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Résumé

La gestion terminologique occupe une part
importante de l’activité de traduction. Des
outils de gestion de bases terminologiques
permettent d’assister le terminologue ou le
traducteur lorsque les traductions des termes
d’intérêt sont répertoriées. Trouver la tra-
duction d’un nouveau terme reste cependant
une tâche délicate pour laquelle peu d’outils
sont adaptés. Dans cette étude, nous pro-
posons de traduire les termes inconnus par
apprentissage analogique. Nous montrons
sur une base de termes simples du domaine
médical, qu’une variante de notre approche
permet de produire des traductions (au plus
9) pour 64% des termes de notre jeu de
test, et que la traduction de référence y est
présente dans 80% des cas.

Abstract

Handling terminology is an important mat-
ter in a translation workflow. However,
current Machine Translation (MT) systems
do yet not propose anything proactive upon
tools which assist in managing terminologi-
cal databases. In this work, we propose an
original approach to translating terms that
combines analogical learning (for propos-
ing candidate terms) and more conventional
statistical classification tools (to validate the
hypothesized candidates). Applied to trans-
lating medical terms, we show that 64% of
unknown terms receive at least one transla-

tion (at most 9), of which one is correct 80%
of the time.

1 Introduction

If machine translation is to meet professional needs,
it must offer a sensible approach to translating terms.
Langlais and Carl (2004) measured that domain spe-
cific texts they considered contained a large propor-
tion of sentences (more than 35%) with unknown
terms; which ruined out the intelligibility of the
translations produced by the generic (statistical) MT
system they used.

Currently, MT systems offer at best database man-
agement tools which allow a human (typically a
translator, a terminologist or even the vendor of the
system) to specify bilingual terminological entries.
More advanced tools are meant to identify incon-
sistencies in terminological translations and might
prove useful in controlled-language situations (Ita-
gaki et al., 2007).

In this study, we are interested in automatically
translating terms. More precisely, we are investi-
gating to what extend, we can benefit from existing
pairs of source-target terms in order to translate new
terms. Such an approach would for instance find ap-
plications in assisting terminologist to enrich dedi-
cated terminological databases or alternatively could
simply be embedded in a translation engine.

One approach to translate terms consists in us-
ing a domain specific parallel corpus with standard
alignment techniques (Brown et al., 1993) to mine
new translations. Massive amount of parallel data
is certainly available in several pairs of languages
for domains such as parliament debates or the like.



However, having at our disposal a domain-specific
(e.g. computer science) bitext with an adequate cov-
erage is another kettle of fish (see Section 5.4 for an
illustration of that).

One might argue that domain-specific comparable
(or perhaps unrelated) corpora are easier to acquire,
in which case context-vector techniques such as the
ones described in (Rapp, 1995; Fung and McKe-
own, 1997) can be used to identify the translation
of terms. We certainly agree with that point of view
to a certain extent, but as discussed by Morin et al.
(2007), for many specific domains and pairs of lan-
guages, such resources do simply not exist.

Langlais and Patry (2007) described a work where
they translate unknown words and phrases by ana-
logical learning (Stroppa and Yvon, 2005). Their
approach consists in identifying proportional analo-
gies between words (or phrases) belonging to a seed
bilingual lexicon. A similar idea has been indepen-
dently investigated by Denoual (2007). In this work,
we investigate whether analogical learning can carry
over the task of translating single terms. We de-
signed a system, AnaTerm, which extends the ap-
proach described by Langlais and Patry (2007) in
several ways, notably by the introduction of a binary
classifier trained to recognize valid analogies from
spurious ones. The main novelty here is to combine
the benefits of symbolic (analogical) learning in a
candidate generation phase, and of statistical learn-
ing in a candidate selection step.

Although our system is not specialized for that
purpose, we tested its performance on a task of
translating terms from the medical domain. Our sys-
tem could translate 64% of a set of unknown terms,
producing a good translation in a list of at most 9
candidates 80% of the time. Since AnaTerm makes
only use of a (small) domain-specific seed-lexicon,
we believe it suits well the need of terminologists
that usually have at their disposal an incomplete ter-
minology for a given domain.

