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Résumé: Une méthode probabiliste pour annoter des images satellitaires
avec des concepts sémantiques est présentée. Cette méthode part de car-
actéristiques de bas-niveau quantifiées dans l’image et utilise une phase d’apprentissage
à partir des concepts fournis par un utilisateur avec un lot d’images exem-
ples. La contribution principale est la définition d’un formalisme pour la mise
en relation d’un réseau sémantique hiérarchique avec un modèle stochas-
tique. Les liens sémantiques de synonymie, méronymie, hyponymie sont
mis en correspondance avec différents types de modélisations inspirées des
méthodes utilisées en fouille de données textuelles. Les niveaux de struc-
turation et de généralité des différents concepts utilisés sont pris en compte
pour l’annotation et la modélisation de la base de données. Une méthode de
sélection de modèle permet de déduire le réseau sémantique correspondant
à la modélisation optimale de la base de données. Cette approche exploite
ainsi la puissance de description des réseaux sémantique tout en conservant
la flexibilité des approches statistiques par apprentissage. La méthode a été
évaluée sur des bases de données SPOT5 et Quickbird.

Abstract: A novel method is presented for annotating satellite images.
The labels used for annotation are given by a user with a set of example
images. A learning step is then applied to learn the model. The originality
of the method is to formulate the problem of semantic annotation to a further
extent than a mere probabilistic classification task. The method takes into
account the semantical relationships between the concepts by considering a
duality between the structure of the model and the structure of the set of
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labels. The semantical structure of the labels is represented by a semantic
network containing three semantical relationships: synonymy, meronymy,
and hyponymy. The semantic network is constrained in a hierarchy induced
by the links of hyponymy and meronymy. By a procedure of MDL model
selection, it is possible to find the optimal semantical structure of the set of
labels.
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1 Introduction

1.1 State of the art

The last two decades have seen the emergence of large image databases of
various types. The spread of digital cameras and the increase of power and
archiving ability of the computers have resulted in a growing need for the
efficient handling of large databases of personal images. As for the field of
remote sensing, a large variety of space-borne and air-borne sensors provide
every day a huge quantity of information about the surface of the Earth, and
this amount is getting even more enormous with the arriving generation of
high-resolution satellite sensors.

Reliable image retrieval and indexing has thus become a major problem to
efficiently access this information, driving an important amount of studies on
the topic of content-based image retrieval. As a response to this demand, the
early works made a direct use of low-level features extracted from the images
[36, 45, 9, 13] and focused on the ”query-by-example” request. Low-level
descriptors computed from the documents are compared to those extracted
in the user provided example images, and the images returned to the user
are those with the least distance in the feature space. But it is now widely
acknowledged that significative improvements in indexing systems require to
build a bridge over the so-called semantic gap existing between the low-level
features extracted in the images and semantic concepts [16].

In recent systems, image indexation and retrieval are based most of the
time on the annotation of the database by a set of words describing the
content of each image, enabling the user to specify the query through a nat-
ural language description of the concepts of interest. The earliest researches
focused mainly on supervised learning schemes of specific semantics: dif-
ferentiating indoor from outdoor scenes [47], photographs from paintings [6],
bodies of humans and animals [11], cities from landscapes [48], natural scenes
[30]. In these studies, a set of training images with and without the concept
of interest was collected and a binary classifier trained to detect this con-
cept. This classifier was then applied to the images of the whole database
which were therefore annotated with respect to the presence or absence of
the concept.

More recent researches tackle the problem differently by posing the prob-
lem of annotation as the inference of latent variables that encode the hidden
semantic classes. They were encouraged by the results of topics extraction
in textual data [17, 4, 41] and draw an analogy with retrieval in textual data
by considering visual words. Visual words belong to a discrete collection ob-
tained by quantization of low-level features and processed as the words of
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a text [20]. In [24, 8], the annotation process is considered as translating
the content from a visual language to a set of textual words and the learn-
ing process is identical to learning a lexicon from an aligned bitext. In [23],
annotation is made through a cross-media relevance model, inspired by the
relevance models introduced for cross-lingual retrieval [25]. In [32, 33], an ex-
changeability assumption is applied for the visual words and the pLSA model
is applied for annotation. In [3], three probabilistical models of annotation
are presented, inspired from various text models like LDA [4].

During training, a set of labels is assigned to each image, the image is
segmented into a collection of regions (either using a regular block-based de-
composition [34], or using a traditional segmentation method using directly
the low-level features computed in the image [2]) and an unsupervised learn-
ing algorithm is run over the entire training set to estimate the joint density
of semantic labels and visual features.

In these studies, the semantic labelling is thus seen as a problem of clas-
sification. Classes correspond to latent variables which have no semantic
relationship between them. The semantic is introduced by the user during
the annotation stage when providing a vocabulary for annotation and ex-
ample images for each annotation label. Stochastic models for each model
are built independantly for each label, and the semantic relationships among
labels are not taken into account. Moreover, the labels are treated similarly
for learning and annotation even if they are often very different in terms of
semantic complexity and specificity and even if they can correspond to areas
of various typical sizes.

In the KIM system [7], this hierarchy of the information is taken into
account and modelized by a hierarchy distributed in five layers. Symbolic
values, free of semantic, are infered by unsupervised learning at the four first
layers. The semantic labels, introduced by the user, lie at the fifth layer
and are linked to the symbolic values by the user interaction. The relation
between layers is estimated using information-theoretic quantities. However,
in this system, all the concepts lie on a single semantic layer and have no
semantic relationship between them. There has been only few attempts to
exploit the relationships between the semantic labels. Barnard and Forsyth,
motivated by the statistical models proposed by Hoffman and Puzicha [18],
adapted the hierarchical clustering for image annotation [2]. The hierarchy
of models for generating words and image segments is derived from clustered
images in the training set. Clusters capture contextual similarities while
nodes capture generality of concepts. Words and blobs are then represented
over the nodes of a hierarchy. Hierarchies induced by image clusters provide
semantic interpretation for the models.

More generally, an efficient way to take into account the relationships
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between labels and to obtain a high-level scene description is the use of
semantic net [46]. Semantic networks contain nodes and links and are defined
as directional acyclic graphs. They have been widely used for multimedia
annotation. Naphade proposed the MultiNet as a way to represent high-
level dependencies between concepts [35] and to take into account the mutual
information between concepts. However, both classes and structure of the
classification framework were decided by experts. Moreover the structure
becomes very large when the number of classes increases. Benitez proposed
a more general approach with MediaNet for video annotation in which the
salient classes are automatically selected from annotated images and the
relationships between concepts are discovered by using external knowledge
resources from WordNet [1]. The relationships between concepts in MediaNet
are divided in perceptual relationships (such as looks similar to) and semantic
relationships (such as meronymy/holonymy).

For image interpretation, semantic networks describe stuctural relation-
ships between the objects which are expected to be found in a scene and
contain prior knowledge given by experts. For remote sensing images, litera-
ture provides several references of semantic networks application [27, 10, 42,
37, 22]. Devoted to the understanding of remote sensing data, the GeoAIDA
system [21] represents explicitly the knowledge given by photointerpreters in
a hierarchical semantic network. This network contains two different types of
node: the generalization nodes (comparable to logic xor) and the compound
nodes (comparable to logic and). Each node carries information about the
type of area it represents and possesses attributes which are also a part of
the knowledge (for example, a road junction consists of three to six interesct-
ing roads). The interpretation strategy relies on fixed control rules. In [14],
semantic concepts are structured by and/or graphs [52, 51] which are used
for annotation of various types of images: outdoor scenes, faces, remote sens-
ing data. An and/or graph is set in correspondence with the structure of
a stochastic grammar. Given a test image, a parsing graph is formed by
the production rules of the stochastic grammar and is defined as the image
interpretation.

