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Résumé.

On considère un graphe connexe et non orienté G = (V,E) et un entier
r ≥ 1; pour tout sommet v ∈ V , on désigne par Br(v) la boule de rayon r
centrée sur v, i.e., l’ensemble de tous les sommets reliés à v par un chemin
d’au plus r arêtes. Si pour tous les sommets v ∈ V , les ensembles Br(v)
sont différents, alors on dit que G est sans r-jumeaux.

Dans les graphes sans r-jumeaux, nous prolongeons l’étude des valeurs
extrémales pouvant être atteintes par certains paramètres classiques en théo-
rie des graphes, et nous étudions ici le degré maximum.

Mots Clés:

Théorie des graphes, Codes identifiants, Jumeaux, Degré maximum

Abstract.

Consider a connected undirected graph G = (V,E) and an integer r ≥ 1;
for any vertex v ∈ V , let Br(v) denote the ball of radius r centred at v, i.e.,
the set of all vertices linked to v by a path of at most r edges. If for all
vertices v ∈ V , the sets Br(v) are different, then we say that G is r-twin-free.

In r-twin-free graphs, we prolong the study of the extremal values that
can be reached by some classical parameters in graph theory, and investigate
here the maximum degree.

Key Words:

Graph Theory, Identifying Codes, Twins, Maximum Degree
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1 Introduction

1.1 Definitions and notation

Given a connected, undirected, finite graph G = (V,E) and an integer r ≥ 1,
we define Br(v), the ball of radius r centred at v ∈ V , by

Br(v) = {x ∈ V : d(x, v) ≤ r},

where d(x, v) denotes the number of edges in any shortest path between v
and x.

Whenever d(x, v) ≤ r, we say that x and v r-cover each other (or simply
cover if there is no ambiguity). A set X ⊆ V covers a set Y ⊆ V if every
vertex in Y is covered by at least one vertex in X.

Two vertices v1, v2 ∈ V such that Br(v1) = Br(v2) are called r-twins or
twins. If G has no r-twins, that is, if

∀ v1, v2 ∈ V with v1 6= v2, Br(v1) 6= Br(v2), (1)

then we say that G is r-twin-free or twin-free.
The trivial graph with one vertex is twin-free, the trivial connected graph

with two vertices is not, and generally we consider graphs with at least three
vertices.

Twin-free graphs are of interest because they are strongly connected with
identifying codes [6], which we now define.

A code C is a nonempty set of vertices, and its elements are called code-
words. For each vertex v ∈ V , we denote by

KC,r(v) = C ∩ Br(v)

the set of codewords which r-cover v. Two vertices v1 and v2 with KC,r(v1) 6=
KC,r(v2) are said to be r-separated, or separated, by code C.

A code C is called r-identifying, or identifying, if the sets KC,r(v), v ∈ V ,
are all nonempty and distinct [6]. In other words, all vertices must be covered
and pairwise separated by C.

Remark 1. For given G = (V,E) and integer r, the graph G admits at
least one r-identifying code if and only if it is r-twin-free. Indeed, if for all
v1, v2 ∈ V , Br(v1) and Br(v2) are different, then C = V is r-identifying.
Conversely, if for some v1, v2 ∈ V , Br(v1) = Br(v2), then for any code
C ⊆ V , we have KC,r(v1) = KC,r(v2). This is why r-twin-free graphs are
also called r-identifiable. For instance, there is no r-identifying code in a
complete graph (or clique) with at least two vertices.

In the following, n will denote the number of vertices of G. For any integer
q > 0, Pq will denote the path on q vertices, and the length of Pq will be
equal to q − 1, its number of edges. Moreover, if v1, v2, . . ., vq denote the
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vertices in Pq, we shall assume that these vertices are numbered in such a
way that the edges in Pq are {vi, vi+1} for 1 ≤ i < q.

Remark 2. It is easy to observe that a connected r-twin-free graph has one
vertex or at least 2r+1 vertices. Actually, it can be shown that a connected
r-twin-free graph with at least two vertices has P2r+1 as a subgraph [3], and
even as an induced subgraph [1],[2].

The cycle of length q (with q vertices and q edges), consisting of Pq to which
we add the edge {vq, v1}, will be denoted by Cq. The following graph will
be used in the sequel: we shall call it the n-star, or star, and it consists of
n vertices 0, 1, . . . , n − 1, and n − 1 edges {0, i}, 1 ≤ i ≤ n − 1.

