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cÉcole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France

September 14, 2010

This Technical Report is the complete version of a paper which has been reduced for publication in the proceedings
of the 5th International Conference on Mathematical Methods, Models, and Architectures for Computer Networks
Security (MMM-ACNS-2010), held in St. Petersburg, in Russia, from the 8th to the 11th of September 2010.
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Abstract

The BDMP (Boolean logic Driven Markov Processes) modeling formalism has recently been adapted
from reliability engineering to security modeling. It constitutes an attractive trade-off in terms of read-
ability, modeling power, scalability and quantification capabilities. This report develops and completes
the theoretical foundations of such an adaptation and presents new developments on defensive aspects. In
particular, detection and reaction modeling are fully integrated in an augmented theoretical framework.
Different use-cases and quantification examples illustrate the relevance of the overall approach.

Résumé

Le formalisme de modélisation BDMP (Boolean logic Driven Markov Processes) initialement créé
pour la modélisation de systèmes dynamiques dans le cadre d’études de fiabilité et de disponibilité a
été adapté récemment au domaine de la sécurité. Ce formalisme constitue un compromis attractif en
termes de lisibilité, de puissance de modélisation et de capacité à spécifier et quantifier des modèles de
grande taille, adaptés à des systèmes réels. Ce rapport détaille la définition formelle des BDMP après
adaptation au domaine de la sécurité. Il en rappelle les avantages pour la modélisation de différentes
stratégies d’attaque (en séquence, en parallèle, avec des phases dédiées à tel ou tel type d’attaque) puis il
présente des nouveaux développements sur les aspects défensifs. En particulier, détection de l’attaque et
réactions du défenseur sont intégrées dans un cadre théorique enrichi. Différents exemples d’application
illustrent la pertinence de cette approche sur le plan de la modélisation et des résultats de quantification
obtenus. Enfin, même si le cadre ainsi présenté est déjà opérationnel, quelques pistes sont données pour
gagner encore en réalisme et en rapidité des études de sécurité.

1 Introduction

Graphical attack formalisms are commonly used in security analysis to share standpoints between ana-
lysts, enhance their coverage in terms of scenarios, and help ordering them and the related system vulnera-
bilities by various quantifications. The authors have recently introduced a new approach based on BDMP
(Boolean logic Driven Markov Processes) [1], adapting this formalism used in reliability engineering to attack
modeling [2]. BDMP have proven to be an original and advantageous trade-off between readability, modeling
power, scalability and quantification capabilities in their original domain [3]. The same advantages are ex-
pected from their adaptation to the security area. In this paper, we consolidate the theoretical foundations
of such an adaptation, and extend it to take into account detection and reaction aspects in an integrated
approach. Section 2 presents a brief state of the art in graphical attack modeling. Section 3 develops, on a
theoretical and practical point of view, how BDMP can be changed to model attack scenarios. Section 4 fo-
cuses on defensive aspects, presenting the extension developed for detection and reaction modeling. Section 5
presents on-going and future work related to this new approach.

2 State of the Art

The clear interest of the computer security community for graphical attack modeling techniques has led
to numerous proposals; they can be grouped into two categories, each being dominated by a specific model:

� Static models: also called structural models, they provide a global view of the attack, without being
able to capture its evolution in time. The dominant type of model is the Boolean-logical tree based
approach. Generally known as attack trees [4, 5], they are present in the literature under different
variations: threat trees [6], vulnerability trees [7], etc.

� Dynamic models: also called behavioral models, they take into account dependance aspects such as
sequences or reactions. Richer than static models, they can be built by hand only in very simple cases.
There are two approaches in the other cases:

1



– The first one is based on detailed state-graphs capturing the possible evolutions of an attack,
automatically generated from formal specifications. Such approaches, initiated by Sheyner et al.
with attack graphs [8] and followed by other relevant approaches (e.g., [9, 10]), are not graphical
models per se as they are not directly designed to be graphically manipulated by analysts.

– The second relies on compact and high-level graphical formalisms, designed to efficiently represent
dynamic aspects like sequences or reactions, and to be directly usable by human analysts. In this
category, Petri net-based approaches are the most widely known. Attack nets, described ten years
ago by McDermott [11], or PE nets, a more recent approach with a complete software support
[12], are two good representatives.

Each approach allows for a different balance in terms of modeling power, readability, scalability and
quantification capabilities. Static models are usually very readable but are lacking in their modeling power
and quantification capabilities. Dynamics models are more interesting for these aspects, but often have their
own limits in terms of clarity and scalability. Note that these statements are also relevant in the domain of
reliability and safety modeling [13, 14], where similar approaches have been historically first used, modeling
system component failures instead of attacker actions and security events.

3 The BDMP Formalism Applied to Attack Modeling

3.1 Foundations

Originally, BDMP are a formalism which combines the readability of classical fault trees with the modeling
power of Markov chains [1]. Generally speaking, it changes the fault tree semantics by augmenting it with
a special kind of links called triggers, and associating its leaves to Markov processes, dynamically selected
in function of the states of some other leaves. This allows for sequences and simple dependencies modeling,
while enabling efficient quantifications. The original definition, the mathematical properties and different
examples are provided in [1]. In this section, we present the main elements of theory and features offered by
a straightforward adaptation of BDMP to security modeling, summing up and completing ref. [2].

3.1.1 The components of BDMP

Informally, “triggered” Markov processes (noted Pi and presented in this section) are associated to the
leaves i of an attack tree A. Each process has two modes: Idle and Active (formally noted 0 and 1). The
former models an on-going event, in general an attacker action, the latter is used when nothing is in progress.
The mode of a given Pi is a Boolean function of the states of the other processes. Fig. 1 represents a simple
exemple of a BDMP, with its typical graphical components.