In such systems, adding a new concept requires an expert to add manually
a new node in the structure of the semantic network and to build the edges
linking this concept to others. However, some studies tried to solve the
problem in greater generality and with higher flexibility by extracting these
links automatically. In [38], when the user introduces a new concept, the
concept is linked by some probability distributions to the low-level features
and a distance is computed between this distribution and the other concepts
distributions. If the distributions are too similar, the new concept is not
added to the system. In [50], an algorithm is elaborated to learn the structure
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of the semantic network based on Bayesian decision.

1.2 Paradigmatic Semantic Labelling

In this work, we show that it is possible to infer automatically the links
between labels from their properties learnt during the training stage. More-
over, we show that this influence results in a hierarchy of labels well de-
scribed by a semantic net. The nodes of the network contain the seman-
tic labels and the arcs contain paradigmatic relationships between the la-
bels (”meronymy/holonymy”, ”hyponymy/hyperonymy”, ”synonymy”). The
structure of the network is constrained in a hierarchy naturally induced by
the paradigmatic relationships of meronymy and hyponymy and decomposed
in a finite set of layers. This Paradigmatic Semantic Labelling (PSL) makes
possible to annotate the test images in several layers, corresponding to differ-
ent levels of generality and complexity. It maintains an efficient correspon-
dance between the structure of the semantic networks and the structure of a
stochastic image model.

Each label of the network is associated with a probabilistic model used
to compute the likelihood of an image annotated by this label. The models
depend on each other according to the paradigmatic relationhips between
the labels. At the training stage, an annotated database is provided by the
user and the model optimaly fitting this database is estimated. Both pa-
rameters and structure are determined using the Minimization of Stochastic
Complexity criterion [40], and the semantic network is thus deduced with-
out ambiguity from this optimal model. We prove that these paradigmatic
links can be infered with a training database consisting in a set of example
images provided for each semantic label. A substantial amount of semantic
information can thus be extracted from a weakly labelled training set. Given
a new concept, the structure of the model is updated easily and adding new
concepts increases the descriptive power of the database by the model (prop-
erty of extensivity). Each model is fitted by taking into account the whole
knowledge acquired by the system. We prove that this increases greatly the
descriptive power of the images by the model.

As in [33, 3] and many other works previously cited, the PSL is based
on modelisations inspired from text retrieval. The statistical models which
will be introduced are based on visual words lying at the lowest level of the
hierarchy. This layer contains a discrete collection of textons obtained from
quantization of the low-level features extracted from the image. Moreover,
the generation models which are used to estimate the likelihood of the textons
are inspired from text retrieval methods. On top of this texton layer, three
layers are devoted to express the semantic description. The hierarchy between
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these upper layers derives naturally from the relationships of hyponymy and
meronymy [29, 5].

From a theoretical point of view, we have to answer three questions:

• First, which semantic concepts will be used to describe the image?

We have chosen the usual vocabulary of remote sensing, as familiar to
any application expert: ”city”, ”forest”, ”fields”, etc.

• Second, which relationships do we expect between nodes ?

We have chosen to use the paradigmatic relationships which link con-
cepts in semantic languages. As the hyponymy relationship orders the
words by their generality, the meaning of the words will be all the more
general that they lie in the highest layer of the hierarchy. For instance,
”forest” will lie in a lower layer when ”vegetation” will lie in a higher
layer. The meronymy relationship corresponds to a global/part-of hier-
archy, and the words describe regions which are all the more structured
that they lie in the highest layer of the hierarchy. For instance, ”fac-
tory” will lie in a lower layer when ”suburb” will lie in a higher layer.

• The third question is How to derive automatically a correspondance
between the structure of the model and a semantic network?

Each label of the semantic network is associated with a probabilistic
model which is used to express the likelihood of the database of example
images associated to the label. The concepts which lie in the lowest
layer of the network are associated to a Naive Bayes model of the texton
generation. If a label lies in a higher level of the hierarchy and is linked
to a set of other words, the likelihood of the database is expressed
with the models associated to these words, according to the nature of
the link. By model selection, it is possible to determine the semantic
network corresponding to the optimal model in terms of the database
coding.

Following Smeulders, when attempting to bridge the semantic gap, we
should also take into account the context [44]. In this work, since we only
deal with remote sensing images, we make the simplifying assumption that
all the images of the database correspond to the same context.

The paper is organized as follows: Section 2. details the global formalism
used for the approach. Section 3. deals with the probabilistic modelling.
Section 4. explains the coding of the model. Section 5. details the annotation
of a test image using the model. Section 6. is devoted to experimental results.
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2 Semantic representation

2.1 Semantic relationships

Semantic, as a field of linguistic, is based on the assumption that the words
lie in their own space which is structured by the semantic relationships.
It is now commonly acknowledged that the lexical units are structured by
four different kinds of paradigmatic relationships [29]: the synonymy, the
antonymy, the hyponymy/hyperonymy, and the meronymy/holonymy. We
describe here briefly these relationships in their linguistical meaning:

The relationship of synonymy It is based on the possibility to exchange
two lexical units in a minimal context while keeping a stable meaning.

The relationship of antonymy It determines a relationship of opposi-
tion between two terms. Like synonymy, it links lexical terms of the same
grammatical category. However, at a semantic level, antonymy differs from
synonymy by its binarity and the four kinds of dichotomical oppositions it
corresponds to: contradictory (”inside”/”outside”), polar (”short”/”long”),
inverse (”go up/ go down”), reciproc (”buy/sell”).

The relationship of hyponymy/hyperonymy J. Lyons creates these
terms to specify the vertical structuration of the lexical units [29]. The
relationship of hyponymy corresponds to a specification: ”cat” is hyponym
of ”animal”. Reciprocally, the relationship of hyperonymy corresponds to a
generalization. The logical implication which is linked to this relationship
is: ”if it is a cat, then it is an animal”. Hyponymy is often refered to, in
semantic networks, by a kind-of relationship.

The relationship of meronymy/holonymy The term of meronymy has
been introduced by A. Cruse [5] to differentiate the ”overall/part-of” hier-
archical lexical relationship with the hyponymic relationship. Indeed, even
if these two relationships share the properties of inclusion and asymmetry,
their semantical meaning is different and their hierarchies are not compatible.
Meronymy is often refered to, in semantic networks, by a part-of relationship.

For PSL, we choose not to take into account antonymy.
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2.2 Considered links

2.2.1 Link of Synonymy

Two words are supposed to be synonyms if they describe the same type of
region. Abusively, we will consider it here as an equivalence relationship as
we suppose it here to be symmetric, reflexive and transitive.

2.2.2 kind-of link

The kind-of link corresponds to the semantical relationship of hyponymy. If
{c1, . . . , ck, c} is a set of labels belonging to a vocabulary Ω, the semantical
link kind-of KO is denoted as:

• KO(c, {c1, . . . , ck}) means that ”c1, c2,..., et ck are kinds of c” (lexical
semantic link of hyponymy), and conversely that c is more general than
c1, c2,..., and ck (lexical semantic link of hyperonymy).

The kind-of relationship is defined here in an exclusive meaning: KO(c, {c1, ..., ck})
means that a region is annotated by the label c if and only if it is annotated
by the label c1 or c2 ... or ck.

From this relationship, a set of semantic networks Sko
Ω is defined as a set

of semantic networks whose nodes are the elements of Ω submitted to the
following constraints:

• The nodes of the semantic networks are assumed to be located in a
hierarchy of a finite number of layers. The layer containing a label c is
denoted l(c). The set of concepts such as l(c) = i is denoted Ci(S

ko
Ω ).

• The only semantic link existing between two links is the link kind-of

• A label ca can be linked to a label cb by the kind-of relationship only
if l(cb) = l(ca) + 1.