1.2 Illustration

The motivations for identifying codes come, for instance, from fault diag-
nosis in multiprocessor systems [6]. Such a system can be modeled as a
graph where vertices are processors and edges are links between processors.
Assume that at most one of the processors is malfunctioning and we wish
to test the system and locate the faulty processor. For this purpose, some
processors (constituting the code) will be selected and assigned the task
of testing their r-neighbourhoods (i.e., the vertices at distance at most r).
Whenever a selected processor (i.e., a codeword) detects a fault, it sends an
alarm signal, saying that one element in its neighbourhood is malfunctioning,
and we require that we can uniquely tell the location of the malfunctioning
processor based only on the information which ones of the codewords gave
the alarm.

Identifying codes were introduced in [6], and they constitute now a topic of
their own, studied in a large number of various papers, investigating particu-
lar graphs or families of graphs (such as certain infinite regular grids, trees,
chains, cycles, planar graphs, or the hypercube), dealing with complexity
issues, or using heuristics such as the noising methods for the construction
of small codes. For a bibliography, see [9].

Therefore, it is quite natural to study some of the parameters of twin-free
graphs, since these graphs, and only these graphs, admit identifying codes.

1.3 Scope of the paper

We intend to investigate the extremal values that some parameters, classical
in graph theory, can reach in connected twin-free graphs. More precisely,
for a parameter p such as the number of edges, the maximum degree, the
diameter, . . ., we fix r and search for the smallest value, fr(p), that this
parameter can reach in G, or we fix r and n and search for the smallest
and largest values, fr,n(p) and Fr,n(p), respectively, that this parameter can
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reach in G:
fr(p) = min{p(G) : G ∈ Gr},

where Gr = {G : G connected, r-twin-free with at least 2r + 1 vertices};

fr,n(p) = min{p(G) : G ∈ Gr,n} and Fr,n(p) = max{p(G) : G ∈ Gr,n},

where Gr,n = {G : G connected, r-twin-free with n ≥ 2r + 1 vertices}.

The function Fr(p) = max{p(G) : G ∈ Gr} would present much less interest,
since, for the parameters that we deal with, Fr is not bounded by above.

In this paper, we are interested in the maximum degree, ∆max, and we shall
study the functions fr(∆max), fr,n(∆max) and Fr,n(∆max).

In [4], the same study was run for the following four parameters: number
of vertices, minimum size of an r-identifying code, r-domination number,
maximum size of a clique. The number of edges was investigated in [8,
Sec. 4.1.2], and the minimum degree in [7],[5].

2 The maximum degree, ∆max

In any connected graph with n vertices, the maximum degree is comprised
between 1 (if n = 2) or 2 (paths Pn and cycles Cn, n ≥ 3), and n−1 (clique,
star, . . .).

It is straightforward to obtain the exact values for fr(∆max) and fr,n(∆max).

Theorem 1 For all r ≥ 1, we have: fr(∆max) = 2. For all r ≥ 1 and
n ≥ 2r + 1, we have: fr,n(∆max) = 2. 4

We distinguish between two cases in the study of Fr,n(∆max), r = 1 and
r > 1.

Theorem 2 For all n ≥ 3, we have: F1,n(∆max) = n − 1.

Proof. The n-star, defined in the Introduction, is a connected 1-twin-free
graph with maximum degree equal to n − 1, which is of course the upper
bound. 4

For r ≥ 2, we first give an upper bound.

Theorem 3 For all r ≥ 2 and n ≥ 2r +1, we have: Fr,n(∆max) ≤ k, where
k is the largest integer such that

k + (r − 2)dlog3(k + 1)e + dlog2(k + 1)e ≤ n − 1. (2)
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Figure 1: A partial representation of the vertex a and the sets Vi.

Proof. Let G = (V,E) be any connected r-twin-free graph with n vertices,
let a be any vertex in V , the degree of which we denote by deg(a) or δ.
Let V0(a) = V0 be the set of vertices adjacent to a: |V0| = δ. For i =
1, 2, . . . , r, . . ., let Vi(a) = Vi = {x ∈ V \ {a} : d(x, V0) = i}, where as usual
d(x, V0) is the smallest distance between x and the vertices in V0. Obviously,
the sets Vi, i = 0, 1, . . . , partition V \{a}, and we have the following property:
• (P) any vertex in Vi is at distance i, i + 1 or i + 2 from any vertex in V0,
and is at distance exactly i + 1 from a.

