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Laurent Oudre, Yves Grenier, Cédric Févotte

Institut TELECOM, TELECOM ParisTech, CNRS LTCI
46 rue Barrault, 75634 Paris Cedex 13, France

october/octobre 2009



Contents

1 Introduction 4

2 State of the art 6

3 Our System 8

3.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Chord models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Measures of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Filtering methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Evaluation and corpus 12

4.1 Beatles corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 MIDI corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Input features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Results on the Beatles corpus 16

5.1 Results with major/minor chord types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Results with other chord types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Comparison with the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Analysis of the errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Results on the MIDI corpus 21

6.1 Influence of the music genre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Influence of the percussive noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Beat synchronous chord detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Conclusion 23

1



Abstract

In this paper we propose a simple and fast method for chord recognition in music signals.
We extract a chromagram from the signal which transcribes the harmonic content of the piece
over time. We introduce a set of chord templates taking into account one or more harmonics
of the pitch notes of the chord and calculate a scale parameter to fit the chromagram frames
to these chords templates. Several types of chords (major, minor, dominant seventh,...)
are considered. The detected chord over a frame is the one minimizing a measure of fit
between the rescaled chroma vector and the chord templates. Several popular distances and
divergences from the signal processing or probability fields are considered for our task. Our
system is improved by some post-processing filtering that modifies the recognition criteria so
as to favor time-persistence.

The transcription tool is evaluated both on the Beatles corpus used for MIREX 08 and a
resynthesized MIDI corpus. Our system is also compared to state-of-the-art chord recognition
methods. Experimental results show that our method outperforms the state-of-the-art and
more importantly is less computationally demanding than the other evaluated systems.

Index terms : chord recognition, music signal processing, music signal rep-

resentation, music information retrieval

Résumé

Nous proposons ici une méthode simple et rapide pour la reconnaissance d’accords dans
les signaux musicaux. On extrait d’abord du signal un chromagramme qui traduit le con-
tenu harmonique du morceau en fonction du temps. On introduit un ensemble de modèles
d’accords qui tiennent en compte d’une ou plusieurs harmoniques des notes de l’accord, et
on calcule un paramètre d’échelle afin d’adapter les trames de chromagramme à ces modèles
d’accords. Plusieurs types d’accords (majeur, mineur, septième,...) sont considérés. L’accord
détecté pour une trame est celui minimisant une mesure entre le vecteur de chroma mis à
l’échelle et le modèle d’accord. Plusieurs distances et divergences célèbres dans le domaine
du traitement du signal et des probabilités sont considérées pour notre tâche. Notre système
est ensuite amélioré grâce à des méthodes de post-traitement qui modifient les critères de
reconnaissance pour prendre en compte la persistance temporelle.

Cet outil de transcription est évalué sur deux corpus : un corpus constitué par l’intégralité
des titres des Beatles (déjà utilisé pour MIREX 08) et un corpus de fichiers MIDI re-
synthétisés. Notre système est aussi comparé à l’état de l’art. Les résultats expérimentaux
montrent que notre méthode dépasse l’état de l’art et est surtout plus rapide que les autres
systèmes évalués.

Mots clés : reconnaissance d’accords, traitement du signal musical, recherche
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1
Introduction

Complete musical analysis of a pop song, that is to say the transcription of every single note
played by every instrument is a very complex task. The musical content of a pop song is thus
more often translated into a more compact form such as sequences of chords. A chord is a
set of notes played simultaneously. A chord can be defined by a root note which is the note
upon which the chord is perceived and a type giving the harmonic structure of the chord. For
example a C major chord is defined by a root note C and a type major which indicates that
the chord will also contain the major third and the perfect fifth, namely the notes E and G.
The result of chord transcription consists in sequences of chords played successively with their
respective lengths. This compact and robust writing not only helps to play-back the song
but also gives information on the harmonic content and structure of the song. Automatic
chord transcription finds many applications in the field of Musical Information Retrieval.
The characterization of a song by its chord transcription can be used in several tasks among
which song identification, query by similarity or analysis of the structure of the piece.

Automatic chord transcription includes in most cases two successive steps : a feature
extraction which captures the musical information and a recognition process which outputs
chord labels from the extracted features.

The first step consists in the extraction of relevant and exploitable musical content from
the audio. As such, pitch perception of a note can be decomposed into two different notions :
height, corresponding to the octave to which the note belongs and chroma or pitch class
indicating the relation of the note with the other notes among an octave. For example the
note A4 (440 Hz) is decomposed into an octave number 4 and a chroma A. The features
used in chord transcription may differ from a method to another but are in most cases
variants of the Pitch Class Profiles introduced by Fujishima [1] whose calculation is based
on this notion of chroma. These features, also called chroma vectors, are 12-dimensional
vectors. Every component represents the spectral energy of a semi-tone on the chromatic
scale regardless of the octave. These features are widely used both in chord recognition and
tonality extraction. The calculation is based either on the Constant Q Transform (CQT) [2]
or on the Short Time Fourier Transform (STFT) and is performed either on fixed-length
frames or variable-length frames (depending for example on the tempo, etc.). The succession
of these chroma vectors over time is often called chromagram and gives a good representation
of the musical content of a piece.