• If c is a label such as l(c) = i, i > 1, ∃{c1, . . . , ck} ∈ Ci(S
ko
Ω )\KO(c, {c1, . . . , ck})

2.2.3 part-of link

The part-of link corresponds to the semantical relationship of meronymy/holonymy.
If {c1, . . . , ck, c} is a set of labels belonging to a vocabulary Ω, the semantical
link part-of PO is denoted:

• PO(c, {c1, ..., ck}) means that: ”c1, c2,..., et ck are parts of c”, and
conversely that c is composed of c1, c2,..., et ck.
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More precisely, PO(c, {c1, ..., ck}) means that, given a set of images, if a
region R is annotated by the concept c, R admits a partition in one or several
subregions which are annotated by concepts belonging to the set {c1, ..., ck}.
It is important to note that the part-of relationship is defined here in a weak
sense as all the concepts {c1, ..., ck} do not have to be necessarily represented
in the partition of R, and, contrary to the kind-of network used in [21], no
constraint is imposed on the occurrence number of a same label inside region
R.

Given a vocabulary of labels Ω, we define Spo
Ω as a set of semantic networks

whose nodes are the elements of Ω submitted to the following constraints:

• The nodes of the semantic networks are supposed here to be located in
a hierarchy of a finite number of layers. The layer a concept c lies in is
noted l(c). The set of concepts such as l(c) = i is denoted Ci(S

po
Ω ).

• The only semantic link existing between two links is the link part-of

• A concept ca can be linked to a concept cb by the part-of relationship
only if l(cb) = l(ca) + 1.

• If c is a label such as l(c) = i, i > 1, ∃{c1, . . . , ck} ∈ Ci(S
po
Ω )\PO(c, {c1, . . . , ck})

2.3 General structure of the global semantic network

To tackle the problem of semantic representation of the labels to an extent
that incorporates both kind-of and part-of networks presented in Section 2.2,
a structure of a semantic network integrating the links of hyponymy and
meronymy is defined here. But as seen in Section 2.1, the hierarchies in-
duced by meronymy and hyponymy are of completely different types. The
solution proposed here to integrate the links part-of and kind-of within a
single network is to consider a kind-of network which is superimposed on a
part-of network (cf fig 1).

More formally, the global semantic network SΩ whose nodes are the ele-
ments of Ω is supposed to contain two partial networks Sko

Ω and Spo
Ω . The first

one verifies the network structure of type kind-of, and the second one verifies
the network structure of type part-of previously described. To simplify the
notations, each one of these networks is supposed not to contain more than
two layers. Moreover, the nodes of the first layer of Sko

Ω are supposed to be
the nodes of Spo

Ω :

C1(S
ko
Ω ) = C1(S

po
Ω ) ∪ C2(S

po
Ω )
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Figure 1: Illustration of the global semantic network

The choice to superimpose the kind-of structure on the two layers of the
part-of structure is based on the fact that the words of the second layer of
the kind-of relationship correspond to very general structures which can be
of various complexity. For example, the word ”urban” can correspond to
small scale structures like ”group of buildings”, but can also correspond to a
very large scale and complex areas which could be labelled by ”suburb”.

3 Probabilistic modelisation

3.1 Formalism

Let Ω = {c1, ..., cn} be the codebook of labels used for annotation. Each
label ci is assumed to be linked to a set of example images Xi provided by
the user. The whole dataset is noted X = {X1, ..., Xn}, where Xij stands for
the jth learning image provided for label i. A semantic network SΩ whose
nodes are the labels {c1, ..., cn} and the corresponding probabilistic model
MΩ used to express the dataset likelihood P (X|MΩ) are defined. The set
of networks the nodes of which are the labels {c1, ..., cn} and verifying the
requirements defined in section 2.2 is denoted SΩ, and the set of possible
models to describe X is denoted MΩ.
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The global model MΩ is decomposed in a set of models {M1, ..., Mn}, Mi

modelling the database Xi of the label ci. Each model Mi contains a set of
parameters θi fitted on the database Xi, and a location in the structure of
MΩ. In Section 2.3, a surjective function defined from MΩ to SΩ associating
each model MΩ to a semantic network SΩ will be specified.

3.2 Different layers of the model

The main idea of the association of a semantic network SΩ to an image model
MΩ is to link each layer to a specific kind of probabilistic modelisation. For
the sake of clarity, the number of layers of each partial network C2(S

po
Ω ) and

C2(S
ko
Ω ) is constrained to be less than 2. The training sets Xi are supposed

to be generated independently conditionnaly to the image model M . The
likelihood of the training database X can be written as:

P (X1, X2, ..., Xn|MΩ) =
n∏

i=1

P (Xi|MΩ) (1)

Each label ci in SΩ is associated to a model Mi used for description of
the learning set Xi.

• If ci ∈ C1(S
po
Ω ), Mi is a näıve Bayes model over the low-level features

of the image.

• If ci ∈ C2(S
po
Ω ), Mi is a model which has some similarity with LDA.

The image is decomposed in regions which are then described by the
models associated to the labels of C1(S

po
Ω ).

• If ci ∈ C2(S
ko
Ω ), Mi is defined as a mixture of unigrams over the models

associated to the concepts of C1(S
ko
Ω ).

3.2.1 Layer 0: Low-level description of the images

The method detailed in this work takes place after a first stage of image
processing where features have been extracted on a regular grid in the images
of the database. A clustering algorithm is then applied on these features
and a codebook of size n0 is computed. Given an image of the database,
the features previously extracted from it are quantized using the computed
codebook to represent this image with a discrete collection of textons. A
map, the pixels of which are the index of the textons, is thus obtained (cf
image 2). This reduced image is used as the input of the modelling and the
original image will no longer be used in the following lines.
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(a)
(b)

Figure 2: (a) SPOT5 image of size 6000 ∗ 6000 at 2,5m of resolution @CNES
(b) image of size 150 × 150 whose pixels are the index of the textons. Each
texton is computed on a 40× 40 window. The codebook of textons contains
90 labels.
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3.2.2 Layer 1

Given a map I annotated by the concept a belonging to C1(S
ko
Ω ), its likelihood

is expressed by a naive Bayes model [28] and the number of textons in the
map is coded by a Poisson’s law. The likelihood of the map I conditionally
to Ma is thus written as:

P (I|Ma) = Poissλa(

n0∑
j=1

xj)

n0∏
j=1

(θaj)
xj (2)

where θaj stands for the probability for a texton of value j to be generated
with model Ma, and xj is the occurrence of texton j in map I. As this
expression only depends on Ma:

P (I|M) = P (I|Ma) (3)

3.2.3 Layer 2 of the part-of network

Given a part-of network Spo
Ω , let a be a label in C2(S

po
Ω ) linked to a set

of labels {c1, ..., ck} lying in C1(S
po
Ω ). If I is a map annotated by a, the

generative model is detailed as:

• a number mai is sampled with probability PoissΛa .

• a partition of the map P = {R1, R2, ..., Rmai
} is sampled with uniform

probability.

• for j from 1 to mai, a label c(Rj) is sampled among {1, ..., k} with
probability {πa1, ..., πak} and the likelihood of the region is computed
conditionally to the label c: P (Rj|c(Rj)).

