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Abstract

This report describes a probabilistic approach to template-based chord recognition in music sig-
nals. The algorithm only takes chromagram data and a user-defined dictionary of chord templates
as input data. No training or musical information such as key, rhythm or chord transition models is
required. The chord occurrences are treated as probabilistic events, whose probabilities are learned
from the song using an Expectation-Maximization (EM) algorithm. The adaptative estimation of
these probabilities (together with an ad-hoc post-processing filtering) has the desirable effect of
smoothing out spurious chords that would occur in our previous baseline work.

Our algorithm is compared to various methods that entered the Music Information Retrieval
Evaluation eXchange (MIREX) in 2008 and 2009, using a diverse set of evaluation metrics, some of
them new. The systems are tested on two evaluation corpus; the first one is composed of the Beatles
catalog (180 pop-rock songs) and the other one is constituted by 20 songs from various artists
and music genres. Results show that our method outperforms state-of-the-art chord recognition
systems.

Index terms: chord recognition, music signal processing, music signal represen-

tation, music information retrieval

Résumé

Ce rapport décrit une approche probabiliste pour la reconnaissance d’accords à partir de signaux
audio par l’utilisation de gabarits. L’algorithme n’utilise en entrée qu’un chromagramme et un
dictionnaire de gabarits d’accords. Aucun apprentissage et aucune information musicale (telle que
la tonalité, le rythme, ou des modèles de transitions d’accords) ne sont requis. Les apparitions
des accords sont traitées comme des événements probabilistes, dont les probabilités sont apprises à
partir de la chansons grâce à un algorithme Espérance-Maximisation (EM). L’estimation adaptative
de ces probabilités (ainsi que l’utilisation d’un filtrage ad-hoc appliqué comme post-traitement)
permet un effet de lissage qui élimine les accords parasites qui apparaissaient dans nos précédents
travaux.

Notre algorithme est comparé à plusieurs méthodes qui ont participé à MIREX en 2008 et 2009
en utilisant un ensemble varié de métriques d’évaluation, certaines d’entre elles étant inédites.
Les systèmes sont testés sur deux corpus d’évaluation, le premier étant constitué de toutes les
chansons des Beatles (180 chansons pop-rock) et le second comportant 20 chansons de différents
artistes et genres musicaux. Les résultats montrent que notre méthode surpasse les systèmes de
reconnaissance d’accords de l’état de l’art.

Mots clés : reconnaissance d’accords, traitement du signal musical, recherche

d’information musicale
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1
Introduction

Description of music signals with relevant and compact representations has been one of the main
fields of interest in Musical Information Retrieval (MIR) in the last years. One of the most common
representations of pop songs is chord transcription, which returns the musical content of a piece.
This representation, while not precisely reproducing all the notes played by the instruments, allows
musicians to easily playback songs. As such, a chord can be defined as a set of harmonically-
related notes played simultaneously. In reality, there are many ways to define and classify chords,
depending on the application context, time period or music type [1]. In this paper, we shall
follow the conventions used for Western popular music, where a chord can be written by using two
notions: roots and types. The root is the note upon which the chord is built, while the type gives
the harmonic structure of the chord (i.e., the harmonic relationships between the notes within the
chord). For example, a C major chord (composed of notes C, E and G) is described by its root
note C and its type major, implying the presence of the major third E and the perfect fifth G in
the chord construction. The chord transcription output by our automatic chord transcriber is a
sequence of chord labels with their respective start and end times. This output can be used for
song playback - which constitutes the main aim of our system - but also in other applications such
as song identification, query by similarity or structure analysis.

Template-based chord recognition methods are based on the hypothesis that only the chord defi-
nition is necessary to extract chord labels from a music piece. A chord template is a 12-dimensional
vector representing the 12 semi-tones (or chroma) of the chromatic scale. Each component of the
pattern is given a theoretical amplitude according to the chord definition. The most simple and
intuitive chord template [2], [3], [4] has a binary structure, with amplitudes of 1 for the chromas
within the chord definition and 0 for other chromas. More complex patterns have been considered,
for example taking into account the harmonics of chord notes [5], [6].

The first template-based system for audio chord recognition was developed by Fujishima [2].
This method is the first one that considers chords not only as sets of individual notes, but rather as
entities whose structure is determined by one root and one type. The chord transcription process
is based on the extraction from the signal of Pitch Class Profiles (PCP) or chroma vectors. The
chroma vectors are 12-dimensional vectors where each component represents the energy or salience
of one of the 12 semi-tones within the chromatic scale, regardless of the octave. The temporal evo-
lution of these chroma vectors is called chromagram: it has been widely used in literature for chord
or key estimation [5, 7]. In Fujishima’s approach, 324 chords are detected, each of them modeled
by a binary Chord Type Template (CTT). The chord detection is performed by first calculating
scores for every root and chord type, then selecting the best score. The scores are computed from
chroma vectors and hand-tuned variations of the original CTT. Two matching methods between
PCP and CTT are tested: the Nearest Neighbor Method (Euclidean distance between chroma
vector and hand-tuned CTT) and the Weighted Sum Method (dot product between chroma vec-
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CHAPTER 1. INTRODUCTION

tor and hand-tuned CTT). The hand-tuning is done by try-and-error and accounts for the chord
type probability and the number of notes within the chord type. Two post-processing methods
are introduced in order to take into account the temporal structure of the chord sequence. The
first attempt is to smooth over the past chroma vectors to both reduce the noise and use the fact
that a chord usually lasts for several frames. The second heuristic is to detect chord changes by
monitoring the direction of the chroma vectors.