The structure of a chord being entirely defined by its root note and type, it is easy to create
12-dimensional chord templates which reflect this structure by giving a particular amplitude
to every chroma. The simplest model for chords, widely used in chord recognition [1], [3],
has a binary structure giving an amplitude of 1 to the chromas constituting the chord and 0
for the other chromas. Other models can be introduced for example by taking into account

4



CHAPTER 1. INTRODUCTION

the harmonics of the notes played in the chord [4], [5].

The present paper focuses mainly on the second part of the chord transcription process
that is to say the chord labeling of every chromagram frame. Our chord recognition system
is based on the intuitive idea that for a given 12-dimensional chroma vector, the amplitudes
of the chromas present in the chord played should be larger than the ones of the non-played
chromas. By introducing chord templates for different chord types and roots, the chord
present on a frame should therefore be the one whose template is the closest to the chroma
vector according to a specific measure of fit. A scale parameter is introduced in order to
account for amplitude variations and finally the detected chord is the one minimizing the
measure of fit between the rescaled chroma vector and the chord templates.

Section 2 provides a review of the state-of-the-art methods for the chord recognition.
Section 3 gives a description of our recognition system : the chord templates, the measures of
fit and some post-processing filtering methods exploiting time-persistence. Section 4 describes
the evaluation protocol for our method. Section 5 presents a qualitative and quantitative
analysis of the results on a data corpus formed by the 13 Beatles albums and a comparison
with the state-of-the-art. Section 6 gives results on another corpus composed of audio files
synthesized from MIDI and investigates the influence of the genre, percussive noise and beat-
synchronous chord detection.
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2
State of the art

The chord recognition task consists in outputting a chord label from a specific music-related
feature. Most chord recognition systems use a chromagram (or assimilate) as an input to
the system and output a chord label for each chromagram frame. Machine-learning methods
such as Hidden Markov Models (HMMs) have been widely used for this task especially in the
last years but templates-fitting techniques have also been used for this labeling process.

A Hidden Markov Model is constituted by a number of hidden states with an initial
state distribution, a state transition probability distribution which gives the probability of
switching from a state to another and an observation probability distribution which gives the
likelihood of a particular state for a particular observation data. In the typical HMM-based
chord recognition systems every chord is represented by a hidden state and the observations
are the chromagram frames. Given the parameters of the model, the chord recognition con-
sists in finding the most likely sequence of hidden states (chords) that could have generated a
given output sequence (chromagram). The parameters of these HMMs (initial state distribu-
tion, state transition probability distribution and observation probability distributions) are
either based on musical theory, learned on real data or a combination of these two approaches.

The first HMM used in chord recognition [6] is composed of 147 hidden states each rep-
resenting a chord and corresponding to 7 types of chords (major, minor, dominant seventh,
major seventh, minor seventh, augmented and diminished) and 21 root notes (12 semi-tones
with the distinction between ♭ and ♯). All the HMM parameters are learned by a semi-
supervised training with an EM algorithm. This model is then improved in [7] by a complete
re-building of the HMM. The number of hidden states is reduced from 147 to 24 by only
considering major and minor chords ; this enables to have sufficient data for the training
process. The initializations for the HMMs parameters are inspired by musical and cognitive
theory which naturally introduced musical knowledge into the model. The state transition
probability distribution and the initial state distribution are still updated by an unsupervised
training with an EM algorithm but the observation probability distributions are fixed, giving
to each chord a clear and predetermined structure. The introduction of tempo-based features
also enhances the recognition performances. Some other methods [5], [8] also use a 24 states
HMM considering only major and minor chords but try different sets of input features, HMM
parameters or training approaches. Symbolic data can be used for the training process with
a system based on 24 tonality-dependent HMMs [9] in order to give a joint key extraction
and chord transcription.

