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Les développeurs de BitTorrent ont annoncé récemment que le transfert de données vers le 

client  officiel  se  ferait  désormais  avec  UTP,  un  nouveau  protocole  pour  le  contrôle  de 

congestion  utilisant  le  protocole  UDP  pour  la  couche  transport.  Cette  annonce  a 

immédiatement soulevé une rumeur à propos d'une possibilité imminente de congestion telle 

que l'Internet tout entier pourrait s’effondrer. Bien que cette réaction ne soit pas construite sur 

des fondements techniques solides, une question légitime demeure: à savoir si  ce nouvel 

algorithme est en fait nécessaire pour les applications Internet du futur, ou s'il s’ajoute tout 

simplement a la liste déjà très longue des algorithmes de contrôle de congestion de l’Internet. 

Dans  cet  article,  nous  abordons  précisément  cette  question.  Le  nouveau  protocole 

actuellement en discussion dans le Groupe de Travail  IETF nommé LEDBAT, a été défini 

dans une proposition, publié en Mars 2009 et dont la décision d'adoption par le Groupe de 

Travail sera prise au mois d'Août 2009. Nous avons implémenté dans ns2 un protocole de 

contrôle  de  congestion  LEDBAT  strictement  adhérant  à  la  proposition  de  l'IETF,  afin 

d'analyser  ses  prestations  à l'aide  de  simulations  de  niveau de paquets.  Considérant  un 

scénario simple où LEDBAT est en concurrence sur un goulot d'étranglement avec soit TCP 

soit  d'autre flux LEDBAT, nous évaluons l'équité de la part  des ressources ainsi  que son 

efficacité. 

Nos premiers résultats  montrent  que,  de fait,  LEDBAT demeure sans doute un protocole 

intéressant, en raison de ses performances. De plus, nos résultats indiquent que certains 

points importants de la proposition IETF, tels que l'équité intra-protocole, méritent un profond 

travail de clarification – nous espérons que cette étude puisse y contribuer.
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Abstract—A few months ago, the BitTorrent developers an-
nounced that the transfer of torrent data in the official client was
about to switch to uTP, an application-layer congestion-control
protocol using UDP at the transport-layer. This announcement
immediately raised an unmotivated buzz about a new, imminent
congestion collapse of the whole Internet. Though this reaction
was not built on solid technical foundation, nevertheless a
legitimate question remains: i.e., whether this novel algorithm
is a necessary building block for future Internet applications, or
whether it may result in an umpteenth addition to the already
well populated world of Internet congestion control algorithms.

In this paper, we tackle precisely this issue. The novel protocol
is now under discussion at the IETF LEDBAT working group,
and has been defined in a draft document in March 2009, whose
adoption decision will be taken at the beginning of August
2009. Adhering to the IETF draft definition, we implement
the LEDBAT congestion control algorithm and investigate its
performance by means of packet-level simulations. Considering
a simple bottleneck scenario where LEDBAT competes against
either TCP or other LEDBAT flows, we evaluate the fairness
of the resource share as well as its efficiency. Our preliminary
results show that indeed, there is an undoubted appeal behind
the novel application-layer congestion-control protocol. Yet, care
must be taken in order to ensure that some important points,
such as intra-protocol fairness, are fully clarified in the draft
specification – which we hope that this work can contribute to.

I. INTRODUCTION

A few months ago, a post in the thread announcing the new

µTorrent release 1.9 alpha 15380 in the BitTorrent developer

forum [1] raised a lot of motivated interest as well as quite a

few unmotivated buzz [2]–[5]. The main novelties consisted in

the fact that i) starting from the new release, the official Bit-

Torrent client would no longer be open-source but closed and

proprietary, and that ii) data download would now use a new

protocol. The new protocol, named “micro transport protocol”

(uTP), was described as an application-layer protocol for data

transfer, implementing a novel congestion-control algorithm

built on top of UDP at the transport layer.

Nevertheless, the main item retained was that BitTorrent

would have switched its data transfer over UDP – which do

not implement any kind of congestion control and is thus

usually associated with unresponsive source. This fallacious

interpretation raised serious concerns: as BitTorrent constitutes

a significant portion of nowadays Internet traffic, its switchover

to UDP was seen as the cause for the forthcoming collapse of

the network [2]. This “Internet meltdown” buzz rapidly flooded

to popular websites [3], and only after an official reaction of

BitTorrent followed by intense discussions, this climax started

slowing down [4], [5].

Yet, the buzz was not built on solid technical foundation.

In fact the original post [1] clearly states: “This UDP-based

reliable transport is designed to minimize latency, but still

maximize bandwidth when the latency is not excessive. In

addition, [. . . ] uTorrent, when using uTP, should not kill your

net connection – even if you do not set any rate limits.” De-

velopers goal was to build a protocol able to “detect problems

very quickly and throttle back accordingly so that BitTorrent

doesn’t slow down the Internet connection and Gamers and

VoIP users don’t notice any problems.” Finally they affirm

that “uTP is the result of a couple of years of work to try to

make a BitTorrent protocol that works better on the Internet

[. . . ] trying to do our bit to be responsible citizens on the

Internet”, also pointing out the co-chairing effort of an IETF

working group on Low Extra Delay Background Transport

(LEDBAT) [6], whose first draft [7] dates March 2009. Thus,

as openly discussed at IETF [8], the BitTorrent position clearly

goes in the direction of ISP-friendliness (for what concerns an

AS-aware peer selection process) and TCP-friendliness (for

what concerns the congestion control mechanism employed

for the data transfer).

The novel congestion control algorithm is described in [7].