Harte & Sandler [3] use a very similar method to Fujishima’s. The chromagram extraction is
improved by applying a frequency tuning algorithm. They define binary chord templates for 4
chord types (major, minor, diminished and augmented) and then calculate a dot product between
chroma vectors and chord templates. The temporal information is captured by applying low-pass
filtering on the chromagram and median filtering to the detected chord sequence.

Lee [4] also uses binary chord templates, this time for the 24 major/minor triads. He introduces
a new input feature called Enhanced Pitch Class Profile (EPCP) using the harmonic product
spectrum. The chord recognition is then carried out by maximizing the correlation between chroma
vectors and chord templates.

These template-based methods often have difficulties to capture long-term variations of chord
sequences, as well as to generate compact chord transcriptions. In particular, these methods can
give good frame-to-frame results but often produce fragmented transcriptions, hardly usable for
immediate song playback. Complex probabilistic methods have been built in order to incorporate
musical information such as key, chord transitions models, beats or structure. This high-level
information can for instance be extracted from music theory and introduced in Hidden Markov
Models (HMM) [8], [9], in Dynamic Bayesian Networks (BDN) [10], [11] or in rule-based systems
[12], [13]. It can also be obtained from the training of HMM with audio data (annotated or
not) [14], [15], [16], [17], [18]. Finally, some methods combine these two approaches, for instance
using hypothesis search algorithms [19], [20].

The method presented in this paper builds on the deterministic template-based method de-
scribed in [21, 22] while offering a novel statistical framework that explicitly models chord occur-
rences in songs as probabilistic events. The probability of each of the candidate chords in a song is
learned directly from the song, i.e., in a data-driven way. Hence, the probabilistic approach allows
to extract a relevant and sparse chord vocabulary for every song. By vocabulary, we mean the
subset of the dictionary that contains the chords actually played in the song. The term dictionary
refers to the set of all user-defined chord candidates. The notion of vocabulary is not necessarily
linked to key: for example, in the case of modulations, the chord vocabulary can contain chords
from various keys. Our previous systems [21, 22] tended to produce fragmented chord transcrip-
tions, and to detect chords that were not present in the ground-truth files. This phenomenon was
mostly due to a large number of parallel errors (major-minor confusion). The main effect of the
introduction of the chord probabilities in the model is the elimination of most spurious chords
detected by our previous methods (i.e., the probability of chords absent from the song tends to
zero). This leads to more compact and readable, in other words sparser, chord transcriptions
while improving the detection scores. Contrary to other probabilistic chord recognition methods,
our method can still be classified within the template-based methods, since the only necessary
information given to our system is the chord definition (i.e., the chord dictionary).

Besides the novel probabilistic chord transcription framework, an other contribution of this
paper is the large-scale comparison of our method with numerous state-of-the-art systems. Many
metrics are considered, some of them new, and we propose a complete evaluation of several aspects
of the chord recognition task.
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CHAPTER 1. INTRODUCTION

Section 2 introduces notations and provides a short description of the main concepts of the
deterministic baseline method [21, 22]. Section 3 describes our probabilistic approach and how it
is built on the baseline method. Section 4 presents the metrics and the two song corpus used for
evaluation. Finally, Section 5 reports the results obtained by our probabilistic and deterministic
methods, along with some state-of-the-art methods.
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2
Deterministic baseline method

This section describes the deterministic baseline method and introduces the main concepts of our
chord recognition system. More details can be found in [21,22].

2.1 Principle and notations

Let C be a 12×N chromagram, composed of N 12-dimensional successive chroma vectors cn. Let
W be our 12 × K chord dictionary, composed of K 12-dimensional chord templates wk. Again,
the dictionary is the set of all user-defined chord candidates. In this paper we will only consider
major and minor chords built from the chromatic scale, hence K = 24.

Intuitively, the chord γn ∈ [1, . . . , K] detected at frame n should be the one whose defining
template wγn is the closest to the chroma vector cn, given a certain measure of fit. Of course we
assume that only one chord is played at each time frame. The fit between cn and every possible
template wk has to be measured up to a scale parameter hk,n that accounts to energy variations,
so that

cn ≈ hγn,nwγn . (2.1)

Given a measure of fit D ( . ; . ), the scale parameter is defined as

hk,n = argmin
h

D (cn;hwk) . (2.2)

and must satisfy
∇hD (cn;hwk)|h=hk,n

= 0. (2.3)

Given the set of computed scale parameters, the detected chord γ̂n for frame n is finally chosen as
the one yielding best overall fit, i.e.,

γ̂n = argmin
k

{D (cn;hk,n wk)}k. (2.4)

2.2 Chord templates

Chord templates are 12-dimensional vectors that can be considered as theoretical chroma vectors,
reflecting the contribution in amplitude of each chroma in the chord. Chord recognition methods
often rely on chord templates, which are either fixed [2], [3], [4], [6], [8], [23] or learned from audio
data [14], [16], [17]. We here choose to consider fixed templates as they are easier to obtain (no
need for annotated data) and do not depend on the training corpus. Hence, our chord templates
are simple binary masks: an amplitude of 1 is given to the notes present in the chord and an
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CHAPTER 2. DETERMINISTIC BASELINE METHOD

C C# D D# E F F# G G# A A# B
0

0.1

0.2

0.3

0.4
C major

C C# D D# E F F# G G# A A# B
0

0.1

0.2

0.3

0.4
C minor

Figure 2.1: Chord templates for C major and C minor.

amplitude of 0 is given to the other ones.1 For example a C major chord is given an amplitude
of 1 to chromas C, E and G while other chromas have an amplitude of 0. By convention, in our
system the chord templates are normalized so that the sum of the amplitudes is 1 but any other
normalization could be employed, as scale factors are refitted anyway. Examples for C major and
C minor chord are presented on Figure 2.1.