G3

G2G1

f1 f2 f3 f4

Figure 1: A small BDMP
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More formally, a security-oriented BDMP is a set {A, r, T, P} composed of:

� an attack tree A = {E,L, g}, where:

– E = G ∪ B, with G a set of logical gates, and B a set of basic security events (e.g. attacker
actions), corresponding to the leaves of the BDMP,

– L ⊂ G × E is a set of oriented edges, such that (E,L) is a directed acyclic graph with ∀i ∈
G, sons(i) 6= ∅ and ∀j ∈ B, sons(j) = ∅, with E

sons−−−→ 2E , sons(i) = {j ∈ E/(i, j) ∈ L},
– g : G→ N∗ is a function defining the parameter k of the gates which are all considered to be k/n

logical gates (k = 1 for OR gates, k = n for AND gates, with n the number of sons);

� r, the final attacker’s objective. Formally, it corresponds to a top of (E,L);

� a set of triggers T ⊂ (E − {r})× (E − {r}) such that ∀(i, j) ∈ T, i 6= j and ∀(i, j) ∈ T, ∀(k, l) ∈ T, i 6=
k ⇒ j 6= l. If i is called origin and j target, it means that origin and target of a trigger must differ,
and that two triggers cannot have the same target. Triggers are represented by dotted arrows;

� a set P of triggered Markov processes {Pi}i∈B . Each Pi is defined as a set
{
Zi0(t), Zi1(t), f i0→1, f

i
1→0

}
where:

– Zi0(t) and Zi1(t) are two homogeneous Markov processes with discrete state spaces. For k in {0, 1},
the state space of Zik(t) is Aik(t). Each Aik(t) contains a subset Sik(t) which corresponds to success
or realization states of the basic security event modeled by the process Pi,

– f i0→1 and f i1→0 are two “probability transfer functions” defined as follows:

* for any x ∈ Ai0, f i0→1(x) is a probability distribution on Ai1 such that if x ∈ Si0, then∑
j∈Si

1
(f i0→1(x))(j) = 1,

* for any x ∈ Ai1, f i1→0(x) is a probability distribution on Ai0 such that if x ∈ Si1, then∑
j∈Si

0
(f i1→0(x))(j) = 1.

Triggers and Pis are intimately linked, as the Pis switch instantaneously between modes, via the relevant
probability transfer function, according to the state of some externally defined Boolean variables, called
process selectors (defined in the next paragraph). The process selectors are defined by means of triggers.
In the simple cases where only one trigger is present in the model, a trigger modifies the mode of the Pis
associated to the leaves of the sub-tree it points at when its origin changes from false to true: the modes are
then switched from Idle to Active. When several triggers are present, their effects are combined following
the formal relations given in the next section. These mechanisms model the progress of the attacker in the
attack scenarios captured by the overall BDMP.

3.1.2 The three families of Boolean functions of the time

A BDMP defines a global stochastic process, modeling the evolution of an attack and the dynamic
behavior of its perpetrator. Each element i of A is associated to three Boolean functions of time: a structure
function Si(t), a process selector Xi(t) and a relevance indicator Yi(t). The three families of these functions
are defined as follows (note that to simplify reading, the time t is not indicated but should appear everywhere):

� (Si)i∈E is the family of the structure functions. They respect the following relation:

∀i ∈ G,Si ≡ (
∑

j∈sons(i)

Sj ≥ g(i)) and ∀j ∈ B,Sj ≡ (ZjXj
∈ SjXj

)

with Xj indicating the mode in which Pj is at time t. Sj = 1 corresponds to the realization of a basic
security event (like an attacker action success);
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� (Xi)i∈E are the mode selectors, indicating which mode is chosen for each process. If i is a top of A,
then Xi = 1 else:

Xi ≡ ¬ [(∀x ∈ E, (x, i) ∈ L⇒ Xx = 0) ∨ (∃x ∈ E/(x, i) ∈ T ∧ Sx = 0)] .

This means that Xi = 1 except if the origin of a trigger pointing at i has its structure function equal
to 0, or if i has at least one parent and all its parents have their process selector equal to 0;

� (Yi)i∈E are the relevance indicators. They are used to mark the processes to be “trimmed” during the
processing of the Markov chain when exploring the possible sequences. Trimming strongly reduces the
combinatorial explosion while yielding exact results in our assumptions (cf. the next paragraph and
Section 3.4). If i = r (final objective), then Yi = 1, else:

Yi ≡ (∃x ∈ E/(x, i) ∈ L ∧ Yx = 1 ∧ Sx = 0) ∨ (∃y ∈ E/(i, y) ∈ T ∧ Sy = 0) .

This formally says that Yi = 1 if and only if:

– i = r,

– or i has at least one “relevant parent” whose Si = 0,

– or i is the origin of at least one trigger pointing at an element whose Si = 0.

3.1.3 Mathematical properties

A BDMP can be seen as a robust mathematical formalism thanks to the two following theorems:

Theorem 1. The functions (Yi), (Xi), (Yi) are computable for all i ∈ E whatever the BDMP structure.

Theorem 2. Any BDMP structure associated to an initial state defined by the modes and the Pi states,
uniquely defines a homogeneous Markov process.

The proof for these theorems can be found in [1]. In addition to their robustness, BDMP allow for a
dramatic combinatory reduction by relevant event filtering, thanks to the trimming mechanism associated
to the (Yi) values. This mechanism can be illustrated as follows: in Fig. 2, after a basic security event Pi is
realized, all the other Pj 6=i are no longer relevant: nothing is changed for r if we inhibit them. The number
of sequences leading to the top objective is n if the relevant events are filtered ((P1, Q), (P2, Q),...); it is
exponential otherwise ((P1, Q), (P1, P2, Q), (P1, P3, Q),...).

r

P1 P2 Pn

Q

...

Figure 2: A BDMP for which relevant event filtering is particularly efficient

Theorem 3. If the (Pi) are such that ∀i ∈ B, ∀t, ∀t′ ≥ t, Si(t) = 1⇒ Si(t
′) = 1 (which is always true in

our case), then Pr(Sr(t) = 1) is unchanged whether irrelevant events (with Yi = 0) are trimmed or not.
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The proof of this last theorem is also given in [1]. It implies that trimming on the basis of the (Yi) does
not change the quantitative values of interest (cf. Section 3.4). Moreover, it corresponds to the natural and
rational behavior of the attacker.

3.1.4 The basic leaves and their triggered Markov processes

The definition of three kinds of leaves is sufficient to offer large attack modeling capabilities. Their
triggered Markov processes are represented informally in Tab. 1.

� The “Attacker Action” (AA) leaf models an attacker step towards the accomplishment of his objective.
The Idle mode means that the action has not at this stage been tried by the attacker. The Active
mode corresponds to actual attempts for which the time needed to succeed is exponentially distributed
with a parameter λ. When (Xi) changes from 0 (Idle) to 1 (Active), the leaf state goes from Potential
to On-going ; when (Xi) goes back from 1 to 0, if the attack has not succeeded, the leaf state goes back
to Potential, if it has succeeded, the leaf comes back to the Success state of the Idle mode. Formally,
the probability transfer functions are:

f0→1(P ) = {Pr(O) = 1,Pr(S) = 0} ,
f0→1(S) = {Pr(O) = 0,Pr(S) = 1} ,
f1→0(O) = {Pr(P ) = 1,Pr(S) = 0} ,
f1→0(S) = {Pr(P ) = 0,Pr(S) = 1} .