The paper is organized as follows. We recap in
Section 2 the principle of analogical learning and
describe how to apply it to our task. We describe
our system in Section 3. We present our experimen-
tal protocol in Section 4 and evaluate AnaTerm in
Section 5. In Section 6, we compare our approach to
recently published alternatives. We finally discuss
our work and present future avenues in Section 7.

2 Analogical Learning

A proportional analogy, or analogy for short, is a
relation between four items noted [x : y = z : t ]
which reads as “x is to y as z is to t”. Among
proportional analogies, we distinguish formal analo-
gies, that is, those we can identify at a graphemic
level, such as [believer : unbelievable = dreamer :
undreamable].

Formal analogies can be defined in terms of fac-
torizations (Stroppa and Yvon, 2005). Let x be
a string over a finite alphabet Σ, a factorization
of x, noted fx , is a sequence of n factors fx =
(f1

x , . . . , fn
x ), such that x = f1

x � f2
x � fn

x , where
� denotes the concatenation operation. We thus de-
fine:
∀(x, y, z, t) ∈ Σ?4

, [x : y = z : t ] if and only if
there exists factorizations (fx , fy , fz , ft ) ∈ (Σ?d

)4

of (x, y, z, t) such that, ∀i ∈ [1, d], (f i
y , f i

z ) ∈{
(f i

x , f i
t ), (f

i
t , f

i
x )
}

. The smallest d for which this
definition holds is called the degree of the analogy.

Intuitively, this definition states that (x, y, z, t)
are made up of a common set of alternating sub-
strings. It is routine to check that this definition cap-
tures the examplar analogy introduced above, based
on the following set of factorizations:

fx ≡ (ε, believ, er)
fy ≡ (un, believ, able)
fz ≡ (ε, dream, er)
ft ≡ (un, dream, able)

There is no smaller factorization in terms of the
number of factors involved, and therefore, the de-
gree of this (formal) analogy is 3. Note that the fac-
tors do not have to be linguistically sensible units.

In the sequel, we introduce the concept of cofac-
tor of a formal analogy [x : y = z : t ] to be a vector
of d alternations [〈f , g〉i]i∈[1,d] where an alternation
is defined formally as:

〈f , g〉i =

 (f (i)
x , f

(i)
z ) if f

(i)
x ≡ f

(i)
y

(f (i)
y , f

(i)
z ) otherwise

The cofactors of the examplar analogy are:
[(ε, un), (believ, dream), (er, able)].

We call an analogical equation an analogy where
one item (usually the forth one) is missing and we
note it [x : y = z : ? ].



2.1 Analogical Inference
Analogical learning belongs to the family of lazy
learning techniques (Aha, 1997). Let L =
{(i, o) | i ∈ I, o ∈ O} be a set of observations,
where I (resp. O) is the set of possible forms of
the input (resp. output) linguistic system of the ap-
plication. We denote I(u) (resp. O(u)) the projec-
tion of u into the input (resp. output) space; that
is, if u = (i, o), then I(u) ≡ i and O(u) ≡ o.
In this setting, training simply consists in memoriz-
ing the associations between input and output that
are observed in L. For an incomplete observation
u = (i, ?), the inference procedure is a three step
process :

1. build EI(u) = {〈x, y, z〉 ∈ L3 | [I(x) : I(y) =
I(z) : I(u) ]}, the set of input triplets that define
an analogy with I(u) .

2. build EO(u) = {o ∈ O | ∃〈x, y, z〉 ∈
EI(u) s.t. [O(x) : O(y) = O(z) : o]} the set of
solutions to the equations obtained by project-
ing the triplets of EI(u) into the output space.

3. select candidates among EO(u).

To give one example, assume L contains the fol-
lowing entries :1 (carpine,caprin) , (actine,actin) ,
(apraxie,apraxia) . We might translate the French
term ataxie into the English term ataxia by:

1. identication of the input (French) triplet:
〈caprine, actine, apraxie〉;

2. projection of this triplet onto the output (En-
glish) space, yielding the equation [caprin :
actin = apraxia : ? ], and resolution of this equa-
tion.

3. selection, amongst the set of solution, of ataxia ,
which is one of the solution identified in step 2.