Yet, the first chord recognition system based on chroma representation proposed by Fu-
jishima [1] is not using HMM but chord dictionaries composed of 12-dimensional templates
constituted by 1 (for the chromas present in the chord) and 0 (for the other chromas). 27
types of chords are tested and the transcription is done either by minimizing the Euclidean
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CHAPTER 2. STATE OF THE ART

distance between Pitch Class Profiles and chord templates or by maximizing a weighted dot
product. Fujishima’s system is improved [3] by calculating a more elaborate chromagram
including notably a tuning algorithm and by reducing the number of chords types from 27 to
4 (major, minor, augmented, diminished). Chord transcription is then realized by retaining
the chord with higher dot product between the chord templates and the chromagram frames.
Chord transcription can also be done by maximizing the correlation between enhanced vari-
ants of the Pitch Class Profiles and chord templates [10]. These chord templates are also
used on MIDI data for the joint tasks of segmentation and chord recognition [11] by the cal-
culation of weights reflecting the similarity between the chord models and the present notes
in a segment.
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3
Our System

3.1 General idea

Let C denote the chromagram, with dimensions M × N (in practice M = 12) composed
of N successive chroma vectors cn. Let pk be the 12-dimensional chord template defining
chord k. We want to find the chord k whose template pk is the closest to the chromagram
frame cn for a specific measure of fit. We propose to measure the fit of chroma vector cn

to template pk up to a scale parameter hk,n. Given a measure D ( . ; . ), a chroma vector cn

and a chord template pk, the scale parameter hk,n is calculated analytically to minimize the
measure between h cn and pk :

hk,n = argmin
h

D (h cn;pk) . (3.1)

In practice hk,n is calculated such that :

[

d D (h cn;pk)

dh

]

h=hk,n

= 0. (3.2)

We then define dk,n as :

dk,n = D (hk,n cn;pk) . (3.3)

The detected chord k̂n for frame n is then the one minimizing the set {dk,n}k
:

k̂n = argmin
k

dk,n. (3.4)

3.2 Chord models

The chord templates are 12-dimensional vectors where each component represents the theo-
retical amplitude of each chroma in the chord. These chord templates can either be learned
on audio data [6], [8], [9] or predetermined [1], [3], [5], [7], [10], [11]. However, Bello & Pick-
ens [7] and Papadopoulos & Peeters [5] have shown that using fixed and musically inspired
chord structures can give better results for the chord detection task. Besides, the use of fixed
chord models allows to skip the time-consuming learning phase and the need of annotated
training data.

In our system three chord models are defined : examples for C major and C minor chords
are displayed on Figure 3.1.
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CHAPTER 3. OUR SYSTEM

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C major with 1 harmonic

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C major with 4 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C major with 6 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 1 harmonic

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 4 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 6 harmonics

Figure 3.1: Chord templates for C major / C minor with 1, 4 or 6 harmonics.

The first chord model is a simple binary mask : an amplitude of 1 is given to the chromas
defining the chord and an amplitude of 0 is given to the other chromas.1 For example for a C
major chord an amplitude of 1 is given to the chromas C, E and G while the other chromas
have an amplitude of 0.

The second chord model is inspired from the work of Gomez [4] and Papadopoulos [5].
The information contained in a chromagram or any other spectral representation of a musical
signal captures not only the intensity of every note but a blend of intensities for the harmonics
of every note. It is therefore interesting and relevant to take into account the harmonics for
each note of the played chord. An exponentially decreasing spectral profile is assumed for
the amplitudes of the partials and an amplitude of si−1 is added for the ith harmonic of every
note in the chord. The parameter s is empirically set to 0.6. Our second chord model only
takes into account the 4 first harmonics.

The third chord model is based on the same principle but takes into account the first
6 harmonics for the notes of the chord.

From these three chord models we can build chord templates for all types of chords (major,
minor, dominant seventh, diminished, augmented,...). By convention in our system, the chord
templates are normalized so that the sum of the amplitudes is 1 but any other normalization
could be employed.

3.3 Measures of fit

We consider for our recognition task several measures of fit, popular in the field of signal
processing. Table 3.1 gives the expressions of these different measures, as well as the scale
parameter analytically calculated from (3.2) and the final expression of the set of values dk,n.

1In practice a small value is used instead of 0, to avoid numerical instabilities that may arise with some measures of fit, see
section 3.3.
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CHAPTER 3. OUR SYSTEM

Expression of D (hk,n cn;pk) Scale parameter hk,n Minimization criteria dk,n

EUC
√

∑

m

(hk,n cm,n − pm,k)2

∑

m

cm,n pm,k

∑

m

c2m,n

√

√

√

√

√

√

∑

m

p2
m,k −

(

∑

m

cm,n pm,k

)

2

∑

m

c2m,n

IS1
∑

m

hk,n cm,n

pm,k
− log

(

hk,n cm,n

pm,k

)

− 1 M
∑

m

cm,n

pm,k

M log

(

1

M

∑

m

cm,n

pm,k

)

−

∑

m

log
(

cm,n

pm,k

)

IS2
∑

m

pm,k

hk,n cm,n
− log

(

pm,k

hk,n cm,n

)

