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Abstract

A new method of ”clustering combination” is presented in this paper the purpose
of which is to benefit from several clusterings made in parallel in a previous stage.
The guideline of the proposed combination is to group data samples which appear
frequently in the same cluster. First, we develop a hierarchical algorithm to optimise
the objective function which qualifies the grouping. The algorithm is competitive
compared to existing combination algorithms but in spite of its good results it does
not guarantee the convergence to a global unique solution. Based on the analy-
sis of the objective function a second method is proposed which provides a global
solution with a guaranteed convergence. This combination is expressed as the min-
imisation of the square distances among samples. We prove in this paper that the
global minimum may be found using the gradient density function estimation by
the mean shift procedure. Local optimal modes of this function form groups of sam-
ples and consequently constitute a global solution of combination. Advantages of
this method are a fast convergence and a linear complexity. The combination of
different clusterings is performed on synthetic as well as real data-bases and shows
the effectiveness of the proposed method and its superiority with respect to others
combination approaches.

Key words: Clustering combination, Co-association matrix, Least square error,
Mean shift
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Résumé

Dans ce rapport, nous proposons d’étudier les solutions de combinaison de
clustering en utilisant la matrice de co-association. Nous présentons également
de nouvelles méthodes pour la combinaison afin d’éviter les inconvénients des
approches existantes. L’idée de la combinaison proposée est de regrouper les
échantillons qui sont dans le même cluster dans la plupart des clusterings. Tout
d’abord, nous montrons une fonction objective pour combiner différentes clus-
terings. Ensuite, nous développons un algorithme hiérarchique pour optimiser
la fonction objective. Un tel algorithme est compétitif par rapport aux autres
algorithmes de combinaison, mais en dépit de ses très bons résultats, il ne
garantit pas la convergence vers la solution globale. Après une analyse de la
fonction objective, nous proposons une méthode améliorée qui donne la solu-
tion globale. De plus, nous décrirons les conditions d’une telle convergence.
L’un des avantages d’une telle méthode est que l’algorithme a la convergence
rapide et la complexité linéaire.

Mot-Clés : Combinaison des clusterings, Matrices de co-association, Erreur
quadratique, Mean shift

1 Introduction

Clustering algorithms are one of the basic tools in pattern recognition. They
are used for data mining in unsupervised learning tasks [1]. Clustering consists
in obtaining groups of similar samples for further data exploration or retrieval
in supervised or semi-supervised classification [2].

It is a common practice that several clustering steps are performed in parallel,
either because different algorithms are used, or, because different parameters
of the same algorithm provide complementary results which may be profitable
[3–15].

For supervised classification there are two main approaches to infer one single
classification from multiple ones: (i) selecting the best classification and (ii)
combining classifications [16]. The first approach is rather applied to classify
a particular type of data for a given class model when strong evidence exists
on the kind of result we expect. The second approach has become popular
(e.g., AdaBoost [16,17]) for large data sets, complex and multiple classification
criteria and unmodelled data. The strong interest in combination techniques
rather than in classification selection is due to their ability to better take

∗ Corresponding author. Tel.:+33 1 45 81 76 40; fax: +33 1 45 81 37 94.
Email addresses: kyrgyzov@enst.fr (Ivan O. Kyrgyzov), maitre@enst.fr
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benefit from the many different classifications of the complex data. These two
approaches concern supervised tasks when classes are a priori known [18].

For unlabelled data and unknown classes, unsupervised clustering is preferably
used. Clustering is generally carried out on numerous non organised data when
unknown clusters have to be estimated [1,16]. It is often the case for satellite
or multimedia image indexing. The purpose of clustering is to group data to
facilitate their interpretation by a user. But often the exact purpose of the
user is not known [19]. Moreover, there are hundreds of developed clustering
algorithms. Some methods make the hypotheses that data are almost Gaussian
distributions and therefore look for dense kernels [20]. Other methods are
looking for discriminant features or combination of the features which provide
boundaries between clusters [16]. There are also methods which suppose the
data to be hierarchically dependent [2]. Some other are only based on the
local proximity [20]. For each of these hypotheses, some algorithms are known
as to be efficient. When using these efficient algorithms, we obtain a set of
clusterings which will hopefully well respect the diversity and the richness of
the classifications we may obtain from the data. Clustering algorithms are
pertinent with respect to a given criterion, but none is absolutely superior
since no measure exists to qualify an absolute quality [21]. Selecting a good
classification method among hundreds proposed without a unique and exact
objective function is a difficult problem [19].

Our paper refers to the problem of unsupervised clustering combination. In
this case, in general, there is no correspondence among clusters in different
clusterings, contrary to supervised classifications. Moreover, the number of
clusters may be different from one clustering to another.

At this point the main difficulty is to determine a judicious criterion in order
to combine elementary clusterings and to obtain a final clustering solution.
Another problem is how to efficiently implement the chosen method in case of
very large data-bases. The contribution of this paper is to address these two
issues.

Many different methods may be used in order to merge information issued
from different clustering [3–15,22]. But, here, we pay attention to methods
which are based on the property of two samples to belong or not to the same
cluster, depending on the clustering. A review of these methods is given in
Section 2; the combination criterion that we chose is formulated in Section 3,
with some mathematical developments which make it easy to manipulate;
Section 4 describes the proposed algorithm along with an improvement to
efficiently process large data sets. In Section 5, a global optimum of the com-
bination criterion formulated in Section 3 is exactly found by using iterative
mean shift. Results on toy as well as real world data are presented in Section 6,
which also provide a comparison with existing methods, and demonstrates the
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efficiency of this approach.

2 Clustering Combination

There exist many methods to aggregate information pieces issued from dif-
ferent clustering techniques. Classical approaches of clustering combination
are based on Bayesian or Dempster-Shafer theories [23]. But these approaches
have exponential computational complexity. Therefore, their application may
be cumbersome for more than several clusterings of large data sets.

One of the most attractive clustering combination methods is based on the use
of a co-association matrix [3–8]. An element of this symmetric square matrix
is the number of occurrences of two samples in the same cluster depending on
the clustering. The co-association matrix will be introduced in Section 3.

