la propension à communiquer des 
informations est une stratégie évolutionnairement stable (ESS), même si acquérir des 
informations originales comporte un coût et même si ces informations ne procurent aucun 
bénéfice matériel à ceux à qui elles sont communiquées. Dans cette étude, la 
communication est utilisée pour afficher la capacité du locuteur à obtenir des informations 
nouvelles. Il se trouve que les stratégies de communication sont au nombre de deux : 
compétitive et uniforme, que ces deux stratégies sont stables et qu’elles coexistent 
nécessairement.  
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Introduction 

Providing information to conspecifics is a distinctive feature of the human species. It is 
mainly observed in spontaneous conversation, which a massive [1] and universal [2] 
behaviour, but also currently in blogging and micro-blogging platforms [3], on technical 
online forums and, in a more elaborate form, in open source software communities [4]. 
Providing information is a costly behaviour: it requires time and efforts to get original 
information worth to tell, and communicating it through language takes up a considerable 
amount of available time [1]. Giving potentially useful information to conspecifics is 
therefore a form of altruism. A challenge for evolutionary biology is to provide a logical 
and mathematical account showing that communicating information can be an evolutionary 
stable strategy (ESS). 

Human Language and altruism 

There are many known cases of altruism in nature, but language resembles none of them. 
Several facts about language behavior challenge traditional theories of biological altruism 
(Table 1): 

O1. Individuals devote 30% of their awake time to language [1] in various cultures [2], 
and speak some 15 000 words each day on average [5].  

O2. The price of information is low, due to the presence of talkative individuals [6]. 

O3. Many accepted utterances are about futile matters that are unlikely to have impact 
on listeners’ lives. 

O4. Listeners are not (or loosely) discriminated by speakers; speech is directed towards 
several individuals simultaneously [7]. 

O5. A significant share of talking time is devoted to signaling immediate or past 
unexpected events [8–10]; Drawing conspecifics’ attention toward unlikely situations is 
a distinctive behavior of our species [11, 12] that shows up early in ontogeny [13].  

O6. Human beings learn and understand tens of thousands of words and set phrases. 

O7. Social bonds are highly correlated with sharing conversational time [14]. 

O8. There is no major language difference depending on sex [5]. 

O9. Other primates do not systematically share information about events. 
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Table 1. Several theories of costly altruistic (or apparently altruistic) behavior are compared by their 
ability to account for the nine observations O1-9 about human language. A plus (+) sign means that 
the theory correctly predicts the observation, a 0 means that it does not predict it, a minus sign 
means that it conflicts with it. 

  O1 O2 O3 O4 O5 O6 O7 O8 O9 

Group selection [15] – 0 – + 0 0 0 + 0 

Parochial altruism [16] – 0 – + 0 0 0 – 0 

Reciprocal Cooperation [17] 0 – – – 0 0 + + 0 

Indirect reciprocity [17] 0 – – – 0 0 0 + 0 

 
co

op
er
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e 

Network reciprocity [17] 0 – – – 0 0 + + 0 

Kin selection [18] 0 0 – – 0 0 0 – 0 

Sexual selection [19] + + + + 0 + 0 – 0 

no
n-

co
op

er
at

iv
e 

Costly signaling [20] – + 0 + 0 0 + + 0 

 

Group selection requires significant discrepancies between groups to operate [15], what 
fact O1 contradicts. Its parochial version [16], reserved to warriors, also conflicts with the 
fact that language is equally shared among genders (O8). Moreover, these group-
selectionist models, as well as all cooperative scenarios, require that the altruistic behavior 
provide substantial benefit to recipients [17]. Language does not match this expectation 
(fact O3). Cooperative scenarios are also at odds with facts O2 and O4, as they crucially 
rely on the detection of free-riders who take information and fail to return the equivalent of 
what they received. If information has a price, it should not be given for free without 
discrimination. Yet, language is more like broadcast rather than like whispering [7]. 
Information is offered more often than demanded. “People compete to say things. They 
strive to be heard. […] Those who fail to yield the floor to their colleagues are considered 
selfish, not altruistic.” [19] Kin selection would also demand efficiency and discrimination. 
In addition, if language evolved to talk to offspring [18], then (O8) is unexpected as 
parental investment varies depending on sex. (O8) conflicts with the sexual selection model 
as well. Lastly, all theories listed in Table 1 need external hypotheses to explain language 
uniqueness (O9). 

