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Abstract

Nous proposons un algorithme simple mais efficace pour la détection des posi-
tions de la battue dans les signaux musicaux. Le concept de matrice “Delta-
Phase” est présenté. Il s’agit de représenter l’évolution de la phase de la battue
par rapport à la période correspondant à un tempo estimé au préalable. Le
chemin optimal dans la matrice “delta-phase” est déterminé grâce à de la pro-
grammation dynamique, afin de s’assurer d’obtenir une battue relativement
régulière. Le nombre d’erreur de phase est minimisé par un choix judicieux de
périodes candidates. L’algorithme proposé est évalué sur une base de données
contenant 474 extraits musicaux, couvrant divers genres. Nous obtenons des
résultats du niveau de, voire supérieurs à, l’état de l’art.
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ABSTRACT

We propose a simple yet efficient beat tracking algorithm.
The Delta-Phase Matrix is introduced. It displays the pro-
gression of the pulse phase with reference to a period which
is estimated before. We use dynamic programming to de-
termine the optimum delta-phase path, which ensures a con-
tinuous beat grid. By carefully choosing appropriate period
candidates we reduce the amount of phase errors. The pre-
sented algorithm is evaluated using a dataset which contains
474 music segments covering various genres. It compares
favourably to two state-of-the-art systems.

1 INTRODUCTION

The various approaches to the analysis of rhythmic struc-
tures in music can be distinguished by several aspects. Al-
though some of them work on symbolic data [11], most al-
gorithms directly analyzing digital music signals depend on
a signal representation which tries to detect musical events.
Such a representation is usually referred to as an onset detec-
tion function (ODF). Usually, ODFs are designed to peak at
note onsets. A tutorial overview on onset detection is given
in [2]. The analysis of both constant and, in particular, vary-
ing tempo is one of the first tasks to tackle when analyzing
rhythm. Beat tracking is usually understood as the process
of finding those points in time when a human listener would
tap his foot. This is different from the tempo estimation task
since in addition to the beat period the beat phase, i.e., the
actual position, is needed as well. Typical beat tracking ap-
plications include all forms of real-time synchronization to
music, audio editing, and it is also an important part of au-
tomatic transcription systems. It is general consensus that,
due to the presence of several metrical levels, the tempo is
often ambiguous. The recognition of rhythmic patterns and,
in particular, the meter [8], i.e., the time signature along with
rhythmic sub-levels is even more challenging. The reader is
referred to [7] for a thorough overview of topics related to
the analysis of rhythm.

Laroche [9] proposed to use dynamic programming to es-
timate both the tempo and the exact positions of the beats in
music signals. To this end, he splits the ODF into frames and
chooses a subset of promising tempo candidates along with
a corresponding subset of on-beat candidates. He then ap-
plies dynamic programming to determine the optimum pair

of tempo and on-beat for each frame in a joint fashion. The
pulse template used by Laroche is designed to fit typical 4/4
meters. Ellis [4] built on this approach and was able to re-
duce it to an elegant minimum assuming a relatively con-
stant tempo which is estimated before. As also discussed by
Laroche, tempo octave errors and phase errors are the main
remaining problems of the beat tracking task.

In this paper we present an offline method which tries to
avoid such phase errors and, at the same time, ensures a con-
tinuous beat grid. Similar to Laroche, we split the ODF into
frames and estimate the phase for each frame. We do not
assume a particular meter, though. The period has to be es-
timated before, which resembles the system of Ellis. How-
ever, there is no need for a constant tempo. In contrast to
most other beat tracking systems we do not try to explicitly
pick the tactus [8] level, i.e, the pulses which correspond to
the beats in a measure. Instead we propose to favour a faster
tempo whenever there is a chance for typical phase errors
like picking the off-beat. The algorithm is evaluated using
a dataset which covers several music genres. We compare
it to two state-of-the-art systems, namely, Ellis’s approach
mentioned above [4] and Dixon’s BeatRoot [3].

In the following section we present in short the onset de-
tection function that was used for our experiments. After
that we introduce the Delta-Phase Matrix and describe how
the beat placement works. In Section 4 we illustrate the
tempo estimation procedure for constant tempo and sketch
how the beat placement works with varying tempo. We dis-
cuss the experimental results and their evaluation in Section
5 before we present our final conclusion.