2.3 Measures of fit

In [21, 22], we considered for our recognition task several measures of fit, popular in the field of
signal processing. The well-known Euclidean distance defined by

DEUC (x|y) =
√

∑

m

(xm − ym)
2 (2.5)

has already been used by Fujishima [2] for the chord recognition task. The Itakura-Saito (IS)
divergence defined by

DIS (x|y) =
∑

m

xm

ym
− log

(

xm

ym

)

− 1 (2.6)

was introduced in [24] and presented as a suitable measure of the goodness of fit between two
spectra. It is popular in the speech community and has recently proven useful for source separa-
tion based on nonnegative matrix factorization of the spectrogram [25]. The Kullback-Leibler
divergence [26] is a well-known measure of the dissimilarity between probability distributions. It

1In practice a small value is used instead of 0, to avoid numerical instabilities that may arise with some measures of fit.
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CHAPTER 2. DETERMINISTIC BASELINE METHOD

has been widely used in information theory and has given rise to many variants: in the present pa-
per, we use the generalized Kullback-Leibler (KL) divergence (also known as I-divergence) defined
by

DKL (x|y) =
∑

m

xm log

(

xm

ym

)

− xm + ym. (2.7)

These three measures of fit have probabilistic interpretations that will be discussed in Section 3.
Also, they behave differently with respect to scale (taken here as the relative contribution of
small energy observations with respect to higher energies), and in particular the IS divergence is
scale-invariant (see [25] for further discussion).

2.4 Post-processing filtering

Frame by frame chord recognition does not take into account the influence of adjacent frames,
which may be considered suboptimal as it does not exploit the available information redundancy
between the frames. In order to correct this, we introduced in our baseline work a post-processing
filtering step that works upstream on the recognition criterion {D (cn;hk,n wk)}n. Two types of
filtering have been tested for our baseline system: low pass filtering, that smoothes the output
chord sequence and reflects the long-term trend in the chord changes, and median filtering, that
has been widely used in image processing, is efficient to correct random errors while respecting
transitions.

Note that this type of filtering is innovative, since it is applied to the recognition criterion itself,
and not to the chromagram (as in previous work [2], [7], [8]) or to the detected chord sequence [8].
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3
Probabilistic framework

In this section we describe the main methodological contribution of this paper, a novel probabilistic
template-based chord recognition system. Our approach is built on the deterministic baseline
system described in Section 2, but now the measures of fit are turned into likelihood functions and
the chord occurrences are treated as probabilistic events. In particular, the probability of each
chord is learned from the song, and this will be shown to sparsify the chord vocabulary (elimination
of spurious chords), which in turn greatly improves transcription accuracy.

3.1 Generative model for cn

When the Euclidean distance, the KL divergence or the IS divergence is used as the measure of fit,
the criterion D (cn;hk,n wk) defined in Section 2 is actually a log-likelihood in disguise. Indeed, the
latter measures of fit respectively underlie Gaussian additive, Poisson and Gamma multiplicative
observation noise models and they may be linked to a log-likelihood such that

− log p (cn|hk,n,wk) = ϕ1 D (cn|hk,nwk) + ϕ2, (3.1)

where p (cn|hk,n,wk) is the probability of chroma vector cn (now treated as a random variable)
given chord template wk (a fixed deterministic parameter) and scale hk,n (treated as an unknown
deterministic parameter), and where ϕ1 and ϕ2 are constants w.r.t. hk,n and wk. The exact corre-
spondences between each measure of fit and its equivalent statistical observation model are given
in Table 3.1.

The distribution p (cn|hk,n,wk) represents the probability of observing cn given that the chord
played at frame n is the kth one, i.e., the one modeled by template wk. Let us introduce the
discrete state variable γn ∈ [1, . . . , K] which indicates which chord is played at frame n, i.e, γn = k

if chord k is played at frame n. Hence, we may write

p (cn|γn = k, hk,n) = p (cn|hk,n,wk) . (3.2)

We are slightly abusing notations here as wk should also appear on the left-hand side of Eq. (3.2),
but as this is a fixed parameter as opposed to a parameter to be estimated, we will drop it from
the notations. Now let us denote by αk the probability of occurrence of chord k in the song. Hence
we have

P (γn = k) = αk, (3.3)

where we so far assume that the frames are independent. Let us introduce the vector variables
α = [α1, . . . , αK ]

T (vector of all chord probabilities) and hn = [h1,n, . . . , hK,n] (vector of all scale

9



CHAPTER 3. PROBABILISTIC FRAMEWORK

Noise structure
Observation model
p (cn|hk,n,wk)

Log-likelihood
− log (p (cn|hk,n,wk))

Scale parameter
hk,n

Additive Gaussian
noise

cn = hk,nwk + ǫ

∏M

m=1 N
(

cm,n ; hk,nwm,k, σ
2
)

1
2σ2 d

2
EUC (cn;hk,nwk) +

cst

∑

M

m=1
cm,n wm,k

∑

M

m=1
w2

m,n

Multiplicative
Gamma noise

cn = (hk,nwk) · ǫ

∏M

m=1
1

hk,nwm,k
G
(

cm,n

hk,nwm,k
; β, β

)

β dIS (cn|hk,nwk) + cst 1
M

∑M

m=1
cm,n

wm,k

Poisson noise
∏M

m=1 P (cm,n ; hk,nwm,k) dKL (cn|hk,nwk) + cst
∑M

m=1 cm,n

where N , G and P are the probability distribution defined in Appendix
and cst denotes terms constant w.r.t. hk,nwk.