LEDBAT is a windowed protocol, governed by a linear con-

troller designed to infer earlier than TCP the occurrence of

congestion on a network path. LEDBAT congestion control is

based on the estimation of one-way delay: queuing delay is

estimated as the difference between the instantaneous delay

and a base delay, taken as the minimum delay over the

previous observations. Whenever a sender estimates that the

one-way delay is growing, it infers that queue is building up

and reacts by decreasing its sending rate. This way, it reacts

earlier than TCP, which instead has to wait for a packet loss

event to infer that congestion occurred.

While the LEDBAT design goals are sound, and results

in [8] state that simulation and large-scale experiments have

yielded good results, technical points have been raised by the

scientific community participating to the LEDBAT working

group, that ongoing discussion has not fully flattened yet [9]. A

legitimate question is whether the novel LEDBAT [7] addition

to the already well populated world of Internet congestion con-

trol algorithms is really necessary and motivated, or whether

it would be better instead to rely on already existing, and

therefore more stable and better understood, algorithms. These



facts, coupled with the move toward a closed and proprietary

code, motivates the need for independent studies, so that

claims concerning, e.g., the friendliness and efficiency of this

new protocol, can be confirmed by independent research.

This work tackles precisely this issue, using event driven

packet-level simulations to assess the performance of the LED-

BAT controller. Our aim is not to propose any modification

to LEDBAT: rather, we aim at evaluating the draft specifica-

tion [7] as is. Therefore, strictly adhering to the specification,

we implement and evaluate the simplest controller that satisfy

all the drafts requirement in ns2 [10]. The source code of our

LEDBAT implementation is made available to the scientific

community upon request.

To summarize our main results, we find that the linear

controller is enough to achieve inter-protocol fairness: in other

words, LEDBAT does not interfere with CBR VoIP/Gaming

flows, and guarantees to TCP a more-than-friendly share of

bottleneck resource. Moreover, TCP friendliness on a fair

basis (i.e., equal competition for resources) is guaranteed also

in case of wrong parameter settings. Concerning the link

utilization, LEDBAT resource usage is more efficient than

TCP whenever the former is alone on the bottleneck. In case

both LEDBAT and TCP are present on the link, the overall

link utilization increases, since LEDBAT is able to use the

resources available beyond those used by TCP, while at the

same time not interfering with TCP AIMD dynamics (i.e.,

LEDBAT reacts earlier than TCP).

Yet, we also find that the linear controller alone may

not solve the issue concerning intra-protocol fairness, i.e.,

fairness among competing LEDBAT flows. More precisely, as

feared in [9], a late-comer advantage may arise, where newly

born connections may absorb all resources, bringing already

started connections to starvation. Basically, unfairness is due

to an incorrect estimation of the base delay as performed by

late-comer connections, which in turns yields new-comers to

underestimate the actual queuing delay.

Interestingly, we show that, a slow-start phase in needed in

order to break unfair situation in which the linear controller

may get stuck. Intuitively, slow-start induces losses on already

active connections, allowing the capacity to drain the queue

empty, so that all connection can get a correct estimate

of the base delay. Also, as losses has to be induced only

at the beginning of the connection, their impact on CBR

VoIP/Gaming flows is likely to be negligible, although a more

careful analysis is needed in this context. Therefore, it seems

that slow-start is necessary for its side effect on fairness issues,

rather than for efficiency matters. At the same time, we point

out that the slow-start phase is only specified to be optional

in [7]: thus, the above observations suggest that slow-start

should be a mandatory component of the novel protocol.

Overall, LEDBAT has an undoubted appeal to become a

very useful Internet building block: yet, we underline that

whether this will happen, however not only depends on its

network friendliness (i.e., which helps relieving congestion

on user access links), but also on the overall performance of

applications relying on it (e.g., BitTorrent download time), as

this will have a major impact on users and their consensus.

II. LEDBAT OVERVIEW

This section provides a basic overview of the LEDBAT

draft [7]. To better understand the motivations behind LED-

BAT, let us recall that the standard TCP congestion control

mechanism needs losses to back off: thus, under a drop-tail

FIFO queuing discipline, this means that TCP necessarily fills

the buffer. As uplink devices of low-capacity home access

networks can buffer up to hundreds of milliseconds [9], this

may translate into poor performance of interactive applications

(e.g., slow Web browsing and bad gaming/VoIP quality).

To avoid this substantial drawback, LEDBAT implements

a distributed congestion control mechanism, tailored for the

transport of non-interactive traffic with lower than Best Effort

(i.e., TCP) priority, whose main design goals are:

• Saturate the bottleneck when no other traffic is present,

but quickly yield to TCP and other UDP real-time traffic

sharing the same bottleneck queue.

• Keep delay low when no other traffic is present, and add

little to the queuing delays induced by TCP traffic.

• Operate well in drop-tail FIFO networks, but use explicit

congestion notification (e.g., ECN) where available.

Intuitively, to saturate the bottleneck it is necessary that

queue builds up: otherwise, when the queue is empty, at least

sometimes no data is being transmitted and the link is under-

exploited. At the same time, in order to operate friendly toward

interactive applications, the queuing delay needs to be as low

as possible: LEDBAT is therefore designed to introduce a non-

zero target queuing delay.

To this extent, the LEDBAT controller exploits the ongoing

data transfer to perform one-way delay measurement, by

timestamping packets. One-way delay is used instead of round-

trip delay, so that unrelated traffic on the reverse path does

not interfere with the data transmission. LEDBAT controllers

then estimate the queuing delay as the difference between the

current delay and a base delay, taken as the minimum delay

over a number of previous observations.

Finally, LEDBAT adapts its sending rate with a linear

controller, aiming to keep the estimated queuing delay equal to

its target. Also, in order to be TCP-friendly, the controller is

designed in such a way that the ramp-up of the congestion

window is not higher than that of TCP during congestion

avoidance, and that reaction to losses is the same as TCP.

In the reminder of this section, we introduce the LEDBAT

pseudocode, and report considerations concerning the linear

controller, the delay measurement and the TCP-friendliness

issues.

