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Abstract

Penalized maximum likelihood denoising approaches seek a solu-

tion that fulfills a compromise between data fidelity and agree-

ment with a prior model. Penalization terms are generally chosen

to enforce smoothness of the solution and to reject noise. The de-

sign of a proper penalization term is a difficult task as it has to

capture image variability. Image decomposition into two com-

ponents of different nature, each given a different penalty, is a

way to enrich the modeling. We consider the decomposition of

an image into a component with bounded variations and a sparse

component. The corresponding penalization is the sum of the

total variation of the first component and the L0 pseudo-norm of

the second component. The minimization problem is highly non-

convex, but can still be globally minimized by a minimum s-t-cut

computation on a graph. The decomposition model is applied to

synthetic aperture radar image denoising.

1This work has been funded by DGA under contract REI 2008.34.0042
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Résumé

La variation totale a été très utilisée ces dernières années dans

les applications de débruitage. Elle permet de décomposer une

image bruitée en une composante à variations bornées et une

composante de bruit. La composante à variations bornées con-

tient des zones homogènes séparées par des contours francs.

Il est en pratique trop restrictif de considérer les images comme

étant constantes par morceaux. Les images SAR, par exem-

ple, sont certes formées de régions homogènes, mais également

de cibles ponctuelles très brillantes. La décomposition de

la scène en deux composantes (une constante par morceaux,

l’autre parcimonieuse) permet d’enrichir la modélisation. Cette

décomposition est réalisée en calculant un estimateur MAP

nécessitant la minimisation d’une énergie formée d’un terme

d’attache aux données, de la variation totale et de la pseudo-

norme L0. Ce problème d’optimisation est très difficile car

l’énergie est non continue, non convexe et non séparable. Au lieu

de considérer une minimisation alternée d’une relaxation convexe

du problème initial, nous montrons qu’une minimisation discrète

exacte est possible.

La méthode est illustrée sur une image SAR réelle, montrant

l’apport de la décomposition par rapport à un débruitage basé

uniquement sur la minimisation de la variation totale.
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1 Introduction

Image denoising has been considered in the seminal work of Rudin, Osher

and Fatemi (ROF) [1] as the decomposition of an image into a component

with bounded variations (BV), and a noise component. The noise is removed

by minimizing the total variation (TV) of the BV component, subject to a

data fidelity constraint. The popularity of TV-based denoising comes from

its ability to preserve sharp edges in the denoised image (i.e., in the BV

component).

It has long been noted that ROF model leads to “cartoon-like” images.

This can be better understood by considering ROF in a Bayesian framework.

Data fidelity expresses the likelihood while total variation models the prior

on the denoised image. Piecewise constant images have low total variation,

and are therefore given a high prior probability. TV prior therefore biases the

solution towards piecewise constant (i.e., “cartoon”) images. This is often

considered a problem, sometimes referred to as a staircasing effect [2].

Meyer proposed to take advantage of this effect to perform a decomposi-

tion of an image into its geometrical (so-called “structure”) and textural com-

ponents. To model the prior of textures as highly oscillating, he suggested

the use of the G-norm [3]. Since that work, several image decomposition

models have been studied in the literature [4, 5, 6, 7]. In some approaches,

the focus is put on the decomposition of a noiseless image into two parts. In

others, the image is decomposed into two parts plus a noise component. We

follow the latter approach in this paper.

We consider the restoration of an image formed by the sum of a piece-

wise constant component and by some isolated pixels. Such a model can for

example be applied to synthetic aperture radar (SAR) images in which the

scene can often be considered as a mix of homogeneous regions and point-like

strong scatterers. The restoration of the two components can be obtained by

minimizing the sum of TV and L0, as discussed in section 2. The minimiza-

tion problem to handle is challenging: it is combinatorial due to the L0 term.

The specific form of the energy (namely, the separability of the non-convex
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part) can be exploited to design an algorithm for exact discrete minimiza-

tion. The algorithm, described in section 3, is based on a minimum s-t-cut

computation on a graph. We illustrate the method on numerical experiments

and SAR data in section 4.

2 The TV+L0 decomposition model

We describe the problem of the recovery a scene u from an observed image

v corrupted by noise. Images are considered sampled and quantized. The

scene decomposition model is introduced in the following paragraph. Then,

noise modeling is described. Finally, the TV+L0 minimization problem is

stated.

2.1 Scene decomposition model

We consider scenes u that can be decomposed as the sum of two terms:

u = uBV +uS, where uBV is a component with low total variation (i.e., close

to piecewise constant), and uS is a sparse component (i.e., with all pixels but

a few equal to zero).

