

MAD resource allocation

Allocation de ressources en
Domaines Administratifs Multiples

Xavier Gréhant

Isabelle Demeure

Avril 2010

Département Informatique et Réseaux
Groupe S3 : Systèmes, Logiciels, Services

2010D013

Telecom ParisTech

MAD Resource Allocation

Allocation de ressources en Domaines

Administratifs Multiples

Xavier Gréhant1 2 Isabelle Demeure1

1 with Institut Telecom, Telecom ParisTech, CNRS UMR 5141, LTCI
2 with CERN openlab and supported by HP Labs

Abstract

Computing grids span multiple administrative domains. As a consequence, the
objectives of participants to resource allocation differ. Resource users are in-
terested in processing performance, while resource providers are concerned with
energy consumption and obstruction to maintenance and internal use. In addi-
tion, strategies differ even to optimize the same metric. On the basis of a new
model for resource allocation, this paper proposes a few hypotheses under which
the different objectives can be solved independently. They translate into a new
architectural design, Symmetric Mapping.

Les grilles de calcul regroupent des domaines administratifs multiples. Dans
ces environnements, les participants à l’allocation de ressource ont des objectifs
différents. Les utilisateurs de ressources sont généralement intéressés par la
rapidité d’exécution tandis que les fournisseurs de ressources ont le souci de la
consommation d’énergie, de la liberté d’effectuer les opérations nécessaires de
maintenance des serveurs, et de la liberté d’utiliser les ressources en interne aux
moments opportuns. En outre plusieurs stratégies coexistent pour optimiser la
même métrique. Sur la base d’un nouveau modèle de l’allocation de ressources,
nous proposons des hypothèses qui guarantissent que différents objectifs peuvent
être atteints indépendamment. Ces hypothèses se traduisent en un nouveau
pattern de conception d’architectures, Symmetric Mapping.

Contents

1 Introduction 3

2 Previous work 5
2.1 Queuing models . 5
2.2 Economic models . 6
2.3 Containment in other models . 6
2.4 Metascheduling Pattern . 7
2.5 Pull Mechanism and Late Binding Patterns 8
2.6 Market Based Control and P2P Matching Patterns 9

3 Objectives 10
3.1 Minimum makespan . 10
3.2 Minimum sum of weighted flows 11
3.3 Minimum energy consumption 11
3.4 Minimum obstruction . 12

4 The Symmetric Mapping pattern 14
4.1 Overview . 14
4.2 Definition . 15
4.3 Practical perspective . 16

4.3.1 Participants . 16
4.3.2 Containers . 17
4.3.3 Contract mapping . 17
4.3.4 Front and back mappings 18

4.4 Relevance of Symmetric Mapping 18

5 Accuracy and benefits 20
5.1 Resources and tasks . 20
5.2 Algorithms . 21
5.3 Results . 22

6 The model 28
6.1 Allocations . 28
6.2 Schedules . 29

1

6.3 Specifications . 30
6.4 Value . 31

7 MAD resource allocation problem 32
7.1 Hypotheses . 32
7.2 Objective . 33

8 A solution to the MAD problem for grids 34
8.1 Containers . 34
8.2 Protocol . 35
8.3 Correctness . 35

9 Conclusion 38

2

Chapter 1

Introduction

Computing grids aggregate resources from multiple institutions that support
scientific projects of common interest. The placement of a task on a server
involves a resource user and a resource provider. User and provider are bound
in a contract, explicit or tacit, that motivates their co-operation. However, since
in general they report to different institutions, they have diverging goals.

• Users are generally interested in computing speed. Computing speed has
different definitions for a single large scale application and for a collab-
oration of individuals who constantly execute new tasks. User concerns
also include adaptation of software configuration, optimization of comput-
ing throughput, compliance with task priorities, minimization of resource
oversubscription if subscription is limited [CGV07], and prevention of re-
source undersubscription.

• Providers favor minimization of resource supply costs, i.e. minimization
of server activity and power consumption [CIL+07, JB07], optimization of
cooling efficiency [BF07], minimization of obstruction to servers mainte-
nance, to local use and local policies.

These objectives may conflict in the resource allocation process. Initially
based on voluntary collaborations, grids have not focussed on mitigating con-
flicts. As a result, compromises in performance and flexibility are made on both
sides. We propose to start with the separation of concerns. In this aim, we
introduce an architectural pattern, Symmetric Mapping.

Design patterns were originally introduced for object oriented programming
by the Gang of Four in OOPSLA meeting [GHJV95]. They identify best prac-
tices to solve recurrent software design problems. They are defined in terms
of relationships between objects that compose the software. Similarly, in dis-
tributed systems, architectural patterns define component structures to solve
recurrent architectural problems [BMR+96b]. Famous examples include Model-
view-controller that isolates application logic from interface [Gre07], and Peer-
to-peer that decentralizes control and resources to all elements in a system,
making them functionally equivalent [CvR05].

3

Symmetric Mapping has his foundations in a new model of resource allo-
cation. The model is an analogy with the Multiple Administrative Domains
(MAD) model developed for the study of fault tolerance in distributed systems
[AAC+05]. In a MAD distributed system, participants’ behaviors are not con-
trolled. Instead, the system builds on assumptions. Namely, a participant is
rational or not, altruist or egoistic, or byzantine (entirely unpredictable). In our
case, we assume that participants are selfish and rational, and the objective is
to satisfy each of them independently. To the best of our knowledge, our for-
malism is the first to use MADs principles for resource allocation. Symmetric
Mapping was initially described in [GD09].

Section 2 details previous work. Section 3 identifies several participants
objectives. Section 4 introduces Symmetric Mapping. Section 5 simulate its im-
plementation on synthetic examples. The rest of the paper presents the model.
Section 6 introduces the fundamentals. Section 7 formalizes the problem. Sec-
tion 8 formally establishes separation of responsibilities as a solution.

4

Chapter 2

Previous work

In this paper, we propose a new architectural pattern with its foundations in
a new formal model. Relevant previous work includes the identification of ex-
isting architectural patterns in the same area, and the existing formal models
that underly their emergence. This discussion is largely based on a historical
perspective on resource allocation approaches in grids [GDJ08]. This section
synthesizes the observed patterns and the underlying models.

Models based on queuing theory and game theory are considered, as well as
models that formalize the notion of resource containment. Existing architectural
patterns are organized around Metascheduling, Late Binding, and economic
patterns.

2.1 Queuing models

The study of grid resource allocation is traditionally based on queuing theory
[CK88, All90, MAS+99, BBC+04, Van08]. So are grid systems in production
today [GDJ08]. The model we introduce in this paper departs from queuing
theory and allows to consider resources that do not use queues, and events
that occur outside of queues, including co-allocation and live-migration. This
fine-grained, dynamic view is necessary to capture the level at which users and
providers incentives collide or settle.

Matchmaking or resource brokering systems use requirements and prefer-
ences from both sides [FTF+02, CFK04, CIL+07]. The design obtained in this
paper builds on comparable requirements and preferences from decision-taking
participants. It can use matchmaking or brokering to implement some of its
elements. Section 2 gives detailed comparisons with related designs.

In systems not primarily designed with participants autonomy in mind, ser-
vices are added in the attempt to centrally handle every possible constraint
participants might find important [CFK04]. Instead, we separate responsibili-
ties between participants, so that they deal with their own concerns, as opposed
to having them managed by a third party.

5

2.2 Economic models

As opposed to queuing systems, economic models have received increasing at-
tention recently. They study pricing strategies that achieve user objectives
such as performance or fairness with income guarantees for providers [HWZ05,
BMB+08]. The problem we address is relevant when the contract between users
and providers does not entirely determine the resource allocation process. This
is mostly the case in grids where high level contracts bind together large orga-
nizations. Such contracts may or may not use monetary compensation.

Game theory includes the study of possible strategies and resulting equi-
libria in games with competing participants. It has yield various protocols
in distributed computer systems [CS00, JZ09]. In this area, Multiple Admin-
istrative Domains (MADs) were introduced to design fault tolerant systems.
Participants’ behaviors are given, and the goal is to design the game so that the
equilibrium coincides with the objective. MADs principles have been used to
design cooperative backup services, peer-to-peer data streaming, Internet and
wireless routing [AAC+05]. Our formalism is the first to use MADs principles
to design grid resource allocation architectures.

2.3 Containment in other models

Containment can be used to separate concerns. Various systems introduce
containment with virtual machines to separate users from providers [KFFZ05,
RMX05, RIG+06, GPJ+07]. They evaluate the benefits of virtual machines
in addressing the problems that users may want a different software configu-
rations than the native software of the host, and providers may want to move
execution environment while in use. Our approach yields a new definition of
containment, of which virtual machines are potential implementations, as well
as a new definition of responsibilities.

