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Analyse de champs sonores théorique

Mathieu Guillaume, Yves Grenier

Résumé

L’objectif de l’analyse de champs sonores est de fournir une description

des événements sonores non seulement dans le domaine temporel, mais

aussi dans le domaine spatial. Cet article s’intéresse surtout à l’analyse de

champs sonores en vue de son utilisation dans des systèmes de reproduc-

tion sonore telles que les techniques ambisonics ou de la Wave Field Syn-

thesis. Les modèles de champs sonores utilisés dans ces deux approches

appartiennent à deux catégories plus générales : les décompositions har-

moniques d’une part, telles que les décompositions en ondes planes, har-

moniques cylindriques et harmoniques sphériques, et les représentations

basées sur l’équation intégrale de Kirchhoff d’autre part. Cet article

présente une synthèse détaillée de ces différents modèles. Finalement,

plusieurs descriptions du champ sonore sont utilisées pour modéliser le

même événement sonore : celui d’ondes planes tronquées à l’intérieur

d’une sphère d’un rayon donné. Les avantages et inconvénients de cha-

cune de ces représentations sont alors discutés.
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Theoretical sound field analysis

Mathieu Guillaume, Yves Grenier

May 2, 2006

Abstract

The analysis of sound fields aims at giving a description of sound events, not

only in the time domain, but also in the space domain. This article is mainly fo-

cused on sound field analysis intended for sound reproduction systems such as

ambisonics and Wave Field Synthesis. The sound field models used in these two

approaches belong to two more general categories: harmonic decompositions, such

as plane waves, cylindrical harmonics and spherical harmonics, and representa-

tions based on Kirchhoff’s integral equation. This article presents a unified view

of these models. Finally, several representations are compared to model the same

sound field event, that is truncated plane waves inside a sphere of a given radius,

and advantages and drawbacks of each representation are described.
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1 Introduction

Sound field analysis is used in a variety of domains such as the study of vibrating stuc-

tures [1], the accurate reproduction of a sound field over an extended area [2][3] and

active noise control which is just a particular case of the latter, with a null reference

field [4]. This paper is mainly concerned by sound field analysis applied to the repro-

duction of a sound field over an extended area. Under practical conditions, the sound

field is sampled by a microphone array, and we can classify the sound field reproduc-

tion strategies according to whether these initial measures are directly processed, like

in least-squares methods [5], or whether an intermediary spatial analysis step is carried

out, such as in Ambisonics [3] or Wave Field Analysis/Synthesis [6][7] methods. In the

first strategy, few works are concerned by the behavior of the sound field in the neigh-

borhood of the sampling/control points [8]. In the second strategy, sound field analysis

aims at giving an accurate representation of the spatial organization of the sound field

on a wider extent than the set of sampling points.

Current sound field analysis methods can be divided into two categories: the ones

based on Kirchhoff’s integral equation, which are used mainly in acoustical holo-

graphic applications, such as Nearfield Acoustical Holography (NAH) [9] and Wave

Field Synthesis [2] (WFS), and the others based on harmonic decompositions like

Helmholtz equation least-squares method (HELS) [1] used to study the vibrations of

structures, and High Order Ambisonics (HOA) [3]. Some correspondences have al-

ready been established between these two kinds of models by Daniel and al. [3], in

which WFS and HOA systems are compared. This article presents a global synthesis

of the different sound field models belonging to these two categories. In particular, it is

shown that all harmonic representations, such as plane waves, cylindrical harmonics,

and spherical harmonics ones are equivalent from a theoretical point of view, and links

are established between harmonic descriptions and the integral representation. For this

purpose, ideal conditions are supposed concerning the knowledge of the sound field

being analyzed: it is known continuously in the time-space domain.

This paper first recalls general results concerning solutions of the wave equation in

section 2. In section 3, harmonic descriptions of the sound field are reviewed: plane

waves, cylindrical harmonics, and spherical harmonics. These descriptions rely on the

theory of generalized Fourier transforms. In section 4, the holographic approach is

investigated, leading to the Kirchhoff’s integral equation model. The equivalence be-

tween all harmonic decompositions is demonstrated in section 5, and some links are

established between harmonic and integral representations. In section 6, we use several

analysis methods presented in the previous sections to study the case of truncated plane

waves inside a sphere of radius R. Then, the assets and drawbacks of these representa-

tions are summarized. Finally, some perspectives are indicated in section 7.

2 Physical background

The three usual coordinate systems, cartesian, cylindrical, and spherical will be used

throughout this article. The notations used for a given vector k are summarized in

figure 1.
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Figure 1: Coordinate systems: cartesian on the left, cylindrical in the middle, and

spherical on the right

2.1 The wave equation

The ear is sensitive to the variations of the acoustic pressure p(r, t), where r and t

respectively indicate the space variable (tri-dimensional) and the time variable. This

observation justifies the relevance of the acoustic pressure field for sound field analysis.

The evolution of the acoustic pressure p is governed by the three-dimensional wave

equation [10]:

∇2 p(r, t)−
1

c2

∂2 p(r, t)

∂t2
= −q(r, t) (1)

where ∇2 denotes the three-dimensional Laplacian operator, c indicates the sound ve-

locity in the medium (340 m.s−1 in the air), and q is a source term which unit is

kg.m−3.s−2.

This equation belongs to the category of second order hyperbolic partial differential

equations. Additional conditions are required to ensure the existence and uniqueness

of the solution [11]. These are the initial conditions, which have to be of Cauchy type

—the pressure and its first time derivative are known in all the domain of resolution

V at the initial time ti— and the boundary conditions, which are either of Dirichlet,

Neumann, or Robin types —the pressure, its normal derivative, or a linear combination

of both is known on the boundary S delimiting V at any time instant t.

The inhomogeneous problem stated by equation (1) and by the set of initial and

boundary conditions is usually not solved directly. Two different strategies, using el-

ementary solutions, are used for its indirect resolution. The first one uses solutions of

the homogeneous problem, reviewed at paragraph 2.2, as a starting point, and extends

this set of solutions to deal with inhomogeneous problems. This strategy will be devel-

oped in section 3, concerning the analysis of sound fields based on generalized Fourier

transforms. The second one is comes from Green’s function theory and uses solutions

to elementary inhomogeneous problems in conjunction with the superposition princi-

ple to deal with the global inhomogeneous problem. This approach will be investigated

in section 4.

2.2 Elementary solutions to the homogeneous problem

In this paragraph, several elementary solutions to the homogeneous problem are re-

viewed. The general principle is to search solutions of the wave equation (1), with

5
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a null source term, which are separable in a given coordinate system. In the follow-

ing, the cartesian, cylindrical, and spherical coordinate systems are considered, but any

other coordinate system, such as ellipsoid, or prolate spheroidal could provide other

forms of solutions.