− 1 1

M

∑

m

pm,k

cm,n
M log

(

1

M

∑

m

pm,k

cm,n

)

−

∑

m

log
(

pm,k

cm,n

)

KL1
∑

m

hk,n cm,n log
(

hk,n cm,n

pm,k

)

− hk,n cm,n + pm,k e

−
∑

m

c′m,n log

(

cm,n

pm,k

)

1− e

−
∑

m

c′m,n log

(

c′m,n

pm,k

)

with c′m,n =
cm,n

‖cn‖
1

with c′m,n =
cm,n

‖cn‖
1

KL2
∑

m

pm,k log
(

pm,k

hk,n cm,n

)

− pm,k + hk,n cm,n
1

∑

m

cm,n

∑

m

pm,k log
(

pm,k

c′m,n

)

− pm,k + c′m,n

with c′m,n =
cm,n

‖cn‖
1

Table 3.1: Presentation of the measures of fit (the expressions assume ‖pk‖1
= 1)

The well-known Euclidean distance (EUC ) defined by

DEUC (x|y) =

√

∑

m

(xm − ym)2 (3.5)

has already been used by Fujishima [1] for the chord recognition task.
The Itakura-Saito divergence [12] defined by

DIS (x|y) =
∑

m

xm

ym

− log

(

xm

ym

)

− 1 (3.6)

was presented as a measure of the goodness of fit between two spectra and became popular
in the speech community during the seventies. This is not a distance : it is in particular
not symmetrical. It can therefore be calculated in two ways : D (hk,n cn|pk) will define IS1,
while D (pk|hk,n cn) will define IS2.

The Kullback-Leibler divergence [13] measures the dissimilarity between two prob-
ability distributions. It has been widely used in particular in information theory and has
given rise to many variants : in the present paper we use the generalized Kullback-Leibler
divergence defined by

DKL (x|y) =
∑

m

xm log

(

xm

ym

)

− xm + ym. (3.7)

Just like Itakura-Saito divergence, the generalized Kullback-Leibler divergence is not symmet-
rical, so that we can introduce two measures of fit : D (hk,n cn|pk) (KL1) and D (pk|hk,n cn)
(KL2).

3.4 Filtering methods

So far our chord detection is done frame by frame without taking into account the results
on the adjacent frames. In practice it is rather unlikely for a chord to last only one frame.
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CHAPTER 3. OUR SYSTEM

Furthermore the information contained in the adjacent frames can help decision : it is one
of the main advantages of the methods using HMM, where the introduction of transition
probabilities naturally leads to a smoothing effect. The post processing filtering we introduce
works upstream on the calculated measures and not on the sequence of detected chords.

We introduce new criteria d̃k,n based on L successive values centered on frame n (L is

then odd). These d̃k,n are calculated from the dk,n previously calculated on the L adjacent
frames, as shown below. In our system two types of filtering are tested.

The low pass filtering defined by

d̃k,n =
1

L

n+L−1
2

∑

n′=n−L−1
2

dk,n′ (3.8)

tends to smooth the output chord sequence and to reflect the long-term trend in the chord
change.

The median filtering defined by

d̃k,n = med {dk,n′}
n−L−1

2
≤n′≤n+L−1

2

(3.9)

has been widely used in image processing and is particularly efficient to correct random
errors.

In every case, the detected chord k̂n on frame n is the one that minimizes the set of values
{

d̃k,n

}

k
:

k̂n = argmin
k

d̃k,n (3.10)
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4
Evaluation and corpus

4.1 Beatles corpus

Our first evaluation database is made of the 13 Beatles albums (180 songs, PCM 44100 Hz,
16 bits, mono). This database is in particular the one used in MIREX 08 for the Audio
Chord Detection task1. The evaluation is realized thanks to the chord annotations of the
13 Beatles albums kindly provided by Harte and Sandler [14]. In these annotation files, 17
types of chords are present (maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9, maj9, sus4, sus2,
min, min7, minmaj7, min6, min9) and one ‘no chord’ label (N) corresponding to silences
or untuned material. The alignment between annotations and wave files are done with the
algorithm provided by Christopher Harte.

Figure 4.1 represents the repartition of the durations of the different chord types on the
Beatles corpus. The most common chord types in the corpus are major, minor, dominant
seventh, ‘no chord’ states, minor seventh and ninth. Any other chord type represents less
than 1% of the total duration.

maj min 7 N others
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30
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50
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70
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)

Repartition on the MIDI corpus

maj min 7 N others
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30
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50

60

70
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e
rc

e
n
t 
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)

Repartition on the Beatles corpus

Figure 4.1: Statistics on the Beatles and the MIDI corpus : repartition of the chord types as percentage of
the total duration.