Abstract State Machines (ASMs) are formal tools that can be understood
as generalizations of turing machines [Gur03]. They are used to specify com-
plex systems at every level of abstraction and generate tests. High level ASMs
have been proposed as a basis for the specification of grid systems [NS06]. For
generality, the authors introduced generic entities called abstract resources, user
mapping and resource mapping. ASMs start by modeling a design. By con-
trast we start by modeling the specific problem of reconciling the participants
diverging objectives. The solution we obtain yields a definition of containers
consistent with abstract resources, that divide resource allocation in the same
two parts, one carried out by users and the other by providers. It is consis-
tent with their model and provides a semantic refinement of their components.
However, we do not express it in ASM terms.

6

2.4 Metascheduling Pattern

The Master-Slave pattern specifies that a master process allocates tasks to slave
processes [BMR+96a]. In addition, the Broker pattern defines a class that acts
on behalf of requesters and hides the details of its action [BMR+96a]. Inspired
from these two design patterns, Metascheduling was an early architectural pat-
tern for grid resource allocation [Wei98]. It specifies that tasks are submitted
to a global meta-scheduler, which in turn submits to local schedulers. This is
the pattern used in most grid systems until recently [GDJ08].

The mainstream infrastructure behind LCG, the Large Hadron Collider
Computing Grid, is an implementation of Metascheduling [BBB+05]. LCG is a
collaboration of academia and scientific communities that aggregates resources
for use primarily by CERN experiments. Its architecture is described in details
in .

In LCG, a task comes with requirements in terms of the software that must
be present on the execution environment. Computing resources are not guar-
anteed. Their type and amount varies according to site policies, their servers,
and the load of other tasks possibly collocated on the same servers.

The central component is the workload management system, which is not
under the user’s nor the provider’s control. It selects a cluster that satisfies
the task requirements, on a site that accepts contracts with the VO1 involved,
based on access-right policies [And04].

Although the workload management system does not pervade a grid site, it
sets strong terms on site resource management. In practice, the only freedom left
to the resource provider is the choice of a local batch system such as Condor,
LSF2, PBS3 or SGE4 [BHK+00, IGF05, Hum06]. The middleware provides
interfaces to supported batch systems. The only effort to minimize allocation
cost is done by having the batch system statically assign a new container to
the least loaded server on the cluster, that is, the server with shortest task
queue. Providers have difficulties to perform maintenance operations to their
resources because running tasks are directly bound to resources. For critical
security upgrades, user tasks are abruptly discontinued.

The allocation of tasks is a static assignment. Tasks and allocated resources
remain bound until the expiration of one of the two. Resources are divided into
server slots that typically consists in three CPUs, without data isolation, and
assigned by the provider’s batch system.

Other grids such as EGEE5, NorduGrid, BaltiGrid, Naregi and OSG6 have
a similar design [Ave07].

Virtual Workspaces isolates user resource in a Metascheduling implementa-
tion, the Globus Toolkit [KFFZ05]. Virtual Workspaces provides a Web-Service

1Virtual Organization, identified as a single user.
2Load Sharing Facility
3Portable Batch System
4Sun Grid Engine
5Enabling Grids for E-Science
6Open Science Grid

7

interface to deploy and configure Xen virtual machines (VMs) [BDF+03]. The
targeted users and providers are the same as in scientific grids. Instead of a
server slot, a user is given a workspace, i.e. a VM.

The VM deployment interface is presented to Globus middleware. VM man-
agement is assigned to the user or a third party. This is comparable with
Condor’s recent VM Universe, which lets the user define the deployment of a
VM on a remote host.

The Broker pattern specifies that resources are hidden to the user and task
management is delegated. This is not compatible with Symmetric Mapping.

2.5 Pull Mechanism and Late Binding Patterns

Master-Slave was later referred to as Push Mechanism by contrast with Pull
Mechanism where idle resources request tasks [SBP03]. Pull Mechanism makes
allocation resilient to broken resources and removes queues in front of end re-
sources.

The Late Binding pattern allows the introduction of Pull Mechanism on a
system designed with Push Mechanism. In Late Binding, monitors pushed to
an end resource check the resource status before pulling actual tasks [BHL+06].
The pattern was first implemented by Condor Glide-In in 2001 [TTL02]. Since
2003, major grids are moving towards Late Binding [GDJ08].

AliEn is an example of Late Binding. AliEn is the Analysis Environment
for ALICE, a virtual organization (VO). AliEn uses its own scheduling system
on LCG infrastructure [SBP03].

As a consequence from using LCG, members of ALICE rely on the sites’ best
effort. However, tasks are processed immediately when submitted because a task
is pulled when relevant resources are avaiable. AliEn gives more flexibility to
the ALICE collaboration for task mapping. A job agent monitors every resource
and triggers task selections from ALICE job queue. This mechanism is designed
both to cope with lack of guarantees in LCG SLAs, and to prioritize tasks.

AliEn initiated the emergence of a proper front mapping via Late Binding.
Most major VOs are now implementing a similar system: CDF with GlideCAF,
ATLAS with Cronus and Panda, LHCb with DIRAC, CMS with Glidein-WMS
and other independent large-scale applications may use DIANE [GDJ08].

Symmetric mapping decomposes the allocation in two parts and Pull Mech-
anism is a possible design for both parts. Late Binding separates resource
subscription from task allocation. A system that implements Late Binding im-
plements Symmetric Mapping if the underlying Metascheduling implementation
does not constrain or obstruct the provider.

8

2.6 Market Based Control and P2P Matching
Patterns

Market-Based Control simulates markets to share resources efficiently among
competing users [Cle96, LB06].

For example Tycoon balances the load across and inside servers according to
user payment [Lai05]. A contract involves the provider with the least expensive
offer. The price of a provider’s resources depends on the load. The provider does
not intervene in the allocation. Commercial services are analogous. Amazon
EC27 is a web-service to sell Amazon’s resources on demand. The only provider
is Amazon. In both examples, users have direct access to virtual machines.
By contrast with Market-Based Control, Symmetric Mapping also supports the
cases where the contract between user and provider does not entirely determine
the allocation.

Peer-to-peer Matching is another alternative for contract mapping. In the
absence of a market, participants match and negotiate contacts in a collaborative
manner. For example, a Condor flock is the assembly of computer centers
that borrow hardware resource from one another when needed [ELvD+96]. A
component called the Gateway is hosted by each participant. If a user cannot
assign tasks to its own resources the Gateway examines its pairs. An important
part of Condor is designed specifically for matchmaking and negotiation. The
Matchmaking mechanism is provided through the use of ClassAds [Ram00].
Users and providers define themselves with relevant attribute and write their
requirements with regular expressions on the other participant’s attributes.

7Elastic Compute Cloud, amazon.com

9

Chapter 3

Objectives

This section examines typical user and provider concerns. We identify a value
function in each case. This function quantifies a benefit that a given participant
can expect from the allocation. We discuss the ability of a participant to predict
or measure value, and optimize it with a schedule. The following concerns are
defined : makespan, sum of weighted flows, energy consumption and obstruction.

3.1 Minimum makespan

The makespan is the time between submission of the first task and termination
of the last. A user who wants all tasks to finish as soon as possible wants to min-
imize the makespan. This is the case if the user launches a single embarrassingly
parallel application.

We write m(a) the makespan of allocation a. For a user concerned with
makespan, value(a) = −m(a) is a valid value function.

With identical tasks and identical resources, the exclusive availability of a
processing unit (whatever this means: server, CPU, core or hardware thread)
for a given time period is a valid container. A simple online greedy algorithm
finds the optimal schedule with constant complexity. It buffers tasks as they
come. Whenever a processing unit is free, it assigns a waiting task to run until
termination.

In conventional scheduling, a task t ∈ Tasks has a length lt, a processing unit
r ∈ Resources has a performance pr, and the execution time of t on r is lt/pr.
The resulting problem is the Multiprocessor Scheduling Problem. No tractable
algorithm finds the exact optimal schedule. However, achieving near-optimality
with known error is tractable [AMZ03, MKK+05, LSV06].

Without loss of generality a task t ∈ Tasks has a number of instructions
s(t) ∈ N. An allocation a ∈ A yields an instruction rate ρ(t, a, τ) for task t
at time τ . The instruction rate is the number of instructions per second. The

10

makespan m(a) is written

m(a) = max
t∈Tasks

min{τ ′ ∈ Time|
∫ τ ′

0

ρ(t, a, τ)dτ ≥ s(t)}

The estimation of ρ(t, a, τ) is reputedly a difficult problem. Precise analysis of
computing performance, that takes into account the affinity between tasks and
resources, is in its inception. It is addressed in areas of real time systems and
heterogeneous computing [XZQ00, KL01, SOBS04, PRV08].

3.2 Minimum sum of weighted flows

A task flow is the time between task submission and termination. A user u ∈ X
who wants every task to finish as soon as possible wants to minimize a sum of
weighted flows [LSV06]. This is the case when the user is actually a collaboration
of individuals who launch batch computations over time.