We also observe that edges in G can exist only between a and V0, inside
the sets Vi or between Vi and Vi+1, for i = 0, 1, . . . (there is no jump between
non-consecutive sets Vi). See Figure 1, where the sets Vi are represented up
to i = r, in a partial view of the graph.

For each vertex x ∈ V0 ∪ {a}, we define the couples Ci(x), 1 ≤ i ≤ r− 1,
as follows:

Ci(x) =
(

Bi(x) ∩ Vi, Bi+1(x) ∩ Vi

)

.

Obviously, Ci(a) =
(

∅, Vi

)

.
First, we show that the couples Ci(x), i ∈ {1, . . . , r − 1}, are all distinct

when x runs through V0. Assume on the contrary that x and y exist in V0,
such that, for some j0 between 1 and r − 1,

Bj0(x) ∩ Vj0 = Bj0(y) ∩ Vj0 , (3)
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and
Bj0+1(x) ∩ Vj0 = Bj0+1(y) ∩ Vj0 . (4)

Since there are no r-twins in G, there is a vertex z ∈ V which, say, r-covers
x, not y. Obviously, z 6= a and z /∈ Vi, i ≤ r−2, otherwise z would r-cover y;
and z /∈ Vi, i ≥ r + 1, otherwise z would not r-cover x. So z ∈ Vr−1 ∪ Vr.

Assume first that z ∈ Vr. Then the distance between x and z is exactly r,
and there is a path x, a1, a2, . . . , ar−1, z, where ai ∈ Vi is at distance i from x
and at distance r− i from z. In particular aj0 belongs to Bj0(x)∩Vj0 , which
by (3) implies that aj0 ∈ Bj0(y), i.e., d(aj0 , y) ≤ j0 and finally d(z, y) ≤
(r − j0) + j0 = r, a contradiction.

Next, assume that z ∈ Vr−1. Then the distance between x and z is r− 1
or r. Consider a shortest path between x and z; it goes through at least
one vertex in Vj0 , which we call aj0 . Now the distance between aj0 and x
is j0 or j0 + 1: if it were j0 + 2, then the distance from x to z would be at
least (j0 + 2) + (r − 1 − j0) = r + 1 > r. If d(aj0 , x) = j0, i.e., aj0 ∈ Bj0(x),
then (3) shows that d(aj0 , y) = j0. If d(aj0 , x) = j0 +1, then by (4), we have
d(aj0 , y) = j0 + 1. In both cases, d(aj0 , x) = d(aj0 , y), which implies that
d(y, z) ≤ r, again a contradiction.

Therefore we have proved that for any i ∈ {1, . . . , r − 1}, the couples
Ci(x), x ∈ V0, are all distinct. Next, we show that, for any x ∈ V0 and any
i ∈ {1, . . . , r − 1}, we have Ci(x) 6= Ci(a). Assume on the contrary that
there is a vertex x ∈ V0 such that Cj0(x) = Cj0(a) =

(

∅, Vj0

)

for some j0

between 1 and r − 1.
Consider a vertex z ∈ Vr. We have d(z, a) = r + 1 and d(z, x) ≥ r. But

the assumption that Bj0(x) ∩ Vj0 = ∅ shows that d(z, x) ≥ r + 1, and so z
r-covers neither x nor a.

Consider a vertex z ∈ Vr−1. By property (P), we have d(z, a) = r and
d(z, x) ≤ r + 1. A path of length r from z to a goes through a vertex
aj0 ∈ Vj0 . Obviously, d(z, aj0) = r − 1 − j0. By assumption, aj0 ∈ Vj0

implies that aj0 ∈ Bj0+1(x) ∩ Vj0 , so d(aj0 , x) ≤ j0 + 1 and finally d(z, x) ≤
(r − 1 − j0) + (j0 + 1) = r, i.e., z r-covers both x and a. Since this is also
true for vertices z ∈ Vi with i < r − 1, we see that a and x are r-twins, a
contradiction.

All in all, we have just proved that the couples Ci(x), i ∈ {1, . . . , r− 1}, are
all distinct when x runs through V0 ∪ {a}.