1MIREX 08 (Music Information Retrieval Evaluation eXchange) : http://www.music-ir.org/mirex/2008/
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CHAPTER 4. EVALUATION AND CORPUS

ground truth :

transcription :

overlap :

Overlap Score = 3+4

10
= 0.70

C major A minor

C major F major A minor

Figure 4.2: Example of calculation of an Overlap Score.

4.2 MIDI corpus

Our second evaluation database is composed of 12 songs from various artists in different
genres (blues, country, pop and rock). The audio files (PCM 44100 Hz, 16 bits, mono)
are synthesized from MIDI files2 using the free software Timidity ++.3 Timidity ++ is a
software synthesizer which can generate realistic audio data from MIDI files using a sample-
based synthesis method. We have manually annotated the songs : 5 types of chords are
present (maj, min, 7, sus2, sus4) as well as the ‘no chord’ label (N). The repartition of the
durations of the different chord types on the MIDI corpus is displayed on Figure 4.1.

4.3 Evaluation method

The evaluation method used in this paper corresponds to the one used in MIREX 08 for the
Audio Chord Detection task.

This evaluation protocol only takes into account major and minor chord types. The 17
types of chords present in the annotation files are therefore first mapped into major and
minor types following these rules :

• major : maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9, maj9, sus4, sus2

• minor : min, min7, minmaj7, min6, min9

For the systems detecting more chord types (dominant seventh, diminished, etc.), once
the chords have been detected with their appropriate models, they are then mapped to the
major and minor following the same rules than for the annotation files.

An Overlap Score (OS) is calculated for each song as the ratio between the lengths of the
correctly analyzed chords and the total length of the song. We define for the Beatles corpus
an Average Overlap Score (AOS) which is obtained by averaging the Overlap Scores of all
the 180 songs of the corpus. An example of calculation of an Overlap Score is presented on
Figure 4.2.

2The MIDI files were obtained on http://www.mididb.com
3The software is freely downloadable on http://timidity.sourceforge.net
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CHAPTER 4. EVALUATION AND CORPUS

4.4 Input features

Based on preliminary experiments we chose among three types of chromagram [7], [15], [16],
the one proposed by Bello & Pickens [7], which appeared to give the best results for our
chord transcription task. The Constant-Q Transform [2] allowing a frequency analysis on
bins centered on logarithmically spaced frequencies is used. The center frequency fk of the
kth bin is indeed defined as :

fk = 2
k
b fmin, (4.1)

where b represents the number of bins per octave and fmin the frequency where the analysis
starts.

The signal is first downsampled to 5512.5 Hz and the CQ-Transform is calculated with
b = 36 (3 bins per semi-tone), between frequencies 73.42 Hz (D2) and 587.36 Hz (D5). These
parameters lead to a window length of 4096 samples and the hop size is set to 512 samples.

Thanks to the 36 bins per octave resolution, a tuning algorithm [3] can be used. After a
pick detection in the chromagram, a correction factor is calculated so as to take into account
the detuning. A median filtering is finally applied in order to eliminate too sharp transitions.

Some precisions about the calculation of the chromagram can be found in [7]. We used
the code kindly provided by the authors. The silence (‘no chord’) detection is done by an
empirically set threshold on the energy of the chroma vectors.

An example of chromagram and chord transcription is displayed on Figure 4.3.
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CHAPTER 4. EVALUATION AND CORPUS

Chromagram of ’Eight days a week’

time (s)
0 20 40 60 80 100 120 140 160

C

C#/Db

D

D#/Eb

E

F

F#/Gb

G

G#/Ab

A

A#/Bb

B

Chord transcription of ’Eight days a week’

time (s)
0 20 40 60 80 100 120 140 160

C
C#/Db

D
D#/Eb

E
F

F#/Gb
G

G#/Ab
A

A#/Bb
B

Cm
C#/Dbm

Dm
D#/Ebm

Em
Fm

F#/Gbm
Gm

G#/Abm
Am

A#/Bbm
Bm
N/A

Figure 4.3: Chromagram and chord transcription for the song Eight days a week by The Beatles. At the
bottom the estimated chord labels are in black while the ground-truth chord annotation is in gray.
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5
Results on the Beatles corpus

The previously described five measures of fit (EUC, IS1, IS2, KL1 and KL2 ), three chord
models (1, 4 or 6 harmonics) and two filtering methods (low-pass and median) with neigh-
borhood sizes from L = 1 to L = 25 are tested. These 375 parameter sets can be seen as so
many chord recognition systems. We now investigate the systems giving the best results on
the Beatles corpus.

5.1 Results with major/minor chord types

no filtering low-pass filtering median filtering

1 harm. 4 harm. 6 harm. 1 harm. 4 harm. 6 harm. 1 harm. 4 harm. 6 harm.