Table 3.1: Correspondences between the measures of fit and their equivalent statistical observation model of the
chromagram

parameters at frame n). Averaging over all possible states (chords), the statistical generative
model of the chromagram defined by Eq. (3.2) and (3.3) may be written more concisely as

p (cn|α,hn) =
K
∑

k=1

αk p (cn|hk,n,wk) , (3.4)

which defines a mixture model.

To recapitulate our model, given a dictionary of chords W with occurrence probabilities α, a
chromagram frame cn is generated by 1) randomly choosing chord k with probability αk, 2) scaling
wk with parameter hk,n (to account for amplitude variations), and 3) generating cn according to
the assumed noise model and the vector hk,nwk.

The only parameters to be estimated in our model are the chord probabilities α and the set
of amplitude coefficients H = {hk,n}kn. Given estimates of these parameters, chord recognition at
every frame n may be performed by selection of the chord with largest posterior probability, i.e,

γ̂n = argmax
k

{p(γn = k|cn, α̂, ĥn)}k. (3.5)

Next we describe an EM algorithm for maximum likelihood estimation of parameters α and H.

3.2 Expectation-Maximization (EM) algorithm

Let us denote Θ = (α,H) the set of parameters. Our task is to maximize the following objective
function

log p (C|Θ) =
∑

n

log p (cn|α,hn) , (3.6)

which may routinely be done with an EM algorithm [27] using the set of chord state variables as
missing data, which we denote γ = [γ1, . . . , γN ]. The EM algorithm involves computing (E-step)

10



CHAPTER 3. PROBABILISTIC FRAMEWORK

and maximizing (M-step) the following functional

Q (Θ|Θ′) =
∑

γ

log p (C,γ|Θ) p (γ|C,Θ′) (3.7)

where log p (C,γ|Θ) is referred to as the complete data likelihood and p (γ|C,Θ′) is the missing
data posterior. Each of the two EM steps is described next.

E-Step Under the frame independence assumption the functional (3.7) can be written as

Q (Θ|Θ′) =
N
∑

n=1

K
∑

k=1

log p (cn, γn = k|Θ) p (γn = k|cn,Θ
′) . (3.8)

Let us denote ᾱk,n the posterior probability of state variable γk,n (the notation is chosen in analogy
with the notation chosen for its prior probability αk), i.e.,

ᾱk,n = p (γn = k|cn,Θ) (3.9)

=
αk p (cn|γn = k,Θ)

∑K
l=1 αl p (cn|γn = l,Θ)

, (3.10)

where the second equation comes naturally from the application of Bayes theorem and from the fact
that the probabilities sum to 1. In the following, we denote by ᾱ′

k,n the posterior state probabilities

conditioned on parameter iterate Θ′. Hence, by expanding the complete data likelihood as

log p (cn, γn = k|Θ) = log p (cn|hk,n,wk) + logαk, (3.11)

the E-step amounts to evaluating the EM functional as

Q (Θ|Θ′) =
N
∑

n=1

K
∑

k=1

[log p (cn|hk,n,wk) + logαk] ᾱ
′

k,n, (3.12)

which we recall is to be maximized w.r.t to Θ = (α,H) and subject to
∑K

k=1 αk = 1.

M-Step The derivative of Q (Θ|Θ′) w.r.t to hk,n writes

∇hk,n
Q (Θ|Θ′) = ᾱ′

k,n∇hk,n
log p(cn|hk,n,wk), (3.13)

so that updating hk,n amounts to solving

∇hk,n
log p(cn|hk,n,wk) = 0, (3.14)

which does not involve the current parameter estimate Θ′. Therefore, the parameter H can be
precomputed and does not need to be updated during the EM iterations. Note that the estimation
H is equivalent to that of Eq. (2.3) in the deterministic baseline method. The expressions of the
scale parameters hk,n are presented on Table 3.1.

Regarding the optimization of parameter α, the sum constraint can be handled with the intro-
duction of a Lagrangian term, leading to the following update:

αk =

∑N
n=1 ᾱ

′

k,n
∑K

l=1

∑N
n=1 ᾱ

′

l,n

. (3.15)

The resulting EM algorithm is summarized below. In the following we will refer to our probabilistic
approach as PCR (standing for probabilistic chord recognition).

11
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Algorithm 1: EM algorithm for probabilistic template-based chord recognition

Input: Chromagram data C = [c1, . . . , cN ], chord templates W = [w1, . . . ,wK ]
Output: Chord probabilities α = [α1, . . . , αK ]

Initialize α

Compute scale parameters H as in Eq. (3.14)

for i = 1 : niter do

ᾱ
(i−1)
k,n =

p(cn|hk,n,wk) α
(i−1)

k
∑

K

l=1
p(cn|hl,n,wl) α

(i−1)

l

// E-Step

α
(i)
k =

∑

N

n=1
ᾱ

(i−1)

k,n
∑

K

l=1

∑

N

n=1
ᾱ

(i−1)

l,n

// M-Step

3.3 Chord recognition under the probabilistic model

As already discussed in Section 3.1, our chord recognition criterion is based on the frame-by-frame
maximum state posterior probability, i.e.,

γ̂n = argmax
k

{ᾱk,n}k. (3.16)

Note that the state posterior probabilities are readily available from within the EM algorithm.
Just like in the baseline method, this frame-by-frame chord recognition system can be improved
by taking into account the long-term trend in the chord changes. We therefore propose to use
an ad hoc filtering process that implicitly informs the system of the expected chord duration.
The post-processing filtering is performed on the state posterior probabilities ᾱk,n and not on the
chromagram, as in [2, 7, 8], or on the detected chord sequence as in [8].
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4
Evaluation

4.1 Corpus

As for evaluation, we first consider the Beatles corpus, composed by all 13 albums of the Beatles
(180 songs, PCM 44100 Hz, 16 bits, mono). This database has been extensively used for the
evaluation of many chord recognition systems, in particular those presented at MIREX 2008 and
2009 for the Audio Chord Detection task [28,29]. The annotation files are provided by Christopher
Harte [30]. 17 types of chords are used (maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9, maj9,
sus4, sus2, min, min7, minmaj7, min6, min9) among with one ‘no chord’ label (N) corresponding
to silences or untuned material. The alignment between annotations and audio files is performed
with an algorithm also provided by Christopher Harte.