The likelihood of the map is thus written as:

P (I, {R1, R2, ..., Rmai
}, {c(R1), c(R2), .., c(Rm)}|Ma) =

P (I|Ma, {R1, R2, ..., Rmai
}, {c(R1), c(R2), .., c(Rm)})

P ({R1, R2, ..., Rm}, {c(R1), c(R2), .., c(Rm)}|Ma) (4)

The first term of this product is expressed as:

P (I|Ma, {R1, R2, ..., Rmai
}, {c(R1), c(R2), .., c(Rm)}) =

PoissΛa(mai)

mai∏
j=1

P (Rj|Mc(Rj)) (5)
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where the term P (Rj|Mc(Rj)) can be written using eq 2, and c(Rj) ∈ C1(S
po
Ωpo

).
Assuming independancy between the annotations and the partition of the

image conditionally to the model Ma, the second term of eq 4 can be written
as:

P ({R1, R2, ..., Rm}, {c(R1), c(R2), .., c(Rm)}|Ma) =

P ({R1, R2, ..., Rm}|Ma)P ({c(R1), c(R2), .., c(Rm)}|Ma) (6)

The labels are also assumed independant conditionally to the model Ma:
P ({c(R1), c(R2), .., c(Rm)}|Ma) =

∏m
j=1 P (c(Rj)|Ma).

P (c(Ri) = cj) is denoted πaj for every j ∈ {1, ..., k}. πaj and Λa are
parameters of the model a. A uniform law is assumed on the set of the map
partitions. P ({R1, R2, ..., Rm}|Ma) = 1

K
, where K is the number of possible

partitions in the image with 4-connex regions. This number depends on the
image, it is untractable for most images.

3.2.4 Layer 2 of the kind-of network

Given a vocabulary of labels Ωko ⊂ Ω and a kind-of network Sko
Ωko

, let a be
a concept in C2(S

ko
Ωko

) linked to a set of concepts {c1, ..., ck} ∈ C1(S
ko
Ωko

) The
concept a is associated with a latent variable La taking its value in a finite
vocabulary of size k: {1, ..., k}. The process of semantic specification from
concept a to concept cj is modelled by the assignment of latent variable La

to value j.
Given an image I annotated by a:

P (I, La = j|M) = P (La = j)P (I|La = j, M) (7)

Conditionnaly to the fact that the concept a has been specified to concept
cj, the probability of the image is computed with the submodel Mj:

P (x, La = j|c(I) = a) = P (La = j)P (I|Mj)

Thus, the probability is computed as a mixture model:

P (x|c(I) = a) =
k∑

j=1

P (La = j)P (I|Mj)

The set of values {P (La = j)}k
j=1 are the parameters of the concept a

and are noted: πaj = P (La = j). The fact that each concept a in C2(S
ko
Ωko

)

is linked to at least one concept of C1(S
ko
Ωko

) guarantees that
∑k

j=1 πaj = 1.
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Figure 3: Representation of the models kind-of (upper graph) and part-of
(lower graph). A box corresponds to the iterative and independant sampling
of random variables which are inside the box. The number of sampling is
wirtten at the bottom-left of the box. A colored disc corresponds to an ob-
servable random variable. A non-colored disc corresponds to a non observable
random variable.

Pa(x) =
k∑

j=1

πjP (I|Mj) (8)

3.3 Synonymy relationship

Let Ω = {c1, ..., cn} be a vocabulary and SΩ a semantic network the nodes
of which are the elements of Ω. Let MΩ be a stochastic model which is set
in relationship with SΩ. Let ci and cj be two labels, if they are synonyms in
SΩ, they are linked to the same model in MΩ. Thus, if Mi is a model, c(Mi)
is not a singleton but a set of words which are all synonyms.

3.4 Correspondance between a global stochastic model
and a semantic network

Given a model M = {M1, . . . ,Mk}, the associated stochastic model S is built
in two steps:
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• The labels are divided into the different sets C1(S
po), C2(S

po) and
C2(S

ko) according to the model they correspond to.

• For all the labels c set in C2(S
po) and C2(S

ko), the semantic relation-
ship part-of (if c ∈ C2(S

po) or kind-of (if c ∈ C2(S
ko) with the label

corresponding to index i is created if πci > 0.

3.5 Extensivity

Let M be a model the parameters and structure of which have been optimized
by a maximum of likelihood of the training set X = {X1, ..., Xn} among the
set M of possible models:

M = arg max
M∈M

P (X|M)

If a new concept cn+1 is added to the initial set of concepts c1, ..., cn, and
X ′ is the training set composed of X and a training set Xn+1 associated to
the concept cn+1.

X ′ = X ∪Xn+1

Let M ′ be the model estimated by maximum of likelihood on the dataset X ′

among the set of models M’:

M ′ = arg max
M’∈M′

P (X|M’)

The following property holds:

P (X|M ′) ≥ P (X|M) (9)

Proof: Let i ∈ {1, ..., n}, Mi et M′
i two sets of models fitting the dataset

Xi in each case. Models Mi and M ′
i can be located in the first or the second

layer of the network:

Mi = C1(Mi) ∪ C2(Mi)

M′
i = C1(M′

i) ∪ C2(M′
i)

The models of layer 1 are defined by direct modelisation on the textons of
the image and their expression are not related to other models of the network
(cf equation 3). The following property can thus be deduced:

C1(Mi) = C1(M′
i)

As long as the second layer is concerned:
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{C2(M′
i)/πi,n+1 = 0} = C2(Mi) (10)

the following inclusion relationship can be infered:

∀i,Mi ⊃M′
i

Thus
M’ ⊃M

The following property can be deduced:

max
M′

P (X|M ′) ≥ max
M

P (X|M)

This property means that, by adding a new concept to the vocabulary, the
likelihood of the rest of the database can only increase. Thus, this method
takes advantage of all the knowledge given by the user to improve the de-
scription of the database. By analogy with Statistic Physics, this property
is called ‘extensivity property” [26] as a physical state variable describing a
system is said to be ”extensive” if this variable grows with the size of the
system.

4 Coding of the model

The principle of minimization of the stochastic complexity has been intro-
duced by Rissanen in 1978 [40]. The notion of stochastic complexity substi-
tutes to the complexity of Kolmogorov [12] the number of bits necessary to
code a sequence with an entropic code, and also the number of bits which
are necessary to code the probabilistic model.

4.1 Coding of the system

The code length is traditionnaly made in two parts ([39]):

C(X, M) = C(M) + C(X|M)

the first term corresponding to the coding of the model, the second term
corresponding to the length of the code which is necessary to code the data
using the model. The set of example images are supposed to be independant
for each label. The description length can thus be summed on the labels:

C(X,M) =
n∑

c=1

[C(Xc|M) + C(Mc)] (11)
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4.1.1 Layer 1

The layer 1 models are assumed to generate directly the textons of example
images. Thus, C(Xc|M) = C(Xc|Mc) and if Xcj is the j-th example im-
age associated to the concept c, by using Shannon formula [43], the term
CS(Xc|Mc) is written as:

CS(Xc|Mc) = − log P (Xc|Mc)

the images Xcj of the database provided for concept c are supposed to be
independant. The stochastic complexity of the database can be written as:

CS(Xc|Mc) = −
∑

j

log P (Xcj|Mc)

by defining card(Xcj) =
∑n0

j=1 xcj as the total number of textons in Xcj, and
by introducing the expression 2 in the last equation:

CS(Xc|Mc) = λc − card(Xcj) log λc +

card(Xcj)s∑
j=1

log j −
n0∑

j=1

xcj log(θc) (12)

To code the model Mc, the layer it belongs to has to be coded first.
Here, a model which can have a maximum of two layers is presented, the
index of the layer can be coded by a single bit with value 0 or 1. Then,
the generation parameters of textons θc and the size parameter Λc have to
be coded. Rissanen formula [39] linking a vector of parameters of size T
estimated with Nech samples provides the code length:

T

2
log Nech (13)

Vector θc has size n0. The number of samples it is estimated with is equal
to the total number of textons of the database Xc. The vector Λc has size
1 and is estimated with a number of samples equal to the total number of
images in the database Xc, defined as Nc.