Modified versions of these classical theories of altruism might possibly better explain 
how the urge to communicate information to conspecifics could evolve. We found such a 
consistent account within the costly signaling framework. 
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Human Language as Costly Signal  

Costly signaling theory (CST) [20, 21] describes signals as competitive. In its social 
version [20, 22], individuals display some quality q in order to be chosen as coalition 
partners. In bird species such as turdoides squamiceps, q may be the ability to mob 
predators [21]. Signalers benefit from being joined or accepted by ‘followers’, whereas 
followers benefit from joining individuals with high q. Such signaling system may evolve 
to a stable honest state, where signal intensity is an increasing function of q [20].  
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Figure 1. Simulation of a social version of CST.   
Individuals differ by their investment in signaling (y-axis) depending on their quality (x-
axis). The three curves differ by the cost coefficient C. 

Social-CST may explain several important aspects of language behavior (Table 1), but 
as it stands, it wrongly predicts that only a minority of individuals will talk, in contradiction 
with (O1). Signaling competition generates a threshold in quality, below which it is not 
worth while investing in signaling (Figure 1). Each individual of quality q ∈ [0,1] emits a 
signal s(q) = g(q) q, where g(q) ∈ [0,1] is the willingness to signal. Signaling demands 
proportional cost c = C g(q). We can see on Figure 1 that low quality individuals are 
discouraged from investing in signaling. The signaling threshold, when quality is uniformly 
distributed, is η = 1–1/n, where n is the maximal number of recruited individuals per 
signaler. Figures 1 and 2A have been obtained by artificially limiting n to 3, otherwise all 
individuals in the population would have ended up following only two or three top 
signalers. Figure 2A illustrates the ‘star-system’ generated by CST, as high-quality 
individuals attract most followers, while low-quality individuals have no interest in wasting 
energy in hopeless signaling. Note that η does not depend on cost coefficient C. 
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(A) 

 

 
(B) 

Figure 2. Examples of sociograms for classical social-CST (A) and the FSM model (B).  
Individuals in the population are located twice, on lower and upper horizontal axes, 
depending on their quality. Social links are represented by lines between the lower and the 
upper axis (only links to best friends are shown). 

Competitive Friendship Signaling  

We could develop a version of CST in which all individuals, even low-quality ones, do 
signal, and benefit from it (Figure 3A). The solution we adopted was inspired by Dunbar’s 
comparison of language with grooming [14]. The model, which can be dubbed Friendship 
Signaling Model (FSM), relies on two additional hypotheses. First, individuals 
symmetrically appraise each other’s signaling performance before deciding to become 
friends. Second, social bonds are constrained by the amount of time individuals can offer to 
their friends. Individuals therefore base their decision to join each other not on the sole 
signal they emit, but also on the time they are ready to share. 

When two individuals A and B meet, they negotiate a rank i in their friendship hierarchy, 
based on the other’s “social offer.” A’s social offer to B amounts to s(qA) ri, where s(qA) is 
the signal displayed by A (note that qA is unknown to B), i is B’s potential rank in A’s 
friendship list and ri is the amount of time offered to B (0 < r < 1). 
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Figure 3. Investment in communication (A) and signals (B) in the friendship scenario.  
Dashed lines show model predictions. The model does not include the transition between 
the two ESS (see annex). The number of friends per individual is limited to 3, for 
comparison with Figure 1. 