EUC 0.665 0.636 0.588 0.710 0.684 0.646 0.705 0.679 0.636

IS1 0.665 0.441 0.399 0.706 0.460 0.415 0.706 0.465 0.422

IS2 0.657 0.667 0.170 0.704 0.713 0.178 0.703 0.714 0.178

KL1 0.665 0.487 0.140 0.700 0.532 0.151 0.692 0.498 0.143

KL2 0.667 0.672 0.612 0.709 0.712 0.648 0.714 0.718 0.656

Table 5.1: Average Overlap Scores on the 13 Beatles albums

Average Overlap Scores on the 13 Beatles albums are presented on Table 5.1 with the
major/minor templates. For sake of conciseness, we only displayed the results for the optimal
choice of L. The best average result is obtained with the KL2, the 4 harmonics chord model
and the median filtering with L = 15 giving a recognition rate of 71.8%.

Interestingly, we notice two trends in the influence of the number of harmonics considered.
We observe that for the EUC, IS1 and KL1, the results worsen when we increase the number of
harmonics. In the particular cases of IS1 and KL1, this can be explained by the fact that they
both contain a logarithm component which is sensitive to the zeros in the chord templates for
the chord discrimination. We believe that since a high number of harmonics leads to a chord
model with a low number of null components (see Figure 3.1), the discrimination between
chords is harder, which leads to worse results. On the contrary, we observe that for the IS2
and the KL2, the best results are obtained by considering 4 harmonics.

A pathological situation appears with the Itakura-Saito divergences IS1 and IS2 with the
6 harmonics chord model. Indeed, we observe that the use of IS2 with the 6 harmonics
chord model leads to a systematic detection of minor chords, while the IS1 measure with 6
harmonics chord model only detects major chords. In the case of the IS1 the loss in the scores
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CHAPTER 5. RESULTS ON THE BEATLES CORPUS

is less noticeable, because of the high number of major chords in the Beatles corpus. We
believe that the explanation of this phenomena lies in the structure of the 6 harmonics chord
model. Indeed, the 6 harmonics chord model gives a different number of null components for
the major and minor chords : we can see on Figure 3.1 that the major chord model has 6
null components while the minor chord has 5 null components. The minimization criterion
associated to the IS2 has the property that given a chroma vector, the more zeros in the chord
template pk, the larger the value of the criteria. This measure of fit will therefore always give
larger values for the chord models having more null components, that is to say the major
chords, which leads to a systematic detection of only minor chords. The same phenomenon
can be observed for the IS1 measure of fit, this time with a systematic detection of major
chords.

Filtering clearly enhances the results : this can be explained by the natural proportion of
chords to last more than the length of one frame. Both low-pass filtering and median filtering
give good results : the low-pass filtering tends to smooth the chord sequence while the median
filtering reduces the random errors. In most cases the optimal value of L is between 13 and
19 which corresponds, with our window parameters, to a length of approximately 2 seconds.

Some songs give bad results (<0.100) with all sets of parameters : it is often due either to
a very strong detuning of the instruments which is too large to be corrected by the tuning
algorithm present in the chromagram computation (eg. Wild Honey Pie, Lovely Rita), or to
un-tuned material such as spoken voice, non-harmonic instruments or experimental noises
(applause, screams, car noise, etc.) (eg. Revolution 9).

5.2 Results with other chord types

The simplicity of our method allows to easily introduce chord templates for chord types other
than major and minor : we study here the influence of the chord types considered over the
performances of our system.

Chord types AOS

maj - min 0.718

maj - min - 7 0.724

maj - min - 7 - min7 0.706

maj - min - 7 - min7 - 9 0.706

Table 5.2: Results of the introduction of new chord types

The introduction of models for new chords types are tested on Table 5.2. The choice of
the introduced chord types is guided by the statistics on the corpus previously presented. We
introduce in priority the most present chords of the corpus : dominant seventh (7), minor
seventh (min7) and ninth (9). For every method we only present the results for the optimal
parameters (measure of fit, chord models, filtering method and neighborhood size).

The best results are obtained by detecting major, minor and dominant seventh chords,
with the KL2, the one harmonic chord model and the median filtering with L = 17 giving a
recognition rate of 72.4%.

The introduction of dominant seventh chords, which are very present in the Beatles corpus,
clearly enhances the results. Yet, the introduction of more chord types which are less present
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CHAPTER 5. RESULTS ON THE BEATLES CORPUS

(minor seventh, ninth) degrades the results. Indeed, the introduction of a model for a new
chord type gives a better detection for chords of this type but also leads to new errors such
as false detections. Therefore only frequent chord types should be introduced, ensuring that
the enhancement caused by the better recognition of these chord types is larger than the
degradation of the results caused by the false detections.