A. LEDBAT Operations

For the sake of simplicity, we consider a bidirectional

LEDBAT communication between a sender, having unlimited

amount of data to send, and a receiver, merely acknowledging

each received data packet. We consider data packets of fixed

size. As the draft specifies, LEDBAT can implement a TCP-

like slow-start behavior, but “conservative implementations



on data_packet @ RX:

remote_timestamp = data_packet.timestamp

acknowledgement.delay =

local_timestamp() - remote_timestamp

on acknowledgement @ TX:

current_delay = acknowledgement.delay

base_delay = min(base_delay, current_delay)

queuing_delay = current_delay - base_delay

off_target = TARGET - queuing_delay

cwnd += GAIN * off_target / cwnd

Fig. 1. Pseudocode of the LEDBAT sender and receiver operations

MAY skip slow-start altogether” [7]. For the time being, we

thus neglect the slow-start phase.

To perform one-way delay measurements, each data packet

contains a header field timestamp: the sender puts a timestamp

from its clock into this field. Also, each acknowledgement

packet contains a delay field, that the receiver sets to the dif-

ference between its local timestamp and the remote timestamp

of the sender. A minimum of the measured delay is maintained

by the sender in order to estimate the instantaneous queuing

delay, which is then used to modulate the congestion window

size. Thus, LEDBAT operations can be simply stated as in

Fig. 1, which reports the simplified pseudocode with the same

notation of [7]. Notice that the behavior of LEDBAT further

depends on two parameters, namely TARGET and GAIN.

Quoting the draft specifications “TARGET parameter MUST

be set to 25 milliseconds and GAIN MUST be set so that max

ramp up rate is the same as for TCP.”

As far as the setting of the GAIN parameter is concerned,

we set it to GAIN=1/TARGET: the reason of our choice will

be clarified later on in this section. Concerning instead the

queuing delay target parameter, the choice TARGET= 25 ms

is primarily motivated by implementation issues: indeed, since

the queuing delay has to be inferred by measurement, the

delay target should not be smaller than the OSes accuracy in

timestamping packet. At the same time, we point out that the

mandatory choice of a constant and furthermore specific value

for its setting has been largely debated on the WG [9], but

consensus has not been reached yet (e.g., unfairness issue may

arise in case of non-compliant implementations using different

targets). For the time being, we adhere to the draft specification

and leave this issue for further work.

B. Linear Controller

A linear controller governs the dynamic of the congestion

window in both the ramp-up and ramp-down phases. The

linear controller adapt the window to the estimated delay, thus

prior that congestion occurs and packets get lost.

Clearly, when the estimate of the queuing delay is lower

than the target (i.e., off_target<0) the sending rate has to

increase, so that queuing delay reaches the target. Conversely,

when the queuing delay estimate is higher than the target (i.e.,

off_target>0) the controller slow down the sending rate.

Notice that, in the linear controller, the window growth

is proportional to the difference between the queuing delay

estimate and the target off_target, multiplied by the GAIN

factor. This implies that, growth (or shrink) of the window

will be slower as the target is approached and faster when the

estimate is far from the target. This is a desirable property:

indeed, to avoid oscillations on round-trip-time scale, the

response of the controller needs to be near zero when the

queuing delay estimate is near the target; similarly, to converge

faster, the controller response needs to increase faster as the

offset from the target increases.

C. One-way Delay Estimate

As previously stated, one-way delay measurements are

performed by adding a timestamp to the packets on the data

direction and a measurement result field on the acknowl-

edgement direction. One-way delay is notoriously difficult to

measure in the Internet by non-synchronized hosts: however,

LEDBAT does not need an accurate estimate of the one-way

delay, but only of its variation with respect to a base delay.

Consider that one-way delay is caused by different com-

ponents: namely, propagation, transmission, processing and

queuing. Neglecting the processing delay, propagation and

transmission delays are the only constant components, while

the only variable component is constituted by the queuing

delay. As can be seen from Fig. 1, the base_delay is

continuously updated so as to store the minimum delay over

all observations: intuitively, packets that will find the queue

empty (i.e., null queuing delay) will yield an accurate estimate

of the constant portion of the one-way delay (i.e., the sum of

propagation and transmission delays). Then, as queuing delay

is always non-negative, it can be estimated as the difference

between the current and the base delay.

We now argue if and how the queuing delay esti-

mate is affected by timestamp errors (such as fixed off-

sets from the true time and skews). Concerning the sender

and receiver offsets, it is easy to gather that, though the

clock offset affects the absolute one-way delay estimate,

it however cancels in the arithmetic difference operation

queuing_delay = current_delay - base_delay

(since both delays are computed as the difference of the

receiver minus the sender delay in their turn). Therefore, no

synchronization is necessary between peers wishing to use

LEDBAT for data transport. Similar considerations, that we

are unable to report here for lack of space, about clock skew,

noise filtering and route changes issues are addressed in [7],

to which we refer the reader for further details. We point out

that our ns2 implementation supports all mandatory LEDBAT

features, including those needed to cope with route changes

on long timescales. However, for the purpose of clarity, in

this paper we focus on shorter timescales to avoid this level

of detail.

D. TCP Friendliness Consideration

An important goal of LEDBAT concerns its ability to yield

to TCP traffic when sharing the same bottleneck resources.

This means that LEDBAT should be able to detect the traffic

already present on links, as well as to yield quickly to newly



incoming connections (releasing resources such as occupied

buffer space and capacity). At the same time, LEDBAT must

avoid starvation: indeed, while it is desirable for LEDBAT to

quickly yield in presence of interactive traffic such as short

Web or Mail transfers, it could be reasonable to compete

in a more aggressive fashion with a long-lived FTP transfer.

This is an important point: though the right fairness balance

might be subjective (depending on the relative importance

users attach to, e.g., P2P, Web, VoIP, etc.) in case LEDBAT

would always unconditionally yield to any traffic, users could

possibly simply revert to TCP based transfers.