Due to this two-way negotiation, competition on the social relationship “market” rapidly 
leads to assortative links, as shown Figure 2B (see annex). In the assortative mode, 
individuals tend to bind to partners with similar social offer and therefore, at equilibrium, 
with similar competence. This situation corresponds to the increasing part of the curves in 
Figure 3. In that competence range, individuals publicly distinguish from each other by 
their competence. The benefit of this type of assortative bonding for an individual of 
quality q is: 

Bc(q) = P(q) – C s(q)/q 

where P(q) is the profit brought by an alliance with a partner of similar competence q. To 
be an ESS, this competitive state must be robust to unilateral change. Suppose a mutant 
with competence q sends the signal normally sent with competence q+dq. The recruitment 
of a better partner provides P(q+dq), by dint of an augmented cost C s(q+dq)/q. The benefit 
variation dBc = P’(q) dq – C s’(q) dq /q must be zero for the equilibrium to be stable, which 
gives: s’(q) = q P’(q) / C. In this competitive ESS, individuals emit: 

s(q) = [ qP(q) –∫ P(q) dq ] /C 

If P’(q) > 0, i.e. if competence q is relevant, there is no threshold for signaling (in contrast 
with standard CST): all individuals, including those in the lower competence range, benefit 
from communicating. 

Uniform Friendship Signaling 

An unexpected finding of this study has been that competitive signaling coexists with 
another ESS. Individuals in the upper competence range (q > η) all send the same signal sm 
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for a given cost coefficient (Figure 3B). In contrast to the competitive case, social bonding 
is no longer assortative, as individuals in the ‘elite club’ (η < q < 1) cannot distinguish from 
each other. Their profit is therefore P((1+η)/2) on average. This uniform signaling mode is, 
understandably, an ESS. Those who unilaterally signal above sm pay an additional cost with 
no profit, since their partner will be a random member of the elite club anyway. Those who 
signal slightly below sm make a slight economy but their profit P(η) is dramatically smaller 
than the normally expected P((1+η)/2). 

In this ideal situation, there is no way to determine the couple (η, sm). All values of sm 
theoretically lead to an ESS. In the presence of noise, however, the indeterminacy 
collapses. sm gets a definite value (Figure 3B), at which the varying cost of signaling 
slightly above or below sm exactly compensates the varying risk of getting P(η) instead of 
P((1+η)/2) (see annex). For the profit function adopted in this study (see below), the value 
of the uniform signal sm is a decreasing function of the cost coefficient (Figure 3B), of noise 
amplitude and of the friend inequality factor r. 

The ‘First To Tell’ behavior and the origin of language 

Though the FSM model could be applied to a variety of situations, including primate 
grooming, its main interest is to show how human language, or at least its potential 
precursors [26], can be an ESS. What needs to be shown is that the informational 
competence of the recruited friends and the social time they offer both increase survival. 
One known fact about hominin ecology may explain the two aspects.  

At some point in hominin phylogeny, individuals became able to use weapons to kill at no 
risk [23–25]. The possibility of surprise killing dramatically disrupted traditional primate 
politics, based on physical dominance. In this new and unique context, the ability to 
anticipate surprise became an asset. By repeatedly demonstrating their informational 
competence through language, even about futile matters, individuals show off their ability 
to spot unexpected situations before others. In the CST framework, they do so to be 
recruited as social partners. 

The shared time constraint (r < 1) is a natural consequence from the fact that information-
competent friends provide protection. When two individuals become acquainted, each of 
them receives protection from the mere presence of the other. To represent this fact, P can 
be given the following definition, which has been used in our simulations: 

P(q) = 1 – Πi (1 – K ri q) 

K is a constant and the product is computed over all the individual’s friends. This 
expression means that the presence of the ith friend during a fraction ri of the time 
contributes by K ri q to reducing the probability of getting killed.  