During inference, analogies are recognized inde-
pendently in the input and the output space, and
nothing pre-establishes which subpart of one input
form corresponds to which subpart of the output one.
This “knowledge” is passively captured thanks to the
inductive bias of the learning strategy (an analogy in
the input space corresponds to one analogy in the
output space).

1Those forms are French/English medical (single) terms.

This general setting can be applied to the task we
are interested in, that is, translating new terms. The
training corpus is in our case a set of pairs of source-
target terms. The input (resp. output) space is the
set of all the possible source (resp. target) terms of a
domain.

3 The AnaTerm system

AnaTerm, the term translation system designed ac-
cording to the general principles detailled above, is
composed of three modules: the solver which solves
analogical equations; the generator, which encom-
passes the two first steps of analogical learning; and
the selector, which implements step 3.

3.1 The solver

We know of two algorithms that can solve formal
analogical equations on strings. The algorithm pro-
posed by Lepage (1998) consists in computing two
edit distance tables, one between the first and the
second strings and one between the first and the third
strings, then to synchronize these two tables thanks
to an algorithm compactly described by the author.
This is the algorithm used by Langlais and Patry
(2007) in their study on translating unknown-words.

An alternative algorithm is due to Yvon (2003).
It involves two operations on languages, namely the
shuffle and the complement that can both be imple-
mented by a finite-state automaton.

The shuffle of two strings w and v (w ◦ v)
is the regular language gathering the strings ob-
tained by selecting alternatively in w and v (with-
out replacement) sequences of characters in a left-
to-right manner (e.g., spondyondontilalgiatis and
ondspondonylaltitisgia are two strings belong-
ing to spondylalgia ◦ ondontitis). The com-
plementary set of w with respect to v (denoted
w \ v) is the set of strings formed by removing
from w, in a left-to-right fashion, the symbols in v
(e.g. spondylitis and spydoniltis are belonging to
spondyondontilalgiatis \ ondontalgia).

Stroppa and Yvon (2005) sketched how a trans-
ducer can be built to recognize all the solutions to an
analogical equation [x : y = z : ? ], that is, those be-
longing to {y ◦ z}\ x, where the two operations are
naturally extended to handle regular sets. Our solver
is described in Algorithm 1 and can be thought of as



s=10 4/7 (sponidylte,4) (itspndyloe,2) (itspondyle,2) (spondyilte,2) (spoindtyle,1)
s=20 8/14 (spondylite,4) (sponidylte,4) (spndyloite,4) (sponitedyl,3) (itspndyloe,2)
s=100 23/47 (spondylite,24) (itspndyloe,7) (itspondyle,7) (spndyloite,6) (sponitdyle,6)
s=1000 144/239 (spondylite,156) (ispondylte,41) (ispndylote,39) (spndyloite,39) (itespondyl,38)

Figure 1: The 5-most frequent solutions generated by our solver, for different sampling rates, for the equation
[chondropathie : spondylopathie = chondrite : ? ] with the frequency with which they have been generated
(different samplings may lead to the same solution). n/t in the second column stands for the number n of
forms that are generated more than once over the total number t of solutions generated.

a straightforward way of simulating this automaton.
Since the cardinality of the shuffle of two strings

y and z grows exponentially in the length of those
strings, we control the time response of our solver
by sampling s strings from the language y ◦ z.

An excerpt of the output produced by our solver
for the equation [chondropathie : spondylopathie =
chondrite : ? ] is reported in Figure 1. We observe
that by increasing the sampling rate s, the solver
generates more (mostly spurious) solutions, but also
increases the frequency with which the expected one
is generated.

Input: 〈x, y, z〉, a triplet, s the sampling rate
Output: sol a set of solutions to [x : y = z : ? ]

sol← φ
for i← 1 to s do

m ← shuffle(y ,z)
c← complementary(m ,x)
sol← sol ∪ c

return sol

Algorithm 1: A Stroppa&Yvon flavored solver.
shuffle(y,z) is randomly picking one element
in y ◦ z. complementary(m,x) returns the set
of forms belonging to m \ x .

3.2 The generator
Identifying the stems of an unknown (source) term
t during step 1 potentially requires to examine all
possible triples between known terms in the input
space: a naive implementation therefore has a cubic
complexity in the cardinality of the training set I.
We applied the strategy proposed by Langlais and
Patry (2007) for reducing this to a quadratic search
procedure.