2.2.1 Cartesian coordinate system

The solution is assumed to be separable in the cartesian coordinate system, that is:

p(r, t) = X(x)Y (y)Z(z)T (t) (2)

Introducing this form of solution into (1), with q(r, t) = 0, leads to the system of

ordinary differential equations [12]:























1
X

d2X
dx2 = −k2

x

1
Y

d2Y
dy2 = −k2

y

1
Z

d2Z
dz2 = −k2

z

1
T

d2T
dt2 = −ω2

(3)

The solutions of this system are the well-known plane waves (4), satisfying the

dispersion relationship (5):

Ψkx, ky, kz, ω (x,y,z, t) = eikxx+kyy+kzz+ωt = ei(k·r+ωt) (4)

with |k| =
√

k2
x + k2

y + k2
z = k =

ω

c
(5)

2.2.2 Cylindrical coordinate system

Solutions of the homogeneous wave equation separable in the cylindrical coordinate

system are of the form:

p(r, t) = R(r)Φ(φ)Z(z)T (t) (6)

Introducing this prototype of solution into equation (1) yields the following system

of ordinary differential equations [12] after some manipulations:



























1
T

d2T
dt2 = −ω2

1
Z

d2Z
dz2 = −k2

z

1
Φ

d2Φ
dφ2 = −l2

d2R
dr2 + 1

r
dR
dr

+
(

k2
r −

l2

r2

)

R = 0

(7)

Granted that Φ must be a 2π−periodic function, l must be an integer. The solutions

of the last equation of the system are the Bessel functions Jl (krr) and Nl (krr) of first

and second kind. The Bessel functions of the first kind are continuous at r = 0, while

the Bessel functions of the second kind are discontinuous at r = 0. The general solution

is thus a linear combination of (8) and (9), both of these elementary solutions satisfying

the dispersion relationship (10):

6
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Ψkr ,l,kz,ω (r,φ,z, t) = Jl (krr)eilφei(kzz+ωt) (8)

ϒkr ,l,kz,ω (r,φ,z, t) = Nl (krr)eilφei(kzz+ωt) (9)

k2
r + k2

z =
ω2

c2
(10)

2.2.3 Spherical coordinate system

In this paragraph, the solution is assumed to be separable in the spherical coordinate

system:

p(r, t) = R(r)Φ(φ)Θ(θ)T (t) (11)

Introducing this form of solution into (1), yields the following system of ordinary

differential equations [12] after some manipulations:



























1
T

d2T
dt2 = −ω2

1
Φ

d2Φ
dφ2 = −m2

d2Θ
dθ2 + cosθ

sinθ
dΘ
dθ +

(

l(l +1)− m

sin2 θ

)

Θ = 0

d2R
dr2 + 2

r
dR
dr

+
(

k2 − l(l+1)
r2

)

R = 0

(12)

In these equations, l and m are integers. The solutions of the third equation are the

associated Legendre functions Pm
l (cosθ), nulled for |m| > l. The solutions of the last

equation of the system are the spherical Bessel functions jl (kr) and nl (kr) of first and

second kind. The spherical Bessel functions of the first kind are continuous at r = 0,

while the spherical Bessel functions of the second kind are discontinuous at r = 0. The

general solution is thus a linear combination of (13) and (14), both of these elementary

solutions satisfying the dispersion relationship (15):

Ψk,l,m,ω (r,φ,θ, t) = jl (kr)Ym
l (φ,θ)eiωt (13)

ϒk,l,m,ω (r,φ,θ, t) = nl (kr)Ym
l (φ,θ)eiωt (14)

k2 =
ω2

c2
(15)

where the Ym
l (φ,θ) are more usually known as spherical harmonics, whose expression

is given by the relation:

Ym
l (φ,θ) =

√

2l +1

4π

(l −m)!

(l +m)!
Pm

l (cosθ)eimφ (16)

7
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2.3 Solution to the elementary inhomogeneous problem

Green’s function is the solution to the elementary inhomogeneous problem, in infinite

domain, stated by the set of equations:































∇2G(r, t|r0, t0)−
1

c2

∂2G(r, t|r0, t0)

∂t2

= −δ(r− r0)δ(t − t0)
lim
r→∞

G(r, t|r0, t0) = 0

G(r, t|r0, t0) = 0 and
∂G(r, t|r0, t0)

∂t
= 0 if t < t0

(17)

Thus, Green’s function is the solution to the homogeneous problem everywhere

except at one point located by r0, at the time instant t0 [11]. The inhomogeneity

δ(r− r0)δ(t − t0) is not a valid acoustic source term, because its unit is in m−3.s−1,

instead of kg.m−3.s−2, but Green’s function is nevertheless a powerful theoretical tool

which will be used to deal with the global inhomogeneous problem at section 4.

A quite complicated development, available in Duffy [13], leads to the well-known

result for Green’s function in infinite domain:

G(r, t|r0, t0) =
δ
(

t − t0 −
|r−r0|

c

)

4π|r− r0|
(18)

The Dirac delta function is emitted from point r0 at time instant t0 and propagates

away from the inhomogeneity at the velocity c. It is also noticeable that the acoustic

pressure amplitude decreases in 1/|r− r0|.

3 Sound field analysis based on generalized Fourier

transforms

This section is divided into three parts, which are focused on the plane wave, the cylin-

drical harmonic and the spherical harmonic decompositions. Although based on math-

ematical results known for several decades now, this synthesis of the generalized har-

monic models in one common development is original and quite new.

In section 2.2, several elementary solutions to the homogeneous problem were re-

viewed. In this section, these sets of solutions will be extended to deal with the in-

homogeneous problem, which is the most general one. This strategy naturally falls in

the framework of generalized Fourier transforms. In particular, we will see that the

analysis tool associated to the plane waves (4) is the usual multidimensional Fourier

transform, and that the analysis tools associated to the cylindrical harmonics (8) and

spherical harmonics (13) are generalized Fourier transforms.

In a general manner, generalized Fourier transforms enable the expansion of a given

sound field —in fact, the acoustical nature of the field is not of major importance, it

could also apply to an electromagnetic field, or any other field— in a set of functions,

satisfying the two following properties:

• This set of functions forms an orthogonal set with respect to the inner product:

< f |g >=

ZZZZ

(r,t)∈R4
f (r, t)g(r, t) d3r dt (19)

where g denotes the complex conjugate of g.

8
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• This set of functions is complete, which means that a “well-behaved”1 sound

field can be perfectly recovered from the knowledge of its harmonic representa-

tion.

3.1 Plane wave expansion

The set of solutions to the homogeneous wave equation, separable in the cartesian coor-

dinate system are the plane waves (4) satisfying the dispersion relationship (5). To deal

with the inhomogeneous problem, the dispersion relationship is no longer assumed,

and we consider the set of plane waves for every (k,ω) ∈ R
4. This extended set of

functions is orthogonal with respect to the inner product (19). Indeed:

< Ψkx1
, ky1

, kz1
,ω1

|Ψkx2
, ky2

, kz2
,ω2

>

=
Z +∞

x=−∞
ei(kx1

−kx2)x dx

Z +∞

y=−∞
ei(ky1

−ky2)y dy
Z +∞

z=−∞
ei(kz1

−kz2)z dz

Z +∞

t=−∞
ei(ω1−ω2)t dt

=(2π)4 δ(kx1
− kx2

)δ(ky1
− ky2

)δ(kz1
− kz2

)δ(ω1−ω2)

(20)

This result comes from the famous identity (63) satisfied by Dirac’s delta function.

Thus, any sound field can be projected on the set of the plane waves. The analysis

operator associated to this operation is the usual multidimensional Fourier transform:

P {p}(kx,ky,kz,ω) = < p|Ψkx,ky,kz,ω > (21)

=
ZZZZ

(r,t)∈R4
p(r, t)e−i(k·r+ωt)d3r dt

Moreover, the set of plane waves (Ψk,ω) with (k,ω) ∈ R
4 is complete, because of

the Fourier transform theorem:

p(r, t) =
1

(2π)4

ZZZZ

(k,ω)∈R4
ei(k·r+ωt)

[

ZZZZ

(r1,t1)∈R4
p(r1, t1)e−i(k·r1+ωt1)d3r1 dt1

]

d3k dω
(22)

The Fourier transform theorem implies that a sound field can be perfectly recovered

by the knowledge of its Fourier transform. The associated synthesis operator is given

by the next equation, which is the usual multidimensional inverse Fourier transform:

p(r, t) =
1

(2π)4

ZZZZ

r,t∈R4
P {p}(kx,ky,kz,ω)ei(k·r+ωt)d3k dω (23)

3.2 Cylindrical harmonics expansion

Cylindrical harmonics (8) satisfying the dispersion relationship (10) are also harmonic

solutions to the homogeneous wave equation. In the same manner as in the previous

paragraph, the dispersion relationship is no longer assumed to deal with the inhomo-

geneous problem, and the set of cylindrical harmonics with [kr, l,kz,ω] ∈ R
+×Z×R

2

1theoretical study of the meaning of “well-behaved” is beyond the scope of this article. But, for physical

fields, it is usually the case.