This hypothesis concerning the role of information competence in the protection against 
surprise killing satisfies all the hypotheses of the FSM model. It also predicts the nine 
observations O1-O9 about language listed in Table 1. In comparison with standard CST, it 
explains why virtually all individuals talk (O1), why most utterances are inconsequential 



8 

(O3), and why language is uniquely human (O9). The need to signal any form of 
unexpectedness explains in part why lexicon must be large and learned (O6). And most 
importantly, it explains why individuals feel the urge to be the first to tell about any 
unexpected event (O5).  

This first-to-tell behavior, characteristic of many human conversations, suggests that 
language may have originated as a way to secure protection. It is reminiscent of alarm calls 
among primates. Standard CST provides an explanation for some forms of alarm calls 
directed at non-kin [21]. The hypertrophy of human language may have been, from the 
start, a consequence of the total unpredictability of danger in our species. Unexpectedness, 
defined as abnormal structure [10, 27), is the only signature of potential killing danger. This 
may contribute to explaining why information has replaced muscles in hominin social 
displays, and why humans can provide information about ‘everything’. 
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Annex 
The emergence of stable communication strategies is studied both theoretically and through 
computer simulation. We will first provide details about the algorithm used to implement 
the Friendship Signaling Model; we then give a theoretical account showing that two 
evolutionary stable strategies (ESS) are expected to emerge; lastly, we compare these 
theoretical predictions with simulation results. 

The Friendship Signaling Model and its Implementation 

Social Offer and Social Benefit 

Note: Unless stated otherwise, all quantities belong to the segment [0,1]. In figures, they are 
displayed in percentages, between 0 and 100. 

A population of agents differing by their ability q ∈ [0,1] to send relevant information 
interact and establish social links. Each agent emits a signal s(q) = g(q) S(q), where g(q) ∈ 
[0,1] is its investment in communication and S(q) = b + (1–b) q is its communicative 
competence. Parameter b ∈ [0,1] is introduced to represent the fact that worst individuals 
may still possess a bottom competence. At each step, a pair (A,B) of agents is selected and 
plays the following game. Agent A (with ability qA) makes a social offer s(qA) ri, where i is 
the rank offered by A to B in its friendship shortlist (with 0 < r < 1). A starts by offering 
i=0, but it may then increase i if B’s return offer is smaller than what A’s current friend at 
rank i offered in a previous encounter. B follows the same rule. If A and B come to an 
agreement, they insert the partner at the ith place in their friendship list.  

Agents play the game a number of times (typically 300 encounters for 100 agents) at each 
step. Then agents compute the benefit obtained from having friends. The following formula 
gives the social profit that an agent who could make friends with abilities qi gets: 

P = (1 – Π(1 – K ri S(qi))) 

The product is computed over all the agent’s current friends. We could have used a variety 
of increasing functions of the friends’ competence S(qi). The above formula is dictated by 
the protection scenario (see main paper). The positive term in the above formula represents 
the risk for the agent to get killed by surprise. The ith friend has a probability K S(qi) of 
spotting a potential risk at each moment, and this protection covers a portion ri of the day. 

Agents endure a proportional cost for signaling. The overall benefit of an agent with ability 
q is: 

B = P – C g(q) 
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Learning 

We designed a simple learning algorithm that optimizes g(q). One agent learns at each step, 
after the tournament has been played. The learning agent adopts a new value for g(q) that 
realizes a compromise between various values: 

- g(q’) for neighboring abilities q’. 

- the past value of g(q) that provided the highest value of B (memory span is typically 
limited to 10 past learning episodes). 

- an additive perturbation of g(q) of amplitude L. L decreases until the agent reaches 
‘adulthood’, where it reaches a bottom value L0.  

Agents ‘die’ when they reach a maximum age. They are replaced by another agent with 
same ability q but a random value for g(q). After a definite number of steps, the overall 
shape of function g is supposedly reached. All new agents are then born adult, as a way to 
lower the temperature of the learning system. 

The learning process is illustrated in the joined animated image ‘AnimateSignal.gif’, also 
available at www.dessalles.fr/Evolife/friendship/AnimateSignal.gif .   