This strategy consists in repeatedly sampling pairs
〈x, y〉 in I and solving [y : x = t : ? ]. Those

solutions z that belong to I are defining the triplets
〈x, y, z〉 that will be considered during step 2. To
further reduce the search, x are selected from the n-
closest forms to t , and similarly, y are considered
among the n-closest forms to x. Here, closeness is
defined according to the conventional edit-distance.

With this simple strategy, the generator solves a
number of source equations that is quadratic in n
(chosen to be much smaller than the size of the
source vocabulary |L|). Since in our corpus (see sec-
tion 4.1) most of the term only have one translation,
the same number of equations has to be solved on
the target side.

3.3 The selector

Step 3 of analogical learning consists in selecting
one or several solutions from the set of candidate
forms produced by the generator. Various solutions
have been proposed for this step, most of them rely-
ing on heuristically defined criterion, such as choos-
ing the candidate of lesser degree, or the candidate
which is supported by the largest number of triplets.
The solution we propose here is novel and implies
the use a classifier that will learn to select the good
candidates.

3.3.1 The classifier
To this end, we trained, in a supervised manner,

a binary classifier aimed at sorting out good transla-
tion candidates (as defined by a reference) from spu-
rious ones. We applied the voted-perceptron algo-
rithm originally introduced in Freund and Schapire
(1999). Online voted-perceptrons have been re-
ported to work well in a number of NLP tasks
(Collins, 2002; Liang et al., 2006) and are very sim-
ple to train.

In a nutshell, a weighted pool of perceptrons
{(vk, ck)}k is incrementally acquired during a batch



training procedure sketched in Algorithm 2. Each
perceptron vk is parameterized by a vector in Rn

(one component per feature on which we train the
classifier), and is given a weight ck, computed as
the number of successive training examples it could
correctly classifies before making a prediction er-
ror. ck is thus a gross measure of the “goodness”
of the kth classifier. When the current perceptron
misclassifies a training example, a new one is added
to the pool; the coefficients of this new classifier are
derived from the current perceptron according to a
simple delta-rule and are kept fixed for the rest of
the training procedure.

Input: {(xi, yi)}i∈[1,L] where yi ∈ {+1,−1}
Output: a pool of K perceptrons {(vk, ck)}k∈[1,K]

k, c1 ← 0
v1 ← [0...0]T

for all epoch do
for all i ∈ [1, L] do

ŷ ← sign(vk.xi)
if ŷ 6= yi then

vk+1 ← vk + yixi

ck+1 ← 1
k ← k + 1

else
ck ← ck + 1

Algorithm 2: Training regimen of the voted-
perceptron algorithm.

At test time, a given observation x ∈ Rn is classi-
fied by averaging the prediction of the perceptrons in
the pool, where the contribution of each perceptron
vk is weighted by ck:

ŷ = sign

(∑
k

ck.sign(vk.x)

)

3.3.2 The feature set
Training such a classifier is mainly a matter of

feature engineering. In what follows, what we call
an example is a pair of source-target analogical re-
lations (r, r̂) identified by the generator which pro-
poses ṫ as a candidate translation for the source term
t :

(r, r̂) ≡ ([I(x) : I(y) = I(z) : t ] , [O(x) : O(y) = O(z) : ṫ ])

.

Some features we consider depend on some struc-
tures compiled before feature extraction takes place.
In particular, two codebooks Cs and Ct gather the
most frequent cofactors involved in respectively the
source and target analogies of the examples identi-
fied by the generator over the development material.

The most frequent entries of both codebooks are
reported in Figure 2. Some cofactors, e.g. 〈ε, anti〉,
capture the fact that complex terms in medical
domain can be formed by derivation, that is, by
adding an affix to a base-word, as in antityphoid .
Some others such as 〈ectomie, otomie〉 reveal al-
ternations that take place while compounding two
(or more) components such as in prostatectomie or
prostatotomie . Note that although the forms cap-
tured by frequent cofactors often correspond to mor-
phemes such as the one used in (Déjean et al., 2002)
or to the combining forms used in (Deléger et al.,
2007), this is not necessarily the case.

source 〈ε, péri〉 〈ε, a〉 〈ectomie, ite〉
〈ectomie, otomie〉 〈ε, anti〉

target 〈ε, peri〉 〈ε, a〉 〈ectomy, itis〉
〈ectomy, otomy〉 〈ε, anti〉

Figure 2: The 5 most-frequent cofactors of the
source and target codebooks.