For t ∈ Tasks submitted at time τt, if F (t, a) is its flow given allocation
a ∈ A:

F (t, a) = min{τ ′ ∈ Time|
∫ τt+τ

′

τt

ρ(t, a, τ)dτ ≥ s(t)}

If wt the priority of task t, the sum of weighted flows is written

w(a) =
∑

t∈Tasks

wtF (t, a)

valueu(a) = −w(a) is a valid value function for user u.
Sum of weighted flows minimization suffers the same problems of tractability

and modeling as makespan minimization.

3.3 Minimum energy consumption

The operation of a computing resource affects its power consumption. Power-
manageable processors and devices exhibit different states which limit at dif-
ferent levels the range of their operation and their power consumption. State
transitions require some time and consume energy, too. Power management
policies determine the conditions of state transitions in an attempt to min-
imize the energy consumption of a computing resource under workload con-
straints [BR04, RRT+08]. We write µ(r, a, τ) the resulting power consumed by
r ∈ Resources at time τ given the allocation a ∈ A and the power management
policy.

Part of the consumed power dissipates in heat. Cooling devices are operated
according to the temperature in their zone of influence. The operation of a
cooling device also consumes power. Thermal management policies determine
the level of operation of each cooling device in an attempt to maintain acceptable
temperatures with minimum energy consumption [BF07, TGV08]. We write

11

µ(d, a, τ) the resulting power consumed by cooling device d ∈ Devices at time
τ . We write Zd ⊂ Resources the resources that have thermal transfers with d.

A provider p ∈ X concerned with energy consumption wants to minimize
e(a), or maximize valuep(a) = −e(a), where

e(a) =
∫ +∞

0

(∑
r∈Resources

µ(r, a, τ) +
∑

d∈Devices

µ(d, a, τ)

)
dτ

µ(d, a, τ) depends on µ(r, a, τ ′) ∀τ ′ ≤ τ and for all resource r in the zone of
influence of d.

µ(d, a, τ) is difficult to know because thermal transfers are involved. In a
simple representation, thermal transfers are considered instantaneous. Under
this hypothesis, the power consumed by a cooling device is a function of the
power consumed in its zone of influence at the same time. If this function is
replaced with its linear approximation, ∃αd, ∀a ∈ A, ∀τ ∈ Time

µ(d, a, τ) = αd
∑
r∈Zd

µ(r, a, τ)

With this simplification,

e(a) =
∫ +∞

0

∑
r∈Resources

µ(r, a, τ)

1 +
∑

d∈Devices|r∈Zd

αd

 dτ

In the simplest formulation, a resource r is a server. Its states are up or sleep.
On up mode, r consumes power µu(r). A resource r has a power efficiency η(r)
where

η(r) = µu(r)

1 +
∑

d∈Devices|r∈Zd

αd

In the simplest greedy algorithm, tasks are taken in order of starting time.

The server r with highest η(r) which is not already busy is assigned the next
task. A server which is not assigned a task for a sufficiently long time is put in
sleep mode.

A provider that applies this algorithm would think that any workload with
a specific lifetime is a valid container. In fact this is not accurate because the
energy consumption of a server does not only depend on its run/sleep status.
It depends on the workload applied to its processors and each of its devices.
However, a provider who already carries out power management of its resources
and thermal management of its cooling devices will probably want to carry out
energy-aware resource scheduling because it is the last piece of control to get
full responsibility of energy expenses.

3.4 Minimum obstruction

We call obstruction the event in which an external user blocks resources that
the provider wants to use internally or access for maintenance. It is not always

12

possible for the provider to pre-empt resources or foresee when resources will
be needed internally. The cost of obstruction can be quantified based on the
eagerness of provider p to free some resource at a given time:

eagerp :

{
Resources× Time −→ R+

(r, τ) 7−→ eagerp(r, τ)

eagerp(r, τ) = 0 if the provider does not need r at τ . Otherwise, eagerp(r, τ) >
0 and eagerp(r, τ) indicates the relative benefit from monopolizing r at τ . The
measure of eagerness is entirely up to the provider.

A provider p who wants to minimize obstruction wants to maximize the
following value function.

valuep(a) =
∑

r∈Resources

∫ +∞

0

eagerp(r, τ)(1− δa(r, τ))dτ

Where δa(r, τ) = 1 if ∃t ∈ Tasks|a(t, r, τ) = true, 0 otherwise.
Very often eagerp(r, τ) is not known before τ , and the algorithm to maxi-

mize valuep(a) is an online algorithm.

13

Chapter 4

The Symmetric Mapping
pattern

In order to separate the concerns of resource providers and resource users, we
define an architectural pattern: Symmetric Mapping.

4.1 Overview

Symmetric Mapping is intended to design architectures that perform resource
allocation in a way that satisfies both resource providers and resource users
when their interests differ.

The allocation of tasks to resource determines the satisfaction of both providers
and users. In general, their incentives conflict. For example the most power-
efficient server is not always the fastest. An allocation directed by a decision
system under user control can result in high resource supply costs and an al-
location directed by a decision system under provider control can result in low
user-perceived resource value. Instead of compromising with them, Symmetric
Mapping builds on these differences from the system design.

Tasks Resources

Tasks ResourcesContainers

Users ProvidersContract
mapping

Front
mapping

Back
mapping

Figure 4.1: Mapping decomposition.

The principle of Symmetric Mapping is to divide resource allocation in three
parts: contract mapping, front mapping and back mapping (fig 4.1).
Contract mapping consists in the match between users and providers and the
issue of containers that specify elementary resource transactions and subdivide

14

higher level contracts. Mapping of a task to a resource always contributes
to fulfilling a contract. It always involves a container. Symmetric Mapping
specifies that providers map their endorsed containers to their physical resources
(back mapping) and users map their tasks to their subscribed containers (front
mapping).

4.2 Definition

The Open Group Architecture Framework1, a standardization consortium, iden-
tifies a terminology that can be used to define architectural patterns. According
to the consortium, a pattern is defined with a name, an intent, preconditions,
forces that play a role towards the intent, the solution, postconditions and ra-
tionale.

• Name: Symmetric Mapping

• Intent: Separate the concerns of providers and users and dispatch their
responsibilities accordingly, so that their actions do not conflict and yield
to the independent optimization of their respective concerns.

• Preconditions: Participants are administratively independent. Users need
to run tasks and providers propose resources for tasks to run. They are
bound by implicit or explicit contracts which justify their exchange. They
are supposed to have rational and selfish behaviors. They have some idea
of their objective and some knowledge on how to reach it.

• Forces: The greater the amount and heterogeneity of resources, tasks,
and participants objectives, the better the opportunity to optimize the
objectives [KSS+07].

• Solution:

1. Insert intermediate entities between tasks and resources. These enti-
ties are called containers. A container holds attributes of a resource
transaction. In conjunction with the actual resources involved in the
transaction, it determines a cost for the provider. In conjunction
with the tasks involved in the transaction, it determines a revenue
for the user.

2. Decompose the mapping of tasks to resources into the mapping of
tasks to containers and the mapping of resources to containers.

• Postconditions: Users and providers match and issue containers. This is
the first part of the allocation called contract mapping. Providers map
resources to containers. This is another part of the allocation called back
mapping. Users map tasks to containers. This is the third part of the
allocation called front mapping.

1opengroup.org

15

• Rationale: If given appropriate responsibility, a participant will reach his
own objective better than anyone else on his behalf.

4.3 Practical perspective

4.3.1 Participants

Formally, (a) If A and B are two sets, P(A) is the set of all possible subsets
of A. B ∈ P(A) is equivalent to B ⊂ A. (b) A partition of A is a set of
disjoint subsets of A that cover A in its entirety, i.e. C is a partition of A iff
C ∈ P(P(A)) and ∀a ∈ A,∃!B ∈ C|a ∈ B.

We define Demand ∈ P(P(Tasks)) a partition of Tasks and Supply ∈
P(P(Resources)) a partition of Resources:

Demand = {T ∈ P(Tasks)|∃x ∈ X,T = Tasksx}
Supply = {R ∈ P(Resources)|∃x ∈ X,T = Resourcex}

Provider

User

Container

Resource

Task

Figure 4.2: Participants, tasks, resources and containers.

Figure 4.2 features participants in a large particle physics grid. Resource
providers are represented on the left hand side plane. The names correspond to
actual institutions involved in the analysis of high energy physics data: CERN
(Switzerland) is called the Tier0. It is where data is generated and stored in
the first place. FZK (Germany), IN2P3 (France) and RAL (Great Britain)
are example Tier1 ’s, where data is replicated [Rob06]. Tier0 and Tier1’s are
computer centers where a large part of the analysis takes place. At the time of
writing, CERN has 7192 CPUs, IN2P3 3356, FZK 8340, and RAL 4016.

Resource users are represented on the right hand side plane. These are
instances of virtual organizations (VOs): Babar, CDF, LHCb, ALICE, ATLAS,

16

CMS. Each of them is a community of researchers whose data is generated by
a particle physics detector. The VO names are detector names. Members of
a VO analyze data and therefore generate tasks that run on the LCG. A VO
is considered a single user because its members report to the same institution,
have common objectives and the same applications.