A first necessary condition for TCP friendliness, is that

LEDBAT should never ramp-up faster than TCP. Since the

maximum speed with which LEDBAT can increase its con-

gestion window is when the queuing delay estimate is zero

(in reason of our earlier observation on the linear controller),

it is sufficient to limit this ramp-up speed to match that of TCP

in congestion avoidance (i.e., one packet per RTT). Moreover,

since delay estimate is always non-negative, this will ensure

never ramping-up faster than TCP would (as the TCP ramp-

up speed is only attained when no queuing occurs). Notice

that our choice of GAIN=1/TARGET satisfies this constraint,

since the window growth equals one packet per RTT when the

queuing delay is null.

A second necessary condition is that one-way delay based

LEDBAT congestion controller should react early that loss-

based TCP controller: intuitively, if LEDBAT can ramp-down

faster than loss-based connection ramps-up, LEDBAT will

yield. As early observed, LEDBAT ramps-down when queuing

delay estimate exceeds the target and, the more the excess, the

faster the ramp-down. The draft states that LEDBAT should

“yield at precisely the same rate as TCP is ramping-up when

the queuing delay is double the target”. Notice that our choice

of GAIN=1/TARGET also satisfies this constraint: when the

queuing delay is twice the target, it is easy to gather that

LEDBAT will ramp-down at a rate equal to one packet per

RTT, matching thus TCP congestion avoidance ramp-up speed.

A third necessary condition is that, in case of loss, LEDBAT

should behave like TCP does. This means that, in case a loss

event is detected, LEDBAT will halve its congestion window

(halving may happen at most once per RTT). Notice also that,

in case of wrong queuing delay estimates that correspond to

the most aggressive LEDBAT behavior (i.e., when queuing

delay is always estimated to be null), LEDBAT degenerates

into a TCP-like behavior, as it will ramp-up as fast as TCP and

halve its rate in case of loss. This not only ensure protection

against severe congestion (i.e., when most packets are lost)

but also results in a conservative approach in case of incorrect

queuing delay estimation.

III. SIMULATION PRELIMINARIES

A. Reference scenario

As reference scenario, we consider a bottleneck link of ca-

pacity C Mbps and buffer size B packets. For the sake of sim-

plicity, we consider that all transceivers adopt P = 1500 Bytes

fixed-size packets. Traffic flows in a single direction, and acks

are not delayed, dropped nor affected by cross-traffic on their

return path. In the following, we consider only homogeneous

settings in which all flows have the same round trip time

RTT = 50 ms, half of which is due to the propagation and

transmission delay components of the bottleneck link (i.e., a

one-way base delay of 25 ms).

We devise two different access scenarios, namely ADSL

and high-speed (HS). We set ADSL downlink/uplink capacity

to C = 2 Mbps and 500 Kbps, while we consider a symmetric

link of C = 10 Mbps capacity in both directions for the HS

scenario. Given our round trip time choice, we notice that

the bandwidth delay product is equals to 12500 Bytes (8.3

packets) in the ADSL case and 62500 Bytes (41.6 packets) in

the high-capacity case. We consider different buffer sizes in

B ∈ [10, 100] ⊂ N packet, and notice that a buffer size slightly

above the bandwidth delay product is met when B⋆
ADSL = 10

and B⋆
HS = 50 packets.

Notice that, having fixed the link capacity C (and the packet

size P ), we can express the queuing delay TARGET in terms of

either a time-lapse or bytes (and packets). Denoting for short

the TARGET as τ , in the following we will refer indifferently

to the queuing delay expressed in terms of time-lapse τT =
25 ms or packets τP = τT C/8P (where we assume capacity

to be expressed in Mbps and packet size in Bytes). Notice

that, in the ADSL scenario, τT = 25 ms corresponds to a

τP,ADSL = 4.2 packets, while it corresponds to τP,HS = 20.8
packets in the HS case. Thus, in both scenarios, buffer sizes

B⋆
ADSL and B⋆

HS can accommodate twice as much queuing

delay than the LEDBAT target τ .

B. Implementation details

To avoid dealing with the complexity of retransmission in

case of loss, we implement our LEDBAT controller as a novel

flavor of TCP, of which we change the congestion control

mechanism. More precisely, we turn off all TCP feature (e.g.,

FastRetransmit), leaving only the congestion control algorithm

early described in Sec. II. For timestamping purposes, we

exploit the TCP timestamping option [12].

We implement all mandatory as well as optional features

of LEDBAT [7]. More precisely, we implement a cache of

queuing delay minima, mandatory to cope with route changes

on long timescales. As far as the optional slow-start phase is

concerned, since the LEDBAT draft lacks its description [7],

we adopt the standard TCP mechanism. However, unless oth-

erwise stated, slow-start mechanism is turned off. Also, though

this issue is not treated in [7], our LEDBAT implementation

can work in batch-mode (i.e., all packets of a window are

possibly sent out in bursts) or paced-mode (i.e., delaying the

packet transmission so that packets are spaced equally during

the RTT). Unless otherwise stated, packet pacing is turned on.

Then, notice that reducing the sending window to 0 consti-

tutes a problem, since the linear controller will no longer be

able to get one way delay estimates – thus, it will not be able

to ever increase its sending window again. Therefore, we set

a congestion window minimum of 1 packet per RTT, although

this is not explicitly specified in [7].
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Fig. 2. Temporal evolution of the sender window (top) and of the queue size (bottom) for TCP-LEDBAT (a) and LEDBAT-LEDBAT interaction (b)

Finally, we point out that we built LEDBAT using the

tcp-linux module, which allows to bridge real Linux

code directly into the simulator. As a non-negligible side-

advantage, the implementation is then available as a kernel

module offering a novel transport-layer protocol that can be

used by (unmodified) real applications. However, for the time

being we limit our evaluation of LEDBAT performance to

simulation, leaving testbed experimentation for future work.