The second corpus was provided to us by the QUAERO project1. It consists of 20 real audio
songs annotated by IRCAM (PCM 22050 Hz, 16 bits, mono) from various artists (Pink Floyd,
Queen, Buenavista Social Club, Dusty Springfield, Aerosmith, Shack, UB40, Fall Out Boy, Nelly
Furtado, Justin Timberlake, Mariah Carey, Abba, Cher, Phil Collins, Santa Esmeralda, Sweet, FR
David and Enya) and various genres (pop, rock, electro, salsa, disco,...). The corpus only contains
major and minor labels.

4.2 Chord dictionary

The evaluation protocol we use in this paper relies on the one used in MIREX 08 & 09 [28, 29].
Since major and minor chords are prominent in pop music, the evaluation is only based on a 25-
chord dictionary: 12 major chord labels, 12 minor chords labels and one ’N’ label corresponding
to silences or untuned material.

The Beatles annotation files are therefore mapped to major and minor types following these
rules (used in MIREX 08 & 09) [28, 29]:

• major: maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9, maj9, sus4, sus2

• minor: min, min7, minmaj7, min6, min9

Since the QUAERO corpus contains only major and minor chords already, no mapping is
necessary.

1QUAERO project: http://www.quaero.org
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Figure 4.1: Example of calculation of Overlap Score, Hamming Distance, Reduced Chord Length, Reduced Chord
Number and False Chord Label Number. The figure uses a discrete “clock” for purpose of illustration but in reality
the time scale is continuous up to the sample period.

4.3 Metrics

The chord transcription task is actually the fusion of two subtasks: a recognition task (find the
correct label for each frame) and a segmentation task (find the correct chord boundaries). Also a
good transcription is supposed to be compact and to use a sparse chord vocabulary. We here list
some metrics in order to evaluate not only the quality of transcription but also the accuracy of
segmentation and of chord vocabulary, as described below.

Let S be a corpus composed of S songs. In the annotation files, each song s is segmented with
Ts temporal segments U (s) = {u1(s), . . . , uTs

(s)}. For each segment ut(s), the annotation files
provide a chord label lt(s).

Let us denote |u| the duration of segment u and u ∩ u′ the intersection of segments u and u′.
The total length of the song s is, with our notations, |s| =

∑Ts

t=1 |ut(s)|.
With our transcription method, each song s is divided into T̂s segments, and every segment

ût(s) is given a chord label l̂t(s).

14
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4.3.1 Performance metrics

Our primary goal is to evaluate the accuracy of the chord labels attributed by our method. Overlap
Score OS(s) is defined as the ratio between the length of the correctly analyzed chords and the
total length of the song, i.e.,

OS(s) =

∑Ts

t=1

∑T̂s

t′=1 |ut(s) ∩ ût′(s)|lt(s)=l̂t′ (s)

|s|
(4.1)

This Overlap Score ranges from 0 to 1. The higher the score, the better the performance.
The Average Overlap Score (AOS), which has been used for MIREX 2008 [28], is the mean of

the Overlap Scores OS(s) of the corpus:

AOS =
1

S

S
∑

s=1

OS(s) (4.2)

The chord recognition task can be seen as the joint recognition of chord root and chord type.
Another metric can also be defined: the Average Root Overlap Score (AROS), which is defined
just like the AOS, but only assesses root detection.

4.3.2 Segmentation metrics

In order to evaluate the segmentation quality, recent publications [11] have used the Hamming
Distance (HD) calculated from theDirectional Hamming Divergence (DHD) [31]. The DHD reflects
the unfitness of one segmentation to another. The directional Hamming divergence between the
annotation segmentation U(s) and the transcription segmentation Û(s) is defined as:

DHD
(

U(s)|Û(s)
)

=

∑Ts

t=1 |ut(s)| −maxt′ |ut(s) ∩ ût′(s)|

|s|
(4.3)

The inverse directional Hamming divergence is defined as:

DHD
(

Û(s)|U(s)
)

=

∑T̂s

t=1 |ût(s)| −maxt′ |ût(s) ∩ ut′(s)|

|s|
(4.4)

Finally, the Hamming distance between the two segmentations is defined as the mean of the two
directional Hamming divergences:

HD (s) =
DHD

(

U(s)|Û(s)
)

+DHD
(

Û(s)|U(s)
)

2
(4.5)

The Hamming Distance tends to reflect the dissimilarity of two segmentations: this metric takes
values between 0 and 1 and the lower the value, the better the segmentation quality. In particular,
a value of 0 is obtained when both segmentations are exactly the same. The mean of all the
Hamming Distances of the corpus is called Average Hamming Distance (AHD).