In Contract mapping, users and providers define containers. In Back map-
ping, providers select resources to back their containers, and in Front mapping,
users select tasks to use their containers. A container is backed by one or an
assembly of resources from a unique provider. It supports one or several tasks
from a unique user.

4.3.2 Containers

Resource exchange between two autonomous institutions is the result of a con-
tract between them. Grid sites engage in long term support for chosen virtual
organizations. Symmetric Mapping requires that the contract that sets the
terms of this support is made explicit. In addition, these contracts must be
divisible into non-redundant subcontracts called containers. Containers must
not allow resource oversubscription or undersubscription, and must be described
with enough precision to have a determined value as perceived by each partici-
pant.

Therefore containers are specific kinds of Service Level Agreements (SLAs)
[CIL+07]. SLAs typically specify the type and amount of subscribed resources
and their lifetime, as well as constraints on the workload. Sometimes SLAs can
be defined directly in terms of Quality of Service guarantees, which directly
determine perceived values [RCAM06].

If relevant to determine the expected perceived value, container descrip-
tions may include specifications on dedicated memory and cache hierarchy, the
number of dedicated cores, their frequency, their optimization logic, network
bandwidth, disk space, bandwidth and latency. Software configuration also be-
longs to resource specifications, potentially including operating system flavor,
compilers and interpreters and their versions, and available administrative util-
ities.

A large liquidity of tasks or resources helps better use or support a given
container. It also helps from over- or undersubscribing.

The implementation of a container may or may not force participants into
complying with its specifications. A Condor sandbox pins to one processor but
does not restrict the use of memory, whereas platform-level virtual machines do.
Both do not constrain the provider [TTL02, BDF+03]. At least each partici-
pant must be able to check for compliance with specifications. Trust is usually
necessary and mechanisms like reputation facilitate it.

4.3.3 Contract mapping

The process by which users and providers agree on containers requires search
and decisions supervised by a neutral third party or performed by a peer-to-peer

17

mechanism [RLS98]. It can be based on a market, real or simulated.
Contract mapping is the match between a user and a provider and the issu-

ing of containers that bind them. Symmetric Mapping specifies that contract
mapping is separated from the rest of the allocation. Contract mapping is a
function:

Contract :

{
Demand× Supply −→ P(Containers)

U,P 7−→ Contract(U,P)

We define the activity of a participant by its subscribed containers. For example
if u ∈ X is a user, let U = Tasksu.

Activityu =
⋃

P∈Supply

Contract(U,P)

4.3.4 Front and back mappings

Let (u, p) ∈ X2 be a grid resource user and provider. They carry out front and
back mappings defined as in section 7.1.

u :

Activityu −→ pu(A)|c
c 7−→ arg max

pu∈pu(A)|c
valueu↓

(
pu
−1({pu})|c

)

p :

Activityp −→ pp(A)|c
c 7−→ arg max

pp∈pp(A)|c
valuep↓

(
pp
−1({pp})|c

)
Containers leave adequate flexibility on both sides. A user independently sched-
ules its tasks and a provider its resources.

Symmetric Mapping respects the possibility that users schedule their tasks
according to their objective and their knowledge on how to achieve it. In ad-
dition, users can adapt to unplanned task behaviors and faulty resources by
dynamic reallocation, or checkpointing and migration.

To the provider, a container is non obstructive. It clearly isolates user ac-
cess and limits the provider’s commitment. In addition, a container is loosely-
coupled to the provider’s resources. While containers constrain resource types,
providers choose physical resources. Since commitments are known in advance,
resource consolidation can be planned [PZU+07]. Since back mapping is dy-
namic, providers can freely administrate their resources, grant access to local
users or for regular maintenance operations, and react to some light cases of
resource faults.

4.4 Relevance of Symmetric Mapping

Whether Symmetric Mapping should be used instead of another design must be
decided on a case by case basis. Relevant considerations include:

18

Autonomy. The more autonomous providers are from users, the more useful
Symmetric Mapping is with regards to Metascheduling or Late Binding.

Expertise. Whether users allocate their tasks manually or use a decision sys-
tem, the relevance of Symmetric Mapping or Late Binding with regards
to Metascheduling depends on their ability to perform allocations that
impacts their perceived value of the resources. Similarly, a provider who
does not manage energy consumption or maintain servers will not have
strong diverging requirements.

Liquidity. The more tasks and the more resources, the higher the gain from
optimized allocation on each side.

Trust. Participants must trust a system that addresses their concerns on their
behalf. Otherwise, the use of Symmetric Mapping is relevant.

Sensitivity to cost and value. If users can obtain enough resources at no
charge, and if they do not make a difference between heterogeneous re-
sources, they do not have the incentives that justify the use of Symmetric
Mapping. The situation is similar if providers have fixed operating bud-
gets and if they do not make other use of their resources.

19

Chapter 5

Accuracy and benefits

In reality, users and providers do not know the precise information and mecha-
nisms that determine the value of their objective functions. In addition, accu-
rate optimization might be intractable. These limitations may weigh against an
architecture that gives participants the responsibility of their objectives. The
following simulation suggests that even with approximate knowledge and basic
algorithms, participants benefit from the separation of responsibilities that we
propose.

We consider a user interested in minimum makespan and a provider inter-
ested in minimum obstruction.

5.1 Resources and tasks

For simplicity, a resource is a server, and two tasks do not run together on a
server. ∀t ∈ Tasks, ∀r ∈ Resources, ∃ρ(t, r) ∈ R+, ∀τ ∈ Time,

ρ(t, a, τ) =

{
ρ(t, r) if a(t, r, τ) = true

0 otherwise

The throughput, ρ(t, r) is the number of instructions per second.
In order to reflect correlations between throughputs on the same server, we

write:
ρ(t, r) = ρc/s(r)ρi/c(t, r)

ρc/s(r) is cycle rate of r, i.e. the number of hardware threads times the fre-
quency. ρc/s(r) reflects the maximum absolute performance of r. ρi/c(t, r) is
the number of instructions of t per cycle of r. ρi/c(t, r) reflects the relative width
of the bottleneck, or affinity between r and t.

In the simulation, we generate a random cycle rate ρc/s(r) for each resource
r, a random task size s(t) in number of instructions for each task t, and a
random affinity ρi/c(t, r) for each couple (t, r).

20

In practice, participants have an approximate understanding of the mech-
anisms that determine performance. To account for it, we suppose that the
participants do not know ρc/s(r), ρi/c(t, r) and s(t). Instead, they have a no-
tion of task length lt and server performance pr obtained by observation. lt is
the observed execution time of task t in average. The user who owns t knows
lt.

lt =
1

|Resources|
∑

r∈Resources

s(t)
ρ(t, r)

pr is the observed average ratio between a task length and its actual execution
time on the server. The provider who owns r knows pr.

pr =
1

|Tasks|
∑

t∈Tasks

ltρ(t, r)
s(t)

To simulate obstruction to the provider, for every server r we pick random
time periods Tr ⊂ Time such that eagerp(r, τ) = 1 if τ ∈ Tr and 0 otherwise,
and such that P(τ ∈ Tr) is specified in the input of the simulation, for example
10%.

5.2 Algorithms

For a user u and a provider p, the contract Cu,p says: Starting at t0, u obtains
the monopoly on up to Np servers of p as long as u uses these servers to process
any of the Nu specified tasks.

We compare makespan and obstruction in the following cases.

1. A third party controls the allocation, independently from user and provider
objectives, and with less information on resources and tasks.

2. The user controls the allocation, in a rational and selfish manner, with
less dynamic control as the provider would have.

3. The provider controls the allocation, in a rational and selfish manner.

4. Provider and user control their respective schedules on containers compat-
ible with their contract, and such that a schedule determines the perceived
value.

5. These are compared to a theoretically attainable measure that uses exact
values of performance, affinity and task size.

The allocation carried out by a third party is implemented as a static random
assignment of the tasks to Np random servers.

With full control, user u picks each task t in order of decreasing lt and assigns
it to a server of minimum cumulated lengths

∑
t′∈Tr

lt′ . Tr ⊂ Tasks is the set
of tasks assigned to server r.

21

With full control, p starts with the same random allocation as a third party.
When willing to preempt a busy server, p moves its tasks to a random free server
if there is one.

A valid set of containers has Np containers. Each of them says: Starting at
t0, p provides u with the possibility to compute one of the Nu specified tasks with
a performance pc that does not vary so much that it affects the value perceived
by the user. We consider that pc must remain within the minimum standard
deviation of performance σ.

σ = min
r∈Resources

√√√√ 1
|Tasks|

∑
t∈Tasks

(
ltρ(t, r)
s(t)

− pr
)2

Given these containers, user u picks each task t in order of decreasing lt and
assigns it to a container of minimum predicted load (

∑
t′∈Tc

lt′)/pc. Tc ⊂ Tasks
is the set of tasks assigned to container c.