In [3,5] and later in [8], authors propose a methodology that inspired this
paper to combine several clusterings. A number of clusterings are obtained
by K-means algorithm with random initialisations and a random number of
clusters. The co-association matrix is built by collecting the clusterings. A
hierarchical single-link method is then applied to the matrix in order to group
samples which appear the most frequently together. In [8], the final number
of combined clusters is taken either as the one that corresponds to the longest
lifetime on the dendrogram or as the one which provides the highest mutual
information measure between the combined clusters and given clusterings. In
this case, normalised mutual information (denoted NMI ) [8] is the objective
criterion of the method. It expresses a global quality of the final partition.
This criterion is different from the distance criterion which was used in [4],
and that we also use. Therefore we comment here on the approach [8], when
the discussion on [3,4] is kept in Section 3. This method, only based on the
frequency of association of different samples to the same cluster, is interest-
ing for the user who does not need to care about the elementary clustering
methods. It makes no assumption on the reasons for which samples have been
grouped and does not question about the pertinence of the initial clustering
stage. However it suffers from several limitations: (i) it requires some prior
knowledge on the approximate number of clusters, (ii) it does not guaran-
tee any optimality of the final classification and (iii) it may face storage and
computational problems when dealing with large sample sets.

The first limitation comes from the initial clustering stage. If the number of
initial clusters is sequentially increased from 2 to the number of samples, the
co-association matrix tends to be a near diagonal matrix with small values
out of diagonal. Therefore, the more clusters used to build the co-association
matrix, the more clusters result from the combination. To limit this trend, fol-
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lowing the method presented in [8], one should constrain the initial parameter
of the K-means to values close from the targetted number of clusters, e.g., as
in [20,24].

The third limitation is due to the single-link algorithm used to obtain the
combined clusters (or similarly to the complete-link or to the average-link al-
gorithms which are proposed as alternatives in [8]). This algorithm requires the
storage of the complete co-association matrix (or of its upper-part). In case of
thousands of samples, this may create storage and computational difficulties.

To address the second limitation, the method proposed in [10] may be used.
In order to optimise the final classification, the authors consider the clus-
tering combination in the framework of finite mixture models of clustering
ensembles and solve it according to the maximum likelihood criterion with
the Expectation-Maximisation (EM) algorithm. Another solution to overcome
this second limitation may be found in [9]. The authors propose the mutual
information measure as an objective function, but optimise it with a greedy
combinatorial algorithm. Unfortunately, its complexity is exponential in the
number of samples. Both methods [10] and [9] require a predetermined num-
ber of final clusters. We propose a way to overpass this constraint in Sections
4.1 and 5.

In [14], clustering labels are combined jointly with a feature space of data.
We do not consider such an approach here because it is often difficult to
combine unambiguously criteria of different clustering algorithms. In addition,
for this approach, several prior parameters should be tuned in order to combine
clustering results. Ayad and Kamel [11] combine clusterings generated by K-
means algorithm with the same predetermined number of clusters. The authors
argue that the representation of clustering labels by a co-association matrix
is cumbersome and propose to analyse a matrix of pairwise distances between
clusters, instead. They find the correspondence between clusters from different
clustering results. Then a group-average hierarchical clustering is applied in
order to group elements of this matrix. In such a way, they always combine
clusterings with the same number of clusters. The authors do not provide any
objective function to estimate the quality of combination and the number of
clusters after combination.

In [12], a matrix of sample associations is used in order to represent different
clusterings. Then their combination is obtained by clustering this matrix. In
this approach, the final number of clusters should be known a priori that im-
poses the first limitation given above. Lange and Buhmann [25] make use of
a probabilistic model of the co-association matrix. The EM -algorithm opti-
mises model parameters. It requires O(I2) operations for each iteration, where
I is the number of data samples making it difficult to apply it to a high vol-
ume of data. The memory complexity relates to the third limitation when the
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co-association matrix is stored.

Clustering combination is a recent interesting topic in data mining and it
appears up to now weakly exploited. A recent survey, [22], only reviews the
few methods of clustering combination here presented, and even references in
[3–7] were omitted.

As we have seen, many methods need to know a priori information about
data in order to combine clusterings or to manually fix some parameters for
the combination scheme. This motivates us to put the problem in a form free
from any parameter and prior knowledge. The adopted formulation is also
based on the co-association matrix. It allows to process a large volume of data
as well as large numbers of final clusters without using the co-association ma-
trix explicitly. We estimate clustering combination via an objective function
proposed in [4–6] and introduce two algorithms to optimise this criterion. The
first algorithm uses a hierarchical approach and shows competitive perfor-
mances compared to existing ones. It combines clusterings in an unsupervised
way for a large volume of data. Unfortunately, there is no proof that it always
achieves a global optimum. The second algorithm is a fast iterative combina-
tion algorithm for which we prove the convergence to a global optimum of the
objective function.

3 Problem statement

Let us consider the case where we have a large set of samples and different
clusterings, each of them providing a partition of the sample set into a specific
number of clusters. Let I be the number of samples and P the number of
clusterings. Each clustering associates each sample u with one and only one
cluster. The elementary co-association matrix Ap of clustering p (p = 1, ..., P )
collects the information on which sample u belongs to the same cluster that
sample v:

Ap
uv =











1, if u and v are in the same cluster,

0, otherwise.
(1)

where u, v = 1, ..., I. Ap is a binary symmetric square matrix of size I. We
may similarly describe the pth clustering by binary matrix Bp with I rows and
Jp columns, where Jp is the number of clusters in the pth clustering, so that:

Bp
uj =











1, if sample u ∈ j,

0, otherwise.
(2)

6



where j = 1, .., Jp. Bp is called a partition matrix. We have:

Ap = BpBp′, (3)

where ′ denotes the matrix transposition.

For the P clusterings, we can compute the average matrix A as:

A =
1

P

P
∑

p=1

Ap =
1

P

P
∑

p=1

BpBp′. (4)

A is the global co-association matrix or, in short, the co-association matrix.
Each clustering presented by binary matrix Ap has weight 1/P in Eq. (4).
For large P , we may say that two elements u and v have a probability Auv to
belong to the same cluster.