� The “Instantaneous Security Event” (ISE) leaf models a basic security event that can happen instan-
taneously with a probability γ, when the leaf switches from the Idle mode to the Active mode. In the
Idle mode, the event cannot occur and the leaf stays in the state Potential. In the Active mode, the
event is either Realized or Not Realized. State changes are necessarily the result of changes in (Xi).
Formally, the probability transfer functions are:

f0→1(P ) = {Pr(NR) = 1− γ,Pr(R) = γ} ,
f0→1(R) = {Pr(NR) = 0,Pr(R) = 1} ,
f1→0(R) = {Pr(NR) = 0,Pr(R) = 1} ,

f1→0(NR) = {Pr(P ) = 1,Pr(R) = 0} .

� The “Timed Security Event” (TSE) leaf models a timed basic security event the realization of which
impacts the attacker’s progress, but which is not under the attacker’s direct control. The time needed
for its realization is exponentially distributed. When the leaf comes back to the Idle mode, the leaf
state can then be either Realized or Not Realized, depending on whether the TSE has occurred or not
in Active mode. If unrealized, it is up to the analyst to decide if a realization is then possible in Idle
mode, by using a λ′ 6= 0. This can be useful when using phased approaches as described in Section 3.3.
Formally, the transfer functions are as follows:

f0→1(P ) = {Pr(NR) = 1,Pr(R) = 0} ,
f0→1(NR) = {Pr(NR) = 1,Pr(R) = 0} ,
f0→1(R) = {Pr(NR) = 0,Pr(R) = 1} ,

f1→0(NR) = {Pr(NR) = 1,Pr(R) = 0} ,
f1→0(R) = {Pr(NR) = 0,Pr(R) = 1} .
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Table 1: The three basic security leaves for attack modeling

Leaf type 

& icon 

Transfer 

between modes
Idle Mode (Xi=0) Active Mode (Xi=1)

Attacker 

Action

Instantaneous 

Security Event 

Timed 

Security Event 

Potential Success On-going Success
λ

Si←1

Potential Realized
Not

Realized
Realized

λ

Si←1

Not

Realized
Realized

λ

Si←1

Potential

Not

Realized
Realized

λ'

Si←1

PO (with Pr = 1)

SS (with Pr = 1)

PNR (with Pr = 1) 

NRNR (with Pr=1)

RR (with Pr = 1)

PNR (with Pr=1-γ)

PR (with Pr = γ)

RR (with Pr = 1)

PïNR (with Pr = 1)

TSE

ISE!
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3.2 Sequence Modeling

The triggers allow for an efficient and readable modeling of the sequential nature of attacks: often, some
actions or events need to be undertaken or realized first before further steps in the attack process can be
attempted. Fig. 3 presents a simple example with a sequence of three actions with such a constraint, based
on an Operating System (OS) attack. Reference [2] proposes an alternative example, modeling the attack of
a Remote Access Server (RAS), while a complete use-case is presented in Section 3.4.

AND

OS fingerprinting Vulnerability exploitationOS vulnerability identification

Gain OS access

Successful attack

Figure 3: A simple OS attack

3.3 Modeling of Concurrent or Exclusive Alternatives

For a given intermediate objective, an attacker may have different alternatives. A natural way of modeling
this with BDMP and classical attack trees is with OR gates. Fig. 4 represents two different approaches with
an example dealing with OS fingerprinting. On the left side, a simple OR gate is used: passive and active
techniques are tried simultaneously, which may not reflect a realistic attacker behavior. Passive techniques,
being more discrete, would normally be tried first and, if not successful, given up after some time for active
ones. Triggers cannot model such a behavior. “Phase leaves”, used on the right side of Fig. 4, allow this
behavior to be modeled; their formal definition is given in [2].

Passive fingerprinting phase

Passive

fingerprinting

Active fingerprinting

OR

AND

Passive_fingerprinting_success

Passive fingerprinting

AND

Active fingerprinting phase

OR

OS_fingerprinting

Active

fingerprinting

OS fingerprinting

Active fingerprinting success

OS_fingerprinting

Passive fingerprinting success

a) b)OS identified OS identified

Figure 4: Sequence of a simplified OS attack
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3.4 Diverse and Efficient Quantifications: Principles and Use-case

The interest of BDMP does not only lie in the possibility to represent sequences. They enable diverse
time-domain quantifications, including the probability for an attacker to reach his objective in a given time
or the overall mean time for the attack to succeed. In addition, BDMP analysis yields the enumeration
of all the possible attack paths, ordered by their probability of occurrence in a given time. Such results
can be efficiently computed thanks to an original analytical method developed for large Markov models,
and thus applicable to BDMP [15]. Indeed, as explained previously, BDMP are high-level representations of
potentially large Markov chains; however, the treatment of such chains is usually confronted with state-space
explosion. It is overcome using a path-based approach, exploring the sequences leading to the undesirable
states. Such an approach enables exact calculations for small models by exhaustive exploration. For larger
models, it is possible to obtain controlled approximations by limiting the sequence exploration to those
having a probability greater than a given threshold. In both cases, the probability of the explored sequences
is computed by the closed form expression given in [16]. Sequence exploration takes advantage of the
trimming mechanism described in Section 3.1, which leads to a strong combinatorial reduction.

More concretely, the analyst must define the λ parameters of the exponential distributions and the γ
parameters of the ISE leaves. Defining the λs is done by reasoning in terms of Mean Time To Success
(MTTS), i.e. 1/λ, like in [17, 18, 19]. The γs are also set subjectively. The parameters should be estimated
based on the intrinsic difficulty of the attacker actions, his estimated skills and resources, and the level
of system protection. We have used the KB3 workbench [3] for the model construction and quantitative
treatments in this report. Fig. 5 models the attack of a password-protected file, of which a copy has been
stolen. In our scenario, obtaining the password is the only way to access its content, needed by the attacker
within a week (this may take place in a call for tender in a competitive environment). The parameters chosen
are indicated in Tab. 2.