IV. SIMULATION RESULTS

In this section, we report results gathered with our imple-

mentation of the LEDBAT controller in the Network Simulator

ns2 [10]: we start by illustrating some telling examples of

the LEDBAT dynamics in simple cases, incrementally adding

complexity to refine the picture later on.

As performance metrics, we consider the fairness and

efficiency of the data transfer. For the former, we use Jain’s

fairness index F , which is defined as [11]:

F =
(
∑N

i=1
xi)

2

N ·
∑N

i=1
x2

i

(1)

where {xi}
N
i=1

is the set of rates achieved by N flows

sharing the same bottleneck resource. In the best case where

each of the N flows gets the same bottleneck share (i.e.,

xi = C/N, ∀i), fairness is equal to 1, while it decreases to

1/N in the worst case where a single flow j takes over the

resource forcing others to starvation (i.e., xi = 0, ∀i 6= j).

Notice that, since LEDBAT aims at offering a lower than best-

effort traffic, we expect fairness measure to be lower than 1

when the bottleneck is shared with TCP traffic (inter-protocol

fairness) but we expect it to be close to 1 when only LEDBAT

flows share the same bottleneck (intra-protocol fairness). As

a measure of efficiency, we consider the link utilization η,

defined as the ratio of the overall link throughput normalized

over the link capacity C (link utilization is evaluated at IP

layer, and thus includes the L3 and L4 headers along with the

payload).

A. Ideal Case: Homogeneous Initial Conditions

Let us start our investigation by considering the case where

a LEDBAT flow competes for the same bottleneck resources

with either i) a TCP flow or ii) another LEDBAT flow. For

the time being, let us consider the ideal case where neither

LEDBAT nor TCP implement the slow-start phase: in other

words, we are interested in observing the coexistence of a

LEDBAT linear controller with a TCP AIMD controller, and

in evaluating their mutual influence on the congestion window

dynamics. Moreover, we assume that both flows start at time

t = 0 (i.e., homogeneous conditions), when the queue is empty

and no other traffic is present on the link. Given these initial

conditions, LEDBAT flows are able to measure at t = 0 a base

delay which, as the queue is empty, is a good estimate of the

propagation plus transmission delay components.

Fig. 2-(a) shows the temporal evolution of the LEDBAT

and TCP window (top) as well as the queue size (bottom),

when C = 10 Mbps and B = 40 packets (notice that similar

qualitative behavior can be obtained on the ADSL scenario

as well). From the picture, one can recognize the usual TCP

sawtooth behavior, and identify a number of cycles. During

the initial ramp-up (t < 2 s), LEDBAT and TCP windows

grow nearly at the same speed of one packet per RTT. Indeed,

consider that LEDBAT growth is maximum when the queue

length estimates is zero: this happens at the beginning of the

simulation, where the link has spare capacity to serve incoming

packets, and where both LEDBAT and TCP increments their

window by one packet unit per RTT. Then, due to its continu-

ous evaluation of the one way delay, as soon as queue starts to

build up LEDBAT senses a growing delay: the linear controller

reacts accordingly, slowing down the ramp-up with respect to

TCP (which still increments its window by one packet unit

per RTT).

Soon after t = 2 s, LEDBAT hits the target of τP,HS = 20.8
packet, and stops the window growth (as it can be seen by the

flatness of the sender window curve). When t > 2 s, the queue

continues to grow until the estimated queuing delay exceeds



the target: the controller thus responds to the growing queuing

delay by decreasing its window (unlike TCP). The decrease of

the LEDBAT window continues until it reaches its minimum

sending rate, slightly before t = 6 s. TCP instead continues

its additive increase until, slightly after t = 6 s, it causes the

buffer to overflow, halving its window (to about 40 packets)

as a consequence.

Soon after the loss event, a new cycle begins, with TCP

beginning to increase its window again. However, since TCP

abruptly drops its window, the capacity drains the queue

empty: given the minimum sending rate of one packet per RTT,

LEDBAT has the chance to measure a queuing delay reduction,

to which it reacts by opening its window. However, the TCP

window at the beginning of the new cycle is no longer starting

from 0, but from about 40 packets: therefore, TCP is able

to create queuing sooner with respect to the first cycle. As a

result, in the second cycle, LEDBAT window growth is slower

than during the first one. Moreover, as TCP immediately

contributes to queuing, the LEDBAT offset from the target

diminishes, and so does its window growth rate. Consequently,

LEDBAT growth also stops earlier than before (at about

t = 7 s), with TCP occupying now a larger buffer portion with

respect to the previous cycle. As LEDBAT window temporary

settles to a lower window value, the window shrink phase is

also shorter (ending soon after t = 7 s). TCP is then alone in

the link and pushes its window to grow until a loss happens

(then, another cycle begins: notice that subsequent cycles are

similar to the second).

The dynamics shown in Fig. 2-(a) work as expected: LED-

BAT is able to react earlier than TCP by estimating the

queuing delay, and yielding to TCP, which is able to work

undisturbed: notice indeed that losses are due to the normal

AIMD dynamic of TCP rather than by the LEDBAT-TCP

interaction. In the case of figure, the fairness equals F = 0.65,

with TCP transferring 6 times as much data with respect to

LEDBAT during the same time-frame. Fig. 2-(a) also show the

sum of both TCP and LEDBAT sender windows, which can

be thought an estimate of the instantaneous link utilization:

interestingly, notice that during the time period where TCP

and LEDBAT coexist on the link, its utilization increases with

respect to the case where TCP is alone. In the case of figure,

the utilization increases by 16%, compared to the case where

TCP is alone on the bottleneck, and by 28% compared to the

case where two ideal TCP AIMD sources share the bottleneck.