Let us denote the consensus partition having J unknown clusters as matrix B
of size I × J . This partition of the samples reflects at best the point of view
of all clusterings. Our goal is to obtain such a consensus partition B from the
co-association matrix A. From B, we may compute a square matrix D of size
I as:

D = BB′. (5)

Such a matrix D would be the binary co-association matrix corresponding to
the consensus clustering. For any problem, where P different clusterings are
performed, we may observe one matrix A, but the consensus partition B is
unknown as well as D. The purpose of the clustering combination is to derive
these unknown matrices.

Several matrices D could be obtained, depending on the criterion chosen to
derive D from A. For instance, in [8] the matrix D is obtained from A by
maximising Normalised Mutual Information (NMI ) criterion based on infor-
mation theory. We follow here the formulation of the problem given in [4] as
the one which minimises the square error between D and A:

E(D) = ‖D − A‖2, (6)
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which can be rewritten (since D Eq. (5) is a binary symmetric matrix) as:

E(B) =
I
∑

u=1

I
∑

v=1





J
∑

j=1

(BujBvj)− Auv





2

=
I
∑

u=1

I
∑

v=1

Duv(1− 2Auv) +
I
∑

u=1

I
∑

v=1

A2
uv,

subject to B′B = I,
J
∑

j=1

Ijj = I, Buv ∈ {0, 1},

(7)

where I is a diagonal matrix of size J with diagonal elements equal to the
clusters’ cardinalities. Unknown consensus partition B has size I × J , where
the number of concensus clusters J has to be estimated. The first term in the
second part of Eq.(7) has no square degree because D is a binary matrix. In
addition, the last term in the second part of Eq.(7) is a constant and does not
influence on the minimisation of error E. The quadratic objective function Eq.
(7) may be solved exactly for small data sets using efficient methods [5], in
contrast to the optimisation of NMI criterion in [8,9].

4 Proposed solution

4.1 Combination algorithm

In order to combine clusterings and find B that minimises E Eq. (7) we
propose to use a single-link merging algorithm [1]. This algorithm optimises
Condorcet criterion [7] which equals the quadratic criterion Eq. (7) up to
a constant. The single-link method gives experimentally very good results
when compared to other hierarchical algorithms such as average-link, Ward,
complete-link, etc., [8]. The motivation of using single-link algorithm is based
on the previous remark that the general term Auv of matrix A may be consid-
ered as the probability of two samples to belong to the same cluster. Of course
we do not know the memberships of u and v and the actual number of clusters
J , but it is reasonable to group in the same cluster elements of A that have the
highest probability of co-association, that is the way single-link works [1]. We
propose the Least Square Error Combination (LSEC ) algorithm for solving
Eq. (7) (see Algorithm 1). The optimal number of clusters J is found when
the error E in Eq. (7) is minimum. At the first step we initialise B as the iden-
tity matrix supposing that each cluster has only one sample. Error E(1) = I2

is initialised to have its maximal value. A partition presented by matrix B
is stored to matrix B∗ before merging two clusters. Merging is continued till
minimising error E(i).
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Algorithm 1
Pseudo code of LSEC -algorithm

1: Set B as the identity matrix, J ← I, i← 1 and E(i) ← I2.
2: Find clusters’ indexes (j, k) = arg max

u∈j,v∈k
Auv; j, k = 1, ..., J , j 6= k.

3: Set B∗ ← B.
4: Merge two clusters j and k by Buj ← (Buj + Buk).
5: Remove column k from matrix B.

6: E(i+1) ←
I
∑

u=1

I
∑

v=1





J−1
∑

j=1

(BujBvj)−Auv





2

.

7: if E(i+1) ≤ E(i), then

8: i← i + 1,
9: J ← J − 1,
10: go to Step 2;
11: else B ← B∗, B is the optimal partition, stop.

Simulated example

In order to demonstrate the efficiency of this algorithm, it has been experi-
mented on synthetic noisy data. The experiment was carried out on a data
set of I = 100 samples with Jp = 5 classes each of which has 20 samples.
We simulate a clustering by randomly changing 25% of the samples from one
class to another. The noisy sets, so constructed are considered as the result
of one clustering. We repeat this experience P times to simulate p = 1, ..., P
independent clusterings. Matrix Bp Eq. (2) is constructed for each of p noisy
clusterings. From these clusterings, matrix A Eq. (4) is estimated from Bp

and following LSEC algorithm we determine the consensus classification. For
each class of the consensus classification, we compute the class accuracy (ex-
pressed in percentage) as the ratio of the number of the samples issued from
the majority class to the total number of samples. The consensus accuracy is
expressed as the mean accuracy over all the classes. Figure 1 shows compari-
son of LSEC -algorithm with NMI criterion for single− link algorithm [8] for
different values of P from 1 to 100. In the Figure 1a for P = 1 both curves
start with a 75% accuracy since 25% noise was added to a single clustering.
When P increases, LSEC curve has a chaotic behaviour first, then it converges
towards 100% accuracy. On the contrary, NMI never benefits from the many
noisy clusterings to improve the global accuracy.

For P = 100 noisy clusterings, LSEC -algorithm accuracy is 100%, contrary
to NMI criterion which provides about 70% of accuracy. Figure 1b shows the
accuracy versus the cluster number. We see that for a large number of noisy
clusterings the accuracy of LSEC -algorithm in estimating the actual number
of clusters is good whereas it fails for the NMI criterion.

Matrix A is computed in I(I− 1)/2 iterations. In order to combine clusters, I
iterations are needed and error E is calculated in I(I−1)/2 iterations for each
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Fig. 1. Comparison of LSEC algorithms and NMI criterion (single-link algorithms).
a - Combination accuracy versus the number of noisy clusterings, b - Estimated
number of clusters versus the number of noisy clusterings

combination. The time complexity of such an algorithm being in O(I3), it is
prohibitive for large volumes of data. To overcome this problem we propose
an efficient initialisation procedure in Section 4.2 at first and a fast version of
the algorithm for large data sets in Section 4.3.