4.3.3 Fragmentation metrics

A chord transcription is expected to display “compactness”. Indeed, the presence of numerous
fragmented chords can lead to noisy and hardly understandable transcriptions. In order to evaluate
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whether a chord recognition method produces fragmented transcriptions or not, we propose a new
metric that we coin Average Chord Length (ACL). Let us first define for a song s, the Reduced Chord
Length RCL(s) as the ratio between the experimental average chord duration and the duration of
the ground truth, i.e.,

RCL(s) =

1
T̂s

∑T̂s

t=1 |ût(s)|
1
Ts

∑Ts

t=1 |ut(s)|
(4.6)

Note that this score can also be defined as the ratio between Ts and T̂s. This metric should be
as close to 1 as possible; when lower than 1, the transcriber tends to overfragment the piece. We
define the Average Chord Length as the mean of all the Reduced Chord Lengths of the corpus.

4.3.4 Chord vocabulary metrics

Another indicator of the quality of a chord transcription is the compactness of the chord vocabulary
used for the transcription. Remember that for each song the chord vocabulary is the subset of the
chord dictionary needed to transcribe that song. When the song relates to a specific key, it reflects
by extension the tonal context of the piece, but we see that in general the chord vocabulary a
wider notion than key. We define two metrics for assessing the correctness of the estimated chord
vocabulary: the Average Chord Label Number (ACLN) and the Average False Chord Label Number
(AFCLN).

Given a song s, we define the Reduced Chord Label Number RCLN(s) as the ratio between the
number of different chord labels used for the transcription and in the ground truth annotation.
This metric should be close to 1. When greater than 1, the transcription uses a too wide chord
vocabulary. The Average Chord Label Number is the mean of all Reduced Chord Label Numbers
of the corpus.

The Average False Chord Label Number is the average number of chord labels that do not
belong to the annotation files. It should be as low as possible: an AFCLN of 0 would indicate that
the method always detects the correct chord vocabulary.

These metrics are illustrated on a small example on Figure 4.1.
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5
Results

5.1 Experimental setup

We use the chromagram proposed by Bello & Pickens [8] as the input to our system. Other
chromagrams were considered in preliminary studies (in particular the one described in [8], [7], [32])
but we found Bello & Pickens’ chromagram to give the best results with our system. We used
the code kindly provided by the authors. The window length is 743 ms and the hop size is set to
93 ms. Their implementation also performs a silence (‘no chord’) detection using an empirically
set threshold on the energy of the chroma vectors. More details about the calculation of the
chromagram can be found in [8].

For our new probabilistic methods, two sets of parameters are to be chosen: the probability
distribution parameters (σ2 for the Gaussian model and β for the Gamma model), and the post-
processing filtering parameters. For each of these observation distributions, extensive simulations
have been done in order to find the optimal probability distribution parameters. These parameters
are chosen in order to fit the model to the chord recognition task, i.e., to model the type of noise
present in the chromagrams.

The post-processing methods and neighborhood sizes used here are chosen in order to optimize
the value of the Average Overlap Score on the Beatles corpus. Nevertheless, there is not much
difference between two filtering methods or close neighborhood sizes.

The experimental parameters used for our PCR methods are as follows.

• Gaussian additive noise model: σ2 = 0.02 and median filtering on 17 frames (2.23s) ;

• Gamma multiplicative noise model: β = 3 and low-pass filtering on 15 frames (2.04s) ;

• Poisson noise: median filtering on 13 frames (1.86s).

We will respectively refer to the method based on the above models as PCR/Gaussian, PCR/Gamma,
PCR/Poisson.

5.2 Example on one Beatles song

Before giving the overall results, we propose here to investigate the differences between the deter-
ministic and probabilistic approaches on one example. We chose the Beatles’ song Run for your life
from the album Rubber Soul as its transcription clearly evidence the improvements brought by the
probabilistic approach over the deterministic one. As such, Figure 5.1 displays the transcription ob-
tained with PCR/Gamma and with OGF1, the latter being one of the two deterministic algorithms
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Chord transcription with the baseline method
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Chord transcription with the probabilistic method

time (s)
0 20 40 60 80 100 120

C
C#/Db

D
D#/Eb

E
F

F#/Gb
G

G#/Ab
A

A#/Bb
B

Cm
C#/Dbm

Dm
D#/Ebm

Em
Fm

F#/Gbm
Gm

G#/Abm
Am

A#/Bbm
Bm
N/A

Figure 5.1: Examples of chord transcription on the Beatles song Run for your life. The estimated chord labels are
displayed in black while the ground-truth chord annotation is in gray. Top figure: transcription with the baseline
deterministic approach (OGF1), bottom figure: transcription with the probabilistic approach (PCR/Gamma).

that we submitted at MIREX’09.1 A first observation is that PCR/Gamma gives better results.
Indeed, the Overlap Scores are respectively 0.733 and 0.919 for OGF1 and PCR/Gamma, showing
a clear improvement. A carefully examination of both transcriptions suggests three explanations
for this improvement:

• PCR/Gamma detects chord boundaries more accurately than OGF1.

• PCR/Gamma seems to detect longer chords while OGF1 gives very fragmented results.

• The chord vocabulary used in the transcription output by PCR/Gamma is sparser than the
one returned by OGF1, preventing in particular from some major-minor confusions.

The evaluation metrics computed for this song confirm these observations:

1In essence, OGF1 corresponds to the baseline system described in Section 2 based on a KL divergence and median filtering with
smoothing window of size 15 and a dictionary composed only of major and minor chords. See details in [21,22,29].
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Figure 5.2: Ground-truth and estimated chord probability distributions α̂ for the Beatles song Run for your life.

• The Hamming Distances are respectively equal to 0.206 and 0.060, which reflects the fact
that the segmentation provided by PCR/Gamma is very similar to the one described in the
annotation files.

• The Reduced Chord Lengths are respectively 0.345 and 1.085, which shows that PCR/Gamma
better evaluates the chord length.