CS(Mc) =
n0

2
log(

Nc∑
j=1

n0∑

k=1

xcjk) +
1

2
log N1 (14)

The stochastic complexity CS(Xc|Mc) is therefore:
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CS(Xc|Mc) = λc − card(Xcj) log λc+

card(Xcj)s∑
j=1

log(j)−
n0∑

j=1

xj log(θc) +
n0

2
log(

Nc∑
j

n0∑

k

xcjk) +
1

2
log N1 + 1 (15)

4.1.2 Layer 2 of the ‘Kind-of” network

Let c stand for a label lying in C2(S
ko
Ω ), the term C(Xc|M) can be written

as:

C(Xc|M) = − log P (Xc|M)

Applying the independence assumption of the images of the database Xc

and by introducing the expression of P (Xc|Mc) written in eq 8, the following
expression can be written as:

CS(Xc|M) = −
Nc∑
j=1

log(
k∑

i=1

πiPoissλc(

n0∑

k=1

xk)

n0∏

k=1

θxk
c )

For the coding of the model, it is necessary to code the generation pa-
rameters πc. Using expression 13:

CS(Mi) =
n1

2
log Nc (16)

4.1.3 Layer 2 of the part-of network

Let c stands for a label lying in C2(S
po
Ω ), and i for the index of a map in the

database Xc and Pi = {Ri1, Ri2, ..., Rimci
} stand for an annotated partition

of this image, the term C(Xci|M, Pi) is written:

C(Xci|M, Pi) = − log P (Xci|M,Pi)

This probability being expressed as a sum on the joint probability of
the image and the labels on all possible annotations of the image given a
partition, becomes:

P (Xci|M, Pi) =
∑

{c(R1),c(R2),...,c(Rmci )}
P (Xci, {c(R1), c(R2), ..., c(Rmci

)}|M,Pi)

(17)
The term P (Xci, {c(R1), c(R2), ..., c(Rmci

)}|M, Pi) is decomposed as:
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P (Xci, {c(R1), c(R2), ..., c(Rmci
)}|M,Pi) =

P (Xci|{c(R1), c(R2), ..., c(Rmci
)},M, Pi)

P ({c(R1), c(R2), ..., c(Rmci
)}|M) (18)

The first term of this product is expressed by equation 5, and the second
by equation 6.

P (Xci|M, Pi) =
∑

{c(R1),c(R2),...,c(Rmci )}
PoissΛc(mci)

mai∏
j=1

πc(Rj)P (x(Rj)|c(Rj))

(19)
However, this expression may become untractable for a high number of

regions. Some approximations can be used to find a lower bound of this
expression. In this work, we just use the following very coarse bound:

P (Xci|M, Pi) = max
{c(R1),c(R2),...,c(Rmci )}

PoissΛc(mci)

mai∏
j=1

πc(Rj)P (x(Rj)|c(Rj)) (20)

For each model, the index of the layer and the generation parameters of
the labels of C1(S

po
Ω ) πc have to be coded.

CS(Mi) =
n1

2
log Nc (21)

The point is, as for the concepts of layer 1, to code the values of the
textons with a minimal code length. Thus, the partition Pi for each image
of index i is not coded and the code length C(X, M) is expressed as:

C(X,M) = min
P,M

(C(X|M, P ) + C(M))

4.2 Optimization procedure

Given a database X, we wish to find the model M minimizing the stochastic
complexity C(X, M) among the set of possible models in terms of parameters
and structure. Given a vocabulary Ω of cardinal n, the labels are separated
in three subsets: C1(S

po
Ω ), C2(S

po
Ω ) and C2(S

ko
Ω ). The number of possible

structures thus corresponds to the total number of possible repartitions of
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the n labels in these three subsets, that is to say 3n. As a global exploration is
untractable for high values of n, we propose here a greedy algorithm leading
to a local minimum of the stochastic complexity CS(X,M).

Initialization The initialization configuration of the algorithm is the one
containing all the n concepts in layer 1.

Iterations At each step, and for each label cj of layer 1, the stochastic
complexity associated with the configuration where the label cj is located
in layer 2 is computed. The model parameters of the first layer are first
estimated by likelihood maximisation.

For each label c of layer 1, the parameters are estimated using the follow-
ing equations:

∀j ∈ {1, ..., n0}, θcj =
occXc(j)

card(Xc)

λc =
1

Nc

Nc∑
j=1

card(Xcj)

card(Xcj) stands for the number of textons in the image Xcj, card(Xc) =∑Nc

j=1 card(Xcj). occXc(Lc = j) stands for the number of occurrences of the
texton of value j in the database Xc.

For every concept c of layer 2, we have the following expressions:

∀j ∈ {1, ..., n1}, πcj =

∑Nc

i=1 Pcj
(xi)∑Nc

i=1

∑n
k=1 Pck

(xi)

Once the parameters are estimated, the global stochastic complexity is
computed using equation 11. The model minimizing the stochastic complex-
ity is set in layer 1 if the corresponding complexity is less than the complexity
obtained at last step.

Stopping the algorithm The algorithm stops when the stochastic com-
plexity algorithm increases. The last model is taken as the optimal model.

Discussion To put a label c from layer C1(S
po
Ω ) to layer C2(S

po
Ω ) or C2(S

ko
Ω )

has two main impacts: an impact on the complexity term C(Xc|Mc) as the
likelihood of Xc will be expressed by a different model, and an impact on the
complexity terms corresponding to the labels belonging to layers C2(S

po
Ω ) or

C2(S
ko
Ω ). This latter impact results in an increase of the stochastic complexity
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due to the decrease of the number of possible modelisations according to the
models belonging to C1(S

po
Ω ).

5 Annotation of a new image

Once the structure of the model has been learnt and the parameters have
been estimated, test images can be annotated using the model. The step of
annotation extracts semantic information from the image by annotating it
with the vocabulary Ω provided by the user. Our method is focused here on
large databases of remote sensing images. As these images are very large,
annotate a whole image to semantic labels seems not relevant, and we present
a method which provides annotated regions of the test image.

5.1 Annotation method

The first step of the annotation stage is to decompose the test image I in
regions annotated by concepts existing in the model. This process is modelled
as a part-of network where the third layer is constituted of a virtual label
cscene annotating the test image. In the stochastic model corresponding to
this semantic network where cscene is added, the generation probability of
each label c ∈ C2(S

po
Ω ) is unknown. Thus, we consider a uniform distribution

on the elements of C2(M):
∀c ∈ C2(M), Pcscene(c) = 1

|C2(M)|
The test image is represented as a region R annotated by the virtual

concept cscene. This region is decomposed as an annotated partition G2 =
{R2

1, R
2
2, ..., R

2
N2
} where each concept of annotation c(R2

i ) ∈ C2(S
po
Ω ). Then,

each region R2
i is decomposed in a partition of regions annotated by concepts

of C1(S
po
Ω ). The result is an annotated partition G1 = {R1

1, R
1
2, ..., R

1
N1
}.

Given an image I, the annotations G1 et G2 are taken as maximizing the
probability P (G1, G2|I):

max
G1,G2

P (G1, G2|I) (22)

Let us write:

P (G1, G2|I) =
P (I, G1, G2)

P (I)

As the maximisation does not depend on I, we just operate the maxi-
mization of the joint probability P (G1, G2, I):

P (G1, G2, I) = P (G2)P (G1|G2)P (I|G1)
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5.2 Optimization algorithm

As the space of joint configurations of G1 and G2 is too large, the complex-
ity is reduced by applying two steps of inference. The maximum G1,opt of
P (I|G1) is determined in the space of all the possible annotated partitions GI

1 .
Then, given the partition G1,opt, the maximum G2,opt of P (G1,opt|G2)P (G2) is

determined in the space of all the possible annotated partitions GG1,opt

2 where
each region is a union of regions of G1,opt.