4.2 Initialisation

Algorithm 1 starts with an initialisation of the matrix B as the identity matrix.
A better initialisation of B can accelerate the convergence. A gradient like
method which iteratively modifies B and minimises the error E Eq. (7) can
reduce the computation time. Consider an iteration of optimisation which
switch the label j0 of sample q to j. Let Bj0 and Bj be the partition matrices
before and after this allocation. The variation of E Eq. (7) is given by:

∆E(q|j0 → j) =
I
∑

u=1

I
∑

v=1

(Dj
uv −Dj0

uv)(1− 2Auv), (8)

where Dj = BjBj ′, Dj0 = Bj0Bj0 ′ as in Eq. (5) and j0 → j is an operation
of label changing. The change is accepted if and only if ∆E(q|j0 → j) is
not positive, and the process is iterated until no change minimises E. As the
variation of the error E Eq. (8) depends only on the difference between Dj

uv

and Dj0
uv, ∆E could be written as:

∆E(q|j0 → j) = 2
∑

k∈j,q /∈j

(1− 2Aqk)− 2
∑

l∈j0,q /∈j0

(1− 2Aql), (9)

Let us explain equations (8) and (9). Binary co-association matrices Dj and
Dj0 are square and symmetric. Dj0 has two binary square matrices on diagonal:
elements of the first matrix are associated with clusters j0 and elements of the
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second matrix are associated with cluster j. Let dj0 and dj be the first and the
second diagonal matrices of Dj0 , respectively. When label j0 of element q is
switched to label j, then Dj equals Dj0 and is changed as: row q and column
q of matrix dj0 equal 0 (except for the diagonal element q, q), and row q and
column q of matrix dj equal 1. Thus, the difference between matrices Dj and
Dj0 Eq. (8) equals Eq (9). Multiplier 2 comes from symmetry of matrices Dj

and Dj0 .

At the initial step, when each cluster contains only one sample, matrix B is
the identity matrix. Sample q is moved to the cluster which minimises the
error Eq. (9). In this case cluster j0 has only one sample q and l is an empty
set. Then the error in Eq. (9) has the following form:

∆E(q|j0 → j) = 2(1− 2Aqk). (10)

Minimising ∆E is equivalent to finding the maximum of Aqk, excepting the
diagonal elements of A. Using the nonpositiveness condition of the error vari-
ation in Eq. (10), the necessary condition to examine points Aqk is:

Aqk ≥ 0.5. (11)

Condition (11) means that two points could be combined if they are in the
same cluster in more than half of the cases. This optimisation procedure is
equivalent to building nearest-neighbour subgraphs. It avoids the storage of
the square matrix A. It is very important when processing a large amount
of data. Points belonging to each subgraph are assigned to the same cluster.
Now, such clusters will be considered as the initialisation matrix B for LSEC -
algorithm, instead of the new identity matrix, so we obtain a noticeable gain
of processing time.

4.3 Gradient descent optimisation and storage reduction

In the proposed Algorithm 1, matrix A should be computed at Step 1. This
step may be difficult for real applications such as clustering of large databases,
because of the dimension of matrix A. For instance, when processing images,
we often have to deal with thousands of pixels. This would involve millions of
terms for matrix A. Instead of calculating the error at each step of the optimi-
sation procedure, we suggest to use the optimisation error gradient as proposed
in Eq. (8), and follow a descending approach as an optimisation strategy. The
error gradient reduces both the computation time and the volume of storage
and processing.
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Let k and l be indexes of samples belonging to two clusters j0 and j, respec-
tively, with nj0 and nj samples each. Let Dj0 be the binary co-association
matrix before combination and Dj after combination. All elements of Dj are
either equal to 1 or to 0. Let Ej0 and Ej be errors as in Eq. (7) before and
after combination. We obtain the difference ∆E between errors Ej and Ej0

by substituting matrices Dj0 and Dj in Eq. (8):

∆E = 2nj0nj − 4
I
∑

k

I
∑

l

Akl. (12)

A new condition for subcluster combination is obtained when the gradient
error is non positive, i.e.:

I
∑

k

I
∑

l

Akl

nj0nj

≥ 0.5. (13)

Property (13) states that two subclusters j0 and j are combined if the sum of
their connection probabilities is greater than half of all possible connections
of their points. We say that the normalised sum of their connections is greater
than 0.5. The last term in the gradient ∆E in Eq. (12) allows us to calculate
a double sum without storage of whole matrix A.

4.4 A complete iterative algorithm

Now let use the results presented in Section 4.2 which provide a good initial-
isation of the algorithm by an initial clustering based on nearest neighbour
graphs. Let Jg be the number of these initial clusters. From Jg, a binary matrix
Bg is built according to Eq. (2) and matrix B = [B1, ..., Bp] is a concatenation
of Bp. A is derived by Eq. (4) as:

A =
1

P
BB′. (14)

Matrix S of size JgxJg can be computed as the sum of connections between
all pairs of Jg clusters:

S = Bg ′ABg =

(

Bg ′B√
P

)(

Bg ′B√
P

)′

. (15)
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Let each element Nkl of a matrix N correspond to the number of all possible
connections of two clusters k and l:

Nkl = nknl, (16)

where k, l = 1, ..., Jg and nk,nl are the numbers of samples in clusters k and l,
respectively. The normalised sum of connections between two clusters k and l
allows building matrix S where each element Skl is expressed as:

Skl = Skl/Nkl, (17)

with 0 ≤ Skl ≤ 1. From matrix S we may propose a generalisation of condition
(13): if Skl ≥ 0.5, clusters k and l should be combined to reduce the error E
in Eq. (7) for LSEC -algorithm. Ranking Skl elements in a descending order
determines clusters that should be grouped at Step 2. This algorithm, called
DLSEC (differential LSEC ) significantly reduces computations and may be
applied to large volumes of data.