When, inside Vi, the set Bi(x) ∩ Vi is fixed with size s, there are 2|Vi|−s

possibilities for the choice of Bi+1(x) ∩ Vi, so there are at most

∑

0≤s≤|Vi|

(

|Vi|

s

)

2|Vi|−s = (2 + 1)|Vi| = 3|Vi|

different couples Ci(x), for x ∈ V0∪{a} and i = 1, . . . , r−1. This establishes
that

|V0 ∪ {a}| = deg(a) + 1 = δ + 1 ≤ 3|Vi|, (5)
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Figure 2: Constructions for Theorem 4, when r = 2, n = 2p+1 or n = 2p+3.

for every i between 1 and r − 1.
We have seen earlier that if z r-covers x ∈ V0 and not y ∈ V0, then

z ∈ Vr ∪ Vr−1. The same is true for a vertex r-covering x ∈ V0 and not a, or
a vertex r-covering a and not x ∈ V0. This implies that

|V0 ∪ {a}| = δ + 1 ≤ 2|Vr−1∪Vr|. (6)

Therefore, using (5) and (6), we obtain

1+δ+(r−2)dlog3(δ+1)e+dlog2(δ+1)e ≤ |V0∪{a}|+
r−2
∑

i=1

|Vi|+|Vr−1∪Vr| ≤ n,

which shows that any degree in the graph satisfies inequality (2). 4

We now give constructions where there is one vertex with large degree. We
distinguish between the cases r = 2 and r ≥ 3, because in the case r = 2,
we are able to determine the exact value for Fr,n(∆max).

Theorem 4 Let n ≥ 5 and p ≥ 2 be two integers. If 2p + 1 ≤ n ≤ 2p + p,
then there exists a connected 2-twin-free graph with n vertices and maximum
degree n − p − 1.

Proof. Giving overlapping intervals for n makes the proof easier. We shall
see in the next theorem that this construction is optimum.

We start from a basic construction for n = 2p + 1, where G = (V,E)
with

V = {x} ∪ {yi, zi : 1 ≤ i ≤ p} and E = {{x, yi}, {yi, zi} : 1 ≤ i ≤ p},

see the left part of Figure 2. We set V0 = {yi : 1 ≤ i ≤ p} and V1 = {zi :
1 ≤ i ≤ p}. This construction is easily seen to give a 2-twin-free graph, and
the degree of x is p = n − p − 1.

If n = 2p + 2, then we can add a vertex y0 in V0, adjacent only to x.
The resulting graph is still twin-free, and the degree of x becomes equal to
p + 1 = n − p − 1.
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Similarly, when increasing n up to n = 2p + p, we can successively add
vertices yp+1, yp+2, . . . , in V0, provided that each new vertex yj , j > p, is
linked to x and to a subset of V1 which is different from V1 and different
from B1(yi)∩V1 for any yi added so far in V0 (1 ≤ i < j). See the right part
of Figure 2 when n = 2p + 3. The degree of x is equal to |V0| = n − p − 1,
and we now show that the graph is 2-twin-free.

Two vertices zi, zj ∈ V1, 1 ≤ i < j ≤ p, cannot be twins, since yi is
within distance two from zi and not from zj.

Two vertices zi ∈ V1, yj ∈ V0, 1 ≤ i ≤ p, 0 ≤ j ≤ n − p − 1, cannot be
twins, since any vertex yk, k 6= i, 0 ≤ k ≤ p, is within distance two from yj

and not from zi.
Two vertices yi, yj ∈ V0, 0 ≤ i < j ≤ n − p − 1, cannot be twins, since

B2(yi) ∩ V1 = B1(yi) ∩ V1, B2(yj) ∩ V1 = B1(yj) ∩ V1, and, by construction,
these two sets are different.

Lastly, B2(x) is the set of all vertices, and since we forbade B1(y)∩V1 =
V1 for any y ∈ V0, x is the only vertex in this case.

So the graph is 2-twin-free, and we see that we can have up to 2p − 1
vertices in V0, leading to all the values of n comprised between 2p + 1 and
2p + p. 4

We now show that this constructive lower bound is the exact value.

Theorem 5 For all p ≥ 2 and n ≥ 5, if 2p−1 + p− 1 < n ≤ 2p + p, then we
have: F2,n(∆max) = n − p − 1.