5.3 Comparison with the state-of-the-art

Our method is now compared to the following methods that entered MIREX 08.
Bello & Pickens [7] use 24-states HMM with musically inspired initializations, Gaussian

observation probability distributions and EM-training for the initial state distribution and
the state transition matrix.

Ryynänen & Klapuri [8] use 24-states HMM with observation probability distributions
computed by comparing low and high-register profiles with some trained chord profiles. EM-
training is used for the initial state distribution and the state transition matrix.

Khadkevich & Omologo [17] use 24 HMMs : one for every chord. The observation
probability distributions are Gaussian mixtures and all the parameters are trained through
EM.

Pauwels, Verewyck & Martens [18] use a probabilistic framework derived from Ler-
dahl’s tonal distance metric for the joint tasks of chords and key recognition.

These methods have been tested with their original implementations on the same Beatles
corpus than before and evaluated with the same protocol (AOS). Results of this comparison
with the state-of-the-art are presented on Table 5.3.

AOS Time
Our method (Maj-Min-7) 0.724 796s
Our method (Maj-Min) 0.718 790s

Bello & Pickens 0.707 1619s
Ryynänen & Klapuri 0.705 1080s

Khadkevich & Omologo 0.663 1668s
Pauwels, Varewyck & Martens 0.647 12402s

Table 5.3: Comparison with the state-of-the-art

First of all it is noticeable that all the methods give rather close results : there is only a
8% difference between the methods giving the best and worse results. Our methods give the
best results, but more importantly with a very low computational time. There are indeed
twice as fast as the best state-of-the-art method (Bello and Pickens).

5.4 Analysis of the errors

In most chord transcription systems, the errors are often caused by the structural similarity
(common notes) and the harmonic proximity between the real chord and the wrongly detected
chord.

Two chords are likely to be mistaken one for another when they look alike, that is to say,
when they share notes (especially in template-based systems). Given a major or minor chord,
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CHAPTER 5. RESULTS ON THE BEATLES CORPUS

there are 3 chords which have 2 notes in common with this chord : the parallel minor/major,
the relative minor/major (or submediant) and the mediant chord.

Besides the structural similarity, errors can also be caused by the harmonic proximity
between the original and the detected chord. Figure 5.1 pictures the doubly nested circle
of fifths which represents the major chords (capital letters), the minor chords (lower-case
letters) and their harmonic relationships. The distance linking two chords on this doubly
nested circle of fifths is an indication of their harmonic proximity.

Given a major or minor chord, the 4 closest chords on this circle are the relative (subme-
diant), mediant, subdominant and dominant. One can notice that these 4 chords are also
structurally close to the original chord, since they share 1 or 2 notes with it.

Figure 5.1: Doubly nested circle of fifths [7].

We have therefore brought out 5 potential sources of errors among the 23 possible ones
(i.e., the 23 other wrong candidates for one reference chord). Examples of these potential
sources of errors for C major and C minor chords are displayed on Table 5.4.

Reference chord C Cm

parallel Cm C
relative (submediant) Am A♭

mediant Em E♭

subdominant F Fm
dominant G Gm

Table 5.4: Particular relationships between chords and potential sources of errors : examples for C major
and C minor chords

Figure 5.2 displays the repartition of these error types as a percentage of the total number
of errors for every evaluated method. Errors due to the bad detection of the ‘no chord’ states
are represented with the ‘no chord’ label.

The main sources of errors correspond to the situations previously described and to the
errors caused by silences (‘no chord’). Actually, in most methods, the 5 types of errors
previously considered (over the 23 possible ones) represent approximately 60% of the errors.

The introduction of the dominant seventh chords clearly reduces the proportion of the
errors due to relative (submediant) and mediant (-11%). Another noteworthy result is that
the methods by Ryynänen & Klapuri, Bello & Pickens and our major/minor method ap-
proximately have the same error repartition despite the different structures of the methods,
which proves that the semantic of the errors is inherent to the task. Pauwels, Varewyck &
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others

Figure 5.2: Repartition of the errors as a percentage of the total number of errors.

Martens’ system is mostly penalized by the wrong detection of the ‘no chord’ states, when
Khadkevich & Omologo’s method produces a wider range of errors.
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6
Results on the MIDI corpus

We now use the two sets of parameters described in the previous section for the Maj-Min
(KL2, 4 harmonics, median filtering with L = 15) and the Maj-Min-7 (KL2, 1 harmonic,
median filtering with L = 17) chord detection systems on the MIDI corpus.