9
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is used instead. This extended set of functions is orthogonal with respect to the in-

ner product (19). Indeed, using a volume element described in cylindrical coordinates,

d3r = r dr dφ dz, the inner product of two cylindrical harmonics is given by the next

equation:

< Ψkr1
, l1, kz1

, ω1
|Ψkr2

, l2, kz2
, ω2

>

=
Z +∞

r=0
Jl1 (kr1

r)Jl2 (kr2
r)r dr

Z 2π

φ=0
ei(l1−l2)φ dφ

Z +∞

z=−∞
ei(kz1

−kz2)z dz

Z +∞

t=−∞
ei(ω1−ω2)t dt

= (2π)3 δ(kr1
− kr2

)

kr1

δl1l2δ(kz1
− kz2

)δ(ω1 −ω2)

(24)

The integral for the azimuth variable φ is an elementary result of decomposition

into Fourier series, the integral for the variables z and t use the identity (63), and the

radial integral uses the closure relation of Bessel functions of the first kind (64).

Any sound field can be projected on the set of the cylindrical harmonics. The

analysis operator associated to this operation is a generalized Fourier transform, which

will be referred to as the cylindrical harmonic transform hereafter:

C {p}(kr, l,kz,ω) = < p|Ψkr , l, kz, ω > (25)

=
Z +∞

r=0

Z 2π

φ=0

x

(z,t)∈R2

p(r, t)Jl(krr )e−i(lφ+kzz+ωt)r dr dφ dz dt

This cylindrical harmonic transform is the product of an Hankel transform of order

l for the radial variable r, a decomposition into Fourier series for the azimuthal variable

φ, and two Fourier transforms for the space variable z and the time variable t.

Moreover, the set of cylindrical harmonics
(

Ψkr ,l,kz,ω

)

with [kr, l,kz,ω] ∈ R
+×Z×

R
2 is complete because of the following generalized Fourier transform theorem:

p(r, t) =
1

(2π)3

+∞

∑
l=−∞

y

(kr ,kz,ω)∈R+×R2
[

Z +∞

r1=0

Z 2π

φ1=0

Z +∞

z1=−∞

Z +∞

t1=−∞
p(r1, t1)

Jl (krr1)e−i(lφ1+kzz1+ωt1)r1 dr1dφ1 dz1 dt1

]

.

Jl (krr)ei(lφ+kzz+ωt)kr dkr dkz dω

(26)

The key-point of the demonstration lies in the inversion of the two integrals. Indeed:

+∞

∑
l=−∞

eil(φ−φ1)
Z +∞

kr=0
Jl (krr)Jl (krr1)kr dkr.

Z +∞

kz=−∞
eikz(z−z1)dkz

Z +∞

t=−∞
eiω(t−t1)dω =

(2π)3 δ(φ−φ1)
δ(r− r1)

r1
δ(z− z1)δ(t − t1)

(27)

Inserting this result in the integral over (r1, t1) proves the above theorem (26).

10
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This generalized Fourier transform theorem implies that a sound field can be per-

fectly recovered knowing its cylindrical harmonic transform. The corresponding syn-

thesis operator associated to this operation is the inverse cylindrical harmonic trans-

form:

p(r, t) =
1

(2π)3

+∞

∑
l=−∞

Z +∞

kr=0

x

(kz,ω)∈R2

C {p}(kr, l,kz,ω) .

Jl (krr)ei(lφ+kzz+ωt)kr dkr dkz dω

(28)

3.3 Spherical harmonics expansion

To deal with the inhomogeneous problem, spherical harmonics (13) with [k, l,m,ω] ∈
R

+ ×N×Z×R are used instead of the limited set of spherical harmonics satisfying

the dispersion relationship (15). This set of functions is orthogonal with respect to the

inner product defined by the relationship (19). Using an elementary volume described

in spherical coordinates d3r = r2 dr dφ sinθ dθ, the inner product of two spherical

harmonics is given by the next equation:

< Ψk1, l1, m1, ω1
|Ψk2, l2, m2, ω2

> =
Z +∞

r=0
jl1 (k1r) jl2 (k2r)r2 dr

Z +∞

t=−∞
ei(ω1−ω2)t dt .

Z 2π

φ=0

Z π

θ=0
Y

m1
l1

(φ,θ)Y
m2
l2

(φ,θ) dφ sinθ dθ =

4

k1k2
δ(k1 − k2)δl1l2δm1m2

δ(ω1 −ω2)

(29)

For this equation, the radial integral is given by the closure relation for the spherical

Bessel functions (66), the time integral is given by (63), and the angular integral is given

by the orthogonality property (67) of the classical spherical harmonics Ym
l (φ,θ).

Any sound field can be projected on the set of the spherical harmonics. The analysis

operator associated to this operation is a generalized Fourier transform, which will be

referred to as the spherical harmonic transform hereafter:

S {p}(k, l,m,ω) = < p|Ψk, l, m, ω > (30)

=
Z +∞

r=0

Z 2π

φ=0

Z π

θ=0

Z +∞

t=−∞
p(r, t)

jl(kr )Ym
l (φ,θ)e−iωtr2 dr dφ sinθ dθ dt

This spherical harmonic transform is the product of a spherical Hankel transform

of order l for the radial variable r, a decomposition into classical spherical harmonics

for the solid angle Ω, and a Fourier transform for the time variable t.

Moreover, the set of spherical harmonics (Ψk,l,m,ω) with [k, l,m,ω]∈R
+×N×Z×

11
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R is complete because of the following generalized Fourier transform theorem:

p(r, t) =
1

4

+∞

∑
l=0

l

∑
m=−l

x

(k,ω)∈R+×R
[

Z +∞

r1=0

Z 2π

φ1=0

Z π

θ1=0

Z +∞

t1=−∞
p(r1, t1)

jl (kr1)Ym
l (φ1,θ1)e−iωt1r2

1 dr1dφ1 sinθ1dθ1 dt1

]

.

jl (kr)Ym
l (φ,θ)eiωtk2 dk dω

(31)

The key-point of the demonstration lies in the inversion of the two integrals. Indeed:

+∞

∑
l=0

l

∑
m=−l

Ym
l (φ,θ)Ym

l (φ1,θ1)

Z +∞

k=0
jl(kr) jl(kr1)k2 dk .

Z +∞

t=−∞
eiω(t−t1)dω = 4

δ(r− r1)

r2
1

δ(φ−φ1)δ(cosθ− cosθ1)δ(t − t1)

(32)

Inserting this result in the integral over (r1, t1) proves the above theorem (31).

This generalized Fourier transform theorem implies that a sound field can be per-

fectly recovered knowing its spherical harmonic transform. The corresponding synthe-

sis operator associated to this operation is the inverse spherical harmonic transform:

p(r, t) =
1

4

+∞

∑
l=0

l

∑
m=−l

Z +∞

k=0

Z +∞

ω=−∞
S {p}(k, l,m,ω) .

jl (kr)Ym
l (φ,θ)eiωtk2 dk dω

(33)

3.4 Conclusion

The analysis operators and synthesis operators of several harmonic descriptions have

been given throughout this section: (21) and (23) for the plane waves, (25) and (28) for

the cylindrical harmonics, (30) and (33) for the spherical harmonics. They are based

on generalized Fourier transforms which are invertible for “well-behaved” sound fields,

so that these harmonic decompositions are suitable models for sound field description.