For each inference step, the optimal annotated partition has to be found
among a huge set of configurations. A path is thus explored through the space
of annotations starting from a complex partition and finishing to a single
region containing the whole image. Initialization is performed by annotating
each texton with a label considering its value and the value of its neighbours
on a small window.

5.2.1 First inference step

• Initialisation of the algorithm:

A first partition is created using the estimated models Mc associated
with the concepts c ∈ C1(S

po
Ω ) in the following way: at each texton of

the image of coordinates (k, l), the following histogram vector of size
n0 is computed:

U(k, l) =
∑

(i,j)∈I

EI(k,l)gk,l,σ(i, j)

where Ei stands for the i-th base vector, gm1,m2,σ(x, y) stands for the 2D
Gaussian function of mean m1,m2 and of variance σ2. σ is a parameter
of the algorithm. This vector is a representation of the neighbourhood
of the texton (k, l).

Then, for i ∈ {1, . . . , n1}, the following probability functions is com-
puted:

P (U(k, l)|θi) =

n0∑
j=1

p
U(k,l)
ij (j)

and texton (k, l) is annotated with label c verifying:

P (U(k, l)|θc) = min
i∈{1,...,n1}

P (U(k, l)|θi)
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An annotated partition G0
1 is then created by building a region anno-

tated with concept c for each 4-connex area of textons which has been
linked to the concept c during the previous step.

• Let i be the number of iterations done in the loop. While the number
of regions in the image contained in Gi

1 is more than 1:

– for all possible merging of adjacent regions:

∗ we consider the n1 possible annotations for the new region.
If two regions are adjacent and are annotated with the same
label, they are merged. For these n1 configurations G1, the
likelihood P (I|G1) is computed.

– the configuration maximizing the likelihood is kept and denoted
Gi

1

• The final annotated partition Gopt
1 is the configuration verifying:

P (I|Gopt
1 ) = max

i
P (I|Gi

1)

At each step of the loop, at least two regions are merged. As a conse-
quence, the algorithm finishes in less iterations than the number of regions
in the initial partition G0

1. The higher σ, the fewer regions are in G0
1.

The process of the second step of the algorithm is similar to the first step.
A path is explored in the space of the annotated partitions by creating an
initial partition G0

2 and by merging regions iteratively until just one region
remains in the image.

5.2.2 Second step of inference

• Initialisation of the algorithm:

A first partition is created using the estimated models Mc associated
with the concepts c ∈ C2(S

po
Ω ) in the following way: for each region Rk

of G0
1, the following histogram vector of size n1 is computed:

U(Rk) =
∑

j/adj(Rj ,Rk)

Ec(Rj)

Then, for i ∈ {1, . . . , n2}, the following probability functions are com-
puted:
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P (U(Rk)|θi) =

n1∑
j=1

p
U(Rk)
kj (j)

and region Rk is annotated by the label c verifying

P (Rk|θc) = min
i∈{1,...,n2}

P (Rk|θi)

An annotated partition G0
2 is then created by building a region anno-

tated by the concept c for each 4-connex area of textons which have
been linked to the concept c during the previous step.

• Let i be the number of iterations done in the loop. While the number
of regions in the image contained in Gi

1 is over 1:

– for all possible merging of adjacent regions

∗ the n2 possible annotations for the new region are considered.
If two regions are adjacent and are annotated with the same
label, they are merged. For these n2 configurations G2, the
likelihood P (Gopt

1 |G2) is computed.

– the configuration maximizing the likelihood is kept and noted Gi
2

• The final annotated partition Gopt
2 is the configuration verifying:

P (I|Gopt
1 ) = max

i
P (Gopt

1 |Gi
2)

5.3 Semantic representation of the image

The previously detailed algorithm output consists in two annotated partitions
of the test image. the fusion of these two partitions in a single set of regions
is denoted Ppo = {G1, G2} . This is the minimal interpretation of the image,
to get it richer:

• For every region R belonging to Ppo, of the word c(R) is linked by an
hyponymic relationship to the word c′ belonging to C2(Sko), we create a
new region the localisation of which is the same as R and th annotation
of which is c′.

• For every pair of regions R and R′ belonging to Pko and annotated by
the same concept, if R and R′ are adjacent or if their intersection is
not empty, these regions are merged.
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• For every region R belonging to the set P = Pko∪Ppo, all the synonyms
of c(R) are added to the set of annotations of R

Each region has an outer boundary. Regions with holes also have inner
boundaries to represent the holes. Fuzzy modeling is used for pairwise rela-
tionships between regions to represent the following high-level user concepts:

Perimeter-class relationship

• disjoined : Regions are not bordering each other

• bordering : Regions are bordering each other

• invaded by : Smaller region is surrounded by the larger one at around
50% of the perimeter

• surrounded by : Smaller region is almost completly surrounded by the
larger one

Surface-class relationship

• overlapping : Regions are overlapping each other

• contained by : Smaller region is almost completly surrounded by the
larger one

Distance-class relationship

• Near : Regions are close to each other

• Far : Regions are far from each other

Given two regions Ri et Rj, to find the relationship between a pair of
regions Ri and Rj, the following quantities are first computed:

• Perimeter of the first region πi,

• Perimeter of the second region πj,

• Common perimeter between the two regions πij,

• Ratio of the common perimeter to the perimeter of the first region:
r1
ij = πij/πi,

• Surface of the first region σi,
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• Surface of the second region σj,

• Common surface between the two regions σij,

• Ratio of the common surface to the surface of the first region: r2
ij =

σij/σi,

• Closest distance between the boundary of the first region and the
boundary of the second region dij.

Then, each pair is assigned a degree of their spatial relationship using
the fuzzy class membership functions given in figure 4. Then, these pairwise
relationships are combined using an attributed relational graph [15]. The
attributed relational graph represents regions by the graph nodes and their
spatial relationship by the edges between such nodes. Nodes are labeled by
concepts and the corresponding confidence values (likelihood) for the label
assignment. Edges are labelled with the spatial relationship classes (pair-
wise relationship names) and the corresponding degrees (fuzzy membership
values) for these relationships.

6 Experimentations

6.1 Construction of semantic networks

Two different sets of data will be used: synthetic data will confirm case by
case the adequacy of the PSL algorithm and real data will demonstrate its
robustness.

6.1.1 Synthetic data

Synonymy relationship A Gaussian probability function on gray values
of range from 1 to 256 is defined. Two databases X1 and X2 associated
with two concepts c1 and c2 and containing N images of size 200 × 200 are
generated pixel by pixel using this distribution. These images are supposed
to correspond to the textons map mentioned in Section 3.2.1. Two models
M and M ′ are estimated considering two different cases:

• model M corresponds to the case where c1 and c2 are supposed to be
not synonyms. Two vectors of parameters θ1 and θ2 of dimension 256
were estimated over X1 and X2 respectively.
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(a)

(b)

(c)

Figure 4: Fuzzy spatial relationships (a) Perimeter-related relationships (b)
Surface-related relationships (c) Distance-related relationships
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Figure 5:

• model M ′ corresponds to the case where c1 and c2 are supposed to
be synonyms. A single vector θ′ of dimension 256 is estimated over
X1 ∪X2.

The stochastic complexity was computed in each case:

C(X,M) = − log P (X1|M1)− log P (X2|M2) + C(M1) + C(M2)

C(X,M ′) = − log P (X1|M ′) + C(M ′)

The ratio Rsyn = C(X,M
C(X,M ′) obtained according to the size of the database

is shown on figure 6. As expected, Rsyn converges to 1 when the size of
the database increases. Indeed, C(X, M) contains the coding of two vectors
of parameters as C(X, M ′) contains one. As the databases X1 and X2 are
generated by a single distribution, the vectors θ1 and θ2 converge to θ asymp-
totically when the size of the database increases. Though, the terms C(θ1),
C(θ2), C(θ′) have a logarithmic dependence in N but the terms C(X1|θ1),
C(X2|θ2) evolve in a linear way.