We split the range of the frequency of the cofac-
tors in Cs and Ct into two uniform sets of f bins bs

and bt. We also trained a target character-based m-
gram model Lm on the terms of the training material
(see SEARCH in Section 4.1).

We considered the following feature sets for char-
acterizing each example e:

[deg] Degrees of the source and target analogies
of e.

[freq] The frequency fṫ with which a candidate ṫ
has been generated for the translation of a given term
t , as well as the rank of t in the list of candidates
sorted in decreasing order of frequency.

[book-b] A source vector cs = [cs
1, . . . , c

s
b] where

cs
i is set to 1 if the ith cofactor of codebook Cs is

present in the list of cofactors of e, 0 otherwise. A
similar vector ct is computed on the target side.



[lm-m] The minimum and average probabilities
computed by Lm for ṫ, and the difference of both.

[bin-f] A source vector of dimension f which
keeps track of the count of the number of source co-
factors in e which frequency falls into the ith bin of
bs. A similar vector is computed on the target side.

4 Experimental protocol

4.1 The corpus

In this work, we concentrated on translating sim-
ple terms belonging to the biomedical domain from
French into English. We used a list of French terms
and their authoritative English translations extracted
from the online medical dictionary Masson.2 The
same list was used in the work of Claveau and
Zweigenbaum (2005).

We only focused on the pairs of terms which
normalized edit-distance were ranging from
0.02 to 0.67, corresponding respectively to
pairs that differ by only one character, such
as (artériorrhexis, arteriorrhexis), to some
rather distant pairs, such as (toux, cough) or
(grossesse, pregnancy). A few terms are containing
uppercase letters, we did not lowercase them.

We randomly split the 13 392 pairs of terms into
SEARCH (80%), DEV (10%), and TEST (10%) sets,
used respectively to train the generator, to train the
selector(s), and to test the complete system. We fur-
ther split the material used to train the selector(s)
into DEV-TRAIN (90%) and DEV-TEST (10%).

4.2 Evaluation

Let S ≡ {Si : i ∈ [1, N ]} be the set of N (source)
terms we seek to translate. For each term Si, the
generator produces a set of Ni candidate transla-
tions Ti ≡ {Tij : j ∈ [0, Ni]}. The selector can
be seen as a binary classifier3 producing a decision
bij ∈ {0, 1} for each candidate Tij , on the face of
which translations T+

i ≡ {Tij : bij = 1} will be
proposed; that is, those for which bij equals 1.

Let R ≡ {ri ≡ {rik} : k ∈ [1, ni]} be the refer-
ence set, that is, the set of ni reference translations
for each source term Si. In this study, ni usually

2Available at url http://www.atmedia.com.
3Note that this does not impose that the selector is being

implemented as a binary classifier.

equals 1, but it happens occasionally that a term re-
ceives several reference translations.

We measure the overall performance of
AnaTerm with micro and macro f-measures.
The micro-values are computed for each unknown
term, and then averaged:

∩i = ri ∩ T+
i

m-precision = 1
N

(∑N
i=1 | ∩i |/|T+

i |
)

m-recall = 1
N

(∑N
i=1 | ∩i |/|ri|

)
Macro-values are computed by keeping the count of
good translations produced over a session, and by
normalizing adequately:

I =
∑N

i=1 | ∩i | M-precision = I/P

P =
∑N

i=1 T+
i M-recall = I/R

R =
∑N

i=1 ni

We are also interested in evaluating the selector
component alone. For that purpose, we measure the
accuracy of a selector as the ratio of good decisions
(positive or not) made by the classifier:

acc =

 N∑
i=1

Ni∑
j=1

δ (bij = δ (Tij ∈ ri))

 /
N∑

i=1

Ni

δ(•) is 1 when • is true, and 0 otherwise. At a finer
grain, we also measure the accuracy on good (acc+)
and bad examples separately.