Examples of use of these generalized Fourier transforms to deal with inhomogeneous

problems will be given at section 5.2.

4 Sound field analysis based on Kirchhoff’s integral

4.1 Kirchhoff’s integral equation

While in the previous section the solution of the general inhomogeneous problem stated

by equation (1) with initial and boundary conditions was expressed as a superposi-

tion of harmonic solutions, another expression of the sound field could be given using

Green’s function theory. This leads to an integral expression of the sound field, known

12
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as Kirchhoff’s integral [11], whose most general form is:

Z t+

t0=ti

{

r0∈S

[G(r, t|r0, t0)∇0 p(r0, t0)

−p(r0, t0)∇0G(r, t|r0, t0)] ·dS0 dt0

+
1

c2

y

r0∈V

[

G(r, t|r0, ti)
∂p(r0, ti)

∂t0

−p(r0, ti)
∂G(r, t|r0, ti)

∂t0

]

d3r0

+
Z t+

t0=ti

y

r0∈V

q(r0, t0)G(r, t|r0, t0)d3r0 dt0

=

{

p(r, t) if r ∈ V

0 otherwise

(34)

where ti is the initial time, index 0 in ∇0 indicates that the gradient is with respect to

the variable r0, V and S are the domain of resolution and the surface delimiting it, and

dS0, which is normal to the surface, points outward V .

The first term of the left member of the above equation (34) is the contribution from

inhomogeneous —non null— boundary conditions, the second term is the contribution

from inhomogeneous initial conditions, and the third term is the contribution from the

non null source term inside the domain of resolution V .

Several simplifications of this integral equation occur according to the initial and

boundary conditions satisfied by Green’s function. For instance, if there are no sources

inside the domain of resolution, if initial conditions are null and if Green’s function is

imposed to satisfy homogeneous Dirichlet boundary conditions, then the equation (34)

comes down to:

Z t+

t0=ti

{

r0∈S

p(r0, t0)∇0G(r, t|r0, t0) ·dS0 dt0

=

{

−p(r, t) if r ∈ V

0 otherwise

(35)

This formulation of Kirchhoff’s integral equation is only of theoretical interest,

because there are only very few cases where an analytical Green’s function satisfying

the required initial and boundary conditions is available. Nevertheless, it implies that

the reconstruction of a sound field is possible exclusively from the knowledge of the

acoustic pressure profile on the boundary.

4.2 Huygens’ principle

When an analytical form of the Green’s function leading to the integral equation (35) is

unknown, using Green’s function in infinite domain (18) is usually preferred. If initial

conditions are null, and if there are no sources inside the domain of resolution, this

13
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leads to Kirchhoff’s formulation of Huygens’ principle:

1

4π

Z t+

t0=ti

{

r0∈S





δ
(

t − t0 −
|r−r0|

c

)

|r− r0|
∇0 p(r0, t0)

−p(r0, t0)∇0

δ
(

t − t0 −
|r−r0|

c

)

|r− r0|



 ·dS0 dt0

=

{

p(r, t) if r ∈ V

0 otherwise

(36)

By analogy with section 3, equation (36) acts as a synthesis operator because it

enables the recovery of a given sound field from the knowledge of the profiles of the

acoustic pressure and its normal derivative with respect to the surface element dS0. The

analysis operator associated to this integral representation has to provide the knowledge

of these profiles, which is formally given by the set of inner products:

{

< p|δr0,t0 >= p(r0, t0)
< p|∇0δr0,t0 >= −∇0 p(r0, t0)

(37)

The second equation is obtained using property (68) relative to the first derivative of

Dirac’s delta function.

5 Links between the different sound field models

The question of the equivalence of the models naturally arises at this point of the study.

In fact, if there is such an equivalence, one can choose the best-suited model to the

problem under consideration. In this section, we will demonstrate the exact equiva-

lence between the harmonic decompositions presented in section 3, and we will show

interesting correspondences between the models introduced in sections 3 and 4. This

latter case is particularly interesting because it includes a correspondence between High

Order Ambisonics [3] and Wave Field Synthesis [15] approaches.

5.1 Equivalence between harmonic decompositions

In section 3, it has been shown that all harmonic representations were suitable for sound

field description because these harmonics form complete sets of functions. Thus, we

implicitly know that all these reviewed harmonic descriptions are equivalent. In this

part, we are interested in giving analytical forms of some basis change operators. They

enable the conversion of a sound field harmonic representation into another one.

5.1.1 Plane wave to cylindrical harmonic basis change operator

Starting from the plane wave harmonic representation P {p}(kx,ky,kz,ω), one can ob-

tain its cylindrical harmonic representation C {p}(Kr,L,Kz,Ω) by applying the analy-

sis operator for cylindrical harmonics (25), but replacing p(r, t) by equation (23). This

strategy will also be applied for all other conversions. Using the following notations

(see figure 1), kr = kx ux + ky uy, kr = |kr|, φk = (ux,kr), r = x ux + y uy, r = |r|, and

φr = (ux,r), this yields:

14
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C {p}(Kr, L, Kz, Ω)=
ZZZZ

(r,t)∈R4

1

(2π)4
.

[

ZZZZ

(k,ω)∈R4
P {p}(kx,ky,kz,ω)ei(k·r+ωt)d3kdω

]

.

JL(Krr)e−i(Lφr+Kz+Ωt) d3r dt

Inverting the two integrals, one obtains:

C {p}(Kr, L, Kz, Ω) =
1

(2π)4

ZZZZ

(k,ω)∈R4

P {p}(kx,ky,kz,ω) < Ψ
pw
kx, ky, kz, ω|Ψ

ch
Kr , L, Kz, Ω > d3kdω

(38)

where pw and ch stand for plane wave and cylindrical harmonic. The inner product is

now developed using the Jacobi-Anger identity (69):

ZZZZ

(r,t)∈R4
ei(krr cos(φr−φk)+kzz+ωt)JL (Krr)e−i(Lφr+Kzz+Ωt) d3r dt

=
+∞

∑
l=−∞

il
Z +∞

r=0
Jl (krr)JL (Krr)r dr

Z 2π

φr=0
e−ilφk ei(l−L)φr dφr

.
Z +∞

z=−∞
ei(kz−Kz)z dz

Z +∞

t=−∞
ei(ω−Ω)t dt

= (2π)3
iLe−iLφk

δ(kr −Kr)

kr

δ(kz −Kz)δ(ω−Ω)

(39)

Inserting this last equation back in (38), and using the variables kr and φk instead

of kx and ky in the plane waves model yields:

C {p}(Kr, L, Kz, Ω) =
1

2π

Z 2π

φk=0
iLP {p}(Kr,φk,Kz,Ω)e−iLφk dφk

(40)

Equation (40) enables the direct conversion of a plane wave sound field description

into cylindrical harmonics. To interpret this equation, consider the decomposition into

Fourier series of the Fourier transform P {p}(kx,ky,kz,ω) on the circle defined by the

set of equations : k2
x + k2

y = K2
r , kz = Kz and ω = Ω. Its Lth coefficient is equal to

C {p}(Kr,L,Kz,Ω) except for the scale factor iL.