Table 2: Parameters of the use-case

Leaf name Type Parameter Remark
Guessing, Dictionary AA λ = 0 s−1 Considered as impossible (long and random)
Bruteforce AA λ = 3.802× 10−7 s−1 MTTS (1/λ) ≈ a month
Social eng phase Phase 172,800 s. Mean duration = 2 days

Generic reconnaissance AA λ = 1.157× 10−5 s−1 MTTS (1/λ) ≈ 1 day
Email trap execution AA λ = 1.157× 10−5 s−1 MTTS (1/λ) ≈ 1 day (regular nomad access)
Phone trap execution AA λ = 5.787× 10−6 s−1 MTTS (1/λ) ≈ 2 days
User trapped ISE γ = 0.33 1 out of 3 (targeted attack but cautious user)

Keylogger phase Phase 432,000 s. Mean duration = 5 days
Remote phase Phase 172,800 s. Mean duration = 2 days

Payload crafting AA λ = 5.787× 10−6 s−1 MTTS (1/λ) ≈ 2 days
Crafted attachement open TSE λ = 1.157× 10−5 s−1 MTTS (1/λ) ≈ 1 day
Appropriate payload ISE γ = 0.1 1 out of 10 (still many unknown factors)

Physical phase Phase 259,200 s. Mean duration = 3 days
Physical reconnaissance AA λ = 5.787× 10−6 s−1 MTTS (1/λ) ≈ 2 days
Keylogger local installation AA λ = 1.157× 10−5 s−1 MTTS (1/λ) ≈ 1 day

Password intercepted TSE λ = 1.157× 10−5 s−1 MTTS (1/λ) ≈ 1 day

Such parameters lead to a probability of success in a week of 0.422, with an overall MTTS of 22 days. An
exhaustive exploration gives 654 possible sequences; Tab. 3 shows a representative excerpt. The beginning
of a phase is marked as “<phase>” and its end as “</phase>”. Even if phases are not basic security events,
they are fully part of the sequences as they structure their chronology. The same applies to the leaves
that are realized unnecessarily; they are marked in italics. As one can see, most of the sequences include
one or more unnecessary actions or events that have no effect on the global success of the attack and as
such, these sequences are non-minimal. The minimal sequences are called success sub-sequences, or SSS.
Seq. 1 to 4 are minimal and weigh probabilistically 47% of all the sequences. Seq. 5 and 6 are good
examples of non-minimal sequences. Bruteforce is a specific leaf as it is also the only single element SSS. It
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Password_found

OR

Cracking_alternatives

OR

Password_attacksPassword_attacks

BruteforceBruteforce

AND

Social_Engineering_Success

Generic_reconnaissanceEmail_trap_executionEmail_trap_execution

AND

Keylogger_Success

OR

Keylogger_installation_alternatives Password_interceptedPassword_intercepted

AND

PhysicalPhysical

Physical_reconnaissancePhysical_reconnaissance

Keylogger_local_installation

AND

Remote

AND

Appropriate_payloadAppropriate_payload

Payload_crafting

AND

Non_technical_alt_successNon_technical_alt_success

User_trapped

Phone_trap_execution

OR

Non_technical_alt

Remote_PhaseRemote_Phase
Physical_PhasePhysical_Phase

AND

Remote_installationRemote_installation

AND

Physical_installationPhysical_installation

AND

KeyloggerKeylogger

AND

Social_engineeringSocial_engineering

Social_Eng_Phase
Keylogger_phase

DictionaryGuessing

Crafted_attachement_openedCrafted_attachement_opened

Social_Engineering_SuccessCracking_alternatives Keylogger_Success

Keylogger_installation_alternatives

RemoteNon_technical_alt

Emailed_file_execution

Password_found

TSE

TSE ISE!

ISE!

Figure 5: Attack of a password-protected file
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Table 3: Selection of sequences with quantifications

Sequences
Probability
in a week

Average
duration (s)

Contrib.

1 <Social Eng>Generic reconn., Email trap exec., User trapped 1.059×10−1 9.889× 104 25.1%

2 <Social Eng>Generic reconn., Phone trap exec., User trapped 5.295×10−2 9.889× 104 12.5%

3 Bruteforce 2.144×10−2 5.638× 104 5.1%

4 <Social Eng></Social Eng><Keylogger><Remote></Remote>

<Physical> Physical reconn., Keylogger local installation,
Password intercepted

1.749×10−2 2.976× 105 4.1%

5 <Social Eng></Social Eng><Keylogger> <Remote>Generic re-
connaissance </Remote><Physical>Physical reconnaissance,
Keylogger local installation, Password intercepted

1.350×10−2 3.677× 105 3.2%

6 <Social Eng>Generic reconnaissance, Email trap execution,
User trapped(failure), Bruteforce

1.259×10−2 2.610× 105 3.0%

...

20 <Social Eng></Social Eng><Keylogger><Remote>Generic re-
connaissance, Payload crafting, Appropriate payload, Pass-
word intercepted

2.500×10−3 2.761× 105 0.6%

...

34 <Social Eng></Social Eng><Keylogger> <Remote>Generic re-
conn., Payload crafting </Remote> <Physical>Crafted at-
tachement opened, Appropriate payload, Physical reconn.,
Keylogger local installation, Password intercepted

1.506×10−3 4.594× 105 0.4%

appears directly as a minimal sequence in line 3, but also ends numerous non-minimal sequences. In fact, the
consolidated contribution of all the sequences ended by bruteforce weighs 40% of all the sequences. Such
a strong weight despite bruteforce’s large MTTS is due to the absence of other steps to be fulfilled. This
points to a more generic statement: a complete analysis should not only use the list of sequences, but also
consider complementary views, including the consolidated contributions of the SSS. Seq. 3 to 19 involve only
two SSS; seq. 20 relies on a new SSS, then one has to wait until seq. 34 to find another one. This latter
sequence illustrates the specificity of TSE leaves, which are able to be realized in Idle mode if the leaf has
been Active at least once.

3.5 Hierarchical and scalable analysis

It is possible to choose for each attacker action the depth of analysis, leading to different breakdowns
depending on the analysis needs. This hierarchical behavior is a powerful property directly inherited from
the attack tree formalism. In Fig. 5, the password cracking alternatives have been broken down quite roughly
into three techniques which might have been decomposed themselves into much finer possibilities; on the
other hand, the social engineering and the keylogger sub-trees are slightly more developed. More detailed
breakdowns would have been possible. In fact, BDMP with more than 100 leaves are routinely processed in
reliability studies [3]: the method is also scalable for security applications.

4 Integrating Defensive Aspects: Detection and Reaction

Holistic approaches to security generally cover protection, detection and reaction. The level of protection
can be considered as intrinsically reflected by the BDMP structure, modeling only possible ways for attacks,
and its leaves’ parameters (λs and γs), reflecting the attack difficulty confronted with a given protection
level. This section presents the specifically tailored extensions to BDMP needed to model detection and
reaction aspects.

4.1 The IOFA detection decomposition

The integration of detection in a dynamic perspective has led us to distinguish four types of detection
for the AA and TSE leaves, differentiated by the moment when the detection takes place. Type I (Initial)
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detections take place at the very start of the attacker actions or of the events modeled; type O (On-going)
take place during the attacker attempts or during the events modeled; type F (Final) detections take place at
the moment the attacker succeeds in an action or when an event is realized; Type A (A posteriori) detections
take place once an action or an event has been realized, based on the traces left by such an action or event.

Each of them has a specific relevance in a security context. Such distinction allows for a fine-tuned and
complete modeling of detection; it is designated by the acronym IOFA. ISE leaves have been treated slightly
differently with two distinct detections, depending on the realization outcome.