5 Experiments

5.1 The generator
We first investigate the impact of the few parame-
ters controlling the generator; namely, the sampling
rate s, and the number n of neighbors considered.
Performances are measured on TEST with an ora-
cle selector which simply looks at the reference in
order to decide which candidate translation is posi-
tive. Micro and macro f-measures of variants where
s ranges from 50 to 2000, and n from 20 to 300,
are reported in Figure 3. We observe that the main
factor impacting the generator is n, the number of
neighbors considered during Step 1: the more the
neighbors, the better the performance. For the vari-
ant s=250 for instance, the macro f-measure goes
from 62.9% for n=20 to 78.4% for n=300. The
influence of the sampling parameter is rather small.



Figure 3: Oracle performance of several configura-
tions measured on the TEST material (1306 terms).

The best variant tested (s=500-n=300) records
a micro-fmeasure of 65% and a macro-fmeasure of
78.8%. Since with an oracle selector, the macro-
precision equals 100, it means that only 65% (849
out of 1306) of the terms received a translation. 250
(19%) of the 1306 source terms of the test material
were not translated because of a failure during Step
1; another 35 because of a failure during Step 2.
Among the terms that did not receive by AnaTerm
a valid translation, 62.4% did not receive any candi-
date at all, the others (37.6%) receiving an average
of 6832 candidates (231 259 at most). Increasing n
will likely reduce the number of terms without any
match during the first step, at the expense of time.

From Figure 4, we see that the ratio of terms that
receive at least one candidate translation by the gen-
erator decreases with the (normalized) edit-distance
between a source term and its reference translation.

%

edn
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Figure 4: Ratio of the terms of the DEV material
(1271 terms) that receive a solution by the gener-
ator, as a function of the normalized edit-distance
between the source term and its translation.

In the remainder, we concentrate on the config-
uration s=100-n=300, which shows good perfor-
mance while generating a (barely) decent number of
examples. In fact, from the 1 271 terms of DEV, this
configuration generated over 4 millions of examples
(more than 3.6 serving as training material for the
selectors); and over 4.6 millions of examples from
the 1306 terms of the TEST set. Less than 1% of
those examples are positive ones.

5.2 The selector

We trained different classifiers on the 3.6 millions of
examples of the DEV-TRAIN set. Each classifier was
trained using 40 epochs.4 The performance of each
variant on both DEV-TEST and TEST are reported in
Table 1. Note that for those feature sets which de-
pend on a parameter, such as lm, bin, or book, we
report only the best variant we observed (as defined
by acc measured on the training set). For instance,
using a trigram language model leads to better per-
formance than a 4-gram model, which, in turn, out-
performs a bigram model.

For comparison purposes, we implemented two
baselines: all-spurious which classifies as
spurious all examples (note that this would result
in a totally silent overall system), and top-freq
which classifies as good, the only examples leading
to a candidate which frequency is maximum. Most
of the classifiers we trained clearly outperform them.

Two feature sets outperform the others: deg and
bin. The language model feature-set alone is poor
but happens to lead, in conjunction to deg, to one
of our best classifier. Currently, the best variant
correctly classifies 99.9% of the examples of TEST;
89.6% of the positive ones being correctly identified
(recall that there are less than 1% of positive exam-
ples in our test sets).

The fact that the classifiers perform much better
on TEST than on DEV-TEST suggests that we should
backup our observations by cross-validation. Other
combinations of features will likely yield better clas-
sification rates; but classifying roughly 90% of the
positive examples as such is already what we con-
sider a good performance, suitable for the investiga-

4We analyzed the learning curves of some classifiers trained
on a balanced corpus (that is, with as many good and spurious
examples), and noticed that, depending on the feature set, some
over-training seems to occur after several tens of iterations.



DEV-TEST TEST

feature sets acc acc+ acc acc+
book200 (b200) 98.65 9.87 98.79 16.44
freq 98.81 38.31 99.47 63.47
lm3 (l3) 99.14 40.40 98.97 39.35
bin3 (f3) 99.49 60.84 99.82 85.82
deg (d) 99.49 60.90 99.82 85.75
d-l3-b200 99.54 65.04 99.78 85.98
d-l3-f5 99.53 65.56 99.77 85.81
d-l3-f100-b100 99.55 65.57 99.78 86.45
d-l3 99.53 65.89 99.76 85.90
d-l3-freq-f50 99.60 67.45 99.86 89.64
all-spurious 99.23 0 99.14 0
top-freq 96.59 17.89 99.14 44.67

Table 1: Performance of several classifiers trained
on DEV-TRAIN and tested against DEV-TEST and
TEST. The top figures concern single sets of fea-
tures; the bottom one, the 5-best feature-set combi-
nations we computed so far.

tions carried out in the next section.