Proof. For alleviation of notation, in this proof we denote F2,n(∆max)
simply by F2. By Theorem 3, for all n ≥ 5, we have:

F2 + dlog2(F2 + 1)e ≤ n − 1. (7)

We assume that n satisfies the conditions of Theorem 5, and that F2 ≥ n−p.
The former implies that

n − p + 1 > 2p−1 = (2p−1 + p − 1) − p + 1, (8)

the latter that

F2 + dlog2(F2 + 1)e ≥ (n − p) + dlog2(n − p + 1)e. (9)

By (8), dlog2(n−p+1)e ≥ p, and, plugging this inequality into (9), we obtain
F2 + dlog2(F2 + 1)e ≥ n, contradicting (7) and proving that F2 ≤ n− p− 1.
Combining this result with Theorem 4, we obtain our claim, provided that
n ≥ 2p + 1. Since n > 2p−1 + p− 1, this is always true, unless p = 2; in this
case however, the fact that n ≥ 5 implies that n ≥ 2p + 1. 4

We now show various constructions for r ≥ 3, giving lower bounds which
will be compared to the upper bound given by Theorem 3. Note that the
cases r = 3 and r > 3 are somewhat different.
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The intervals given in the following theorem are mutually exclusive and
give, for each value of r ≥ 3, all the values of n starting from 2r + 1.

Theorem 6 (a) We consider the case r = 3.
(a1) For n = 7, 8, we have: F3,n(∆max) ≥ n − 5;
(a2) for n = 9, 10, 11, we have: F3,n(∆max) ≥ n − 6;
(a3) for n = 12, 13, we have: F3,n(∆max) ≥ n − 7;
(a4) for 14 ≤ n ≤ 18, we have: F3,n(∆max) ≥ n − 8;
(a5) for 19 ≤ n ≤ 25, we have: F3,n(∆max) ≥ n − 9;
(a6) for 26 ≤ n ≤ 33, we have: F3,n(∆max) ≥ n − 10.

For all p ≥ 4,
(a7) if 3p−1+2p−1 ≤ n ≤ 4×3p−2+2p+2, then F3,n(∆max) ≥ n−3p+1;
(a8) if 4×3p−2+2p+3 ≤ n ≤ 2×3p−1+2p+1, then F3,n(∆max) ≥ n−3p;
(a9) if 2 × 3p−1 + 2p + 2 ≤ n ≤ 3p + 2p, then F3,n(∆max) ≥ n − 3p − 1.

(b) For all p ≥ 2, we define λ(p) = 1 if p = 2, 0 otherwise, and µ(p) = 1 if
p = 3, 0 otherwise. For all r ≥ 4, n ≥ 2r + 1, and p ≥ 2,

(b1) if n = 2r + 1, then Fr,n(∆max) = 2;
(b2) if n = 2r + 2, then Fr,n(∆max) = 3;
(b3) if p = 3 and pr + 8 ≤ n ≤ pr + 9, or if p ≥ 4 and 3p−1 + pr − 1 ≤

n ≤ 4 × 3p−2 + p(r − 2) + 2, then Fr,n(∆max) ≥ n − rp + 1;
(b4) if 4× 3p−2 + p(r − 2) + 3 + µ(p) ≤ n ≤ 2× 3p−1 + p(r − 2) + 3, then

Fr,n(∆max) ≥ n − rp;
(b5) if 2×3p−1+p(r−2)+4 ≤ n ≤ 3p+p(r−2)+λ(p), then Fr,n(∆max) ≥

n − rp − 1;
(b6) if 3p + p(r − 2) + 1 + λ(p) ≤ n ≤ 3p + pr + 1, then Fr,n(∆max) ≥

n − rp − 2;
(b7) if 3p + pr + 2 ≤ n ≤ 3p + (p + 1)r − 2, then Fr,n(∆max) ≥ 3p − 1.

Sketch of proof. If n = 2r + 1, then it is not difficult to see that the only
connected r-twin-free graph is the path P2r+1, which has maximum degree
two. Thus claim (b1) is true.

If n = 2r + 2, then k = 4 does not satisfy inequality (2) in Theorem 3.
On the other hand, a degree equal to three is possible, for instance in the
following r-twin-free graph: G = (V,E), where V = {xi : 1 ≤ i ≤ 2r + 2}
and E = {{xi, xi+1} : 1 ≤ i ≤ 2r} ∪ {{xr+1, x2r+2}}. Thus claim (b2) is
true.