For r ∈ Resources, we write its neighborhood Nr.

Nr = {r′ ∈ Servers|r′ 6= r and |pr′ − pr| ≤ σ}

p can move containers inside the same neighborhood.
Theoretical attainable values are measured from the following allocation.

Initially, each task t is picked in order of decreasing s(t) and assigned to a
container of minimum size

∑
t′∈Tc

st′ . Whenever a task t starts or the provider
wants to preempt a server r, the corresponding container is moved to the free
server of best throughput ρ(t, r).

5.3 Results

Simulations are written in Python using test-driven development. The code is
released under Artistic License 2 and available on a public repository1.

Each figure shows the makespan and obstruction on five runs. Each run
corresponds to a set of tasks and resources, and a number of containers. On
all figures, all five runs have the same number of tasks, resources, containers,
statistical distribution of task sizes, cycle rates, instructions per cycle.

Eagerness is identically generated in all cases. On every server, periods
of availability (eagerp(r, τ) = 0) follow a normal distribution of average 10
hours and standard deviation 5 hours. This is a reasonable period, e.g. night
time, during which a server is available without interruption to external use.
Periods of providers potential occupation (eagerp(r, τ) = 1) follow a normal
distribution of 5 hours in average and 2 hours in standard deviation, which is
the time typically needed for server maintenance or interactive use.

Figures 5.1, 5.2 and 5.3 are taken with heterogeneous tasks. s(t) is uniform
from 7, 200 to 18, 000 billion instructions. This corresponds to two to five hours

1code.google.com/p/symmetric-mapping

22

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

m
ak

es
pa

n

run number

Theoretical
Third party

Provider
User

Proposal

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6

ob
st

ru
ct

io
n

run number

Theoretical
Third party

Provider
User

Proposal

Figure 5.1: Small liquidity

23

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

m
ak

es
pa

n

run number

Theoretical
Third party

Provider
User

Proposal

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6

ob
st

ru
ct

io
n

run number

Theoretical
Third party

Provider
User

Proposal

Figure 5.2: Large liquidity

24

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 1 2 3 4 5 6

m
ak

es
pa

n

run number

Theoretical
Third party

Provider
User

Proposal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6

ob
st

ru
ct

io
n

run number

Theoretical
Third party

Provider
User

Proposal

Figure 5.3: Identical resources, large liquidity

25

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

m
ak

es
pa

n

run number

Theoretical
Third party

Provider
User

Proposal

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

ob
st

ru
ct

io
n

run number

Theoretical
Third party

Provider
User

Proposal

Figure 5.4: Identical tasks, large liquidity

26

on a one giga-ops system, which is common to observe for a single submission
on a CPU.

Figures 5.1, 5.2 and 5.4 are taken with heterogeneous resources. ρc/s(r) is
uniform from 1 to 6 billion cycles per second. ρi/c(t, r) is uniform from 0.5 to
0.75 instructions per cycle. This can be observed with performance monitoring
software on commodity servers.

Figure 5.3 is taken with homogeneous resources. Server performance ρc/s(r)
is constant = 8 and ρi/c(t, r) is uniform from 0.5 to 0.55. ρi/c(t, r) denotes the
affinity between task t and server r. Since the processor is always the same,
the task is the only factor of variations and the variation is lower than with
heterogeneous resources.

Figure 5.4 is taken with homogeneous tasks. s(t) is constant = 18, 000 billion
instructions.

Figure 5.1 is taken with 100 tasks, 20 servers and 5 containers, and the others
figures with 300 tasks, 60 servers and 15 containers.

In all cases, the provider obtains a better obstruction than the user or the
third party. The user obtains a better makespan on homogeneous resources
only. In other cases user efforts are not evidently better than random because
task length has little correlation with actual task execution time. The user
advantage in the case of homogeneous resources is marginal. It suggests that
the gain from load balancing in homogeneous computing is marginal compared
to the gain from mapping in heterogeneous computing, taking into account
affinities between tasks and resources.

Data marked Proposal corresponds to the use of containers and the dispatch
of responsibilities between user and provider. The obstruction is similar to
the obstruction obtained by a provider, except with homogeneous tasks. The
makespan is the best, except on homogeneous resources, where user makespan
is the best. In cases where tasks or resources are homogeneous, σ is small and
the number of servers in the neighborhood is limited.

The difference with theoretical values illustrates the effect of an approximate
performance model. These experiments suggest that even when the underlying
models of the participants are approximate, it is valuable to appropriately divide
the allocation and dispatch responsibilities. Benefits increase with heterogeneity
and liquidity.

27

Chapter 6

The model

This section introduces a new model of resource allocation. This model provides
the foundations of Symmetric Mapping. Its novelty is to consider dynamic
scheduling under constraints.

Section 6.1 defines an allocation as the association of a resource and a task at
a given time, specified with a boolean function. Section 6.2 splits an allocation
into two functions, one that specifies how resources are scheduled, and one that
specifies how tasks are scheduled. Section 6.3 introduces a specifications as a
predicate that a given allocation must satisfy. Section 6.4 defines the value of
an allocation as perceived by a participant.

6.1 Allocations

An allocation is an application that takes a task, a resource and a time, and
returns true if the task is allocated to the resource at that time, false otherwise.

a : Tasks×Resources× Time −→ {true, false}

We write F(E,G) the set of applications from set E to set G. Let A be the set
of allocations.

A = F(Tasks×Resources× Time, {true, false})

We call X the set of participants. If u ∈ X is a resource user that owns
Tasksu ⊂ Tasks and p ∈ X is a resource provider that owns Resourcesp ⊂
Resources, we define Au,p the set of allocations that involve u and p.

Au,p=F(Tasksu ×Resourcesp × Time, {true, false})

We define the null allocation Ø ∈ A such that ∀(t, r, τ) ∈ Tasks×Resources×
Time:

Ø(t, r, τ) = false

28

We define an operation on allocations, that takes two allocations and returns
the allocation that is the combination of the two. We call it their merger.
Operator ∨ between booleans is logical or. For all (a1, a2) ∈ A2, the merger of
a1 and a2 is a1 ∨ a2 such that ∀(t, r, τ) ∈ Tasks×Resources× Time:

(a1 ∨ a2)(t, r, τ) = a1(t, r, τ) ∨ a2(t, r, τ)

The merger of two sets of allocations is the set of all possible mergers with
one allocation from each set. If E is a set, we write P(E) the set of subsets of
E. For two sets of allocations (A1, A2) ∈ P(A)2, we define their merger A1∨A2.

A1 ∨A2 = {a ∈ A|∃(a1, a2) ∈ A1 ×A2, a = a1 ∨ a2}

6.2 Schedules

In this section we divide allocations in parts. Each part is called a schedule. A
schedule involves either tasks or resources but not both. A resource schedule
tells if a given resource is involved at a given time, and a task schedule tells if
a given task is involved at a given time.

A resource schedule returns true for a couple (r, τ) where resource r is as-
signed at time τ ; and a task schedule returns true for a couple (t, τ) where task
t is assigned at time τ .

The goal is to isolate every part of the allocation that interests a single
participant. In this section we introduce a notation that allows to represent
participants as mathematical objects. In fact, a participant is represented with
an function of allocations, or a projector that, given an allocation, returns the
part of the allocation of interest to the participant.

Let u be a user. We define its projector pu

pu :

{
A −→ pu(A)
a 7−→ pu ◦ a

such that:
pu(A) = F(Tasksu × Time, {true, false})

and ∀a ∈ A,∀(t, τ) ∈ Tasksu × Time,

pu ◦ a(t, τ) =

{
true if ∃r ∈ Resources|a(t, r, τ)
false otherwise

∀a ∈ A, pu ◦ a is the task schedule of allocation a.
Let p be a provider. We define its projector pp.

pp :

{
A −→ pp(A)
a 7−→ pp ◦ a

29

Such that:
pp(A) = F(Resourcep × Time, {true, false})

and ∀a ∈ A,∀(r, τ) ∈ Resourcesp × Time,

pp ◦ a(r, τ) =

{
true if ∃t ∈ Tasks|a(t, r, τ)
false otherwise

∀a ∈ A, pp ◦ a is the resource schedule of allocation a.
Projectors allow to extract the part of the allocation of interest to a user or

a provider. It is also possible to reconstruct an allocation from two projections.
The following shows how a schedule of tasks and a schedule of resources together
define an allocation.

Let u be a user and p a provider. ∀au ∈ pu(A),∀ap ∈ pp(A), we define1

au∧ap the expansion of au and ap such that ∀(t, r, τ) ∈ Tasksu×Resourcesp×
Time,

(au ∧ ap)(t, r, τ) = au(t, τ) ∧ ap(r, τ)

An allocation is the expansion of a resource schedule and a task schedule. If a
resource is assigned at a given time in the allocation, it is assigned at the same
time in the corresponding resource schedule. If a task is assigned at a given
time in the allocation, it is assigned at the same time in the corresponding task
schedule.