5.3 The overall system
We now evaluate AnaTerm as a translation device.
In order to appreciate the contribution of the selec-
tors to the overall system, we considered two oracle
ones; oracle which simply looks at the reference
in order to decide which candidate translation is pos-
itive; and vocwhich assumes that the target vocabu-
lary is known, and which selects the only candidates
that belong to this vocabulary.5

We also implemented three baselines by select-
ing the candidate form(s) with maximum frequency
(topfreq) or 3-gram log-probability (toplm) or
minimum edit-distance to the source term (toped);
the latter being motivated by the fact that in the med-
ical domain, a French term and its English transla-
tion are often close. The performance of the five-
best selectors we trained, plus those of the baselines
are reported in Table 2.

Each decision taken by the selector is independent
of the other decisions. It is therefore not surpris-

5This last variant may be of practical interest, when we do
have a target vocabulary from which we would like to identify
translations. This was for instance the scenario investigated in
(Langlais and Patry, 2007) where the authors computed a target
vocabulary from a large repository of target language texts.

ing that some terms receive more than one candidate
translation, which decreases (micro and macro) pre-
cision. We can further filter out some candidates by
the means of other criteria. For instance, we can
select the top-frequent solution(s) (freq), the best
ranked one(s) according to the language model (lm),
or the closest to the source term as defined by edit-
distance (ed).

By this mean, we increase precision without sig-
nificantly impacting recall. Roughly 64% of the
terms belonging to TEST receive at least one can-
didate translation by d-l3-freq-f50freq (1.07
on average), and in 80% of the cases, the reference
translation is among the list of (at most 9) candi-
dates. A random excerpt of candidate terms gener-
ated by the variant d-l3-freq-f50 are reported
in Figure 5.

A more natural way to overcome this cascade of
selectors would be to directly train a reranker to do
the job. We could apply for that the reranking strat-
egy described in (Collins and Duffy, 2002) which
introduces only minor modifications to the training
regimen we considered in this study. This is left as
future work.

5.4 A point of comparison

To put these figures in perspective, we used the
bitext from the medical domain that Langlais et
al. (2006) used for adapting a statistical transla-
tion engine to the medical domain. This bitext
gathers over 800 000 pairs of sentences collected
from 20 000 pages downloaded from the website of
Health Canada6 and 14 000 pages from the website
of the public Health Agency of Canada.7.

Only 311 (23.8 %) of the source terms of TEST

are present in this resource which gathers roughly
150 000 word-forms per language. For 68 of these
terms, the reference translation is not present in the
target material, which means that at best we could
identify the translation of 18.6% of our test corpus.

6 Related Work

Chiao and Zweigenbaum (2002) describe an exper-
iment where a comparable corpus of the medical
domain of above 600 000 words in French and En-

6http://www.hc-sc.gc.ca
7http://www.phac-aspc.gc.ca



config ans. hits mP mR mF MP MR MF avr max

oracle 837 837 64.09 64.09 64.09 100.00 64.09 78.11 1 1
voc 845 837 60.25 64.09 62.11 87.83 64.09 74.10 1.13 3
toplm 1003 185 14.13 14.17 14.15 18.39 14.17 16.00 1.00 2
toped 1003 610 30.23 46.71 36.70 18.73 46.71 26.74 3.25 52
topfreq 1003 755 33.36 57.81 42.30 4.68 57.81 8.66 16.09 999
d-l3-b200 733 615 32.33 47.09 38.34 41.16 47.09 43.93 2.04 24
d-l3-f5 724 599 31.83 45.87 37.58 42.04 45.87 43.87 1.97 21
d-l3-f100-b100 760 642 34.71 49.16 40.69 44.25 49.16 46.57 1.91 21
d-l3 718 589 31.32 45.10 36.97 41.42 45.10 43.18 1.98 23
d-l3-freq-f50 835 677 47.60 51.84 49.63 65.66 51.84 57.94 1.23 10
d-l3-freq-f50lm 835 642 49.16 49.16 49.16 76.89 49.16 59.97 1.00 1
d-l3-freq-f50ed 835 668 50.80 51.15 50.98 77.76 51.15 61.71 1.03 5
d-l3-freq-f50freq 835 669 50.23 51.23 50.72 74.58 51.23 60.74 1.07 9