We compare in Figure 2 processing time for a direct search presented in
Section 4.1 with the optimised search proposed in Sections 4.2-4.4. An ideal
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Fig. 2. Logarithm of time computation for direct and optimised search vs. the num-
ber of samples, in the case of synthetic data.

clustering with Jp = 6 clusters is taken as an example. Random changes of
labels are performed on 20% of the samples. By repeating this procedure 100
times matrix Bc is built. We can see from Figure 2, the proposed optimised
search decreases significantly the processing time. Moreover, after combination
of noisy clusterings, a perfect solution with 6 classes is always obtained. The
bootstrapping method [22] is one of the possible applications of the DLSEC -
algorithm. For this experiment, we set randomly 60% of samples with initial
clustering labels and 40% as unclassified labels to which the same label ”un-
classified” is attributed. After 100 steps of boosting the combination finds
exactly the initial clustering. It could be one of the issues for a parallel clus-
tering of large amounts of data or for improving clustering.
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4.5 Complexity

To compute Jg clusters initialising DLSEC algorithm as described in Section
4.2, I(I − 1)/2 operations at most are needed. The combination of these clus-
ters as presented in Section 4.3 requires Jg − 1 operations, where Jg≪I. The
time complexity of optimised DLSEC -algorithm is approximately O(I2 +Jg).
Note, that the method in [25] requires O(I2) operations at each step of the
optimisation process.

We demonstrated the objective function and introduced the hierarchical algo-
rithm to find the optimal concensus clustering. Unfortunately there is no clear
proof that the hierarchical algorithm may achieve a global optimum of the ob-
jective function. To overcome this limitation we reformulate the optimisation
process as well as the optimality conditions and propose an exact algorithm
to find the global optimum for E Eq. (7).

5 Mean shift combination

In this section P clusterings are considered as labels coded by p binary matrices
Bp Eq. (2), where p = 1, ..., P . The matrices are concatenated into a single
matrix B and form space ℜd, where d =

∑P
p=1 Jp. We propose to search

a consensus clustering which, as previously, minimises the square error E
Eq. (7). We prove in this section that this minimisation is equivalent to the
minimisation of the square error among samples bu, where bu is a row of B

and u = 1, .., I.

All samples {bu} are located on a hyper circle, since they simultaneously satisfy
a hyper plane equation

∑d
j=1 buj = d = const and a hyper sphere equation

∑d
j=1 b2

uj = d = const. Therefore vectors {bu} may be normalised by a constant√
d such that their square norm is 1.

Let us write the minimisation of square error E Eq. (7) as:

min
B

E = min
B

I
∑

u=1

I
∑

v=1

Duv(1− 2Auv) = min
{J,{Cj}J

j=1
}

J
∑

j=1

∑

u∈Cj

∑

v∈Cj

(1− 2Auv)

= min
{J,{Cj}J

j=1
}

J
∑

j=1

n2
j(1−

2

n2
j

∑

u∈Cj

∑

v∈Cj

Auv)

(18)

where consensus cluster Cj, j = 1, ..., J has the unknown number of samples
nj and J is the unknown number of consensus clusters. Set {Cj} corresponds
to binary matrix B of size I × J .
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As all elements verify 0 ≤ Akl ≤ 1 and Auv = bub
′
v we may derive a condition

to guarantee that the error Eq. (18) is always minimised:

‖bu − bv‖2 < 1⇒ 1

n2
j

nj
∑

u=1

nj
∑

v=1

Auv > 0.5, (19)

where u, v ∈ Cj. This condition shows the expression in the parenthesis of
the last part of Eq. (18) is always negative. We may also say that if during
the estimation of consensus clusters {Cj} the condition (19) is hold and the
number of samples nj is growing then error E Eq. (18) is always minimised.

5.1 Proving convergence with mean shift

Let µj be the mean vector of cluster Cj, µj =
∑

v bv/nj, v ∈ Cj. The square
norm of µj is:

‖µj‖2 =
1

n2
j

∥

∥

∥

∥

∥

∑

v

bv

∥

∥

∥

∥

∥

2

=
1

n2
j

∑

v

(‖bv‖2 + 2
∑

u

bvb
′
u) =

∑

u∈Cj

∑

v∈Cj

Auv/n
2
j . (20)

The square error σ2
j of cluster Cj with mean µj is:

σ2
j =

1

nj

nj
∑

u=1

‖bu‖2 −
∥

∥

∥

∥

∥

1

nj

nj
∑

u=1

bu

∥

∥

∥

∥

∥

2

= 1− ‖µj‖2. (21)

where ‖bu‖2 = 1. Minimising the last term in Eq. (18) is equal to maximising
both ‖µj‖2 and the number of samples nj in cluster Cj.

Proposition 1 A global minimum of the error E in Eq. (18) is achieved by
maximising the norms of local mean vectors µj in Eq. (20) or/and minimising
square distances σ2

j in Eq. (21) jointly with maximising the number of samples
nj in clusters:

min E = min
∑

j

n2
j(1− 2‖µj‖2) = min

∑

j

n2
j(2σ

2
j − 1),

under conditions ‖ µj ‖2> 0.5, σ2
j < 0.5.

(22)

Written in this way, Proposition 1 may be seen as a problem of parameter
estimation. The problem can be solved via the estimation of a probability
density function. The base of such an approach in regard to the pattern recog-
nition is the nonparametric density estimation by its gradient [26,27], so-called
the density estimation by mean shift vectors.
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The multivariate kernel density estimation with kernel K(b) and window ra-
dius h, computed at point b takes form [26]:

f̂(b) = (Ihd)
−1

I
∑

u=1

K(h−1(b− bu)) (23)

An appropriate kernel K should be selected to approximate the density. If
the kernel has unknown parameters they should also be estimated. One of the
popular kernels is the Gaussian kernel with the width of the kernel window
[31] as parameter. This kernel is not appropriate for the problem at hand
because it makes the assumption that the more data are available the denser
the distribution is. In the case of our normalised samples {b}, a higher number
of samples does not guarantee a higher density. We aim to group samples {b}
which are located on the different positive axes.