The similar case in which two LEDBAT sources start

competing, at t = 0 for the bottleneck resources, is shown

instead in Fig. 2-(b), again for C = 10 Mbps and B = 40
packets. In this case, both sources adopt a linear controller and

are able to share resources fairly (F > 0.99) and efficiently

(efficiency is only 0.7% less than in the Fig. 2-(a) case). As

expected once the delay target is reached, the LEDBAT sources

settle (since the offset from the target is zero, and so the

controller response). Buffer occupancy is also smoother, partly

due to the fact that LEDBAT sources adopt pacing. Notice also

that, since the two sources started together, they measured the

same base delay at t = 0. Therefore, whenever each of the

source senses that the queuing delay has grown to a value

equal to the target, it settles: this happens for each source

independently, and each source is thus responsible only for

about half of the queuing delay in this case.

B. Ideal Case: Heterogeneous Initial Conditions

By heterogeneous conditions, we mean different start time

(or, equivalently, different initial rates) for different sources.

This implies that, in this case, the base delay is not necessarily

equal for all sources, meaning that the queuing delay estimate

will no longer be the same either. Indeed, assume that the first

flow starts at time t1 = 0, while the second flow starts at time

t2 = t1 + ∆T . In case the queuing delay at t2 is not zero

but equal to tQ(t2), the second source will over-estimate the

base delay tB(t2) with respect to the one measured by the first

source as tB(t2) = tB(t1)+tQ(t2). So, the second source will

set its target to a value higher than the first one, increasing

the chances of a buffer overflow.

In case of interaction between LEDBAT and TCP, het-

erogeneity of initial conditions has a negligible impact. To

convince of this, consider that, whenever LEDBAT starts first,

it is able to correctly estimate the base delay, so it will

yield to TCP. Therefore, problems may arise only whenever

the LEDBAT flows starts later at t2, in which case it will

over-estimate the base delay (by the amount of TCP packets

occupying the buffer at t2). This will in turn make LEDBAT

under-estimate the amount of queued packets, thus ending up

injecting more packets and anticipating the first loss cycle.

Thus, by recalling Fig. 2-(a), we have that the TCP sender

window at the end of the first cycle will be potentially lower

when ∆T > 0 with respect to the homogeneous case ∆T = 0.

However, notice that after the loss event the capacity drains

the queue, so that LEDBAT will have the chance to correct

its faulty estimate of the base delay: thus, queuing delay will

not be under-estimated during the second cycle. This implies

that LEDBAT will yield to TCP and that TCP window growth

will be unaffected from the third cycle onward.

The interaction between LEDBAT flows is instead depicted

in Fig. 3, again for the high speed scenario C =10 Mbps,

showing that the dynamics depend on the precise values

of the buffer size B and of the sources start time gap

∆T . Fig. 3 reports the sender window of the two LEDBAT

flows. Let us start by considering the top plot, obtained for

(∆T, B) = (2, 40): in this case, the second flow starts before

the first has started to create queue in the buffer. Then when

the second flow starts, the queue rapidly builds up as well

as the queue-delay, and the target is met soon. Yet the two

flows are contributing differently to the delay: in fact the first,

having started before, is able to achieve a larger congestion

window and actually owns the biggest share of the queue.

Whenever the second flows starts after a ∆T large enough to

allow the first one to create some queueing delay, a different

dynamic is triggered. This is highlighted in the middle plot

of Fig. 3, obtained for (∆T, B) = (10, 40). In this case, the

second flow senses a base delay which exceeds the true base

delay, correctly measured by the first flow tB(t1 = 0), by an
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Fig. 3. LEDBAT vs LEDBAT: Time evolution of congestion window for
different initial condition and late-comer advantage phenomenon

amount of queuing delay tQ(t2) = τT due to the fact that the

first flow has achieved its delay target. Therefore, the second

flow sets a delay target corresponding to a queuing delay equal

to tB(t2)+τT = tB(t1)+2τT , and starts increasing its window

immediately after t = ∆T . At the same time, the first flow

senses an increasing queuing delay and slows down its sending

rate: the decrease continues until the first flow has reached the

minimum rate, which happen slightly after t = 20 s in the case

of figure.

Then, dynamics depend on the specific buffer settings: when

the buffer is not large enough to accommodate the queuing

delay target of the second flow (i.e., B=40 < 2τP =41.6),

the second flow rate grows so much to induce a loss on the

bottleneck link, as can be seen around t = 25 s in the middle

plot of Fig. 3. Though the loss implies a drop of the sending

rate, it has the beneficial side effect of letting both sources to

correctly measure the base delay, as the queue empties after

the loss event. In a sense, the loss event resynchronizes the

start of the flows, which then share more fairly the bottleneck

bandwidth (as it can be seen for t > 25 s onward).

Conversely, whenever the buffer is large enough (e.g.,

B=100) to absorb the excess queuing delay introduced by

the second flow, another phenomenon happens, as reported in

the bottom plot of Fig. 3. Since no loss occurs, the second

flow does not reduce its sending rate and is able to reach its

queuing target. Once the target is reached, the second flow

settles, leaving the first flow in starvation. This extremely

unfair state may persist for possibly long time1, raising the

need to cope with this potentially serious unfairness problem.

C. Side Effects of Slow-Start

We have seen that in the LEDBAT-LEDBAT interaction,

the linear controller alone may get stuck in an unfair state

during a relatively long time. Yet, comparing the middle and

1Due to route change consideration, [7] requires the computation of a
new minimum (which will break the persistence in the state and trigger
further changes in the window dynamics) after about BASE_HISTO∈ [2, 10]
minutes.

bottom plots of Fig. 3, we gather a very important observation:

whenever a loss event happens, the competing flows may be

able to re-establish fairness (at least to a certain degree).

In other words, a loss event resynchronizes the start of the

flows, possibly draining the queue empty and thus allowing

each flow to gather correct measures of the base delay.