5.1.2 Cylindrical harmonic to plane wave basis change operator

The same notations as the previous paragraph still apply here. We are interested in the

direct conversion of a cylindrical harmonic sound field description C {p}(kr, l,kz,ω)
into its plane waves one P {p}(Kx,Ky,Kz,Ω). Following an analogous reasoning to

equation (38), we obtain the intermediate result:

P {p}(Kx,Ky,Kz,Ω) =
1

(2π)3

+∞

∑
l=−∞

Z +∞

kr=0

x

(kz,ω)∈R2

C {p}(kr, l,kz,ω) < Ψ
ch
kr , l, kz, ω|Ψ

pw
Kx,Ky,Kz,Ω

> kr dkr dkz dω

(41)

Using the following notations, Kr = Kx ux + Ky uy, Kr = |Kr|, φK = (ux,Kr),

updating the notations of equation (39), and using the property < g| f >= < f |g >,

15
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this yields:

P {p}(Kx,Ky,Kz,Ω) =
+∞

∑
l=−∞

(−i)l
C {p}(Kr, l,Kz,Ω)eilφK (42)

While the conversion from plane waves to cylindrical harmonics required the de-

composition into Fourier series of the Fourier transform taken on a circle, except for

the scale factor iL, the conversion from cylindrical harmonics to plane waves is done

by computing the Fourier series associated to the cylindrical harmonics coefficients

C {p}(Kr, l,Kz,Ω), except for the same Hermitian symmetrical scale factor il . Opera-

tors (40) and (42) are perfectly symmetrical in the Fourier sense.

5.1.3 Plane wave to spherical harmonic basis change operator

Applying the spherical harmonic analysis operator (30), but replacing p(r, t) by the

plane wave synthesis operator (23), following an analogous reasoning to equation (38)

leads to the intermediate result:

S {p}(K, L, M, Ω) =
1

(2π)4

ZZZZ

(k,ω)∈R4

P {p}(kx,ky,kz,ω) < Ψ
pw
kx, ky, kz, ω|Ψ

sh
K, L, M, Ω > d3k dω

(43)

where superscript sh stands for spherical harmonic. The inner product is now devel-

oped using the identity (70), analogous to the Jacobi-Anger, but involving spherical

Bessel functions:

ZZZZ

(r,t)∈R4
ei(k·r+ωt)jL (Kr)YM

L (φr,θr)e−iΩt d3r dt

= 4π
+∞

∑
l=0

l

∑
m=−l

il
Z +∞

r=0
jl (kr) jL (Kr)r2 dr

Z +∞

t=−∞
ei(ω−Ω)t dt

.
Z 2π

φr=0

Z π

θr=0
Ym

l (φk,θk)Y
m
l (φr,θr)Y

M
L (φr,θr) dφr sinθr dθr

= 16π iLYM
L (φk,θk)

δ(k−K)

k2
δ(ω−Ω)

(44)

where the vectors r and k are indifferently written in cartesian coordinates (kx,ky,kz)
or spherical coordinates (k,φk,θk). Inserting this last equation into (43) gives:

S {p}(K, L, M, Ω) =
1

π3

Z 2π

φk=0

Z π

θk=0

.
[

iLP {p}(K,φk,θk,Ω)YM
L (φk,θk)

]

dφk sinθk dθk

(45)

To interpret the above equation equation, consider the decomposition into classi-

cal spherical harmonics of the Fourier transform P {p}(kx,ky,kz,ω) evaluated on the

sphere defined by the set of equations : k2
x + k2

y + k2
z = K2, and ω = Ω. Its coefficient

indexed by L and M is equal to S {p}(K,L,M,Ω) except for the scale factor iL.
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5.1.4 Spherical harmonics to plane waves basis change operator

We are interested in the direct conversion of a spherical harmonic sound field descrip-

tion S {p}(k, l,m,ω) into plane waves P {p}(Kx,Ky,Kz,Ω). Following an analogous

reasoning to equation (38), we obtain the intermediate result:

P {p}(Kx,Ky,Kz,Ω) =
1

4

+∞

∑
l=0

l

∑
m=−l

Z +∞

k=0

Z

ω∈R

S {p}(k, l,m,ω) < Ψ
sh
k, l, m, ω|Ψ

pw
Kx,Ky,Kz,Ω

> k2 dk dω

(46)

Using either cartesian coordinates (Kx,Ky,Kz) or spherical coordinates (K,ΦK ,θK)
for the vector K, updating the notations of equation (44), and using the property <
g| f >= < f |g >, this yields:

P {p}(Kx,Ky,Kz,Ω) =

4π
+∞

∑
l=−∞

l

∑
m=−l

(−i)l
S {p}(K, l,m,Ω)Ym

l (φK ,θK)
(47)

While the conversion from plane waves to spherical harmonics required the de-

composition into spherical harmonics of the Fourier transform evaluated on a sphere,

except for the scale factor iL, the conversion from spherical harmonics to plane waves is

done by computing the classical spherical harmonics series associated to the spherical

harmonics coefficients S {p}(K, l,m,Ω), except for the same Hermitian symmetrical

scale factor il . Operators (45) and (47) are also perfectly symmetrical in the Fourier

sense.

5.1.5 Other basis change operators

The basis change operators between cylindrical harmonics and spherical harmonics re-

main to be treated. The same approach as the one adopted in the previous paragraphs

could be used in order to derive these operators. This would lead to complex formulas,

which are not very useful. Indeed, sound field reproduction systems based on High Or-

der Ambisonics [3] rely upon the theory of spherical harmonics, while their restriction

to the 2D case rely upon the theory of cylindrical harmonics, where the reference to the

variable z is omitted in the previous developments. Thus, the basis change operators

between plane waves and cylindrical/spherical harmonics link the HOA with the usual

multidimensional Fourier transform. On the other hand, the parallel between cylindri-

cal harmonics and spherical harmonics is complicated and not very useful for practical

purposes.

5.2 Correspondences between harmonic decompositions and

Kirchhoff’s integral

Harmonic decompositions are more general than Kirchhoff’s integral, because these

sets of functions are complete, as shown by the generalized Fourier transform the-

orems (22), (26) and (31). Thus, the nature of the 4D signal being analyzed with

generalized Fourier transforms does not really matter, as mentioned in section 3. Nev-

ertheless, knowing that these signals are sound fields gives a priori information, such

as the dispersion relationships (5), (10) and (15) for instance. On the other hand, a

sound field described by Kirchhoff’s integral always satisfies the wave equation (1).
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The space spanned by the sets of harmonic functions is more extended than the

space spanned by Kirchhoff’s integral. The first part of this development deals with

the conversion of an integral sound field representation into an harmonic one. This

conversion is not destructive. The second part is concerned by deriving the integral

sound field representation from a harmonic one, and the limits of this conversion are

pointed out.

5.2.1 Conversion of integral sound field representations into harmonic ones

The generalization of Kirchhoff’s form of Huygens’ principle (36) makes use of

Green’s function G(r, t|r0, t0) in infinite domain and its gradient. This representa-

tion can be converted into an harmonic one, by using the same strategy as in all para-

graphs of the previous section 5.1. For instance, using the analysis operator for plane

waves (21), but replacing p(r, t) by its integral representation (36) yields, after the

inversion of the two integrals:

P {p}(kx,ky,kz,ω) =
Z t+

t0=ti

{

r0∈S

[

∇0 p(r0, t0)
ZZZZ

(r,t)∈R4
G(r, t|r0, t0)e−i(k·r+ωt)d3r dt

−p(r0, t0)

ZZZZ

(r,t)∈R4
∇0G(r, t|r0, t0)e−i(k·r+ωt)d3r dt

]

·dS0 dt0

(48)

For the second term of the integrand, the gradient ∇0 and the quadruple integral

can be inverted, since they do not apply to the same set of variables, so that the above

equation comes down to:

P {p}(kx, ky, kz, ω) =
Z t+

t0=ti

{

r0∈S

[

∇0 p(r0, t0) < Gr0,t0 |Ψ
pw
kx,ky,kz,ω

>

−p(r0, t0)∇0< Gr0,t0 |Ψ
pw
kx, ky, kz, ω >

]

·dS0 dt0

(49)

Similar expressions are obtained for cylindrical harmonics and spherical harmon-

ics, replacing Ψ
pw
kx, ky, kz, ω in the above equation by Ψch

kr , l, kz, ω and Ψsh
k, l, m, ω respec-

tively.