2 ONSET DETECTION

We use a variant of the spectral flux [2] as the onset de-
tection function (ODF). The input signal is downsampled
to 11025 Hz and mixed to a single channel. We compute
an overlapped Fourier transform with a window length of
256 and a hopsize of 32 samples. Each frame is windowed
using a Hamming window. For each of the sub-bands we
compute the logarithm and apply a finite impulse response
(FIR) smoothing filter using an impulse response of 150 ms
length. We then calculate a first-order difference from frame
to frame to emphasize sudden changes in energy. Figure 1
depicts an example of this procedure. Each sub-band is half-
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Figure 1. Computation of the onset detection function
(ODF). Top: Mono waveform sampled at 11052 Hz. Center:
First-order difference of the smoothed magnitude spectrum.
Bottom: Proposed ODF.

wave rectified and all of them are summed up to form the
ODF, which will be denoted by γ(n) from now on. The
resulting sampling rate of this ODF is 344.5 Hz.

3 THE DELTA-PHASE MATRIX

We first assume the tempo of the music signal is constant.
Let bi denote P beat positions (i ∈ [0, P − 1]) and ρ the
beat period. Let φ0 be the initial phase, i.e., b0 = φ0 and
bi = φ0 + i · ρ. Suppose the ODF, γ(n), is split into K
overlapping frames Γ(k) of length L > ρ using the hopsize
h < L; k ∈ [0,K − 1]. If φ̄(k) denotes the phase of the
beat in frame k, i.e., the position of the first beat in this
frame relative to its first ODF sample, the beat phase for the
following frame is the result of

φ̄(k + 1) = φ̄(k)− h (mod ρ). 1 (1)

Many algorithms in the literature determine the phase as
the maximum of the cross-correlation function of γ(n) and
a pulse comb with the period ρ. We use the same principle
for each ODF frame. The phase φc(k) of the pulse comb,
however, is updated to reflect the relation described above.
We arbitarily initialize φc(0) = 0 and compute φc(k + 1)
according to Equation (1). The temporal evolution of the

1 Note that m (mod n) = m − bm/nc · n is always positive for
positive n as b. . .c rounds towards minus infinity.
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Figure 2. Annie’s Song, The Golden Nightingale Orchestra.
Top: Autocorrelation function of the ODF. The chosen beat
period (marked with an asterisk) corresponds to a tempo of
252 bpm. In this case the eigth-note level of a 3/4 meter was
picked. Bottom: The Delta-Phase Matrix. The optimum
delta-phase path is marked with a solid line. The tempo
is basically constant and well estimated which results in a
horizontal orientation of that line.

cross-correlation function for each frame forms the Delta-
Phase Matrix (DPM) Φδ(k, q). With the amplitude of the
pulses equal to 1, we can compute

Φδ(k, q) =
bL/ρc−1∑

j=0

γ(φc(k) + q + j · ρ), (2)

where j iterates over all periods contained in a frame and
q ∈ [1, ρ]. Each column of the DPM corresponds to one of
the K frames. The comb phase φc(k) serves as an offset
and the DPM column vector is used to determine the dif-
ference between the actual phase and this offset. We call
this difference the delta phase φδ(k). The optimum delta
phase will in principle be given as q where Φδ(k, q) is max-
imal. To enforce a regular beat placement, however, we
apply dynamic programming [5] to determine the optimum
delta-phase path. To this end, each column of Φδ(k, q) is
normalized by dividing it by its maximum. If ρ has been
perfectly estimated and the tempo does indeed not vary we
expect φδ(k) to be constant. In this case the optimum delta-
phase path is a straight horizontal line when Φδ(k, q) is visu-
alized. The bottom half of Figure 2 shows such an example.
Sometimes, though, the tempo estimate is not perfect, which
results in a sloped path and possibly φδ(k) wrapping around
ρ. See Figure 3 for an example. To reflect this possibility
we add a cosine-shaped cost function:

c(dq) = C · cos(2πdq/ρ) (3)
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Figure 3. Always On My Mind, Pet Shop Boys. The cho-
sen period (cf. Figure 2) corresponds to the tactus level of
a 4/4 meter at 124.5 bpm. The tempo is again constant but
not perfectly estimated. The optimum delta-phase path is
thus sloped and wraps around. The presence of rhythmic
sub-periods, corresponding to peaks of which the period is
smaller than the chosen one, is clearly visible. As, however,
the chosen period is salient enough, no phase error occurs.

dq denotes the absolute difference between φδ(k) and φδ(k−
1). This cost function penalizes phase jumps unequal to the
period ρ. We apply dynamic programming to find the opti-
mum delta-phase path φδ(k), maximizing the gain given by
Φδ(k, q) and minimizing the cost given by c(dq). The cost
weight C is used to tune the algorithm when confronted with
tempo changes, which will be discussed in Section 4.2.