4.2 Extending the theoretical framework

In order to model detections and reactions, we extend the framework of Section 3.1 by:

� associating to each element a Boolean Di, called Detection status indicator;

� replacing the Active mode by an Active Undetected mode and an Active Detected mode;

� selecting the mode on the basis of XiDi, and not only Xi, as described in Tab. 4 (note that in the
formal notations of the following sections, 0 in subscript corresponds to the Idle mode and covers
XiDi = 00 or 01);

� extending the leaves’ triggered Markov processes with new states, transitions, and probability transfer
functions, modeling detections and reactions.

Table 4: The new compound process selector XiDi and the corresponding modes

XiDi 00 01 10 11
Mode Idle Active Undetected (AU) Active Detected (AD)

4.2.1 Detection and reaction in the triggered Markov processes

In this framework, a Pi is a set
{
Zi0(t), Zi10(t), Zi11(t), f i0→10, f

i
0→11, f

i
10→11, f

i
10→0, f

i
11→0

}
where:

� Zi0(t), Zi10(t), Zi11(t) are three homogeneous Markov processes with discrete state spaces. For k ∈
{0, 10, 11}, the state space of Zik(t) is Aik. Each Aik contains a subset Sik which corresponds to success
or realization states of the basic security event modeled by the process Pi, and a subset Di

k which
corresponds to detected states.

� f i0→10, f
i
0→11, f

i
10→11, f

i
10→0, f

i
11→0 are five “probability transfer functions” defined as follows:

– for any x ∈ Ai0, f i0→10(x) is a probability distribution on Ai10, such that if x ∈ Si0, then∑
j∈Si

10
(f i0→10(x))(j) = 1, and if x ∈ Di

0, then
∑
j∈Di

10
(f i0→10(x))(j) = 1;

– for any x ∈ Ai0, f i0→11(x) is a probability distribution on Ai11, such that if x ∈ Si0, then∑
j∈Si

11
(f i0→11(x))(j) = 1, and if x ∈ Di

0, then
∑
j∈Di

11
(f i0→11(x))(j) = 1;

– for any x ∈ Ai10, f i10→11(x) is a probability distribution on Ai11, such that if x ∈ Si10, then∑
j∈Si

11
(f i10→11(x))(j) = 1, and if x ∈ Di

10, then
∑
j∈Di

11
(f i10→11(x))(j) = 1;

– for any x ∈ Ai11, f i11→0(x) is a probability distribution on Ai0, such that if x ∈ Si11 then∑
j∈Si

0
(f i11→0(x))(j) = 1, and if x ∈ Di

11, then
∑
j∈Di

0
(f i11→0(x))(j) = 1;

– for any x ∈ Ai10, f i10→0(x) is a probability distribution on Ai0, such that if x ∈ Si10 then∑
j∈Si

0
(f i10→0(x))(j) = 1, and if x ∈ Di

10, then
∑
j∈Di

0
(f i10→0(x))(j) = 1.

Note that f i11→10 is not defined: an attacker once detected cannot subsequently become undetected.
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The triggered Markov processes of Section 3.1 are re-engineered to integrate detection and reaction
features, as presented in Tab. 5, 6 and 7. They support the IOFA decomposition: detection is possible for a
given attacker action or timed security event at its very start, during the attempts, at success time and even
a posteriori. Transition parameters associated to detection are marked with a “D” in subscript. In the case
of AA and TSE leaves, this letter is followed in parenthesis by the type of detection (i.e. I, O, F or A) they
characterize; in the case of ISE leaves, it is followed by the characterized outcome (“/R” in case of realization,
“/NR” in case of bad outcome for the attacker). The success and realization parameters are linked to the
detection status of the leaf: “/D” in subscript means “having been detected” whereas “/ND” means “having
not been detected”. Discs with dotted circumferences represent “instantaneous” states whereas full discs are
regular timed states. By instantaneous states we mean either:

� Artificial states introduced for the sake of clarity, but which could be removed by merging the incoming
timed transitions with the outgoing instantaneous transitions into single timed transitions (e.g. the
state SPD in Tab. 5),

� Special “triggering” states which have been introduced to change the Di values, and to trigger mode
changes based on internal leaves evolution. For instance in Tab. 5, in AU mode, an arrival either in the
Detected or the Success Detected states triggers an instantaneous mode switch towards the AD mode:
both arrivals set the Detection indicator status Di at 1, passing the Boolean XiDi value, used to select
the mode, from 10 to 11. Such “triggering” instantaneous states are represented by striped discs.

4.2.2 Reaction “propagation”

The extended Markov model of the Attacker Action leaf in AU mode (cf. Tab. 5) is a good illustration
on how detection is taken into account “within” a given leaf, and can provoke a local mode switch towards
the AD mode. This changes the leaf parameter λS/ND to a new value λS/D, turning the action more difficult
or even impossible, if λS/D = 0, when the attacker is detected. The same applies for the other leaves. But
such mode switches can also be provoked “externally”, i.e. by a detection having occurred at the level of a
different leaf. In fact, the following possibilities can be distinguished:

� the detection has a strictly local incidence: only the detected attacker action or security event is
affected, the rest of the BDMP is unchanged, i.e. the other leaves keep the same parameters λs and
γs;

� the detection has an extended incidence, changing not only the on-going detected leaf parameters but
also a specific set of other leaves in the BDMP;

� the detection has a global incidence: in case of detection, all the Di are set to 1, meaning that all the
future attacker actions or security events will be in Detected mode, with the associated parameters.

This last option is the one that has been adopted in this paper: it is both meaningful in terms of security
and straightforward in terms of formalization and implementation. Note that the intermediate option,
especially relevant when dealing with multi-domain systems, has been explored by the authors and can be
implemented by the introduction of “detection triggers”. The associated developments will be presented in
a separate publication.

4.2.3 Use-case taking into account detections and reactions

The use-case of Section 3.4 has been completed by adding detection possibilities and reactions for the
leaves indicated in Tab. 8 with their corresponding parameters.