• The chord vocabulary used by PCR/Gamma is smaller than OGF1’s one: the Reduced Chord
Label Numbers for the two methods are 1.75 and 0.75 respectively. Since the second value is
closer to 1 than the first one, the number of chords used by PCR/Gamma is the most accurate.
The calculation of the False Chord Label Numbers confirms this: they are respectively equal
to 6 and 0, which means that the transcription provided by PCR/Gamma does not use any
chord labels that were not present in the annotation files.

PCR/Gamma efficiently estimate the chord vocabulary thanks to the parameter α that models,
for each song, the chord probability distribution. This is illustrated on Figure 5.2 which displays
the estimated chord probabilities (vector α) on top of the empirical normalized chord length
histogram computed from the annotation file. We may see that they closely fit, which confirms
our assumption regarding the accurate estimation of the chord vocabulary.

5.3 Comparison with state-of-the-art

Our methods are here compared to some state-of-the-art systems according to the metrics defined
in Section 4. These methods have all been tested with their original implementations and have all
participated in MIREX 2008 [28] or 2009 [29].
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MIREX 2008 MIREX 2009 PCR methods

BP RK PVM KO1 KO2 DE OGF1 OGF2 Gaussian Gamma Poisson

Average Overlap Score (AOS) 0.707 0.705 0.648 0.722 0.734 0.738 0.714 0.724 0.749 0.758 0.744

Average Root Overlap Score (AROS) 0.740 0.763 0.680 0.754 0.761 0.772 0.775 0.783 0.785 0.787 0.775

Average Hamming Distance (AHD) 0.153 0.146 0.209 0.152 0.150 0.156 0.163 0.152 0.146 0.149 0.156

Average Chord Length (ACL) 0.941 1.074 0.422 1.169 1.168 0.890 0.552 0.717 0.872 0.920 1.057

Average Chord Label Number (ACLN) 1.441 1.414 2.285 1.507 1.319 1.667 2.070 1.693 1.314 1.185 1.012

Average False Chord Label Number (AFCLN) 3.560 3.330 8.490 3.760 2.590 4.590 7.390 4.990 2.640 1.860 1.060

Run time (in seconds) 1619 2241 12402 63821 63821 1403 790 796 480 482 486

Table 5.1: Comparison with the state-of-the-art on the Beatles corpus

MIREX 2008:

• BP: Bello & Pickens [8]

• RK: Ryynänen & Klapuri [17]

• PVM: Pauwels, Verewyck & Martens [33]

MIREX 2009:

• KO1 & KO2: Khadkevich & Omologo [18]

• DE: Ellis [14]

• OGF1 & OGF2: our baseline method [21, 22]

More details about these methods can be found in the given references or from the corresponding
MIREX websites [28, 29].

5.3.1 Beatles corpus

Table 5.1 presents the results obtained by these 11 chord recognition systems on the Beatles corpus.
Quantitative scores such as AOS or AROS show that our probabilistic approach slightly out-

performs state-of-the art: the AOS we obtain with PCR/Gamma is indeed 2% larger than the
best score (DE). Since all the scores are close, it is interesting to figure out whether the methods
are significantly different from each other. We therefore propose to perform a Tukey-Kramer’s
test [34], [35] on the Overlap Scores. This test was notably run in MIREX 2008 & 2009 and
compares the average rank of every chord recognition method to the average rank of every other
system. Results of the Tukey-Kramer’s test are displayed on Figure 5.3. It shows that the im-
provment brought by our PCR approach is significant. Indeed PCR/Gamma is significantly better
than all the other tested methods, except for PCR/Gaussian. The latter method performs sign-
ficantly better than all the methods except for KO2, PCR/Gamma and PCR/Poisson. Finally,
PCR/Poisson is significantly better than BP, RK, PVM and OGF1. In particular, PCR/Gamma
outperforms OGF1 on 148 songs over 180.

The introduction of other evaluation metrics allows to compare chord recognition methods
according to several criteria. Indeed, the 4 other metrics tend to evaluate the segmentation, the
fragmentation and the good detection of the chord vocabulary.

The segmentation, i.e., the detection of the chord boundaries, is measured by the AHD (that
should be as low as possible). We notice that, except for the PVM method, all the AHD values are
close (around 0.15). Indeed, statistical tests are rather inconclusive: a Tukey-Kramer’s test shows

1As the KO1 and KO2 methods are run together because they share common resources, we here report the total running time.
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Figure 5.3: Tukey-Kramer’s test performed on Overlap Scores calculated on the Beatles corpus. The x-axis shows
the average rank for each chord recognition method along with the comparison interval.

that except for the PVM method, they are no strong differences between the chord recognition
methods. For example, the method obtaining the best AHD (PCR/Gaussian), is only significantly
different from PVM, OGF1 & DE.

The fragmentation is evaluated thanks to the ACL (that should be as close to 1 as possible).
Some methods seem to slightly overestimate the chord length (RK, KO1, KO2 & PCR/Poisson),
but most of them tend to over-fragment the chords. Some methods (PVM, OGF1) even detect
chords with half their real duration. On the contrary, our PCR methods seem to avoid this
fragmentation effect and the best results are obtained with PCR/Gamma.

One of the main contributions of the probabilistic framework is the explicit evaluation of the
song chord vocabulary. The good detection of this chord vocabulary is described by two metrics:
the ACLN (that should be as close to 1 as possible) and the AFCLN (that should be as low
as possible). We notice that all methods seem to over-evaluate the number of chords. The two
methods PVM and OGF1 seem to be particularly penalized by this phenomenon. Our 3 PCR
methods, on the contrary, reliably evaluate the chord vocabulary: they obtain the 3 best scores.
AFCLN scores confirm these results: the introduction of chord probabilities allows to correctly
capture the chord vocabulary of every song.