Eventually, we compute an absolute beat position for each
frame as

bf (k) = k · h + φc(k) + φδ(k).

Depending on the hopsize h and the beat period ρ, we have
to add missing beats to find all beat positions for the piece
under consideration and remove closely adjacent duplicates.

4 TEMPO ESTIMATION

Our goal in choosing a period candidate is not to explicitly
find one of the metrical levels tactus, tatum, or measure [8].
We do not try to understand the rhythmic structure and, in
particular, the time signature at this point. Instead we aim at
picking a period which reduces the risk of phase errors. As
will be shown, this period often is half the tactus period.

4.1 Constant Tempo

If, for any reason, the tempo is known to be more or less
constant for the musical piece under consideration we can

provide our beat-placement algorithm with a global tempo
estimate. In that case the beat tracking performance strongly
depends on the actual deviation of the tempo. This resem-
bles the approach described by Ellis in [4].

We use a heuristically motivated peak picking algorithm
to choose the optimum beat period candidate. We compute
the biased autocorrelation function (ACF) of the onset de-
tection function up to a lag corresponding to 20 bpm 2 . We
then apply peak picking above a minimum period (∼ 360
bpm) and choose the seven greatest peaks. We compute the
corresponding inter-peak intervals and, finally, we choose
the peak which is closest to the majority of the inter-peak in-
tervals as the preferred period. The upper halves of Figures 2
and 3 depict two examples of the autocorrelation function
along with the relevant peaks. The greatest peaks are drawn
using dashed lines; the chosen beat period is marked with
an asterisk.

The rationale behind our peak-picking approach is as fol-
lows. As noted above, we try to minimize the chance of
phase errors. Picking the off-beat, for example, is such a
typical phase error. If the off-beat is emphasized, e.g. in
certain music styles like Reggae music, it will be clearly
marked with a peak in the autocorrelation function of the
ODF along with integer multiples. As illustrated in Fig-
ure 3, such sub-periods are reflected in the DPM along with
the chosen period. The emphasis of the on-beat is strong
enough in this example, and there is no phase error. How-
ever, the chance of picking the wrong delta-phase path in-
creases if the off-beat, or any sub-period in general, is sim-
ilarly emphasized. Therefore, our goal is to make sure that
no such spurious sub-periods exist. Put simply, if there is
a risk to pick the off-beat, cut the period in half. Where
we would have picked the off-beat instead of the on-beat
we now pick both. Figure 2 shows such an example. The
tactus (i.e., quarter-note) period of the depicted 3/4 meter
corresponds to the second peak at a lag of about 165 ODF
samples. Given the salience of the eigth-note period, how-
ever, trying to find the correct phase for the tactus period is
almost like gambling.

We compute the biased ACF, which does not compen-
sate for the decreasing number of summands, because this
adds a slight slope favouring smaller periods. This makes it
more likely that we pick the greatest period peaks in increas-
ing order and that they actually correspond to those salient
peaks with the smallest period. We compute the ACF up to
a log correspondng to 10 bpm to give enough room to pick
peaks. We pick seven of them as we target peak periods cor-
responding to roughly 120 bpm and try to cover the available
period range. Of course, this approach generally results in
higher tempi and it depends on the application whether this
is acceptable. However, the chance of missed beats is re-

2 We used the entire piece for the given dataset, but would suggest to use
a representative segment, e.g. the first 30 seconds, in the general case – if
the tempo is assumed constant.
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Figure 4. A synthesized drumloop with varying tempo.
Top: The auto-correlogram of the ODF along with the op-
timum period path marked with a solid line. Center: The
corresponding tempo map. Bottom: The Delta-Phase Ma-
trix.

duced which is crucial for many segmentation applications.