Globally, the introduction of detections and reactions reduces the probability of success within a week by
about 14%, from 0.423 to 0.364. This modest reduction can be explained by the fact that the most probable
success sequence, the single off-line bruteforce, is not subject to detection. In fact, even with systematic
detections and perfect reactions (the attack is stopped), the attacker would still have a 0.201 probability

12



Table 5: The triggered Markov processes of the Attacker Action (AA) leaves

λS/ND

λD(O)

Success 

Undetected

1 - γD(F)

γD(F)

λD(A)

Success 

with 

Potential 

Detection

Si←1

Di←1

Success

Detected
Detected

On-going

Undetected

Idle 

Active Undetected

Active Detected

))(( 0 tZ i

Markov processes Probability transfer functions

))(( 10 tZ i

))(( 11 tZ i

Potential

Undetected

Success 

Undetected

Success

Detected

On-going

Detected

Success

Detected

λS/D

if 100
(PU)={Pr(OU)=1 – γD(I), Pr(D)=γD(I), Pr(SD)=0, Pr(SU)=0}

(PD)= {Pr(OU)=0, Pr(D)=1, Pr(SD)=0, Pr(SU)=0}

(SU)={Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 0,Pr(SU)= 1}

(SD)={Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 1,Pr(SU)= 0}

if 110 (PU)= {Pr(OD)= 1, Pr(SD)= 0}*

(PD) = {Pr(OD)= 1, Pr(SD)= 0}

(SU)= {Pr(OD)= 0, Pr(SD)= 1}*

(SD)= {Pr(OD)= 0, Pr(SD)= 1}

if 1110 (OU)= {Pr(OD)= 1, Pr(SD)= 0}*

(D)= {Pr(OD)= 1, Pr(SD)= 0}**

(SD) = {Pr(OD)= 0, Pr(SD)= 1}**

(SU) = {Pr(OD)= 0, Pr(SD)= 1}* 

if 011 (OD)= {Pr(PU)= 0, Pr(PD)= 1, Pr(SD)= 0, Pr(SU)= 0}

(SD)= {Pr(PU)= 0, Pr(PD)= 0, Pr(SD)= 1, Pr(SU)= 0}

(OU)= {Pr(PU)= 1, Pr(PD)= 0, Pr(SD)= 0, Pr(SU)= 0}

(SU) = {Pr(PU)= 0, Pr(PD)= 0, Pr(SD)= 0, Pr(SU)= 1}

if 010

Potential

Detected

Si←1

* The detection has occured at a different leaf

** Despite D and SD having null durations, these lines are necessary to specify 

the transfer function, the transfer being potentially triggered by the leaf itself.

Attacker Action (AA)
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Table 6: The triggered Markov processes of the Instantaneous Security Event (ISE) leaves

Markov processes Probability transfer functions

 Not realized

Undetected

Idle ))(( 0 tZ i

 Not realized

Detected

 Realized

Undetected

 Realized

Detected

Active Undetected ))(( 10 tZ i

Active Detected ))(( 11 tZ i

 Not realized

Undetected

 Realized

Undetected

 Not realized

Detected

 Realized

Detected

if 100

if 110

if 1110

(NU)={Pr(NU)=(1–γS/ND)(1–γD/NR),Pr(RU)=γS/ND(1–γD/R),

           P(ND)=(1–γS/ND)γD/NR,P(RD)=γS/NDγD/R}

(RU)={Pr(NU)= 0, Pr(RU)=1, Pr(ND)= 0, Pr(RD) = 0}***

(ND)={Pr(NU)=0, Pr (RU)=0, Pr(ND)= 1–γS/D, Pr(RD) = γS/D}

(RD)={Pr(NU)=0, Pr (RU)=0, Pr(ND)= 0, Pr(RD) = 1}

(NU)={Pr(ND)=(1 – γS/ND), Pr(RD)= γS/ND}*

(RU)={Pr(ND)= 0, Pr(RD)= 1}

(ND)={Pr(ND)= (1 – γS/D), Pr (RD)= γS/D}*

(RD)={Pr(ND)=0, Pr (RD)=1}

(NU)={Pr(ND)=1, Pr(RD)= 0}*

(RU)={Pr(ND)= 0, Pr(RD)= 1}*

(ND)={Pr(ND)= 1, Pr(RD)= 0}**

(RD)={Pr(ND)= 0, Pr(RD)= 1}**

 Not realized

Detected

 Realized

Detected

Di←1 Di←1

if 011

if 010

(ND)={Pr(NU)=0, Pr(RU)= 0, Pr(ND)= 1, Pr(RD)=0}

(RD)={Pr(NU)=0, Pr(RU)= 0, Pr(ND)= 0, Pr(RD)=1}

(NU)={Pr(NU)=1, Pr(RU)= 0, Pr(ND)= 0, Pr(RD)=0}

(RU)={Pr(NU)=0, Pr(RU)= 1, Pr(ND)= 0, Pr(RD)=0}

Instantaneous Security Event (ISE)

* The detection has occured at a different leaf

** Despite D and SD having null durations, these lines are necessary to specify 

the transfer function, the transfer being potentially triggered by the leaf itself.

Si←1

Si←1 *** We assumte that once the leaf is realized, the potential reactivations cannot 

trigger detection anymore (NB: this differs from the MMM-ACNS paper version).
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Table 7: The triggered Markov process of the Timed Security Event (TSE) leaf

Idle

Active Undetected

Active Detected

))(( 0 tZ i

))(( 10 tZ i

))(( 11 tZ i

 Not 

realized

Detected

 Realized

Detected

λR/D

if 100

if 110

if 1110

if 011

if 010

λ'R/ND

λD(E)

Realized 

Undetected

1 - γD(F)

γD(F)

λD(A)

 Realized

Detected

 Not 

realized

Detected

 Not 

realized

Undetected

λR/ND

λD(O)

1 - γD(F)

γD(F)

λD(A)