Extending this observation, it seems as though it is necessary

for each LEDBAT flow to force a loss event at startup, so to

gather a correct measure of the base delay: a simple, though

intrusive, way to achieve this is to enable slow-start. As [7]

lacks a precise description of the LEDBAT slow-start (which is

only briefly mentioned as an optional feature for conservative

LEDBAT implementations), we resort to standard TCP slow-

start mechanism. In TCP, slow start is performed by initially

setting ssthresh to ∞, performing an exponential window

increase and then, in case of loss, setting ssthresh =

cwnd/2 and cwnd=0: this process iterates until the window

exceed ssthresh, in which case the slow-start phase ends.

We gauge the impact of slow-start on the network and user

performance in terms of efficiency η, fairness F and loss rate

L. Notice that, although the precise evaluation of the impact

of LEDBAT slow-start on VoIP/Gaming flows is outside the

scope of this work, nevertheless we may gather an indirect

observation of its impact by measuring the loss probability L.

As before, only two flows share the bottleneck and we

consider i) the ideal case where neither TCP nor LEDBAT

implement slow-start, ii) a more realistic case where both

TCP and LEDBAT implement the same slow-start behavior.

To examine late-comer situation, we neglect the case ∆T = 0,

since no fairness issues were observed in this case, and instead

consider the start time of the second flow to be uniformly

distributed in ∆T = U(0, 10) s, reporting the average of 100

simulation runs. For reference, we also consider the two values

of ∆T ∈ {2, 10} s reported early in Fig. 3, and perform 10

simulation runs per each value of ∆T (jittering the start time

of the second flow by a time lapse uniformly distributed in

[0, 0.1] s at each run). We now consider both the low-capacity

CADSL = 2 and high-speed CHS = 10 cases, and set the

buffer size B to values slightly above the bandwidth delay

product and able to accommodate about twice as much as

the delay target of LEDBAT flows. Simulation lasts for 300

seconds, and results refer to the time interval [∆T, 300] s

where both flows are active at the same time.

Results are reported in Tab. I. Top part of the table reports

the TCP vs LEDBAT case, while LEDBAT vs LEDBAT is

reported at the bottom. Left portion of the table refers to the

case when no slow-start is used, while results obtained when

slow-start is activated are reported on the right portion.

It can be gathered that simulation results confirm our intu-

ition: the slow-start phase allows LEDBAT flow to reintroduce

fairness on the LEDBAT vs LEDBAT case, while leaving the

TCP vs LEDBAT case almost unchanged. For instance, notice

that in the worst-case for the fairness metric (represented by

(C, B, ∆T )=(10, 50, 10) where the behavior is similar to the

one early reported in the middle plot of Fig. 3), the use of slow-

start raises the LEDBAT vs LEDBAT fairness from F = 0.53



TABLE I
LINK UTILIZATION η%, MEAN µ AND STANDARD DEVIATION σ FAIRNESS F AND LOSS RATE L. TCP VERSUS LEDBAT AND LEDBAT VERSUS

LEDBAT SCENARIOS, WITH/WITHOUT SLOW-START, FOR DIFFERENT CAPACITIES C , BUFFER SIZES B AND TIME GAP ∆T .

Without Slow-Start With Slow-Start
Scenario C B ∆T η F L η F L

Mbps Pkts sec [%] µ σ µ σ [%] µ σ µ σ

TCP 2 10 2 99 0.60 6.5·10−4 6.2·10−3 9.4·10−6 99 0.58 1.0·10−3 1.5·10−2 1.5·10−3

LEDBAT 10 97 0.60 4.2·10−3 6.2·10−3 2.1·10−5 94 0.58 2.6·10−3 1.3·10−2 9.7·10−4

U(0,10) 98 0.61 6.8·10−2 6.2·10−3 4.5·10−4 98 0.60 4.5·10−3 6.6·10−3 4.1·10−5

10 50 2 99 0.53 1.1·10−3 3.0·10−4 1.3·10−6 99 0.57 6.4·10−3 1.2·10−3 1.1·10−4

10 97 0.55 8.0·10−4 3.1·10−4 1.0·10−8 97 0.58 6.8·10−3 1.3·10−3 1.1·10−4

U(0,10) 98 0.54 4.6·10−3 3.0·10−4 2.4·10−6 98 0.55 1.8·10−3 6.8·10−4 3.8·10−6

LEDBAT 2 10 2 99 0.70 1.2·10−1 5.8·10−5 3.8·10−5 99 0.85 6.5·10−2 7.1·10−4 8.2·10−6

LEDBAT 10 96 0.80 1.8·10−1 4.8·10−5 4.2·10−5 96 0.83 5.8·10−2 6.4·10−4 5.7·10−5

U(0,10) 98 0.83 1.8·10−1 3.8·10−5 3.7·10−5 98 0.83 1.0·10−1 1.1·10−3 2.3·10−3

10 50 2 99 0.73 4.4·10−2 - - 99 0.93 9.6·10−2 4.3·10−4 1.3·10−8

10 97 0.53 4.7·10−4 - - 96 0.99 2.6·10−3 4.1·10−4 2.0·10−6

U(0,10) 98 0.64 1.8·10−1 - - 98 0.96 8.3·10−2 4.4·10−4 5.9·10−5

to F = 0.99. Even in the extreme case (not shown in the table)

of a capacity C = 2 Mbps and a buffer B = 100 packets, i.e.,

and ADSL link with a very large buffer (about 500 ms), the

fairness between two ledbat flows increases from F = 0.57
to F = 0.77 when slow-start is used (with a limited loss rate

L = 4 · 10−3).