Thus, the key point of this type of conversion lies in the calculus of the inner prod-

ucts. These are directly calculated from the wave equation (17) satisfied by Green’s

function. We apply the analysis operator of the harmonic representation considered.

Several simplifications occur by doing this operation, because plane waves, cylindrical

and spherical harmonics are eigenvectors of the Laplacian operator with the eigenval-

ues −
(

k2
x + k2

y + k2
z

)

for plane waves, −
(

k2
r + k2

z

)

for cylindrical harmonics, and −k2

for spherical harmonics [12]. Moreover, they are also eigenvectors of the second time

derivative operator, with eigenvalue −ω2. The result of analysis operators applied to

the right hand side of the equation −δ(r− r0)δ(t − t0) is obvious from the definition

of Dirac’s delta function. We obtain the final results for the inner products [12]:
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< Gr0,t0 |Ψkx, ky, kz, ω > =
e−i(kxx0+kyy0+kzz0+ωt0)

k2
x + k2

y + k2
z −

ω2

c2

(50)

< Gr0,t0 |Ψkr , l, kz, ω > =
Jl (krr0)e−i(lφ0+kzz0+ωt0)

k2
r + k2

z −
ω2

c2

(51)

< Gr0,t0 |Ψk, l, m, ω > =
jl (kr0)Ym

l (φ0,θ0)e−iωt0

k2 − ω2

c2

(52)

These results are examples of the application of generalized Fourier transforms

to deal with elementary inhomogeneous problems, which have been pointed out in

section 3.4. Contrary to the homogeneous problems where the generalized Fourier

transforms were non-null only when the dispersion relationships (5), (10) and (15)

were satisfied, the generalized Fourier transforms of Green’s functions are non-null

even if these dispersion relationships are not satisfied. Nevertheless, it is noticed that

the information is given by the location of the singularities of the generalized Fourier

transforms, which occur only when the dispersion relationships are verified.

5.2.2 Projection of harmonic sound field representations on integral ones

If either one of the harmonic representations of a sound field P {p}(kx,ky,kz,ω),
C {p}(kr, l,kz,ω) or S {p}(k, l,m,ω) is known, the synthesis operators (23), (28)

and (33) enable us to compute the time-space profile p(r, t) of the sound field. From

this profile, it is possible to deduce the parameters required for the integral representa-

tion, given by equation (37), since the field is known everywhere. This strategy enables

us to perform the “conversion” between these two kinds of representations, but there

are several limitations:

• Kirchhoff’s integral is only able to synthesize sound fields that satisfy the wave

equation (1), whereas harmonic descriptions are able to represent more general

fields.

• For a particular domain V , Kirchhoff’s form of Huygens’ principle is unable to

synthesize sources that are inside this domain, contrary to the harmonic repre-

sentations, which are valid in R
3.

For these reasons, this “conversion” is destructive, and it is more appropriate to call

it a projection.

First limitation

Harmonic descriptions encompass a wider scope than Kirchhoff’s integral-based

representation, so that one can wonder how Kirchhoff’s integral (36) behaves when the

parameters provided by equation (37) from a harmonic description do not correspond

to a field which satisfies the wave equation (1). This question is pertinent because it

raises the problem of the relevance of the model satisfied by sound fields. Equation (1)

is an approximation of the reality. For instance, this equation does not take into account

the absorption in the propagation medium. Moreover, the consequences of an error of

sound velocity on this model, which can be pointed out using a plane wave with wave

number k = ω/(c+δc) as a reference field, providing the set of parameters (37), and

then using (36) to resynthesize the sound field, deserve to be studied.
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Admittedly, it can be argued that this is a well refined context, and that the subja-

cent errors can be neglected. Nevertheless, this kind of limitation will naturally occur

when dealing with discrete observations of the sound field, by means of microphones.

Indeed, the sampled sound field does not satisfy at all equation (1), unless sampling the-

orems are used in order to reconstruct the analog version of the sound field. It would

require too high a density of microphones in practice. The effects of discretization of

Kirchhoff’s integral have already been studied by Berkhout and al.[15], leading to the

phenomenon of spatial aliasing.

Second limitation

In this paragraph, we will deepen our knowledge of how Kirchhoff’s form of Huy-

gens’ principle (36) works. For this purpose, we will not use the assumptions made for

its derivation, that is null initial conditions and no sources inside the domain V . In-

stead, we choose a closed surface S delimiting an exterior domain Vext and an interior

domain Vint, and we suppose that there are no sources present on this surface. This sur-

face is considered as a continuous sensor, recording the values of the pressure and its

gradient at any time. Then this surface sensor is replaced by a continuous distribution

of dipoles and monopoles fed by the corresponding pressure and its normal derivative

respectively. The objective of this paragraph is to answer the question of which sound

field is effectively synthesized. Two cases will be studied to achieve this goal: the case

of exterior sources will be first investigated, and then the case of interior sources. Fi-

nally, the synthesis of these two cases is made to answer the initial question. In all this

development, the surface vector dS0 is supposed to point outward, and the sound field

and its gradient are supposed to vanish at infinity.

In the case where only exterior sources are present, Kirchhoff’s form of Huygens’

principle can be applied for the interior domain, where the hypotheses are satisfied.

This integral equation says that the sound field is correctly synthesized in Vint, while it

is null in Vext. In the following, the component of the acoustic pressure field created

by exterior sources is denoted by pext (r, t).
In the case where only interior sources are present, the same conclusion should

apply, except that we have chosen to use a surface vector dS0 which points outward,

whereas the result would have been valid only if this vector pointed inward. So, the

consequence is that the sound field synthesized is −p(r, t) in Vext and is null in Vint. In

the following , the component of the acoustic pressure field created by interior sources

is denoted by pint (r, t).
In the general case where sources are both present in the interior and exterior

domains, but not on the boundary, the sound field synthesized by Kirchhoff’s inte-

gral equation, with dS0 pointing outward, is pext (r, t) in the interior domain Vint and

−pint (r, t) in the exterior domain Vext. This statement is the main limitation of the

projection from a harmonic representation of the sound field to an integral one. Indeed,

if the sound field is synthesized using either (23), (28) or (33) to provide the parameters

required to compute Kirchhoff’s integral (37), the sound field effectively synthesized

is not the initial one p(r, t), but is as described in the previous paragraph. The initial

harmonic representation does not distinguish the interior and exterior component of the

sound field, contrary to Kirchhoff’s form of Huygens’ principle.
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6 Plane Waves analysis inside a sphere

All current methods of sound field analysis have been reviewed in the previous parts

of this article. In this section, we propose to give different descriptions of the same

sound field event: the synthesis of plane waves Ψ
pw
kx,ky,kz,ω

satisfying the dispersion

relationship (5) inside a sphere of radius R, denoted by V . So, the space-time profile

of the reference field is given by the relation:

pref(r, t)=ei(k·r+ωt).W (r) with

{

W (r)=1 if r ≤ R

W (r)=0 if r > R
(53)

In this part, the vectors k and r will be indifferently expressed either in cartesian

coordinates (kx,ky,kz) and (x,y,z) or in spherical coordinates (k,φk,θk) and (r,φr,θr).
This reference sound field will be analyzed using the spherical harmonic trans-

form (30) in paragraph 6.1, using Kirchhoff’s integral (37) in paragraph 6.2, and using

the multidimensional Fourier transform (21) in paragraph 6.3. The cylindrical har-

monic transform is not considered because it is less appropriate to the spherical ge-

ometry of the domain. Then, in the last paragraph, the assets and drawbacks of each

representation are summarized.