Realized 

with  

Potential 

Detection

 Realized

Detected

 Not 

realized

Detected

(PU)={Pr(NU)= 1 – γD(I), Pr(ND)= γD(I), Pr(RD)= 0, Pr(RU)= 0}

(PD)={Pr(NU)= 0, Pr(ND)= 1, Pr(RD)= 0, Pr(RU)= 0}

(NU)={Pr(NU)= 1, Pr(ND)= 0, Pr(RD)= 0, Pr(RU)= 0}

(RU)={Pr(NU)= 0, Pr(ND)= 0, Pr(RD)= 0, Pr(RU)= 1}

(ND)={Pr(NU)= 0, Pr(ND)= 1, Pr(RD)= 0, Pr(RU)= 0}

(RD)={Pr(NU)= 0, Pr(ND)= 0, Pr(RD)= 1, Pr(RU)= 0}  

(PU)={Pr(ND)= 1, Pr(RD)= 0}*

(PD)={Pr(ND)= 1, Pr(RD)= 0}

(NU)= {Pr(ND)= 1, Pr(RD)= 0}*

(ND)= {Pr(ND)= 1, Pr(RD)= 0}

(RD) = {Pr(ND)= 0, Pr(RD)= 1}

(RU) = {Pr(ND)= 0, Pr(RD)= 1}* 

(NU)= {Pr(ND)= 1, Pr(RD)= 0}*

(ND)= {Pr(ND)= 1, Pr(RD)= 0}**

(RD) = {Pr(ND)= 0, Pr(RD)= 1}**

(RU) = {Pr(ND)= 0, Pr(RD)= 1} *

(ND)={Pr(PU)=0, Pr(PD)=0, Pr(NU)=0, Pr(ND)=1, Pr(RD)=0, Pr(RU)=0}

(RD)={Pr(PU)=0, Pr(PD)=0, Pr(NU)=0, Pr(ND)=0, Pr(RD)=1, Pr(RU)=0}

(NU)={Pr(PU)=0, Pr(PD)=0, Pr(NU)=1, Pr(ND)=0, Pr(RD)=0, Pr(RU)=0}

(ND)={Pr(PU)=0, Pr(PD)=0, Pr(NU)=0, Pr(ND)=1, Pr(RD)=0, Pr(RU)=0}

(RD)={Pr(PU)=0, Pr(PD)=0, Pr(NU)=0, Pr(ND)=0, Pr(RD)=1, Pr(RU)=0}

(RU)={Pr(PU)=0, Pr(PD)=0, Pr(NU)=0, Pr(ND)=0, Pr(RD)=0, Pr(RU)=1} 

λ'R/D

Realized 

Undetected

 Not 

realized

Undetected

Potential

Undetected

Potential

Detected

Realized 

with  

Potential 

Detection

Si←1

Di←1

Si←1

Di←1

Si←1

Markov processes Probability transfer functions

Timed Security Event (TSE)

* The detection has occured at a different leaf

** Despite D and SD having null durations, these lines are necessary to specify 

the transfer function, the transfer being potentially triggered by the leaf itself.
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of success, just by the off-line bruteforce attack. In terms of sequences analysis, the number of possible
sequences is much higher (4231 vs. 656 in Section 3.4). Tab. 9 gives a selection of sequences with the
conventions of Tab. 3; in addition, detections that occurred are indicated in brackets for the relevant leaves.
Here again, the top 2 sequences are direct successes of social engineering techniques, followed by the success
of a direct bruteforce attack. In the present case, they are followed by several bruteforce terminated non-
minimal sequences, before the first sequences based on the trapped email with malicious payload approach
appear (seq. 14 and 17). This differs from Tab. 3 in which the sequences based on physical approaches
appear first, whereas they are relegated to seq. 20 and further in the present case. This is related to the
detection and reaction possibilities associated here to such sequences. In seq. 20, the attacker has failed in his
social engineering attempt to manipulate the user by a forged email and has been detected; the parameters
of the subsequent leaves are those corresponding to a detected status. Here again, a complete analysis is not
provided, but would benefit from success sub-sequences consolidation views.

Table 8: Parameters used for detection and reaction modeling

Leaf name Type
Undetected
modes parameter

Detection
parameters

Detected
modes parameter

User trapped ISE γS/ND = 0.33
γD/R = 0,
γD/NR = 0.5 Not used

Appropriate
payload

ISE γS/ND = 0.1
γD/R = 0.1,
γD/NR = 0.33

γS/D = 0.1
(unchanged)

Crafted
attachement opened

TSE
λR/ND = 1.157 × 10−5 s−1

(MTTS ≈ 1 day)
No detection possible

λR/D = 5.787 × 10−6 s−1

(MTTS ×2 ≈ 2 days)

Password
intercepted

TSE
λR/ND = 1.157 × 10−5 s−1

(MTTS ≈ 1 day)
No detection possible

λR/D = 5.787 × 10−6 s−1

(MTTS ×2 ≈ 2 days)

Physical
reconnaissance

AA
λS/ND = 5.787 × 10−6 s−1

(MTTS ≈ 2 days)

λD(O) = 3.858 ×
10−6 s−1

(MTTS ≈ 3 days),
γD(I), γD(F), λD(A) = 0

λS/D = 2.893 × 10−6 s−1

(MTTS ×2 ≈ 4 days)

Keylogger local
installation

AA
λS/ND = 1.157 × 10−5 s−1

(MTTS ≈ 1 day)

λD(O) = 3.472 ×
10−5 s−1

(MTTS ≈ 8 hours),
γD(I), λD(A) = 0
γD(F) = 0.1

λS/D = 5.787 × 10−6 s−1

(MTTS ×2 ≈ 2 days)

Table 9: Selection of sequences with quantifications

Sequences
Probability
in a week

Average
duration
(s)

Contrib.

1 <Social Eng>Generic reconn., Email trap exec., User trapped 1.091× 10−1 9.889× 104 30.0%

2 <Social Eng>Generic reconn., Phone trap exec., User trapped 5.456× 10−2 9.889× 104 15.0%

3 Bruteforce 2.144× 10−2 5.638× 104 5.9%

4 <Social Eng>Generic reconnaissance, Bruteforce 1.055× 10−2 9.889× 104 2.9%

... ([...], Bruteforce) × 9

14 <Social Eng><Social Eng><Keylogger><Remote>Generic recon-
naissance, Payload crafting(no detection), Appropriate pay-
load(no detection), Password intercepted

2.250× 10−3 2.761× 105 0.6%

... ([...], Bruteforce) × 2

17 <Social Eng>Generic reconnaissance <Social Eng><Keylogger>

<Remote>Payload crafting(no detection), Appropriate pay-
load(no detection), Password intercepted

1.923× 10−3 2.688× 105 0.5%

... ([...], Bruteforce) × 2

20 <Social Eng>Generic reconnaissance, Email trap
exec., User trapped(failure and detection) <Social

Eng><Keylogger><Remote><Remote> <Physical>Physical
reconn., Keylogger local installation, Password intercepted

1.549× 10−3 5.991× 105 0.4%
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5 On-going and Future Work

5.1 Finer and Easier Analyses to Support Security Decision

The new modes related to detection enable new quantifications which may be of interest for the ana-
lyst. This includes the mean time to detection (MTTD) or attack sequences classification ordered by their
probability of detection. Besides, if the list of sequences provides insightful qualitative and quantitative
information, finer-grain analysis, for instance regarding success sub-sequences, are needed to take complete
advantage of the model results. Moreover, individual leaf importance factors, adapted to dynamic models as
discussed in [20], could be defined for our framework to complete the analyst tool-box. We intend to develop
complete and automated tools implementing all these aspects in order to provide a finer and easier support
to security decision.

5.2 Non-Markovian Framework

The BDMP theoretical framework has been built on Markovian assumptions and exponential distribu-
tions, commonly accepted in reliability engineering [21]. Although such a framework has also been used in
security (see [2] for a short review), there is much debate on the appropriate way to model stochastically the
behavior of an intelligent attacker, if any. In this perspective, it may be of interest to enable the use of other
distributions. This is possible without changing the graphical formalism, but the quantifications could not
fully benefit from the methods described in Section 3.4 and would rely on Monte-Carlo simulation.