6.1 Influence of the music genre

Maj-Min Maj-Min-7

Song title Default Optimal Default Optimal

Country

Ring of fire (Johnny Cash) 0.844 0.918 0.848 0.924

Tennessee waltz (Roy Acuff) 0.941 0.955 0.949 0.955

Stand by your man (Tammy Wynette) 0.895 0.909 0.902 0.911

Pop

Dancing queen (ABBA) 0.786 0.804 0.728 0.782

I drove all night (Cyndi Lauper) 0.870 0.891 0.856 0.889

Born to make you happy (Britney Spears) 0.867 0.892 0.861 0.892

Blues

Blues stay away from me (The Delmore Brothers) 0.630 0.791 0.854 0.912

Boom, boom, boom (John Lee Hooker) 0.839 0.903 0.876 0.913

Keep it to yourself (Sonny Boy Williamson) 0.771 0.909 0.907 0.928

Rock

Twist and shout (The Beatles) 0.827 0.892 0.850 0.901

Let it be (The Beatles) 0.835 0.876 0.876 0.880

Help ! (The Beatles) 0.918 0.920 0.899 0.918

Table 6.1: Overlap Score for the 12 songs of the MIDI corpus

Table 6.1 shows the Overlap Scores for the 12 songs of the MIDI corpus for the Maj-Min
and the Maj-Min-7 chord recognition methods. Besides the results obtained with the default
parameters, we also displayed the results with the optimal parameters in order to evaluate
the fitness of our default parameters.

The first thing we can observe is that the scores obtained with the default parameters are
rather close to the best ones. This shows that the parameters we deduced from the Beatles
corpus can be used in a more general context.

We can also see that the scores are all creditable. This can surely be explained by the
fact that we work here with resynthesized wave files and not real audio. These audio files are
indeed generated with instrument patterns which contain less noise and untuned material
than real instrument recordings.
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CHAPTER 6. RESULTS ON THE MIDI CORPUS

Genre does not seem to have an influence on the scores. Nevertheless, the scores obtained
on country songs are particularly large, but it is probably due to the very simple chord
structures of these songs (mainly alternation of 3 chords).

6.2 Influence of the percussive noise

Our method strongly relies on the chromagram, that is to say a harmonic representation of
the music. It can therefore be thought that inharmonic components of the music, for example
drums, tend to add noise to the chromagram, which can lead to errors in the chord detection.

Working with audio data computed from MIDI files gives us the chance to synthesize them
without the percussive parts. Indeed, the software Timidity ++ allows to mute one channel
(instrument) for the wave-synthesis of the MIDI file.

The same simulations have been performed with these drum-free audio files. The removal
of the percussions does not improve significantly the Overlap Scores. Indeed, the average
score improvement is only 0.8% as well with the Maj-Min system than with the Maj-Min-7.
We believe that the noise contained in the chromagram, which lead to errors, is not only
due to drums but also, for example, to the melody itself, since it does not only play notes
contained in the chord pattern.

6.3 Beat synchronous chord detection

The filtering process we have been using so far has a fixed length predetermined by the system
parameters. It seems interesting to introduce beat information either in the chromagram
computation or in the recognition criteria. For our tests we used the beat-detection algorithm
provided by Davies & Plumbley [19].

The first way to take into account the beat information is to compute a beat-synchronous
chromagram, that is to say averaging the chromagram over the number of frames representing
a beat time. This process has already been used by Bello & Pickens [7]. Yet this does not
improve the results : comparing the best results obtained with the usual chromagram and
those obtained with the beat-synchronous one, it appears that the average degradation is
-6% for the Maj-Min and -7% for the Maj-Min-7 system.

The second way to integrate this information is to filter the recognition criteria (either
with the low-pass or the median filtering method) with a neighborhood size equal to the
beat time. Even if the degradation is lower than with the beat-synchronous chromagram,
the results are also penalized : the average degradation is -2% for the Maj-Min and the -4%
for the Maj-Min-7 system.

We believe that these disappointing results are probably due to the fact that the beat
detection does not take into account the distinction between on-beats and off-beats. Indeed,
the chord change tend to occur mainly on the on-beats and not on every beat. Averaging
either the chromagram or the recognition criteria on every beat does not really capture the
rhythmic information.
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7
Conclusion

In this paper we have presented a fast and efficient chord recognition method. The main
innovative idea is the joint use of popular measures which had never been considered for this
task and filtering methods taking advantage of time persistence. The decoupling of various
stages of the chord template matching process enables to achieve high effectiveness in less
time. Our system also offers a novel perspective about chord detection, which distinguishes
from the predominant HMM-based approaches.

Since our method is only based on the chromagram no information about style, rhythm
or instruments is needed so that our recognition system would work with any type of music.
Furthermore we do not require any training on any database, which enables the computation
time to be kept really low.
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