The total variation of component uBV can be approximated2 by

TV(uBV) =
∑

(k,l)wk,l|uBVk − uBVl|, where (k, l) denotes a clique (i.e., pair

of neighboring pixels), and wk,l is a weight. The sparsity of component uS

is defined by the value of the L0 pseudo-norm, i.e., the number of non-zero

pixels of uS: L0(uS) =
∑

k 1− δ(uSk).

By considering that the two components uBV and uS are statistically

independent, the joint prior distribution p(uBV,uS) can be modeled in the

framework of Markov random fields by:

− log p(uBV,uS) = − log p(uBV)− log p(uS)

= βBV TV(uBV) + βS L0(uS).
(1)

2our choice of anistropic TV rather than isotropic TV will find its justification in the
use of the discrete minimization technique described in section 3
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2.2 Image formation model

We assume that the likelihood distribution that relates the noisy image v to

the scene u is separable, i.e., can be written as a product of the likelihood at

each pixel k:

p(v|u) =
∏

k

p(vk|uk). (2)

We therefore consider no mixing (such as that caused by blurring) or noise

correlation in our image formation model.

If the noise is additive, the image v can be written as v = uBV + uS + n,

with n a noise component. In the case of multiplicative noise, like speckle

noise occurring in coherent imaging technique such as SAR, the image writes

v = (uBV + uS) × n. Note that for some noise distributions (e.g., Poisson

noise, or Rice distribution), no such relation exist.

The likelihood distribution may depend on each term of the scene decom-

position p(vk|uBVk, uSk), as will be discussed in section 4.

2.3 Energy minimization problem

Starting from an observed noisy image v, the components uBV and uS can

be estimated in the maximum a posteriori sense by solving the following

minimization problem:

̂(uBV,uS) = arg min
(uBV,uS)

− log p(v|uBV,uS)− log p(uBV,uS)

= arg min
(uBV,uS)

D(v,uBV,uS) + βBV TV(uBV) + βS L0(uS) (3)

Given an input image v with N pixels, minimization problem (3) has 2N

unknowns. The objective function is non-continuous and highly non-convex

in variable uS (possibly also in variable uBV depending on D(·)) and is not

separable in variable uBV (the TV term induces a coupling between values

at different sites). It is thus very challenging to solve.
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We describe next section how the global minimum can still be found by

exact discrete minimization via a combinatorial optimization technique based

on a minimum s-t-cut computation.

3 Exact discrete minimization by graph-cuts

We show in the following paragraphs how to solve minimization prob-

lem (3) exactly among discrete images uBV and uS. At each of their N

pixels, these images take values respectively in the discrete ordered sets

{α1, α2, · · · , αmBV
} and {γ1, γ2, · · · , γmS

}.

3.1 Problem reformulation

We begin by considering minimization problem (3) for uBV fixed. We write

u?
S(uBV) the minimizer of one such restricted problem:

u?
S(uBV) = arg min

uS

D(v,uBV,uS) + βS L0(uS) (4)

It comes from the separability of the data fidelity and L0 terms (see our

hypotheses discussed in paragraph 2.2) that the computation of u?
S(uBV)

requires to solve N mono-dimensional minimization problems:
uSk

?(uBVk) = uSk
† if − log p(vk|uBVk, uSk

†) + βS

< − log p(vk|uBVk, uSk = 0),

uSk
?(uBVk) = 0 otherwise;

(5)

with uSk
† = arg minuSk

− log p(vk|uBVk, uSk) either known in closed form, or

numerically computed in O(mS) operations in the worst case.

We can now reformulate minimization problem (3) into an equivalent
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problem involving only uBV:

arg min
uBV

D(v,uBV,u
?
S(uBV)) + βS L0(u?

S(uBV))︸ ︷︷ ︸
(i)

+βBV TV(uBV)︸ ︷︷ ︸
(ii)

(6)

The term (i) is of the form
∑

k fk(uBVk) (i.e., it is separable), and (ii) is a

convex term of the form
∑

(k,l) gkl(uBVk, uBVl) (i.e., involving only first order

cliques).

Solving problem (6) gives u?
BV. The pair (u?

BV,u
?
S(u?

BV)) obtained is

then a global minimizer of problem (3). We describe in next paragraph how

problem (6) can be stated equivalently as a minimum s-t-cut computation

on a graph.

3.2 Graph representation

Minimization problems of the form of problem (6), with a non-convex but

separable discrete potential fk and a convex discrete potential over first-order

cliques gkl can be exactly solved by computing a minimum s-t-cut on a graph

with N ×mBV nodes [8, 9]. We give here a quick overview of how to restate

such a minimization problem as a min-cut computation.

We begin by giving a brief description of Ishikawa’s graph construction [8].

As depicted in figure 1, the graph is a superimposition of layers of nodes.