Evolutionary Stable Signaling Strategies 

Competitive Signaling 

Here we show that negotiation about social offer s(q) ri may lead to a situation where 
competitive signaling and assortative bonding reinforce each other. Competitive (or honest) 
signaling means that s(q) is an increasing function. By emitting s(qA), agent A attracts a 
friend B with ability qB = fc(s(qA)), where fc is a non decreasing function. Suppose qB = qA – 
δ1 (δ1>0). Since B is acquainted with A, fc(s(qB)) = qA. Since s is increasing, we get: fc(s(qA 

– δ1)) = qA < fc(s(qA )) = qA – δ1, which is a contradiction. A similar reasoning with δ1<0 
leads to the conclusion that fc(s(qA)) = qA, which means that social bonds are assortative. 

Conversely, if there is assortativeness, then s evolves toward a definite increasing function. 
An individual with ability q gets social profit P(q) = (1 – Π(1 – K ri S(q))). Learning 
maximizes the benefit: 

Bc = P(q) – C s(q)/S(q) 

If the individual sends the signal normally sent by agents with quality q+dq, both profit and 
cost vary: 

dB = P(q+dq) – C s(q+dq)/S(q) 

At the maximum, dB/dq = 0, which gives: 

s’(q) = S(q) P’(q)/C 

and finally: 
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s(q) = [ S(q)P(q) – (1–b) ∫ P(q) dq ] /C 

In the absence of noise, any competitive situation in which s(0) ≠ 0 is not an ESS, as lowest 
individuals (with q ≈ 0) are bound to establish links with each other anyway. A mutant with 
s(0) = 0 would endure no cost for the same profit.  

If the number n of friends per agent is limited, we get the following polynomial functions 
(for b = 0): 

 If n =1: s(q) = K q2 /(2C) 

 If n =2: s(q)  = (–2K2r q3/3 + K q2(1+r) /2) /C 

 If n =3: s(q)  = ( K(1+r+r2) q2/2 – 2K2r(1+r+r2) q3/3 + 3K3r3 q4/4 )/C 

Benefit in the competitive mode is: 

Bc = (1–b) ∫ P(q) dq / S(q) 

Uniform signaling 

In the uniform mode, all individuals with ability above η send the same signal sm. Since 
they cannot distinguish each other, they get acquainted with a random member of the [η, 1] 
‘elite club’. On average, their profit is P(τ), where τ = (1+η)/2. Their benefit depends on 
their ability q: 

Bu = P(τ) – C sm / S(q) 

Signaling above sm would increase cost without providing any profit. Signaling below sm 
would spare a tiny share of the cost but profit would drop from P(τ) to P(η). Using this 
reasoning, sm is thus an ESS, whatever its value. Simulations, however, always converge to 
a definite value of sm. To explain the phenomenon, we must take into account the inevitable 
uncertainty about sm introduced by learning.  

The variability of the signal emitted by agents with ability q depends on the amplitude of 
learning. We may consider that it is αL0S(q), where L0 is the maximum variation of g(q) in 
one learning step, starting from the best previously encountered value. An agent in the 
[η, 1] range emits (sm+ραL0 S(q)), where ρ ∈ [–1, 1]. Its probability of getting acquainted 
with another agent of the elite club, and thus of getting social profit P(τ), varies between 0 
for ρ = –1 and 1 for ρ = 1. A linear approximation gives the following expression for the 
benefit: 

Bu(ρ) = (1+ρ) P(τ)/2 + (1–ρ) P(η)/2 – C (sm+ραL0 S(q))/ S(q) 

We get: 

dBu/dρ = P(τ)/2 – P(η)/2 – CαL0 

dBu/dρ must be zero, otherwise sm would not be stable.  

P(τ) – P(η) = 2CαL0 
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This relation defines η. The threshold η corresponds to the limit between the competitive 
mode and the uniform mode. We can write that Bu and Bc are equal in η. 