As the PCR approach does not require any training nor side-information (besides the chroma-
gram data and the statistical model specification) its computation time is quite low. Thanks to
some code optimization, our PCR methods perform even faster than the baseline methods OGF1
& OGF2, and are therefore twice as fast as other state-of-the-art methods.
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Figure 5.4: Error distribution of OGF1, OGF2 and PCR/Gamma on the Beatles corpus.

MIREX 2008 MIREX 2009 PCR methods

BP RK PVM KO1 KO2 DE OGF1 OGF2 Gaussian Gamma Poisson

Average Overlap Score (AOS) 0.699 0.730 0.664 0.670 0.665 0.719 0.707 0.682 0.739 0.773 0.760

Average Hamming Distance (AHD) 0.142 0.117 0.175 0.153 0.156 0.127 0.142 0.137 0.131 0.124 0.130

Average Chord Length (ACL) 0.903 1.021 0.494 1.084 1.109 0.823 0.565 0.683 0.835 0.896 0.806

Average Chord Label Number (ACLN) 1.559 1.516 2.323 1.549 1.351 1.906 2.297 1.970 1.529 1.336 1.138

Average False Chord Label Number (AFCLN) 3.650 3.250 7.850 3.600 2.550 5.300 7.700 5.850 3.150 2.150 1.150

Table 5.2: Comparison with the state-of-the-art on the QUAERO corpus

In previous work [22], we have presented an analysis of the errors commonly made by chord
recognition methods: we propose here to conduct the same analysis for our probabilistic approach.
Figure 5.4 presents the distribution of error sources for PCR/Gamma and for the two deterministic
methods OGF1 & OGF2. Five types of common errors are emphasized, corresponding either to
structural similarity or harmonic proximity situations (see [22] for details). We notice that parallel
errors, which were very common with OGF1 & OGF2, do not seem to be so important with
PCR/Gamma. This is an interesting observation as these errors were related to the template-
based character of our methods, in which chords were likely to be mistaken one for another when
they had notes in common. The improvement on this aspect is probably explained by the capacity
of our system to efficiently evaluate the chord vocabulary, leading to a lower number of major-minor
confusions.

5.3.2 QUAERO corpus

Recent publications such as [11] have discussed the necessity of testing chord recognition methods
on other corpus than the popular Beatles corpus. We have therefore also run all the tested systems
on the QUAERO corpus and results are displayed on Table 5.2.

A first observation is that except for RK, PVM, PCR/Gamma and PCR/Poisson, all the meth-
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ods get lower AOS on this corpus than on the Beatles data. Once again, our probabilistic methods
give the best results: in particular, PCR/Gamma performs even better than on the Beatles corpus.
Although the small number of songs in the corpus does not allow to perform a real significant differ-
ence test, the AOS obtained by PCR/Gamma is 4% higher than the best state-of-the-art method
(RK), which is a rather large difference when looking at the scores. As far as segmentation is
concerned, the RK method gives the best results but nevertheless PCR/Gamma gives the second
best AHD result. Once again, most of the chord recognition methods tend to underestimate the
chord length: however PCR/Gamma gives the fourth best ACL score. Finally, we observe with the
ACLN and AFCLN metrics that our PCR methods still outperform other state-of-the-art methods
on the chord vocabulary estimation.

More importantly, these results tend to answer the overfitting concern related to the Beatles
corpus, since our methods even achieve better performances on the QUAERO corpus than on the
Beatles one. In addition, music genre and style do not seem to influence our systems, as all the
calculated scores for the Beatles corpus and the QUAERO corpus are close.
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6
Conclusion

In this paper we have presented a novel probabilistic framework for template-based chord recog-
nition. In comparison with our previous work the key ingredient of our new approach is the
introduction of chord probabilities, learned from the song. This tends to produce more accurate
chord vocabulary (and in particular more compact), i.e., to eliminate many of the spurious chords
that appeared in the transcriptions produced with our baseline deterministic approach. Indeed,
the probability of occurrence of the spurious chords is automatically driven to zero and the chords
are hence smoothed out of the transcription. This translates into both better recognition and seg-
mentation scores. Interestingly, the vector of estimated chord probabilities reflects the “harmonic
profile” of the song and may be of interest for applications such as key estimation or can serve as
a descriptor for MIR tasks.

As for perspective we envisage the following lines of work. Firstly, of the three considered
observation noise models, the Gamma multiplicative noise model appeared to lead to best results.
This model requires the tuning of an extra shape parameter that we handled by try-and-error.
The automatic estimation of this parameter is not trivial but could be envisaged with numerical
methods. This may improve even more recognition scores and also yield another relevant descriptor
of the song. Secondly, in this work we have taken into account the long-term variations in the song
using an ad-hoc post-processing filtering of the states posterior distributions. Future work will
consider more sophisticated models that improve the probabilistic model so as to more adequately
model the rhythmic structure of music.

24



Acknowledgment

The authors would like to thank J. Bello, D. Ellis, M. Khadkevich, J. Pauwels and M. Ryynänen
for making their code available. We also wish to thank C. Harte for his very useful annotation
files.

This work was supported in part by ANR-09-JCJC-0073-01 TANGERINE (Theory and appli-
cations of nonnegative matrix factorization) and by the Quaero Programme, funded by OSEO,
French State agency for innovation.

25



Expressions of standard probability distributions

Gaussian N
(

x;µ, σ2
)

= 1√
2πσ

e
− (x−µ)2

2σ2

Gamma G (x;α, β) = βα

Γ(α)e
−βx

Poisson P (x;λ) = λx

Γ(x+1)e
−λ

where Γ is the Gamma function.
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