4.2 Varying Tempo

Generally, the beat placement approach presented here is
well suited for varying tempo as well. The difference is
that ρ obviously is no longer constant but varies over time.
Since the Delta-Phase Matrix is frame based, we can simply
estimate the beat period once per frame and update Equa-
tions (1), (2), and (3) accordingly, replacing ρ by ρ(k). We
developed a simple dynamic tempo estimator, again based
on dynamic programming, using the auto-correlogram of
the ODF. A similar system has been presented by Alonso
in [1]. In our case the hopsize has to be the same as for the
DPM. Such a dynamic programming approach using a sim-
ple linear cost function will mostly yield a musically mean-
ingful beat period path. Applying the same rationale as dis-
cussed above, trying to reduce phase errors, is non-trivial,
though. The main challenge is to prevent jumps between
different tempo levels. An example for our tempo estimator
is shown in Figure 4. A synthesized drum loop was modified
to follow a parametrized tempo map: starting from constant
120 bpm, linearly increasing to 140 bpm, linearly decreas-
ing back to 120 bpm, followed by a period of constant 120
bpm again. In this simple case the tempo estimator was able
to follow very well. Confronted with more realistic signals,

our simple tempo tracker is prone to period jumps. Such
tempo jumps make the evaluation even more challenging
and the result is not suitable for many applications build-
ing on it. There are many potential solutions to this problem
proposed in the literature, e.g. the template-based estima-
tion described by Peeters in [10]. Note, though, that these
tempo jumps may well reflect the musical content and the
DPM will still ensure a continuous beat grid.

5 EVALUATION AND DISCUSSION

We compare the DPM beat tracker to two state-of-the-art
algorithms, namely, Dixon’s BeatRoot [3] and Ellis’s beat
tracking by dynamic programming [4]. BeatRoot uses a
multiple agents architecture which simultaneously consid-
ers several beat hypotheses based on inter-onset intervals.
Ellis’s quite elegant approach is, to a certain extent, simi-
lar to ours. It is, however, not frame based and requires a
relatively constant tempo. The source code for both sys-
tems is available online. We use the same dataset as Klapuri
in [8] consisting of 474 music segments of various genres.
Manually annotated beat positions for the tactus level are
available for all pieces in this dataset. For some of them the
tatum level has been annotated as well; we do not consider
this information, though. We assume the tempo constant for
all pieces even though this is actually not the case for all
of them. The genre distribution is shown in the first two
columns of Table 1. More details are available online 3 .

For our experminents, we set the cost weighting to C =
6.0. We chose the hopsize h = 0.5 s. The window length
was adapted to L = 7.5 ρ to make sure that enough peaks
contribute to find the optimum delta phase. Note that this
corresponds to roughly one bar, assuming we pick the eigth-
note period of a 4/4 meter.

Figure 5 compares which of the metrical levels are de-
tected by the three systems. BeatRoot performs best in pick-
ing the ground-truth tactus tempo. For about 60 % of the
pieces the ratio of the detected tempo to the ground-truth
annotation is 1; for the majority of the rest the tempo is
twice the annotated. Ellis’s beat tracker’s tempo estimates
are roughly equally distributed between ratio 1 and 2. The
quite simple period picking approach proposed in this paper
favours twice or even three or four times the ground-truth
tempo. This is consistent with our aim to prevent phase er-
rors as described in Section 4.1.

To evaluate the beat placement we use basically the same
metric as Klapuri [8]: the performance measure is the por-
tion of the longest continuous correctly analyzed segment in
relation to the length of the entire signal. If a single beat in
the middle of a piece is missed the performance value cannot
be higher than 50 %. A segment is assumed to be analyzed
correctly if the found beats deviate from the ground truth by

3 http://www.cs.tut.fi/˜klap/iiro/meter/



DPM Dixon Ellis
Genre # Perf. Phs. Perf. Phs. Perf. Phs.

Classical 84 24.37 0.39 28.39 0.45 41.46 0.29
Electronic / Dance 66 71.37 0.23 62.26 0.32 44.98 0.40
Hip Hop / Rap 37 91.34 0.12 88.16 0.12 74.20 0.20
Jazz / Blues 94 62.58 0.23 53.68 0.26 61.19 0.26
Rock / Pop 124 77.90 0.17 80.28 0.14 74.78 0.21
Soul / RnB / Funk 54 82.62 0.15 80.30 0.14 69.94 0.23
Unclassified 15 61.16 0.24 52.70 0.32 61.33 0.26