Each layer has N nodes, one for each image pixel, and pairs of arcs connect

neighboring nodes (the cliques of the underlying pixel grid shown in Fig.1(a)).

The mBV different layers represent each possible level of the discrete set

{α1, α2, · · · , αmBV
}. Two special nodes (terminals) are added: a source s and

a sink t. Each node is also connected to its two counterparts in the next layer

below and above. The first and last layers are connected respectively to the

source and sink. Finally, a capacity is set to each arc, as depicted in Fig.1(c).

The node corresponding to pixel k, located on the i-th layer, represents the

value uBVk = αi. It is connected to its neighbors from the same layer with
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horizontal arcs with capacity = βBV · (αi+1 − αi). The vertical arc going

downstream (from source to sink) is given the weight = fk(αi). The

vertical arc going upstream is given infinite cost =∞.

With this construction, cuts with finite cost are in bijection with the

set {α1, α2, · · · , αmBV
}N of all possible discrete images uBV (see [8]). The

cost of each cut equals the value of the energy minimized in (6) for the

corresponding image uBV. Thus, the minimum cut gives the global minimizer

u?
BV of problem (6), from which we deduce u?

S(u?
BV) to solve the initial image

decomposition problem (3).

4 Results

We illustrate in the following paragraphs the application of the discrete min-

imization algorithm to decompose a SAR image into homogeneous regions

and strong scatterers with the TV+L0 model.

4.1 Model for SAR images

High and very high resolution SAR scenes are generally a mix of rather

homogenous regions and point-like strong scatterers. These scatterers have

strong contrast (amplitudes several orders of magnitude higher than that

of the homogeneous background). Man-made structures (buildings, bridges,

pylons, . . . ) produce such strong echoes.

The observed SAR amplitude image v is corrupted by speckle noise gen-

erated by the coherent summation of echoes coming from different scatter-

ers. In a homogeneous region, noise follows Rayleigh’s distribution. When

a strong scatterer is present in a resolution cell, noise distribution is better
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Figure 1: Graph construction for discrete minimization.
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described by a Rice distribution[10] (see Fig. 2):

− log p(vk|uBVk, uSk) =
vk

2 + uSk
2

2uBVk

+ 2 log uBVk

− log I0

(
vk · uSk

uBVk
2

)
, (7)

with I0 modified Bessel’s function of the first kind. Note that the amplitude

uBVk must be strictly positive and that uSk is either equal to zero (absence

of strong scatterer) or strictly positive. In the absence of a strong scatterer,

equation (7) simplifies to Rayleigh’s model.

4.2 Energy minimization

Rice’s neg-log-likelihood defined in equation (7) is quasi-convex (but non-

convex) in each variable. For a given value of uBV, it reaches its unique

minimum at u∗S(uBV) (red curve on Fig. 2). At each pixel k, and for each

value {α1, α2, · · · , αmBV
}, the corresponding value of uSk

∗(uBVk) can be com-

puted efficiently by bisection. The number of quantization levels mS of the

sparse component can be chosen large to account for the high dynamic range

of strong scatterers with very little overhead. The bounded variations compo-

nent has very low dynamic range and choosing mBV ≈ 100 is often enough in

practice. The positivity constraints (∀k, uBVk > 0 and uSk ≥ 0) are straight-

forwardly enforced by considering discrete levels that satisfy the constraints.

The tuning of parameters βBV and βS is done by hand by first setting a

suitable βBV value with βS = 0, and then choosing a value of βS that gives

a satisfying number of strong scatterers.

The main drawback of the graph-based minimization algorithm is the

cost of the memory representation of the graph: N ×mBV nodes and about

3N ×mBV pairs of arcs.
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Figure 2: Surface representation of Rice’s neg-log-likelihood (surface drawn

for vk = 1).
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4.3 Decomposition results

We illustrate the method on a real SAR image (Fig. 3.a: south of Toulouse

city, France, c©CNES/DGA). Fig. 3 compares the results obtained when

denoising with a total variation minimization approach and with the TV+L0

decomposition approach.

The TV approach corresponds to setting βS to infinity. Strong scatterers

are either suppressed or distorted (reduced amplitude, spreading) as they do

not fit to the prior model (result of TV denoising shown Fig. 3.b).

TV+L0 decomposition produces much smoother regions in the BV com-

ponent (Fig. 3.c left) and sharp targets in the sparse component (Fig. 3.c

right). It models better the scene and makes it possible to use a more precise

noise model (namely Rice distribution). Note that the alignments of strong

scatterers found in uS component are likely to be meaningful as no spatial

prior has been enforced on uS.
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Figure 3: SAR image denoising: comparison of TV denoising and TV+L0

decomposition (SAR image c©CNES/DGA).
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