We propose to use the multivariate Epanechnikov kernel [28] in order to min-
imise of the average global error between the estimated and the true den-
sity [29]. The profile of the kernel is the function k : [0,∞) → R such that
K(b) = k(‖ b ‖):

k(b) =











(d+2)
2cd

(1− b), if b ≤ 1,

0, otherwise.
(24)

where cd is the volume of the unit d-dimensional sphere of radius 1.

The density estimation Eq. (23) is obtained through its gradient as shown in
[27]:

∇̂fh,K(b) =
2ck,d

Ihd+2





I
∑

i=1

k





∥

∥

∥

∥

∥

b− bi

h

∥

∥

∥

∥

∥

2
















∑I
i=1 bik

(

∥

∥

∥

b−bi

h

∥

∥

∥

2
)

∑I
i=1 k

(

∥

∥

∥

b−bi

h

∥

∥

∥

2
) − b









. (25)

The second term in Eq. (25) is the mean shift:

mh,k(b) =

∑I
i=1 bik

(

∥

∥

∥

b−bi

h

∥

∥

∥

2
)

∑I
i=1 k

(

∥

∥

∥

b−bi

h

∥

∥

∥

2
) − b, (26)

which expresses the difference between point b and the mean of the samples
weighted by kernel k. It also shows the direction in which the density is in-
creasing and where the weighted mean value should be replaced. The mean

16



shift estimation always converges [27]. It proceeds in two steps: (i) compute
the mean shift vector mh,k; (ii) move kernel k(b) by mh,k.

Let us note two very important properties of mean shift algorithm applied to
data {b}.
Property 1. All {b} vectors have positive values, consequently the cosine be-
tween successive mean shift vectors always remains positive [27], guaranteeing
a fast and good convergence rate and no chaotic descent.
Property 2. As the mean shift algorithm converges [27] and all data {b} have
values from a finite set, the mean shift estimation of µj is obtained in a finite
number of iterations. In practice, the iteration number for convergence is very
small (some units).

Condition (19) to achieve a global minimum of error E in Eq. (22) shows that
the maximal distance among samples {bu} is less than 1. From this condition,
the distance from mean vector µj to any point of cluster Cj is less than 1.
The Epanichnekov kernel is differentiable in a sphere of radius 1; therefore
optimisation converges to a global optimum [29]. We demonstrate a theorem
which asserts the global optimality of Epanechnikov kernel to minimise E in
Eq. (22).

Theorem 1 Epanechnikov kernel is the optimal kernel to find a global mini-
mum for error E in Eq. (22) by the mean shift algorithm.

A proof of the theorem is given in the Appendix.

5.2 Optimal adaptive radius for mean shift combination

We proved in Section 5.1 that the mean shift combination with the Epanech-
nikov kernel finds an optimal solution for error E in Eq. (18). Because the
starting point is a data sample µj = bi the threshold is set to 1, so (19) sat-
isfies the condition of the Epanechnikov kernel with a radius 1. As ‖µj‖2 is
changed during the search, an optimal radius should be estimated. Condition
(19) shows that the optimal solution of the error (18) is found when Auv > 0.5.
In such a case using the square norm of mean vector µj in Eq. (20) calculated
on nj samples and in the worst case when Auv = bub

′
v = 0.5 : u 6= v; Auu = 1,

then ‖µj‖2 = (0.5nj(nj−1)+nj)/n
2
j = 0.5(1+1/nj). To optimise the error E

in Eq. (18) the optimal adaptive radius rj (or similarly the minimal distance
from any sample bu : u /∈ j to the mean vector µj) should be:

rj =
√

‖bu − µj‖2 =
√

1− 2bu

∑

v∈j

bv/nj + ‖µj‖2 =

√

‖µj‖2 =
√

0.5(1 + 1/nj)

(27)
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From this equation it may be verified that :

− when, µj = bv then rj = 1 therefore satisfying (19),

− lim
nj→∞

rj = lim
nj→∞

√

‖µj‖2 = lim
nj→∞

√

0.5(1 + 1/nj) =
√

0.5 ≈ 0.7071.

(28)

From this limit we obtain a low bound for the square norm of the mean vector
µj : 0.5 < ‖µj‖2. This value always guarantees the minimisation of error E in
Eq. (18). We may now present the algorithm of the Mean Shift Combination
(MSC ) with Epanechnikov kernel and adaptive radius rj (see Algorithm 2).

Algorithm 2
Pseudo code of MSC -algorithm

Initialise j = 1, ci = 0, i = 1, ..., I
1: Find i : ci ≡ 0, else stop, c has labels of combination.
2: Initialise rj = 1, k = 1, yk = bi.
3: Compute yk+1 = 1

nk

∑

bi∈W (yk,r) bi,

4: rk =
√

0.5(1 + 1/nk),
5: k ← k + 1 till convergence.

6: Assign rj = rk, ci = j,∀i :
√

‖bi − yconv‖2 < rj , j = j + 1. Go to Step 1.

Where nk is the number of points in the window W (yk, rk) of radius rk with
centre yk. After converging, points falling into window W (yconv, rj) belong
to cluster Cj. Vector c has nonzero labels of J clusters. All local optimal
modes form groups of samples and consequently constitute a global solution
of combination.

6 Experimental results

6.1 Synthetic clustering combination

In this subsection we present different clustering combination criteria and
algorithms on synthetic data. To generate simulations we take one clustering
and exchange randomly samples from true clusters to false ones. From these
clusterings, several classes are extracted by different methods: hierarchical
single-link, Ward and average-link algorithms [1] for the average normalised
mutual information NMI criterion [8], LSEC -algorithm and MSC -algorithm
as presented in this paper, AUTOCLASS clustering [30] (that cluster labels by
mixtures of multinomial models with Expectation-Maximisation algorithm).