5.3 BDMP Security Patterns Library

The construction of diverse models during this research has led to the identification of recurrent patterns
in attack scenarios. A rigorous inventory and categorization of such patterns could lead to a library of small
BDMP, modeling classical attack steps ready to assemble when building a complete model.

6 Conclusion

The adaptation and extension of the BDMP formalism offers a new security modeling technique which
combines readability, scalability and quantification capability. This paper has presented a complete view
of its mathematical framework and has illustrated its use through different use-cases. Sequences, but also
concurrent actions or exclusive choices can be easily taken into account. On the defensive side, detection
aspects have been integrated while several alternatives are possible for reaction modeling. This extended
formalism inherits from the hierarchical and scalable structure of attack trees, allowing different depths of
analysis and ease of appropriation, but goes far beyond by taking into account the dynamics of security. It
enables diverse and efficient time-domain quantifications, taking advantage of the BDMP trimming mecha-
nism and their associated sequence exploration approach, which have been used extensively in the reliability
engineering area. If there is still room for further developments as seen in Section 5, the framework presented
here can be already considered as ready to use, bringing an original approach in the security modeling area.
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[2] L. Piètre-Cambacédès and M. Bouissou, “Beyond attack trees: dynamic security modeling with Boolean
logic Driven Markov Processes (BDMP),” in Proceedings of the 8th European Dependable Computing
Conference (EDCC), (Valencia, Spain), pp. 199–208, Apr. 2010.

17



[3] M. Bouissou, “Automated dependability analysis of complex systems with the KB3 workbench: the
experience of EDF R&D,” in Proceedings of the International Conference on Energy and Environment
(CIEM’05), (Bucharest, Romania), Oct. 2005.

[4] B. Schneier, “Attack trees: Modeling security threats,” Dr. Dobb’s, vol. 12, no. 24, pp. 21–29, 1999.

[5] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Proceedings of the 8th Annual Int. Conf. on
Information Security and Cryptology (ICISC’05), LNCS 3935, (Seoul, Korea), pp. 186–198, Dec. 2005.

[6] E. G. Amoroso, Fundamentals of computer security technology, ch. 2: Threat Trees, pp. 15–29. Prentice-
Hall Inc., USA, 1994.

[7] S. C. Patel, J. H. Graham, and P. A. Ralston, “Quantitatively assessing the vulnerability of critical
information systems: A new method for evaluating security enhancements,” International Journal of
Information Management, vol. 28, pp. 483–491, Dec. 2008.

[8] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated generation and analysis of attack
graphs,” in Proceedings of the IEEE Symposium on Security and Privacy (S&P’02), (Oakland, USA),
pp. 273–284, May 2002.

[9] R. Lippmann and K. Ingols, “An annotated review of past papers on attack graphs,” Project Report
ESC-TR-2005-054, Massachusetts Institute of Technology (MIT), Lincoln Laboratory, Mar. 2005.

[10] I. Kotenko and M. Stepashkin, “Analyzing network security using malefactor action graphs,” Interna-
tional Journal of Computer Science and Network Security, vol. 6, no. 6, pp. 226–236, 2006.

[11] J. P. McDermott, “Attack net penetration testing,” in Proceedings of the 2000 Workshop on New Security
Paradigms (NSPW’00), (Cork, Ireland), pp. 15–21, Sept. 2000.

[12] S. Pudar, G. Manimaran, and C. Liu, “PENET: a practical method and tool for integrated modeling of
security attacks and countermeasures,” Computers & Security, vol. 28, pp. 754–771, May 2010.

[13] D. M. Nicol, W. H. Sanders, and K. S. Trivedi,“Model-based evaluation: From dependability to security,”
IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 48–65, 2004.

[14] L. Piètre-Cambacédès and C. Chaudet, “Disentangling the relations between safety and security,” in
Proceedings of the 9th WSEAS International Conference on Applied Informatics and Communications
(AIC’09), (Moscow, Russia), pp. 156–161, Aug. 2009.

[15] M. Bouissou and Y. Lefebvre, “A path-based algorithm to evaluate asymptotic unavailability for
large Markov models,” in Proceedings of the 48th Reliability and Maintainability Annual Symposium
(RAMS’02), (Seattle, USA), pp. 32–39, 2002.

[16] P. Harrison, “Laplace transform inversion and passage time distributions in Markov processes,” Journal
of Applied Probability, vol. 27, no. 1, pp. 74–87, 1990.

[17] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson, J. McDermid,
and D. Gollmann, “Towards operational measures of computer security,” Journal of Computer Security,
vol. 2, pp. 211–229, 1993.

[18] E. Jonsson and T. Olovsson, “A quantitative model of the security intrusion process based on attacker
behavior,” IEEE Transactions on Software Engineering, vol. 23, no. 4, pp. 235–245, 1997.

[19] K. Sallhammar, Stochastic models for combined security and dependability evaluation. PhD thesis,
Norwegian University of Science and Technology NTNU, 2007.

[20] Y. Ou and J. B. Dugan, “Approximate sensitivity analysis for acyclic Markov reliability models,” IEEE
Transactions on Reliability, vol. 52, pp. 220–230, June 2003.

[21] M. Rausand and A. Høyland, System Reliability Theory. Wiley, 2nd ed., 2004.

18



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Dépôt légal : 2010 – 3ème trimestre 

Imprimé à Télécom ParisTech – Paris 
ISSN 0751-1345 ENST D (Paris) (France 1983-9999) 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Télécom ParisTech 

Institut TELECOM - membre de ParisTech 

46, rue Barrault - 75634 Paris Cedex 13  -  Tél. + 33 (0)1 45 81 77 77  -  www.telecom-paristech.frfr 

Département INFRES
 

 

©
  

In
st

it
u
t 

T
E

L
E

C
O

M
 -

T
é

lé
c
o
m

 P
a

ri
s
T

e
c
h

 2
0
1
0

 

 


	Attack.pdf
	Introduction
	State of the Art
	The BDMP Formalism Applied to Attack Modeling
	Foundations
	The components of BDMP
	The three families of Boolean functions of the time
	Mathematical properties
	The basic leaves and their triggered Markov processes

	Sequence Modeling
	Modeling of Concurrent or Exclusive Alternatives
	Diverse and Efficient Quantifications: Principles and Use-case
	Hierarchical and scalable analysis

	Integrating Defensive Aspects: Detection and Reaction
	The IOFA detection decomposition
	Extending the theoretical framework
	Detection and reaction in the triggered Markov processes
	Reaction ``propagation"
	Use-case taking into account detections and reactions


	On-going and Future Work
	Finer and Easier Analyses to Support Security Decision
	Non-Markovian Framework
	BDMP Security Patterns Library

	Conclusion