6.1 Spherical harmonics description

6.1.1 Spherical harmonic transform of the reference sound field

In this paragraph, the spherical harmonic transform (30) of the reference sound field

pref (r, t) is derived. Substituting (53) into (30) gives:

S {pref}(K,L,M,Ω) =
ZZZZ

(r,t)∈R4
W (r)ei(k·r+ωt)Ψsh

K,L,M,Ω (r, t) d3r dt
(54)

This integral will be expressed in spherical coordinates d3r = r2 dr dφr sinθr dθr.

For this purpose, the plane wave eik·r is expanded into classical spherical harmonics

using identity (70). This yields:

S {pref}(K,L,M,Ω) =

4π
+∞

∑
l=0

l

∑
m=−l

il
Z R

r=0
jl (kr) jl (Kr)r2 dr

Z +∞

t=−∞
ei(ω−Ω)t dt

.
Z 2π

φr=0

Z π

θr=0
Ym

l (φk,θk)Ym
l (φr,θr)YM

L (φr,θr)dφr sinθrdθr

(55)

The radial integral stands up to r = R because of the window W (r). The result of

this integral is given by formula (71) of the appendix. Using also the orthogonality of

classical spherical harmonics (67) and the orthogonality of complex exponentials (63),

the above equation comes down to:

S {pref}(K,L,M,Ω) = 8π2iLYM
L (φk,θk)δ(Ω−ω)

.











R2

k2 −K2
[K jL−1(KR) jL(kR)− k jL−1(kR) jL(KR)] if k 6= K

R3

2

[

[jL (kR)]2 − jL−1 (kR) jL+1 (kR)
]

if k = K

(56)
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This equation is to be compared to the plane waves expansion into spherical har-

monics (44). Indeed, the only change is that the plane wave is observed on a finite

horizon, until r = R. On an infinite horizon, the integral involving the radial variable

r would have lead to the closure relation of spherical Bessel functions (66), giving the

final result (44).

In the same manner as the spectrum is widened in the Fourier domain when a

monodimensional signal is observed on a finite horizon —the windowing effect— the

spectrum is widened here for the variable K, because of a finite observation relative to

the variable r. Thus, it is interesting to plot the spherical Hankel transform of order L

of the function W (r) jL (kr), which corresponds to the result of Lommel’s integral on

the right of the brace in the previous equation (56).

In figure 2, the magnitude of the spherical Hankel transform of W (r) jL (kr) (re-

member, k is fixed, K is variable) is displayed for the order L = 0, and for several radii

R, from 1m to 100m. The spectrum has been multiplied by K in order to conform to the

Parseval relation for spherical Hankel transform, so that the figure looks like a classical

Fourier spectrum. It is verified that the bigger R is, the better the resolution is because

the spread of the main lobe decreases. As R increases, the spherical Hankel spectrum

tends to δ(k−K).
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Figure 2: Spherical Hankel transform of order L = 0 of the function W (r) jL (Kr) for

the radii R = 1 (top), 10 (middle), and 100 (bottom). The plane wave has a value of k =
2π 10000/c. The K−axis is graduated in frequency from the dispersion relationship

K = 2π f /c.

The second interesting effect to be observed is to fix R to a given value (R = 1m

here), and to study the effects of the variation of the order L of the spherical Hankel

transform of W (r) jL (kr). The result is displayed in figure 3. It is shown that the

global level of power decays when the order L increases, which conforms to the theory.

Indeed, it is often seen in the literature that spherical harmonics are excited until an

order L ∼ kR (1.84 with k = 2π f /c, f = 100Hz and R = 1m).
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r
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Figure 3: Spherical Hankel transform of order L = 0 (top), L = 1 (middle), and L = 2

(bottom) of W (r) jL (kr) inside a sphere of radius R = 1m . The plane wave has a

value of k = 2π 100/c and the K−axis is graduated in frequency from the dispersion

relationship K = 2π f /c.

6.1.2 Link to modal analysis

In the field of modal analysis [1] and modal control [16], the sound field is gener-

ally expanded on a finite discrete set of modes. This is made possible because of the

finiteness of the region being analyzed, which is the case for our reference sound field.

Indeed, for instance, a time signal observed on a finite horizon can be decomposed

into Fourier series. The discrete set of complex exponentials used for the expansion is

orthogonal. Moreover, if the signal is supposed to be bandlimited, then, only a finite

number of modes is required to model the signal. Nevertheless, note the paradox: a

time signal cannot be finite in the time domain and in the frequency domain. However,

it is supposed that the truncation of the Fourier series to a finite number of modes does

not induce a large square error.

In our case, if we only consider the spatial dependency of the sound field, this

one is analyzed as the product of a spherical Hankel transform and a decomposition

into classical spherical harmonics, as stated by equation (30). The decomposition into

classical spherical harmonics is naturally discrete. And, in the same manner as a finite

time signal can be decomposed into Fourier series, the finite radius R of the sphere

enables us to decompose the radial dependency of the signal into generalized Fourier

series: for our case, they are spherical Fourier-Bessel series. The elementary atoms

are not complex exponentials anymore, but jl (αlnr), where αln is the nth root of the

equation Jl+1/2 (αr) = 0 (see Poularikas [17] for Fourier-Bessel series). So, inside this

sphere, the sound field can be approximated by the following series:

p(r) =
+∞

∑
l=0

l

∑
m=−l

+∞

∑
n=1

αlmnjl (αln)Ym
l (φ,θ) (57)
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This set of solutions is orthogonal for the spherical inner product:

< f |g >=

Z R

r=0

Z 2π

φ=0

Z π

θ=0
f (r)g(r)r2 dr dφsinθ dθ (58)

This expansion can be truncated to a finite number of terms, if a tolerance is im-

posed on the error between the initial signal and the sum of weighted modes. For this

purpose, figure 2 and 3 are useful, because they enable us to calculate the weights

associated to the spherical Fourier-Bessel series for a given wave number k.

6.2 Kirchhoff’s integral description

To reproduce the reference sound field inside the domain V , the acoustic pressure

and its gradient are required on the sphere of radius R in order to be able to compute

Kirchhoff’s form of Huygens’ principle (36). These are given by the relations:

p(R,φ0,θ0, t0) = ei(k·r0+ωt0)

∇p(R,φ0,θ0, t0) = i ei(k·r0+ωt0) k

The integration is made on the sphere, so that only φ0 and θ0 are variable, while r

remains fixed to R.

Concerning the sound field effectively synthesized with these parameters, it can be

said from section 5.2 that the plane wave is correctly synthesized inside the sphere.

The plane wave Ψ
pw
kx,ky,kz,ω

does not fulfill the assumption that it vanishes at infinity, so

that it could not be reproduced in the exterior domain.

6.3 Plane wave description

In this paragraph, the multidimensional Fourier transform (21) of the reference sound

field pref (r, t) is derived. Substituting (53) into (21) gives:

P {pref}(Kx,Ky,Kz,Ω) =
ZZZZ

(r,t)∈R4

[

W (r) .ei(k·r+ωt)
]

e−i(K·r+Ωt)d3r dt
(59)

The previous equation is the Fourier transform of the product of W (r) by ei(k·r+ωt).