The first experiment is made for 2 classes each of them containing 50 samples.
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30% randomly selected samples are changed to the other class. Each labelling
is represented as binary matrix B (see Eq. (2)). We collect 100 of such noisy
labelings and construct co-association matrix A Eq. (1). Figure 3 shows two
criteria to determine the optimal number of clusters: information NMI and
square error E Eq. (7). The optimal cluster number is obtained for the max-
imum NMI, or for the minimum square error E. For such an elementary ex-
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Fig. 3. Combination of clusterings with 30% of noised labels by single-link, aver-
age-link and Ward hierarchical algorithms: a - NMI criterion, b- square error E in
Eq. (7).

ample NMI criterion is increasing with a growing number of clusters for all
hierarchical algorithms. On the contrary error E in Eq. (7) provides always the
true number of clusters whatever the fusion algorithm. AUTOCLASS gives
the true solution, but should be initialised with the a prior information on the
number of clusters and needs a large number of restarting (about 100). It is
well known that clustering methods based on EM -algorithm do not guarantee
a global optimum [2,16,20]. The best solution is selected among many trials
using restarting (e.g., with random parameter initialisation). The proposed
LSEC -algorithm as well as the MSC -algorithm give 2 clusters without errors.
This experiment was widely extended to many other synthetic cases with the
same conclusion: the error E Eq. (7) indicates more precisely the true number
of clusters than NMI.

6.2 UCI data

We perform experiments of ”clustering combination” on real datasets taken
from the UCI machine learning repository 1 and compare results with the
work of [8] where the normalised NMI criteria is studied. The goal of these
experiments is to show that the proposed combination algorithms are com-
petitive and may even outperform averaged NMI criterion in [8].

Real data from UCI repository are the same as in [8]: 1. Iris data (150 samples);

1 http://kdd.ics.uci.edu/
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2. Breast Cancer (683 samples); 3. Optical Digits (3823 samples); 4. Log yeast
(384 samples); 5. Std Yeast (384 samples).

To obtain clusterings of data we use K-means algorithm for fixed and random
number of clusters. The fixed number of clusters k∗ is the ”natural” known
number of classes and the random number is chosen randomly near k∗. Es-
timating the optimal number of clusters is a classical problem for K-means
which is rather successfully solved [20]. We do not address this problem in our
paper.

Error E (Eq.(7) and Eq.(18)) estimates the optimal number of clusters for hi-
erarchical and mean shift combination algorithms, respectively. We note that
combination depends on clusterings which depend on the number of clusters.
The more clusters clusterings have, the more clusters in the combined clus-
tering. After the combination we estimate its quality as the percentage of
missclassified samples. The largest number of samples in a combined class was
set as the true one and all other samples in this class are set as misclassified.
The minimum value of this error is used to indicate the best clustering for 100
random initialisations of K-means algorithm.

LSEC -algorithm, MSC -algorithm and AUTOCLASS (AC) were used to com-
bine different clusterings and their results are compared to the best Evidence
Accumulation Clustering (EAC) with single-link or average-link approaches
(EAC-SL, EAC-CL), Table 3 and Table 2 in [8] for fixed and random k∗,
respectively. Here again for AUTOCLASS combination we should always pro-
vide a priori number of clusters and a large number of restartings to obtain a
good solution. Results of combination of clusterings is presented in Table 1 as
error rates of classification (in percentage).

Table 1
Error (in percentage) of the clustering combination

Fixed k∗ Variable k∗

Data set k∗ KM Jain[8] AC LSEC MSC Jain[8] AC LSEC MSC

Iris 3 10.7 11.1 10.7 10.7 10.7 10.0 10.0 10.0 10.0

Brest Cancer 2 3.9 4.0 3.9 3.9 3.9 2.9 2.9 2.9 2.9

Optical Digits 10 13.1 23.2 17.3 17.1 15.7 21.0 11.8 11.1 10.5

Log Yeast 5 58.6 66.6 59.4 58.8 58.8 59.0 49.2 52.8 50.3

Std Yeast 5 26.1 31.8 31.2 32.8 32.5 33.0 26.5 26.8 26.3

The first set of experiments is done with a fixed number of clusters, and
a random initialisation of K-means. From Table 1 (Fixed k∗) we see that
LSEC and MSC algorithms have lower errors (columns LSEC and MSC)
in most cases comparing to NMI criterion (column Jain[8]). AUTOCLASS
(column AC) justifies good performance of LSEC and MSC algorithms with
near the same error. The same values of error for Iris and Brest Cancer data
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are explained by the fact that these data have small size therefore clusterings
and combinations are the same.

In addition we conclude that MSC -algorithm outperforms LSEC -algorithm
as expected from the theory. We observe that in several cases MSC -algorithm
has significantly lower errors than NMI [8] (less than 7.8% for Log Yeast and
7.5% for Optical Digits). The best K-means clustering errors are less than
several combinations for fixed k∗ because of the presence of many low quality
clusterings which degrade the fusion. Note however that this criterion (best
K-means) is only acceptable in the case where the exact number of clusters is
known.

The second set of experiments is done with a varying number of clusters,
and a random initialisation of K-means. Columns Jain[8], AC, LSEC and
MSC of Table 1 (Variable k∗) show clustering errors after the combination
by Jain, AUTOCLASS, LSEC and MSC algorithms, respectively. In such
an experiment with the combination we find ”stable” clusters instead of the
natural clusters. Therefore the estimated numbers of clusters k′ may differ from
a priori known k∗. Here again, we see that the performances of the proposed
combination algorithms (columns LSEC and MSC) are still very good and
better than EAC-SL or EAC-AL (column 7) in [8, Table 2]. Interesting to note,
that in [8] there is no definitive decision about which combination algorithm
is the best.

Experiments on synthetic examples as well as on real data bases show better
performance of our combination algorithms than in [8].

We compare clustering combination algorithms via different criteria: computa-
tional and memory complexities, the achievement of the global optimum, the
necessity of multiple restarts and the fixed number of clusters. The algorithms
and criteria are presented in Table 2.