6.3 Specifications

Specifications represent ”anything that can be said about an allocation”. A
specification is a predicate. A specification applies to an allocation if the speci-
fication and the allocation are said to match. The match function returns true
when applied to them.

In fact we introduce specifications to represent the contracts between users
and providers that justify the existence of allocations. The allocation matches
the specification that represents the contract between involved users and provi-
ders.

We call Specs the set of specifications. We introduce a function match that
says if an allocation is compatible with a specification.

match : A× Specs −→ {true, false}

A specification can be split into constraints on the schedule of each partici-
pant. ∀s ∈ Specs,∀x ∈ X, ∃sx ∈ Specs such that ∀a ∈ A

match(a, s)⇔
∧
x∈X

match(px(a), sx)

1Operator ∧ between booleans is logical and.

30

If A′ is a set of allocations, for readability we define A′|s the subset of A′ in
which all allocations satisfy s. ∀A′ ∈ P(A),∀s ∈ Specs:

A′|s = {a ∈ A′|match(a, s)}

We introduce the notion of compatibility of a specification with a set of
specifications. A specification can be decomposed into a compatible set of spec-
ifications.

Let s ∈ Specs, S ∈ P(Specs). We say that S is compatible with s, and we
write S � s if and only if ∨

s′∈S
A|s′ = A|s

This formula says that by choosing an allocation for each specification of the
compatible set, such that the allocation satisfies the specification, and by merg-
ing all these allocations, we obtain an allocation that satisfies the initial speci-
fication.

6.4 Value

In this section we define the value of an allocation. It is the function illustrated
in section 5. It quantifies the outcome of an allocation as perceived by a par-
ticipant, in terms of how well the allocation reaches the participant’s objective
and how beneficial it is for the participant.

Let x be a participant. x is a user or a provider. We write valuex the value
of an allocation for participant x, i.e. how much x gains from the allocation.

valuex : A −→ R

The value of the null allocation is null: ∀x ∈ {u, v},

valuex(Ø) = 0

The inclusion-exclusion principle applies: ∀x ∈ {u, v}, ∀(a1, a2) ∈ A2,

valuex(a1 ∨ a2) = valuex(a1) + valuex(a2)
− valuex(a1 ∧ a2)

If x is a user, valuex is generally positive because a user gains in having
their tasks processed. If x is a provider, valuex is generally negative because
processing tasks generates a cost.

We write valuex↓ the guaranteed value of a set of allocations, knowing one
allocation of the set will be effective.

valuex↓ :

{
P(A) −→ R
A′ 7−→ min

A′
valuex

The guaranteed value is the minimum value on the set of allocations that contain
the effective allocation.

31

Chapter 7

MAD resource allocation
problem

This section formalizes the hypotheses and the objective of grid resource alloca-
tion. The formulation is an analogy with the MAD1 model for fault tolerance in
distributed systems. We propose reasonable hypotheses on the behavior of au-
tonomous participants in resource allocation. The objective is to independently
optimize the value as perceived by every participant.

7.1 Hypotheses

1. Participants are selfish and rational.

2. A user can only schedule its own tasks and a provider can only schedule
its own resources.

3. Participant x ∈ {u, p} is bound in a contract Su,p.

This summarizes as follows. ∀S ∈ P(Specs) compatible with Su,p (S � Su,p as
defined in section 6.3), ∀s ∈ S, x ∈ {u, p} chooses the schedule:

x(s) = arg max
px∈px(A)|s

valuex↓
(
px
−1({px})|s

)
It means that a participant chooses a schedule that satisfies her constraints, and
that guarantees the best value as she perceives it, provided specifications are
satisfied.

This hypothesis is a statement of responsibility rather than capability. The
efforts of a participant will be based on her perception of what is or is not
valuable, whether her perception is correct or not. However, participants must
have enough confidence in their own assessments in order to find it worthwhile
to perform their own scheduling.

1Multiple Administrative Domains

32

Su,p is normally negotiated to make sure that some requirements are fulfilled.
If there is a minimum acceptable value vminx for each participant x ∈ {u, p}

∀a ∈ A|Su,p,valuex(a) ≥ vminx

7.2 Objective

We want to find an allocation ā that independently maximizes all perceived
values among allocations that satisfy the contracts. For all participant x bound
in contract Sx,

ā = arg max
A|Sx

valuex

33

Chapter 8

A solution to the MAD
problem for grids

We propose a solution to the problem of multiple administrative domains in re-
source allocation. This solution relies on the existence of containers. A container
determines the perceived value of the part of the allocation that it contains.

8.1 Containers

Our proposal relies on the existence of a set of specifications that follows certain
properties. We call Containers this set. Containers ⊂ Specs. The following
hypotheses define a notion of containment that allows to solve the MAD problem
for grids.

1. A container forbids over- or under-subscription.

∀c ∈ Containers, ∃Tc ⊂ Time, ∀a ∈ A|c,

∀τ ∈ Tc, ∃(t, r) ∈ Tasks×Resources, a(t, r, τ)
∀τ ∈ Time\Tc, ∀(t, r) ∈ Tasks×Resources,¬a(t, r, τ)

Tc is called the container lifetime.

2. Among allocations that satisfy a container, schedules determine the per-
ceived value.

∀x ∈ {u, p}, ∀c ∈ Containers, ∀(a1, a2) ∈ (Au,p|c)2,

px(a1) = px(a2)⇒ valuex(a1) = valuex(a2)

3. For every specification, there is a compatible non redundant set of con-
tainers. ∀s ∈ Specs, ∃C ∈ P(Containers) such that

A|s =
∨
c∈C

A|c

34

and
∀(c1, c2) ∈ C2|c1 6= c2,

∀(a1, a2) ∈ A|c1 ×A|c2, a1 ∧ a2 = Ø

8.2 Protocol

If Containers exists, it is possible to independently optimize the value perceived
by each participant. This is done by giving participants the possibility to pick
a set of non redundant containers Cu,p ∈ P(Containers) compatible with their
contract: Cu,p � Su,p. From property 3 of Containers, Cu,p exists.

In the following, we show that this protocol yields a unique allocation, which
satisfies the contract and the optimality objective.

8.3 Correctness

Theorem 1. The protocol yields a unique allocation.

ā =
∨

c∈Cu,p

u(c) ∧ p(c)

Proof. Let c ∈ C, H = pu
−1({u(c)})∩pp

−1({p(c)}). We will prove that u(c)∧
p(c) =

∨
a∈H

a.

Part 1 We show that u(c) ∧ p(c) ∈ H.
First, we show that u(c) ∧ p(c) ∈ pu

−1({u(c)}), i.e. pu(u(c) ∧ p(c)) = u(c).
Let (t, τ) ∈ Tasks× Time.

Case pu(u(c) ∧ p(c))(t, τ) = true. ∃r ∈ Resources such that (u(c) ∧
p(c))(t, r, τ) = true. A fortiori, u(c)(t, τ) = true.

Case pu(u(c)∧ p(c))(t, τ) = false; ad absurdum. Suppose u(c)(t, τ) = true.
Necessarily, ∀r′ ∈ Resources, p(c)(r′, τ) = false, i.e. ∃a ∈ Au,p|c, ∀(r′, t′) ∈
Resources × Tasks, a(t′, r′, τ) = false. It means that τ /∈ Tc, and therefore
u(c)(t, τ) = false.

Second, the proof of u(c) ∧ p(c) ∈ pp
−1({p(c)}) is analogous.

Part 2 We show that ∀a ∈ H, a ∨ (u(c) ∧ p(c)) = u(c) ∧ p(c). Let a ∈ H,
(t, r, τ) ∈ Tasks×Resources× Time.

Case (a ∨ (u(c) ∧ p(c)))(t, r, τ) = true; ad absurdum. Suppose (u(c) ∧
p(c))(t, r, τ) = false. It yields a(t, r, τ) = true. It follows (pu ◦ a)(t, τ) = true.
Since a ∈ pu

−1({u(c)}), pu ◦ a = u(c). Therefore u(c)(t, τ) = true. Simi-
larly, (pp ◦ a)(r, τ) = true and therefore u(p)(r, τ) = true. Finally, (u(c) ∧
p(c))(t, r, τ) = true.

Case (a ∨ (u(c) ∧ p(c)))(t, r, τ) = false. It follows a(t, r, τ) = false and
(u(c) ∧ p(c))(t, r, τ) = false.

35

Part 3 u(c) ∧ p(c) ∈ A|c because

pu(u(c) ∧ p(c)) = u(c) ∈ pu(A)|cu
pp(u(c) ∧ p(c)) = u(c) ∈ pp(A)|cp

Theorem 2. The obtained allocation satisfies a set of specifications compatible
with the contract that binds the participants.

ā ∈ A|Cu,p and Cu,p � Su,p

Proof.
ā =

∨
c∈Cu,p

u(c) ∧ p(c) ∈
∨

c∈Cu,p

A|c = A|Cu,p

Theorem 3. The obtained allocation is optimal.