Total / Average 474 65.52 0.23 63.05 0.25 61.01 0.26

Table 1. Genre distribution of the dataset, average performance values [%], and average phase error measures. The performance
value is the longest continuous portion of the song for which all beats are detected. The phase error measure is 0 ≤ ε ≤ 1,
where 1 corresponds to a systematic off-beat error.
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Figure 5. Histogram of the ratio detected tempo / ground-
truth tempo over the entire database. Top to bottom: DPM,
Dixon, Ellis. The peak picking approach presented (DPM)
generally favours higher tempi.
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Figure 6. Histogram of the performance values over the
entire database. Left to right: DPM, Dixon, Ellis. All three
algorithms correctly track essentially all the beats for more
than 40 % of the dataset.

less than 17.5 % of the period. If the (quantized) ratio rq

of the estimated tempo and the ground-truth tempo is one
of [2, 3, 4] we consider only every second, third, or fourth
detected beat, respectively. In this case the maximum per-
formance value for all rq possible starting beats is chosen.
Figure 6 displays the histogram of the performance measure
over the entire database (left to right: DPM, Dixon, Ellis).
All three systems track more than 90 % of the beats correctly
for more than 40 % of the pieces. The total average precision
is 65.9 %, 63.2 %, and 61.8 %, respectively. Genre-specific
average performance values are given in Table 1. The distri-
bution of the performance values largely complies with the
findings reported by Klapuri in [8].

As noted above, most beat tracking systems working on
audio data rely on a well performing onset detection front-
end. As indicated in Table 1, our approach performs best for
music containing clear percussive elements. Classical mu-
sic, in particular, remains a challenge. The suboptimal per-
formance of all three systems for classical music is a prob-
lem of onset detection. We did, however, not spend much
effort in optimizing our ODF. Choosing a better frontend
will probably further improve the results. With the BeatRoot
program, it is possible to directly provide an ODF instead of
the audio data. When we provided it with the ODF used in
this paper its average performance dropped to 53.6 % (ca.
-10 %) which confirms that our ODF can be improved. If
we were able to similarly improve our system by tuning the
ODF the average performance would be comparable to Kla-
puri’s noncausal tactus tracker. This is certainly simplifying
matters, though.

For Electronic, Hip Hop, or Funk music there is usually
no problem with the detection of onsets. However, these
are genres which are prone to typical tempo and phase er-
rors. As proposed above, we tried to favour smaller periods,
i.e., faster tempi, whenever phase errors are likely. We tried
to assess phase error problems by computing a measure for
each song as follows: Let bi be the P known beat positions



with i ∈ [0, P −1] and ρ the ground-truth period. The phase
error measure is

ε =
2

ρ · P

P−1∑
i=0

δb(i),

where δb(i) denotes the absolute distance of bi to the closest
detected beat. A systematic off-beat error, which leads to
δb(i) = 0.5 · ρ for all i, yields ε = 1; ε = 0 means that all
beats have been detected correctly. As for the performance
measure, we consider only every rqth beat for rq ∈ [2, 3, 4].
Examining the detailed results, we find that, as expected,
high values of ε mostly go along with low performance val-
ues. Generally, the lower ε values for the DPM tracker
seem to justify the design decision we made. A particu-
larly good example is the Electronic genre (highlighted in
bold) which for both Dixon’s and Ellis’s beat tracker seems
to cause problems. Note that it would make sense to only
compute the phase error measure if the tempo estimation
did not fail. However, we did not try to filter out songs for
which the tempo estimation failed as this is hard to assess,
and the presented results would probably be a bit confusing.
The average phase error measure thus does not only reflect
true phase errors but also those cases for which the tempo
estimation failed, e.g., the bigger part of the Classical tunes.

6 CONCLUSION

We introduced the Delta-Phase Matrix which, in combina-
tion with dynamic programming, forms a robust tool to de-
termine the beat phase given a period which has to be es-
timated separately. The method presented works for con-
stant as well as for varying tempo. By favouring smaller pe-
riod candidates we could reduce the chance of phase errors.
The system was evaluated using a large database covering
several genres. The evaluation disclosed the weak perfor-
mance of our onset detection function for classical music;
this is, however, generally a challenging problem and was
beyond the scope of this paper. The beat tracking perfor-
mance was compared to two state-of-the-art systems, which
were slightly outperformed. The apparent weakness of our
onset detection function seems to leave room for further im-
provement.

The beat tracking problem is by now well understood.
Remaining challenges, apart from hard-to-detect onsets, are
mainly related to varying tempo and phase errors. Further-
more, estimating the time signature is a non-trivial task. We
believe that the best approach to this problem cannot be ex-
clusively based on an ODF but should also consider har-
monic changes or other clues where applicable. An example
of this has already been presented by Goto in [6].
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