Hyponymy relationship k Gaussian distributions gi of mean mi = i
256

, i ∈
{1, . . . , 256} and of same variance σ2 are considered. k training sets Xi asso-
ciated with each label ci are generated pixel by pixel from distribution gi and
contain N images of size 200×200. These images are supposed to correspond
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Figure 6: Ratio Rsyn versus the number N of images in X1 et X2. Rsyn

converges to 1 when N increases.

to the textons map mentioned in Section 3.2.1. Then, a training set Xk+1

associated to a label ck+1 is generated in the following way:

• For every i ∈ {1, . . . , N}
– a number j is sampled with uniform probability in {1, . . . , 256}.
– the image X(k+1)i is generated by sampling independantly each

pixel with probability gi.

Two models M and M ′ are estimated for the two cases corresponding
respectively to two different structures:

• {c1,..., ck} and ck+1 are all located on layer 1. The model Mk+1 is
estimated by maximum of likelihood on Xk+1 as the other models.

• {c1,..., ck} are supposed to be hyponyms of ck+1, and ck+1 is linked with
{c1,..., ck} by kind-of links. The model Mk+1 is thus built as a mixture
of models over the distributions Pcj

and the vector of parameters λk+1

is estimated on Xk+1.

Figure 7 shows the ratio Rhyp = C(X,M
C(X,M ′) according to the variance σ of the

Gaussian distributions. As expected, Rhyp converges to 1. Indeed, increasing
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Figure 7: Ratio Rhyp versus σ (the higher σ, the less discriminative the
features) for different values of k for the hyponymy relationship. Rhyp is
always greater than 1, and decreases for increasing σ

the variance of the Gaussians amounts to saying that the features are less
discriminative. This experience shows that the kind-of link between labels
provides all the more reduction of stochastic complexity that the features
describe efficiently the data.

Meronymy relationship k Gaussian distributions gi of mean mi = i
256

, i ∈
{1, . . . , 256} and of same variance σ2 are considered. k training sets Xi each
associated with label ci are generated from distribution gi and contain N
images of size 200 × 200. These images are supposed to correspond to the
textons map mentioned in Section 3.2.1. Then, a database Xk+1 associated
to a label ck+1 is generated in the following way:

• for every i ∈ {1, . . . , N}, the image Xi, of size 200×(200∗k) is separated
in k regions R1(Xi), ..., Rk(Xi) of size 200× 200

– for every i ∈ {1, . . . , k}
– each region Rj(Xi) is generated by sampling independantly the

textons with distributions gj.

• {c1,..., ck} and ck+1 are all located on layer 1. The model Mk+1 is
estimated by maximum of likelihood on Xk+1 as the other models.
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Figure 8: Ratio Rmer versus σ for different values of k for the meronymy
relationship. Similar conclusions can be drawn than in fig 7.

• {c1,..., ck} are supposed to be meronyms of ck+1, and ck+1 is linked
with {c1,..., ck} by part-of links. The model Mk+1 is thus built using
the corresponding model described in Section 3.4.

Figure 8 shows the ratio Rmer = C(X,M
C(X,M ′) according to the variance σ of the

Gaussian distributions. As expected, Rmer converges to 1. Indeed, increasing
the variance of the Gaussians amounts to saying that the features are less
discriminative. This experience shows that the part-of link between labels
provides all the more reduction of stochastic complexity that the features
describe efficiently the data.

6.1.2 Real data

The reliability of the automatic learning of the model structure has been
tested for real data on a database of SPOT5 images at 2,5m resolution. A
training set has been created by annotating extracted images with a set of
concepts listed on Table 2.

Synonymy relationship To evaluate the role of synonymy on stochastic
complexity, the following protocol is applied for every label c listed on Table
6.1.2:

• The training set Xc associated to label c is split in two subsets denoted
Xa and Xb of similar sizes (for us, Xa and Xb are therefore synonyms)
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Table 1: Ratio of stochastic complexity obtained by the introduction of the
synonymy relationship on image databases corresponding to different con-
cepts
Labels Forest Town Center Mountain Residential Area Sea
Rsyn 1.00031 1.00042 1.00061 1.00012 1.0064

• Two models Ma and Mb are estimated on Xa and Xb respectively. The
stochastic complexity C(Xc,M) is computed, where M is defined as
M = {Ma,Mb}.

• A single model M ′ is also estimated on Xa∪Xb = Xc, and the stochastic
complexity C(Xc,M

′) is computed.

The ratio C(Xc,M)
C(Xc,M ′) is computed for the different labels and the results are

shown on Table 6.1.2. The ratio is higher than 1 for all the labels. This
means that the synonymy link is detected for every label.

Hyponymy/hyperonymy relationship To evaluate the evolution of stochas-
tic complexity caused by introducing hyponymy (a label corresponds to the
generalisation of a set of other concepts), the following protocol is applied:

• A set of k concepts {c1, . . . , ck} associated respectively to k training
sets X1, . . . , Xk is considered. Then, each set Xi is split in two subsets
X1

i and X2
i . A concept c is introduced and is supposed to annotate a

database X1
k+1 defined by X1

k+1 =
⋃k

i=1 X2
i .

• The k + 1 models Mi associated to each concept ci are supposed to lie
on a single layer and are estimated separately on each database X1

i .

• The concept ck+1 is linked with {c1,..., ck} by kind-of links. The model
Mk+1 is thus built using the corresponding model described in Sec-
tion 3.4.

An experience has been made with the label ”vegetation”, which is built
as a generalization of the labels ”grass”, ”fields”, and ”forest”. A second
experience has been made with the label ”urban”, which is built as a gen-
eralization of the labels ”residential area”, ”town center”, and ”industrial
area”.

To test the ratio Rhyp = C(X,M)
C(X,M ′) according to the discriminative power of

the low-level features, a noise is added on the textons of Xi in the following
way:

34



Every texton of the map is changed with probability p ∈ [0, 1] into another
texton of value randomly chosen in {1, . . . , n}. The ratio Rhyp is computed for
p varying from 0 to 0,4. The results are shown on figure 9. As on the synthetic
data, the ratio is decreasing with the value of the noise. With about 15% of
noise, the ratio Rhyp goes under 1, this means that the hyponymic relationship
is no longer identified by the system. The reduction of stochastic complexity
induced by the introduction of a hyponymic relationship in the network thus
directly depends on the discriminative power of the low-level features. Under
a certain level of discriminative power, the hyponymic relationship cannot
be infered.

Meronymy/Holonymy relationship To evaluate the evolution of stochas-
tic complexity caused by introducing a link of hyponymy (a label corresponds
to the generalisation of a set of other concepts), the following protocol is ap-
plied:

• A set of k concepts {c1, . . . , ck} associated respectively to k training
sets X1, . . . , Xk is considered. Then, a concept c is introduced and is
supposed to annotate a training set X1

k+1 .

• The k + 1 models Mi associated to each concept ci are supposed to lie
on a single layer and are estimated separately on each database X1

i .

• The concept ck+1 is is linked with {c1,..., ck} by part-of links. The
model Mk+1 is thus built using the corresponding model described in
Section 3.4

An experience has been made with the label ”urban area”, which is built
as a generalization of the labels ”town center”, ”residential area”, and ”ceme-
tery”. A second experience has been made with the label ”rural area”, built
as a generalization of the labels ”sparse housing”, ”fields”, ”carrier”, and
”residential area”.