∀x ∈ {u, p}, ā = arg max
A|Su,p

valuex

Proof. Let c ∈ Cu,v, x ∈ {u, v}. From hypothesis,

x(c) = arg max
px∈px(A)|cx

valuex↓
(
px
−1({px})|c

)
valuex↓

(
px
−1({x(c)})|c

)
= max
px∈px(A)|cx

valuex↓
(
px
−1({px})|c

)
Let px ∈ px(A)|cx,

valuex↓
(
px
−1({px})|c

)
≤ valuex↓

(
px
−1({x(c)})|c

)
min

a2∈px
−1({px})|c

valuex(a2) ≤ min
a1∈px

−1({x(c)})|c
valuex(a1)

∀a1 ∈ px
−1({x(c)})|c, ∃a2 ∈ px

−1({px})|c,

valuex(a2) ≤ valuex(a1)

From containers property 2, ∀a ∈ px
−1({px})|c,

valuex(a) = valuex(a2)

Therefore, ∀a1 ∈ px
−1({x(c)})|c, ∀a ∈ px

−1({px})|c,

valuex(a) ≤ valuex(a1)

It simplifies as ∀a1 ∈ px
−1({x(c)})|c, ∀a ∈ A|c,

valuex(a) ≤ valuex(a1)

36

Since u(c) ∧ p(c) ∈ px
−1({x(c)})|c,

valuex(a) ≤ valuex(u(c) ∧ p(c))

It means that:
valuex(u(c) ∧ p(c)) = max

A|c
valuex

Since ∀(c1, c2) ∈ C2
u,v|c1 6= c2, u(c1) ∧ p(c1) ∈ A|c1 and u(c2) ∧ p(c2) ∈ A|c2,

(u(c1) ∧ p(c1)) ∧ (u(c2) ∧ p(c2)) = Ø

Therefore, ∀x ∈ {u, v},

valuex((u(c1) ∧ p(c1)) ∨ (u(c2) ∧ p(c2)))
= valuex(u(c1) ∧ p(c1)) + valuex(u(c2) ∧ p(c2))

It yields:

valuex

 ∨
c∈Cu,v

u(c) ∧ p(c)

 =
∑

c∈Cu,v

valuex(u(c) ∧ p(c))

Finally, let x ∈ {u, p}

valuex

 ∨
c∈Cu,v

u(c) ∧ p(c)

=

∑
c∈Cu,v

valuex(u(c) ∧ p(c))

=
∑

c∈Cu,v

max
A|c

valuex

=
∑

c∈Cu,v

valuex

(
arg max

A|c
valuex

)

= valuex

 ∨
c∈Cu,v

arg max
A|c

valuex

= valuex

(
arg max

A|Su,v

valuex

)
= max
A|Su,v

valuex

37

Chapter 9

Conclusion

The fact that grids span multiple administrative domains is commonly acknowl-
edged as their distinctive feature among other distributed computing systems.
However, prior to this work, the diverging objectives of the participants to grid
resource allocation were not taken into account in the architectural design.

A new model for grid resource allocation permits to apply the MAD princi-
ples and formalize the problem. It yields a definition of containment that allows
to separate the concerns of the participants, and independently optimize their
diverging objectives. Specifically, the contracts that bind resource users and
providers are decomposed into containers. Containers split the allocation into
task schedules and resource schedules. A schedule carried out by a participant
determines her perceived value of the container.

The outcome of this model is translated in terms of a new architectural de-
sign pattern, Symmetric Mapping. Symmetric Mapping separates the concerns
of resource users and providers. As a side effect, Symmetric mapping allows to
carry out the mapping of tasks to heterogeneous resources according to affini-
ties between tasks and resources, instead of the traditional load balancing on
homogeneous resources.

For modeling and tractability issues, participants can only approximately
optimize their objective functions. Still, experiments suggest that the proposed
separation of concerns yields better outcome than other distributions of respon-
sibilities, and that the gain from traditional load balancing on homogeneous
resources can be marginal compared to the gain from dynamically mapping
heterogeneous tasks and resources.

38

Bibliography

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin,
Jean-Philippe Martin, and Carl Porth. Bar fault tolerance for co-
operative services. SIGOPS Oper. Syst. Rev., 39(5):45–58, 2005.

[All90] Arnold O. Allen. Probability, statistics, and queueing theory with
computer science applications. Academic Press Professional, Inc.,
San Diego, CA, USA, 1990.

[AMZ03] Gagan Aggarwal, Rajeev Motwani, and An Zhu. The load rebal-
ancing problem. In SPAA ’03: Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures, pages
258–265, New York, NY, USA, 2003. ACM Press.

[And04] P. Andreetto. Practical approaches to grid workload and resource
management in the egee project. In CHEP ’04: Proceedings of the
Conference on Computing in High Energy and Nuclear Physics,
volume 2, pages 899–902, Interlaken, Switzerland, 09 2004.

[Ave07] Paul Avery. Open science grid: Building and sustaining general
cyberinfrastructure using a collaborative approach. In Cyberin-
frastructure for Collaboration and Innovation, number CSD5052,
June 2007.

[BBB+05] I. Bird, K. Bos, N. Brook, D. Duellmann, C. Eck, I. Fisk, D. Foster,
B. Gibbard, C. Grandi, F. Grey, J. Harvey, A. Heiss, F. Hem-
mer, S. Jarp, R. Jones, D. Kelsey, J. Knobloch, M. Lamanna,
H. Marten, P. Mato Vila, F. Ould-Saada, B. Panzer-Steindel,
L. Perini, L. Robertson, Y. Schutz, U. Schwickerath, J. Shiers,
and T. Wenaus. Lcg technical design report. Technical report,
CERN, 06 2005.

[BBC+04] Cyril Banino, Olivier Beaumont, Larry Carter, Jeanne Ferrante,
Arnaud Legrand, and Yves Robert. Scheduling strategies for
master-slave tasking on heterogeneous processor platforms. IEEE
Transactions on Parallel and Distributed Systems, PDS-15(4):319–
330, April 2004.

39

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems principles,
pages 164–177, New York, NY, USA, 2003. ACM Press.

[BF07] Cullen Bash and George Forman. Cool job allocation: Measuring
the power savings of placing jobs at cooling-efficient locations in
the data center. Technical Report HPL-2007-62, HP Labs, Palo
Alto, August 2007.

[BHK+00] Brett Bode, David M. Halstead, Ricky Kendall, Zhou Lei, and
David Jackson. The portable batch scheduler and the maui sched-
uler on linux clusters. In Proceedings of the 4th Annual Showcase
& Conference (LINUX-00), pages 217–224, Berkeley, CA, October
10–14 2000. The USENIX Association.

[BHL+06] Stefano Belforte, Shih-Chieh Hsu, Elliot Lipeles, Matthew Nor-
man, Frank Wu thwein, Donatella Lucchesi, Subir Sarkar, and
Igor Sfiligoi. Glidecaf: A late binding approach to the grid. In
Proceedings of CHEP’06, 2006.

[BMB+08] Xin Bai, Dan C. Marinescu, Ladislau Bölöni, Howard Jay Siegel,
Rose A. Daley, and I-Jeng Wang. A macroeconomic model for
resource allocation in large-scale distributed systems. J. Parallel
Distrib. Comput., 68(2):182–199, 2008.

[BMR+96a] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-oriented software architecture:
a system of patterns. John Wiley & Sons, Inc., 1996.

[BMR+96b] Grank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architecture:
a system of patterns, volume 1. John Wiley and Sons, 1996.

[BR04] Ricardo Bianchini and Ram Rajamony. Power and energy man-
agement for server systems. Computer, 37(11):68–74, 2004.

[CFK04] Karl Czaijkowski, Ian Foster, and Carl Kesselman. The Grid 2. Re-
source and Service Management, chapter 18, pages 259–283. Mor-
gan Kaufman, 2nd edition, 2004.

[CGV07] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. When
virtual is harder than real: Resource allocation challenges in virtual
machine based it environments. Technical Report 20070220, HPL,
02 2007.

[CIL+07] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic, and Akhil Sahai.
Sla decomposition: Translating service level objectives to system

40

level thresholds. Technical report, Hewlett-Packard Laboratories,
01 2007.

[CK88] Thomas L. Casavant and Jon G Kuhl. A taxonomy of scheduling
in general-purpose distributed computing systems. IEEESE, 14(2),
February 1988.

[Cle96] Scott H. Clearwater, editor. Market-based control: a paradigm for
distributed resource allocation. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1996.

[CS00] Xinjie Chang and Krishnappa R. Subramanian. A cooperative
game theory approach to resource allocation in wireless atm net-
works. In NETWORKING ’00, pages 969–978, London, UK, 2000.
Springer-Verlag.