(P(τ) + P(η))/2 – C sm/ S(η) = (1–b) ∫0
η
 P(q) dq / S(η) 

This relation defines sm. 

Competitive–Uniform transition 

As soon as there is a discontinuity in η between sm and the competitive signal sc, we would 
expect a sharp transition. Such a transition is not to be observed, however, as individuals 
with ability in the range [θ, η] adopt yet another ESS. This intermediary ESS consists in 
emitting signal (sm – σ) on average. The benefit on this new ESS is: 

Bu(ρ) = (1+ρ) P(η)/2 + (1–ρ) P((θ+η)/2)/2 – C (sm – σ+ραL0 S(q))/ S(q) 

By making dBu/dρ = 0, we get: 

(P(η) – P((θ+η)/2)) = 2C αL0 

This gives a minimum value for θ, given the constraint that Bu > Bc in θ. 

The same reasoning can be iterated for various couples (σi, θi), which explains the smooth 
transition that can be observed between the competitive and the uniform mode. 

Observations 
In Figure 3, parameters are: n = 3, r = 0.6, K = 1, b = 0, L0 = 0.05. Each point of the curves 
is the average of 30 experiments at least. The only parameter of the model is α, which has 
been set to 1.2. Transitions for the model are shown in θ. 

Figure A1 shows, for the same parameters, the simple case in which individuals can have 
only one friend. The parabolic shape of competitive signals can be clearly seen. 

Figure A2 shows the observed and computed values of the uniform signal sm depending on 
L0 (A) and r (B). The model’s predictions are nearly perfect for these values of the cost 
coefficient.  
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Figure A1. Average signals for various values of C.   
Dashed lines show model predictions. The number of friends per individual is limited to 1. 

Note that the model tends to overestimate sm when C < 0.5, or even does not predict its 
existence, as can be seen on Figure A1 for C = 0.4 and n = 1. This is because g(q) saturates 
(g(q) = 1) for intermediary values of q, what artificially limits competition level for higher 
values of q. 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

Leaning exploration (L 0 ) (%)

U
ni

fo
rm

 si
gn

al
 s m

 (%
)

40

40(M)

80

80 (M)

Signalling 
Cost (%)

  

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Friend inequality factor (r ) (%)

U
ni

fo
rm

 si
gn

al
 s m

 (%
)

60

60 (M)

80

80 (M)

Signalling 
Cost (%)

 
 (A) (B) 

Figure A2. Uniform signal values.  
The figure shows sm depending on the amplitude of learning exploration (A) and on the 
friend inequality factor (B). Dashed lines show model predictions. The number of friends 
per individual is limited to 2. (K = 1; b = 0; r = 0.6 in (A); L0 = 0.05 in (B)). 

Figure A3 shows that when the maximum number of friends per individual is not limited or 
has a significant value (here n = 10), signaling vanishes if all friends are given the same 
amount of time whatever their rank (r close to 1). 
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Figure A3. Uniform signals depending on friend inequality factor (r).  
Individuals may make up to 10 friends (n =10). The dashed line represents the model 
predictions. (K = 1; b = 0; L0 = 0.05). 

Simulation program 
The simulation program is available at www.dessalles.fr/Evolife/friendship 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 

Dépôt légal : 2010 – 4ème trimestre 
Imprimé à Télécom ParisTech – Paris 

ISSN 0751-1345 ENST D (Paris) (France 1983-9999) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Télécom ParisTech 

Institut TELECOM - membre de ParisTech 

46, rue Barrault - 75634 Paris Cedex 13  -  Tél. + 33 (0)1 45 81 77 77  -  www.telecom-paristech.frfr 

Département INFRES
 

 

©
  

In
st

it
u

t 
T

E
L

E
C

O
M

 -
T

é
lé

c
o
m

 P
a

ri
s
T

e
c
h

 2
0
1
0

 

 