Table 2
Criteria for comparing combination algorithms

Computational
complexity

Memory
complexity

Global
optimum

Multiple
starts

Fixed
number of
clusters

NMI, Jain[8] O(I2) O(I2) No No No

AUTOCLASS O(I) O(I) No Yes Yes

LSEC O(I3) O(I2) No No No

DLSEC O(I2) O(I) No No No

MSC O(I) O(I) Yes No No

The computational complexity shows the number of iterations which are needed
to obtain a solution as a function of the data set size. The memory complexity
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indicates the size of allocated memory as a function of data set size. These two
complexities have to be linear when processing large data sets. Global opti-
mum criteria shows whether an algorithm achieves the global optimal combi-
nation. Here are two notions of the global optimum : theoretical and practical.
A combination algorithm can achieve the global optimum theoretically, but
practically very often it is not the case and vice-versa. Multiple restarts are
needed to select the best clustering combination. The fixed number of clusters
shows whether a user should fix this number for an algorithm or to estimate
it on the fixed set of numbers.

From Table 2 we see that NMI and LSEC approaches have square (or even
more) computational and memory complexities that makes difficult their ap-
plication for large data sets. DLSEC approach has square computational com-
plexity and linear size of memory that may facilitate data processing. AUTO-
CLASS and MSC approaches have linear complexities which are preferable in
practical tasks.

There is no proof for NMI criteria to get the global combination, however in
practice, it may be possible for some cases. AUTOCLASS with unsupervised
clustering can infer theoretically the global combination, however in practice
it is not the case, except simple and trivial combinations. LSEC and DLSEC
algorithms combine clusterings obtaining the local optimum because it uses
the gradient descend as the optimisation method. However, for some cases
these two approaches can achieve global optimum.

NMI, LSEC and DLSEC approaches estimate the optimal number of clusters
without multiple starts. On the contrary, AUTOCLASS with the multinomial
mixture model should be restarted to estimate the parameters of the model.
The number of clusters should also be fixed during estimation. Finally, the
best combination is selected from the set of solutions corresponding to different
numbers of clusters.

As we demonstrated in this paper mean shift combination (MSC ) converges
to the global solution theoretically and practically under specified conditions.

From the comparison of different approaches for clustering combination in
Table 2 we conclude that mean shift combination MSC is the best on them.

7 Conclusions

In this paper, we proposed two efficient algorithms for the combination of op-
timal clusterings based on the examination of the co-association matrix of the
data as suggested in [3–5]. The combination algorithms have no parameters
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to tune, do not need multiple restarts and determine the number of combined
clusters in an unsupervised way. We showed the objective function and con-
ditions for its optimality. The first method uses single-link algorithm to find
the optimal solution. Such an algorithm was chosen experimentally because
of its goods results compared to other hierarchical algorithms. But it does
not guarantee the convergence to the global optimum. To avoid this problem
a new combination approach is proposed based on a mean shift procedure.
It has been proven that mean shift minimises the square distance between
clusterings, achieves the global optimum and has a linear complexity. Mean
shift method is able to process large set of samples, without facing problems
of memory or time complexity. In addition, it has the elegant formulation and
the simple realisation.

The combination of clusterings is able to improve unsupervised data mining.
To analyse data it is preferable to apply different clustering algorithms. Thus,
we can combine clusterings issued from incomparable methods. The combina-
tion may be used for many different applications of data mining: clustering of
nominal data (e.g., text documents), combination of different clusterings or
segmentations of the same scene (e.g., by clustering different groups of features
or clustering time-series images), video clustering and motion detection. It can
stabilise a clustering result for an algorithm which depends on the choice of
the set of initial parameters.

For a future work, it would be preferable to take into account the ”weakness” or
”strength” of clusterings and combine weighted clusterings as well as consider
their dependency to improve clustering combination.
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Appendix. Proof of Theorem 1

Firstly, we show the maximisation of the mean shift vector norm. Proposition

1 is a particular case of the theorem proposed in [31, pp. 282] that establishes
the optimum solution is found when the mean shift procedure maximises the
norm of the mean shift vector.
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Secondly, we prove that during optimisation the number of points nj falling
into cluster j is a strictly monotonic increasing sequence. Let yk be a point
where density is estimated within the d-dimensional window W (yk). Let the
density estimation f̂ in Eq. (23) with Epanechnikov kernel in Eq. (24) for k
and k + 1 consecutive steps be f̂k and f̂k+1 respectively:

f̂k =
1

(Ihd)

∑

bu∈W (yk)

K

(

b− bu

h

)

=

(d + 2)

2Icd

∑

bu∈W (yk)

(1− ‖yk − bu‖2) =
(d + 2)

2Icd

1

nk

∑

bu,bv∈W (yk)

bvb
′
u

(29)

and

f̂k+1 =
(d + 2)

2Icd

∑

bu∈W (yk+1)

(1− ‖yk+1 − bu‖2) =

(d + 2)

2Icd

1

nk+1

∑

bu,bv∈W (yk+1)

bvb
′
u.

(30)

The theorem in [32, pp. 1198] shows that the positive sequence {f̂k} of density
estimation by mean-shift algorithm and Epanechnikov kernel is converging and

f̂k+1 − f̂k ≥
d + 2

2Icd

nk‖yk+1‖2, (31)

consequently the condition f̂k+1 > f̂k holds. Using this condition we may prove
that nk+1 > nk. Let us rewrite inequality (31) by substituting equations (20),
(29) and (30):

(d + 2)

2Icd





1

nk+1

∑

bu,bv∈W (yk+1)

bvb
′
u −

1

nk

∑

bu,bv∈W (yk)

bvb
′
u



 ≥

(d + 2)

2Icd

nk

n2
k+1

∑

bu,bv∈W (yk+1)

bvb
′
u.

(32)

Dividing inequality (32) by f̂k+1 in Eq. (30) and using 0 < f̂k/f̂k+1 < 1 the
inequality (32) is written as:

1− f̂k

f̂k+1

≥ nk

nk+1

> 0⇒ 0 < 1− nk

nk+1

< 1⇒ 0 < nk < nk+1. (33)

When the optimal value is achieved, then f̂k+1 ≡ f̂k and nj = nk+1 ≡ nk. We
proved here that the number of samples n2

j is strictly increasing. The condition
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‖µj‖2 > 0.5 in Eq. (19) provides strictly negative values during minimising
error E in Eq. (22) by the mean-shift algorithm with Epanechnikov kernel in
Eq. (24).
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