To test the ratio Rmer = C(X,M)
C(X,M ′) according to the discriminative power

of the low-level features, a noise is added on the datasets on the textons
of the datasets Xi in the same way as in previous Section. The ratio Rmer

is computed for several values of p. The results are also shown on figure
9. As on the synthetic data, the ratio is decreasing with the value of the
noise. With about 20% of noise, the ratio Rmer goes under 1, meaning that
the hyponymic relationship is not identified by the system. The reduction
of stochastic complexity induced by the introduction of a hyponymic rela-
tionship in the network thus directly depends on the discriminative power
of the low-level features. Under a certain level of discriminative power, the
hyponymic relationship cannot be infered.
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Figure 9: Ratio Rhyp and Rmer versus the percentage of noise. As long as the
ratio is above 1, the relationships are recognized. When the noise increases,
the recognition is lost.

Construction of a complete semantic network Experiences have been
made on the database of SPOT5 images.

6.2 Annotation

In this section, the annotation performance of our method is evaluated. In
the literature, a number of proposals for semantic image annotation and
retrieval have appeared but it is quite difficult to compare the relative per-
formances of the resulting algorithms with our method due to the lack of
a proper experimental protocol. We thus decided to compare our method
to the classical MPM segmentation method which has proved successfull for
remote sensing segmentation [31].

6.2.1 Database

SPOT5 images of Paris, Marseille, Nice and Angers at 2,5m of resolution
have been manually annotated and used to apply quantitative evaluation of
the performance of semantic annotation. This database contains 24 images
of size 6000 × 6000. The concepts used for annotation are those listed in
Table 2 and are put in a two layer semantic network. Each image of the
database is associated with two annotated partitions corresponding to each
layer.
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Industrial area
Residential area
Fields
Mountainous area
Forest
Water
Sparse housing area
Town center
Rural area
Refinery
Urban area
Industry
Cemetery
Carrier
Moutain
Airport
Maritim area

Table 2: Concepts used for semantic network

Concepts of
second layer

Concepts of first layer

Rural area Carrier, Forest, Sparse
housing area, Fields, Resi-
dential area

Urban area Town center, Residential
area, Cemetery

Inudstrial com-
plex

Refinery, Residential area,
Industrial area

Moutainous area Mountain, Carrier, Forest ,
Sparse housing area

Maritim area Water, Residential area ,
Forest, Industrial area

Figure 10: Part-of links between first and second layer
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6.2.2 Learning stage

The database has been split in three parts where each part contains a repre-
sentative sampling of the landscapes existing in the whole database. A cross
validation has been performed by applying three permutations on the three
sets. Each time, two sets of the annotated database are used for the learning
stage and one set for the test stage. Notice that as the structure is fixed,
only the parameters are to be estimated. The parameters of the Markovian
model are learnt using the method of the stochastic gradient.

6.2.3 Used metric

To evaluate the quality of the annotation of test images, the concepts of
C2(Sko) are not taken into account as they depend deterministically of the
annotations using Spo. The result of the annotation process using layer j of
the model is an annotated partition Psys = {Rj

1, R
j
2, ..., R

j
mj
} of this image

where each region Rj
i is annotated using the concept c(Rj

i ) ∈ Cj(Spo). To
evaluate the quality of a multi-layer annotation, we compare the annotation
result for each layer to the ground truth Pgt = {Rjr

1 , Rjr
2 , ..., Rjr

mr
j
} where each

region Rjr
i is annotated with the concept c(Rjr

i ) ∈ Cj(Spo). We assume that,
in each layer, the set of annotation concepts used for ground truth is the one
used by the system. For multi-layer annotation, we compare individually
the segmentation of each layer. If the Vinet’s distance [49] can be used
to compare the produced segmentation, it is also relevant to use natural
language processing tools as the goal of image annotation is to set images in
relationship with words from natural language.

Indeed, the World Error Rate metric [19], used for evaluation of speech
recognition systems, can be applied here by posing that a region R1 of the
system partition Psys and a region R2 of the ground truth partition Pgt can
be matched if their overlap satisfy some given threshold:

|R1 ∩R2|
|R1 ∪R2| > 0.8 (23)

where |R| corresponds to the number of textons of region R.
Given a matching between Psys and Pgt, we define the following metric:

IAWER =
|El|+ |Add|+ |Sub|

N

Where N is the number of words in the reference.
We define here:
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• An elision (El) is a region of Pgt that has not been matched to any
region of Psys.

• An adding (Add) is a region of Psys that has not been matched to any
region of Pgt.

• A substitution (Sub) is a region of Psys that has been matched to a
region of Pgt but is not annotated by the same label.

For each layer, the matching is processed in order to minimize the IAWER.
We use a greedy algorithm to find a minimum IAWER:

• For i ∈ {1, . . . , mj}. For each region Rj
i of Psys, the overlap (cf eq 23)

with all the regions of Pgt annotated with c(Rj
i ) is computed. Let Rjr

i,opt

be the region of Pgt with optimal overlap.

– In case of conflict, if Rjr
i,opt is matched already with a region Rj

k,

Rjr
i,opt is matched with the region corresponding to the higher over-

lap.

– In other case, Rj
i is matched with Rjr

i,opt.

6.2.4 Results

The images are annotated using the method described in Section 5.1. The
performances are evaluated by comparing the ground truth with the output
of the system using the two metrics: Vinet’s measure and IAWER. These
two metrics are complementary as the Vinet measure evaluates the output of
the system as a segmentation result, and the IAWER evaluates the output
of the system as an annotation result.

As it can be seen on Table 3, the two algorithms provide rather simi-
lar results with the Vinet metric for the annotation with the labels of the
first layer. A similar conclusion holds for the evaluation with IAWER crite-
rion. The annotation results are much different as far as the second layer is
concerned. The Markovian method is outperformed by PSL. A clear differ-
ence can also be noted with the results obtained by the Markovian method
compared with the annotation of the first layer. This can be interpreted
by the fact that the semantic gap cannot be crossed by a direct inference
from low-level to high-level. This leads us to conclude with the relevance
of our method making the inference in several steps by using several layers.
Example of annotation are shown on fig 12 and 3.
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Layer 1. Layer 2
PSL Vinet’s
measure

83,27 % 86,14%

MPM Vinet’s
measure

84,26% 68,27%

PSL IAWER 9,79 % 12,44%
MPM IAWER 8,91% 29,14%

Table 3: Annotation evaluation method using Vinet’s measure (a good score
is close from 100%), and using IAWER (a good score is close from 0%)

(a) (b)

(c) (d)

Figure 11: (a) Initial 6000× 6000 SPOT5 image of ”Marseille” @CNES (b)
Ground truth mask of layer 1 (c) Misannotated pixels (d) Annotation by
PSL method. Classes are: industrial area, sparse housing area, residential
area and mountain,
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(a) (b)

(c)

Figure 12: (a) Annotation with the first layer’s labels (b) Annotation with
the second layer’s labels (c) Initial 6000 × 6000 SPOT5 image of ”Aix en
Provence” @CNES
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7 Conclusion

In this work, we use semantic networks to take into account the seman-
tical relationships between the concepts and to tackle the problem with
high generality. We took advantage of a correspondance between the struc-
ture of the semantic networks and the structure of the probabilistical mod-
els. By considering the semantic relationships of hyonymy/hyperonymy and
meronymy/holonymy, the concepts can be handled by the system considering
their level of generality or complexity. This makes possible a good estima-
tion of the density of high level concepts by expressing this density with
the densities of concepts lower in the hierarchy. Moreover, the use of the
semantic network requires no expert knowledge, as the semantic network is
built automatically through an algorithm of model selection which infers the
paradigmatic relationships from a weakly training set. Experiments prove
the reliability of the construction of the semantic network, and the efficiency
and richness of the annotation of semantic labeling and retrieval.
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