[CvR05] Miguel Castro and Robbert van Renesse. Peer-to-Peer Systems IV:
4th International Workshop, IPTPS 2005, Revised Selected Papers,
volume 3640. Lecture Notes in Computer Science, Ithaca, NY,
USA, February 2005.

[ELvD+96] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne.
A worldwide flock of condors: load sharing among workstation
clusters. Future Gener. Comput. Syst., 12(1):53–65, 1996.

[FTF+02] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve
Tuecke. Condor-G: A computation management agent for multi-
institutional grids. Cluster Computing, 5:237–246, 2002.

[GD09] Xavier Gréhant and Isabelle Demeure. Symmetric mapping: an
architectural pattern for resource supply in grids and clouds. In
Proceedings of SMTPS’09, Rome, May 2009. IEEE.

[GDJ08] Xavier Gréhant, Isabelle Demeure, and Sverre Jarp. Towards effi-
cient resource allocation on scientific grids. Technical Report ISSN
0751-1345 ENST D, ENST, Paris, January 2008.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Reading, MA, 1995.

[GPJ+07] Xavier Grehant, Olivier Pernet, Sverre Jarp, Isabelle Demeure,
and Peter Toft. Xen management with smartfrog: on-demand
supply of heterogeneous, synchronized execution environments. In
VHPC ’07: Proceedings of the Workshop on Virtualization in High-
Performance Cluster and Grid Computing, LNCS. Springer, 08
2007.

[Gre07] Derek. Greer. Interactive application architecture patterns. Aspir-
ing Craftsman, 2007.

41

[Gur03] Yuri Gurevich. Abstract State Machines: An overview of the
Project, chapter 2, pages 6–13. Lecture Notes in Computer Sci-
ence (LNCS). Springer Berlin / Heidelberg, Microsoft Research,
One Microsoft Way, Redmond, WA 98052, 2003.

[Hum06] Michael Humphrey. Altair’s PBS - altair’s PBS professional up-
date. In SC, page 28. ACM Press, 2006.

[HWZ05] Bernardo A. Huberman, Fang Wu, and Li Zhang. Ensuring trust in
one time exchanges: solving the qos problem. Netnomics, 7(1):27–
37, 2005.

[IGF05] Saeed Iqbal, Rinku Gupta, and Yung-Chin Fang. Job scheduling
in hpc clusters. Technical report, Dell Power Solutions, 2005.

[JB07] Janet L. Wiener Jennifer Burge, Partha Ranganathan. Cost-aware
scheduling for heterogeneous enterprise machines (cash’em). In
Proceedings of USENIX’07, Santa Clara, CA, June 2007.

[JZ09] Qiu Jing and Zhou Zheng. Distributed resource allocation based
on game theory in multi-cell ofdma systems. International Journal
of Wireless Information Networks, 16:44–50, 2009.

[KFFZ05] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of life in the
grid. Scientific Programming, 13(4):265–275, 2005.

[KL01] Alexey Kalinov and Alexey Lastovetsky. Heterogeneous distribu-
tion of computations solving linear algebra problems on networks
of heterogeneous computers. Journal of Parallel and Distributed
Computing, 61(4):520 – 535, 2001.

[KSS+07] Jong-Kook Kim, Sameer Shivle, Howard Jay Siegel, Anthony A.
Maciejewski, Tracy D. Braun, Myron Schneider, Sonja Tideman,
Ramakrishna Chitta, Raheleh B. Dilmaghani, Rohit Joshi, Aditya
Kaul, Ashish Sharma, Siddhartha Sripada, Praveen Vangari, and
Siva Sankar Yellampalli. Dynamically mapping tasks with priorities
and multiple deadlines in a heterogeneous environment. J. Parallel
Distrib. Comput., 67(2):154–169, 2007.

[Lai05] Kevin Lai. Markets are dead, long live markets. SIGecom Exch.,
5(4):1–10, 2005.

[LB06] Colin Low and Andrew Byde. Market-based approaches to utility
computing. Technical report, HPL, 02 2006.

[LSV06] Arnaud Legrand, Alan Su, and Frederic Vivien. Minimizing the
stretch when scheduling flows of biological requests. In SPAA ’06:
Proceedings of the eighteenth annual ACM symposium on Paral-
lelism in algorithms and architectures, pages 103–112, New York,
NY, USA, 2006. ACM Press.

42

[MAS+99] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, De-
bra Hensgen, and Richard F. Freund. Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems. Jour-
nal of Parallel and Distributed Computing, 59:107–131, 1999.

[MKK+05] Anirban Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling strategies for map-
ping application workflows onto the grid. In HPDC-14. Proceedings
of the 14th IEEE International Symposium on High Performance
Distributed Computing, pages 125–134, July 2005.

[NS06] Zsolt Nemeth and Vaidy Sunderam. Virtualization in grids: A
semantical approach. In Jos C. Cunha and Omer F. Rana, ed-
itors, Grid Computing: Software environments and Tools, chap-
ter 1, pages 1–18. Springer Verlag, January 2006.

[PRV08] Jean-François Pineau, Yves Robert, and Frédéric Vivien. The im-
pact of heterogeneity on master-slave scheduling. Parallel Comput.,
34(3):158–176, 2008.

[PZU+07] Pradeep Padala, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, Arif Merchant, Kenneth Salem, and Kang G. Shin.
Adaptive control of virtualized resources in utility computing en-
vironments. In Proceedings of the EuroSys 2007, pages 289–302.
ACM Press, 03 2007.

[Ram00] Rajesh Raman. Matchmaking frameworks for distributed resource
management. PhD thesis, University of Wisconsin at Madison,
2000. Supervisor-Miron Livny.

[RCAM06] Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, and Vijay Machi-
raju. Supporting application qos in shared resource pools. Techni-
cal Report 20060118, HPL, 01 2006.

[RIG+06] Lavanya Ramakrishnan, David Irwin, Laura Grit, Aydan
Yumerefendi, Adriana Iamnitchi, and Jeff Chase. Toward a doc-
trine of containment: Grid hosting with adaptive resource control.
In SC ’06: Supercomputing, 2006. Proceedings of the ACM/IEEE
SC 2006 Conference on Supercomputing, number 0-7695-2700-0,
pages 20–20, New York, NY, USA, 2006. Renaissance Computing
Institute, IEEE Computer Society, ACM Press.

[RLS98] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking:
Distributed resource management for high throughput computing.
In Proceedings of the Seventh IEEE International Symposium on
High Performance Distributed Computing, Chicago, IL, July 28-31
1998.

43

[RMX05] Paul Ruth, Phil McGachey, and Dongyan Xu. ”viocluster: Virtu-
alization for dynamic computational domains”. In Proceedings of
the IEEE International Conference on Cluster Computing (Clus-
ter’05), Boston, MA, September 2005.

[Rob06] L Robertson. Status of the lcg project. Technical Report CERN-
RRB-2006-112, CERN, Geneva, Oct 2006.

[RRT+08] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar,
Zhikui Wang, and Xiaoyun Zhu. No ”power” struggles: coordi-
nated multi-level power management for the data center. In AS-
PLOS XIII: Proceedings of the 13th international conference on
Architectural support for programming languages and operating sys-
tems, pages 48–59, New York, NY, USA, 2008. ACM.

[SBP03] Pablo Saiz, Predrag Buncic, and Andreas J. Peters. Alien resource
brokers. In Proceedings of CHEP’03, June 2003.

[SOBS04] Hongzhang Shan, Leonid Oliker, Rupak Biswas, and Warren
Smith. Job scheduling in heterogeneous grid environment. In AD-
COM2004: International Conference on Advanced Computing and
Communication., 2004.

[TGV08] Qinghui Tang, Sandeep Kumar S. Gupta, and Georgios
Varsamopoulos. Energy-efficient thermal-aware task scheduling for
homogeneous high-performance computing data centers: A cyber-
physical approach. IEEE Transactions on Parallel and Distributed
Systems, 19(11):1458–1472, 2008.

[TTL02] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and
the grid. In Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., 2002.

[Van08] D. C. Vanderster. Resource Allocation and Scheduling Strategies
using Utility and the Knapsack Problem on Computational Grids.
PhD thesis, University of Victoria, 2008.

[Wei98] Jon B. Weissman. Metascheduling: A scheduling model for meta-
computing systems. In Proceedings of High Performance Dis-
tributed Computing (HPDC’98), pages 348–349, 1998.

[XZQ00] Xiao, Zhang, and Qu. Effective load sharing on heterogeneous net-
works of workstations. In IPPS: 14th International Parallel Pro-
cessing Symposium, pages 431–438, Los Alamitos, May 1–5 2000.
IEEE Computer Society Press.

44

Dépôt légal : 2010 – 2ème trimestre
Imprimé à Télécom ParisTech – Paris

ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

Télécom ParisTech

Institut TELECOM - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.telecom-paristech.frfr

Département INFRES

©

In
st

it
u
t

T
E

L
E

C
O

M
 -

T
é

lé
c
o
m

 P
a

ri
s
T

e
c
h

 2
0
1
0