Using the property that the Fourier transform transforms a simple product into a con-

volution product, the last equation becomes:

P {pref}(Kx,Ky,Kz,Ω) =
(

P {W}∗P

{

Ψ
pw
kx,ky,kz,ω

})

(Kx,Ky,Kz,Ω)
(60)

where ∗ denotes the convolution product. The multidimensional Fourier transform of

the plane wave Ψ
pw
kx,ky,kz,ω

is (2π)4 δ(K−k)δ(Ω−ω). Now, we focus on the Fourier

transform of W . Since W is only dependent of r, it is again useful to expand the
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plane wave inside the Fourier transform integral into spherical harmonics with the iden-

tity (70). This yields:

P {W}(Kx,Ky,Kz,Ω) = 4π
+∞

∑
l=0

l

∑
m=−l

il

Z +∞

r=0
W (r) jl (Kr)r2 dr

Z +∞

t=−∞
e−iΩtdt

Z 2π

φr=0

Z π

θr=0
Ym

l (φK ,θK)Ym
l (φr,θr)dφr sinθr dθr

(61)

The integral involving the classical spherical harmonics is non null only for the

constant term, obtained for l = m = 0. The radial window W (r) is uniform, truncating

the integral on the radial variable up to r = R. Finally, equation (61) comes down to:

S {W}(Kx,Ky,Kz,Ω) = 4π

Z R

r=0
j0 (Kr)r2 dr . 2πδ(Ω−ω)

= 4π

Z R

r=0

sin(Kr)

Kr
r2 dr . 2πδ(Ω−ω)

=
4

3
πR3.3

[

sin(KR)

(KR)3
−

cos(KR)

(KR)2

]

. 2πδ(Ω−ω)

(62)

where K =
√

K2
x +K2

y +K2
z . Again, as in paragraph 6.1, if the observation horizon

had been infinite, then the Fourier spectrum would have been that of the plane wave,

that is Dirac’s delta function. The finite observation horizon introduces a windowing

effect, that is finite resolution characterized by the spread of the main lobe, and also the

presence of side lobes. The dependence in K of the magnitude of the Fourier transform

of the spatial window W (r) is plotted in figure 4. This spectrum is to be compared

to a basic uniform cubic window, which would have lead to a “sinus cardinal” Fourier

transform. Here the sidelobe is approximately 21dB under the main lobe, compared to

13dB for the “sinus cardinal” window. The side lobes are more attenuated because a

sphere is smoother than a cube.

Moreover, the distortion introduced by the finiteness of the observation is the same

for all the plane waves being analyzed, because the initial Fourier transform is distorted

by the convolution product with the analysis window. On the contrary, the simple

product is not transformed into a convolution product by the spherical Hankel transform

(see paragraph 6.1), so that the associated distortion is dependent on the wave number

k of the input plane wave to be analyzed.

6.4 Assets and drawbacks of these representations

In the three previous paragraphs, three different descriptions of the same sound field

event have been presented. The spherical harmonic description of section 6.2 is used

in ambisonics systems. the advantages of ambisonics systems are their ease of cod-

ing and decoding[3][18], whereas their disadvantage is that there is no direct spherical

harmonic generator. In early ambisonics systems, loudspeakers were assumed to be

plane wave synthesizers, which is true if the far-field hypothesis is satisfied. In more

recent ambisonics systems, the coding of point sources has been improved in order

to take into account the distance of the sources[19], enabling a better sound field ren-

dering scheme. The Kirchhoff-based description of section 6.2 is used in Wave Field

Synthesis systems. The assets and drawbacks of Wave Field Synthesis systems are
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inverted compared to ambisonics systems. Indeed, Wave Field Synthesis systems use

monopoles and dipoles for the synthesis which could be approximated by real sources

in practice, providing an easy rendering scheme. On the other hand, their disadvantage

is the complexity of coding and decoding, compared to ambisonics systems.

The last model described in section 6.3 has not its own dedicated sound reproduc-

tion method yet, and appears to be an interesting perspective. It has much in common

with ambisonics systems, except for the another harmonic description, so that they

mainly share the same assets and drawbacks. Nevertheless, using planes waves as

harmonics instead of spherical harmonics has the additional asset pointed out in the

previous paragraph, that is the distortion due to a finite observation horizon is indepen-

dent of the harmonic being analyzed, contrary to spherical harmonics, for which the

distortion is dependent on the wavenumber k.

7 Conclusion

Several efficient representations of a sound field have been presented in this article.

Harmonic representations decompose the initial sound field into a set of harmonics,

either plane waves, cylindrical harmonics, or spherical harmonics. These harmonics

form an orthogonal set, which moreover spans the whole set of sound fields, and more.

The mathematical tools for these decompositions are generalized Fourier transforms.

The representation based on Kirchhoff’s integral equation has also been presented, and

particularly Kirchhoff’s form of Huygens’ principle. This integral equation synthesizes

the sound field radiated by exterior sources in the interior domain and reciprocally. The

integral representation is only able to synthesize sound fields which rigorously satisfy

the wave equation, whereas slight errors in the sound field model do not affect much

harmonic descriptions. The equivalence between all harmonic descriptions has been

demonstrated. Moreover, some links between harmonic descriptions and the integral

representation have been established: given that the set spanned by the harmonics is

larger than the one spanned by Kirchhoff’s integral, the transition from the integral rep-

resentation to a harmonic description is always feasible, whereas the inverse operation

is a projection, so that equivalence is only assured under some restrictions which have

been pointed out.

A variety of viewpoints have been explored for the case truncated plane waves

inside a sphere of radius R. The spherical harmonic description is then linked to the

traditional High Order Ambisonics approach; Kirchhoff’s integral equation model is

linked to the traditional Wave Field Synthesis approach; on the contrary, the plane wave

description is not linked to any sound field reproduction system yet and thus appears

as an interesting perspective of this work. Although the equivalence of these different

representations has been shown in this study under ideal conditions, this does not hold

when this assumption is not met, which occurs when dealing with real recordings made

by an array of microphones for instance. Some further works are necessary to study

the behavior of these representations when facing these non ideal conditions.

A Mathematical results

This appendix lists some useful mathematical identities involving the Dirac delta func-

tion.
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The Fourier transform of a complex exponential provides the basic identity:

Z +∞

x=−∞
ei(k1−k2)xdx = 2πδ(k1 − k2) (63)

Bessel functions of the first kind satisfy the closure relation:

Z +∞

r=0
Jl (αr)Jl (βr)r dr =

δ(α−β)
√

αβ
=

δ(α−β)

β
=

δ(α−β)

α
(64)

The spherical Bessel functions of the first kind jl (x) are linked to the Bessel functions

of the first kind Jl (x) with the formula:

jl (x) =

√

2

πx
Jl+1/2 (x) (65)

From this last equation, we deduce the closure relation for the spherical Bessel

functions of the first kind:

Z +∞

r=0
jl (αr) jl (βr)r2 dr =

2

π

δ(α−β)

αβ
=

2

π

δ(α−β)

α2
(66)

The spherical harmonics Ym
l (θ,φ) are orthogonal:

Z 2π

φ=0

Z π

θ=0
Y

m1
l1

(φ,θ)Y
m2
l2

(φ,θ)dφ sinθ dθ = δl1l2 δm1m2
(67)

The first derivative of the Dirac delta function satisfies this property:

Z +∞

x=−∞
p(x)δ′ (x− x0)dx = −p′ (x0) (68)

The identity of Jacobi-Anger is:

eikr cosφ =
+∞

∑
l=−∞

ilJl (kr)eilφ (69)

An analogous identity to the Jacobi-Anger one, involving the spherical Bessel func-

tions characterizes the expansion of a plane wave in classical spherical harmonics, us-

ing r = (r,φr,θr) and k = (k,φk,θk) in spherical coordinates:

eik·r = 4π
+∞

∑
l=0

l

∑
m=−l

il jl (kr)Ym
l (φk,θk)Ym

l (φr,θr) (70)

Lommel’s definite integral involving products of spherical Bessel of the same order

is given by the following formula:

Z

jl (αr) jl (βr)r2 dr =














r2

α2 −β2
[βjl−1 (βr) jl (αr)−αjl−1 (αr) jl (βr)] if α 6= β

r3

2

[

[jl (αr)]2 − jl−1 (αr) jl+1 (αr)
]

if α = β

(71)
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