Concerning the loss rate, we expect slow-start to generate

loss events only at the start of each connection: therefore, we

expect the loss rate L to be limited. From the table, we gather

indeed that, despite the loss rate grows by about one order

of magnitude when slow-start is enabled, nevertheless the

absolute amount of losses is always very limited. In case only

LEDBAT flows, with slow-start enabled, share the bottleneck,

loss rate tops to about L = 1 · 10−3 in the worst case. Thus,

it seems as though the impact on CBR VoIP/Gaming flows is

likely to be negligible, although a more realistic evaluation is

definitively needed (e.g., taking into account the VoIP codec

and framing, the loss pattern, an higher number of LEDBAT

flows with different arrivals, etc.).

V. RELATED WORK

Two bodies of work are related to this study. On the one

hand, there is a large literature on Internet congestion control

algorithms, carried on with diverse tools such as simulation

and modeling [13]–[19], or on fields measurement [21]–[23].

On the other hand, there are studies that focus on other impor-

tant aspects of BitTorrent, that again exploits either theoretical

analysis [24], simulation [25], [26] or measurements [27].

Motivated by the so called congestion collapse that hit

a young Internet, distributed algorithms for the allocation

of resources were invented and analyzed, starting from the

seminal work on TCP [13]. A huge literature exists on the

topic and, as a result, TCP comes in different flavors. However,

most of this work focuses on ameliorating the performance of

best-effort traffic, while the aim of LEDBAT is to achieve

“lower” than best-effort performance. Under this light, closer

to our work are [15]–[18] (although a linear decrease of the

congestion window was already introduced in [19]). Lower

priority is obtained by either adapting the sender window

on the basis of loss rate [17] or delay measurements [15],

[16], or by tuning the receiver window at the application

layer [18]. For further details, we refer the reader to the

respective publication or to [20] for their overview. Finally, it

is worth mentioning that, related to this work are also studies

that adopts a complementary approach, based on black-box

experimental measurements, to unveil closed and proprietary

congestion control algorithms of novel P2P systems (such as

Skype [21], [22] or P2P-TV applications [23]).

Due to its recent evolution, previous work on BitTorrent

[24]–[27] focused on complementary aspects to those analyzed

in this work. In [24] a fluid model is used to determine the

average download time of a single file. Simulation has instead

been used to analyze and improve BitTorrent performance, as

for instance in [25] and [26] where mechanism to prevent free-

riding beyond tit-for-tat and a locality-aware peer selection

mechanisms are proposed respectively. Finally, BitTorrent has

been analyzed also through measurement studies such as in

[27], where authors analyze the log of a BitTorrent tracker,

examining flash-crowd effect popularity and download speed

of a single file. However, due to BitTorrent very recent evo-

lution, to the best of our knowledge no work focusing on the

new congestion control protocol used for data dissemination

has appeared yet.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we report on the evaluation of LEDBAT, a

novel congestion control protocol for low-priority data trans-

port, which aims at being friendly and non-intrusive toward

other protocols such as TCP, VoIP and gaming, while at the

same time being effective in exploiting the available resources.

By means of simulation, we illustrate interesting aspects of

LEDBAT congestion window dynamics in simple scenarios.

Concerning LEDBAT performance, our evaluation shows that:

• LEDBAT is able to achieve inter-protocol friendliness

(i.e., yield to TCP) while being able at the same time

to efficiently exploit the extra available resources.

• Inter-protocol fairness is maintained even in case of

wrong parameter settings: indeed, when TARGET is too

big with respect to the buffer size, LEDBAT degenerates



into TCP, since it linearly increases the sender window

to reach the target until drop happens.

• The linear controller alone is not sufficient to guarantee

intra-protocol fairness: indeed, provided that buffer is

large enough, a late-comer advantage may arise among

LEDBAT flows.

• Intra-protocol fairness can be achieved provided that

newcomer flows are given the chance to correctly mea-

sure the base delay, which can be accomplished in an

uncoordinated and distributed fashion by simply using a

slow-start phase.

• The latter observation also suggests that it may be nec-

essary to make slow-start mandatory in the draft require-

ment; interestingly, slow-start happens to be necessary

for its beneficial side effect on fairness, more than for

efficiency reasons.

Though these preliminary results are interesting per se,

nevertheless they only convey a limited view of the potential

impact of a widespread adoption of LEDBAT in the Internet.

First of all, simulation on a wider range of scenarios (e.g.,

heterogeneous RTT, multiple flows, impact on the QoE of VoIP

traffic, comparison with other low-priority approaches, etc.) is

needed in order to further refine the picture. Then, we believe

that effort should be devoted also to modeling LEDBAT

dynamics, in order to confirm simulation evidence with more

theoretical findings. Finally, another interesting point concerns

the empirical evaluation of the LEDBAT implementation in

BitTorrent, which could be tackled by black-box measurement.

Our future work intend to follow the above directions.

Besides, notice that the success of LEDBAT will be deter-

mined, first of all, by its user and their consensus: an important

point in this regard concerns the degree of “low-priority” of

LEDBAT, or the “right” fairness balance. Indeed, while it

is very important that LEDBAT avoids harming interactive

traffic (e.g., Web, Mail, VoIP, Gaming), it is less reasonable for

LEDBAT to yield to non-interactive TCP traffic as well (e.g.,

long FTP transfer, TCP transfers of other P2P applications,

etc.). The ability of LEDBAT to yield to interactive traffic is

indeed a good incentive for user adoption, as it improves user

experience concerning troubles induced by self-congestion

at the access. Yet, while users will surely welcome this

LEDBAT feature, they will be less inclined in tolerating the

this very same friendliness toward the Internet traffic of other

users – especially in case this could translate in poorer P2P

performance for themselves. In the case of BitTorrent, an

important question that remains open is, for instance, how

much the donwload time will be degraded by the adoption

of this new congestion control protocol.

Overall, our results confirm that LEDBAT has an undoubted

and promising appeal to become a very useful Internet building

block – and moreover its implementation in one of the most

popular P2P application already constitutes a good starting

point to achieve this goal.
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