Table 2: Performance measured on the TEST material for several variants of AnaTerm sharing the generator
s=100-n=300. The top part of the Table are oracle and baseline variants; the bottom part are the different
variants we tried. ans. (resp. hits) stands for the number of source terms with at least one (resp. correct)
candidate translation; avr (resp. max) stands for the average (resp. maximum) number of candidates
received per source term (when at least one is found).

chondromyxosarcome (chondromyxosarcoma,59) (myxochondrosarcoma,51) (myxosarcochondroma,41)
électroradiologie (electroradiology,26) (radioelectrology,24)
pathogène (pathogenic,43) (pathogenous,34) (pathogen,31)
périlobulite (lobulitiperis,65) (perilobulitis,65) (lobulitisperi,65) (lobuliperitis,64)

Figure 5: Solutions proposed by d-l3-freq-f50, with their frequency, for some source terms. The
reference solution is in bold; the candidates in italic are those selected by the variant d-l3-freq-f50lm.

glish has been collected as well as a seed bilingual
lexicon of more than 18 000 entries. They report
that a context-vector approach allowed to identify in
the top 10 candidates the sanctioned translation of
an unknown term, 50% of the time. With the goal
of illustrating the comparability of non-parallel cor-
pora, Morin et al. (2007) report that a similar ap-
proach could translate 51% of single terms and 49%
multi-word terms when a list of top 10 candidates is
considered, making use of a comparable corpus on
the domain of nutrition (above 700 000 French and
807 000 Japanese words), and a bilingual seed bilin-
gual lexicon of above 173 000 entries.

Claveau and Zweigenbaum (2005) trained a trans-
ducer from a set of pairs of terms. They report pre-
cision rates ranging from 52% to 67%, when trained
on a set of 3 000 training pairs, translating from
French into English, and vice-versa. Claveau (2007)

proposed to learn rewrite rules from the character-
based alignment of the pairs of terms in the train-
ing material. At translation time, all the rules which
source part matches the source term are tested and
the resulting candidate translations are ranked by a
language model. They report an improvement of
roughly 10% over the previous approach if 11 000
pairs of terms are used for training.

This last two approaches are very close in spirit
to the one we propose since they are exploiting no
other resource than a specialized bilingual seed lex-
icon. Among the differences, however, we must
stress that AnaTerm does not rely on any alignment
step. Instead, the translations emerge from a general
principle: proportional analogy. Due to different ex-
perimental settings, however, we can not compare
them precisely. In particular, we did not consider in
our experiments terms that were translated verbatim,



and we did not focus on the only terms than contain
at least 8 characters, as was done in the other two
studies. This is part of future work to carry out a
more careful comparison of our approach with the
one of (Claveau, 2007).

7 Discussion and future work

We investigated the use of analogical learning
(Stroppa and Yvon, 2005) to the task of translating
from French into English single terms of the medical
domain. We show that it is possible to train a clas-
sifier to distinguish good analogies from spurious
ones, an improvement over the approach of Langlais
and Patry (2007).

We analyzed the impact of different factors on the
performance of AnaTerm, and observed that one of
the best variant we tested so far could propose a can-
didate translation for 64% of the terms, with a cor-
rect translation in 80% of the cases.

We already mentioned several enhancements to
the approach we presented in this study, that we are
currently investigating. There are other avenues we
plan to investigate. First, since we observed that
widening the search space leads to improvements,
we must investigate ways to speed-up the search pro-
cedure. We can certainly improve the implementa-
tion of the solver used in this study, but the main
challenge remains to identify fruitful input triplets
in the first place. Second, we would like to inves-
tigate how AnaTerm scales to multi-terms and to
different domains.
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