Now we give a basic construction, for n comprised between pr + 3 and
3p+pr+1, in which there is a vertex with degree n−pr−2. This construction
is easy to understand and will be the starting point for many variations. We
start with n = pr + 3, and build the graph G = (V,E), where

V = {x, y1, w} ∪ {ai,j : 1 ≤ i ≤ p, 1 ≤ j ≤ r},

E = {{x, y1}} ∪ {{y1, ai,1}, {w, ai,r} : 1 ≤ i ≤ p} ∪ {{ai,j , ai,j+1} :
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Figure 3: A first construction in the proof of Theorem 6.

1 ≤ i ≤ p, 1 ≤ j ≤ r − 1},

see Figure 3. It is rather straightforward to check that this graph is r-twin-
free, because it mainly consists of chordless cycles of length 2r + 2. We set
I0 = {1, 2, . . . , p}, V0 = {y1}, and Vj = {ai,j : i ∈ I0}, for j = 1, 2, . . . , r.

In a way similar to the proof of Theorem 4, we can progressively add
vertices in V0, all adjacent to x, and keep the graph twin-free while increasing
the degree of x. First, we add a vertex y0 which is linked to x only. Then
we add vertices yJ,J , where the sets J are distinct subsets of I0 (different
from I0 and from the empty set), and where yJ,J is linked to x and to the
vertices aj,1 ∈ V1 for j ∈ J . With this notation, we see that y1 = yI0,I0 and
y0 = y∅,∅.

Once we have all possible vertices yJ,J in V0, we can add even more
vertices to V0: we denote these vertices by yI,J , where J ( I ⊆ I0, (I, J) 6=
(I0, ∅), and the couple (I, J) has not been used already; any new vertex yI,J

is linked to x, to yI,I , and to the vertices aj,1, for j ∈ J . See Figure 4 for an
illustration.

We claim that all the successive graphs obtained from the graph given in
Figure 3 by adding, one by one, vertices yI,I , then, one by one, vertices yI,J ,
as described above, are r-twin-free, have a number of vertices n comprised
between pr+3 and 3p+pr+1, and that the degree of x is equal to n−pr−2.

First, a vertex in V0 ∪ {x} and a vertex in V1 ∪ . . . ∪ Vr ∪ {w} cannot
be twins, because the latter is r-covered by w and the former is not. It
is equally easy to see that w cannot be the twin of any vertex. And x
has no twins either: the only candidate would be a vertex in V0 which is
linked to x and to the only vertex in V0 which is linked to all the vertices
in V1, namely, yI0,I0 ; but precisely, we mentioned that we forbid the couple
(I, J) = (I0, ∅). So all we have to check is that there are no twins inside V0,
or inside V1 ∪ . . . ∪ Vr.
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sets I and J in V1 stand for {ai,1 : i ∈ I} and {ai,1 : i ∈ J}, respectively.

It is quite straightforward to notice that for any vertex yI,J ∈ V0, where
we allow I = J , we have:

Br(yI,J) = {x}∪V0∪. . .∪Vr−2∪
(

Vr−1∩{ai,r−1 : i ∈ I}
)

∪
(

Vr∩{ai,r : i ∈ J}
)

,

i.e.,

Br(yI,J ) = {x} ∪ V0 ∪ . . . ∪ Vr−2 ∪ {ai,r−1 : i ∈ I} ∪ {ai,r : i ∈ J}. (10)

By the successive choices for the couples (I, I) or (I, J), these sets are all
different, and therefore there are no twins inside V0.

Two vertices ai,j ∈ Vj and ai′,j′ ∈ Vj′ (i 6= i′) are not twins because
ai′,r−j+1 r-covers ai′,j′ and not ai,j ; and two vertices ai,j ∈ Vj and ai,j′ ∈ Vj′

(j 6= j′) are not twins because if i′ 6= i, then ai′,r−j+1 r-covers ai,j′ and
not ai,j . This is easily understood if one sees any such two vertices as
belonging to a chordless cycle of length 2r + 2 (containing w and a vertex
in V0, for instance y1 = yI0,I0). We can now conclude that our graph is
twin-free.

How many vertices can we have? In V0, we put vertices yI,J , where
J ⊆ I ⊆ I0, with (I, J) 6= (I0, ∅). Therefore V0 can contain up to

(

p
∑

k=0

(

p

k

)

2k
)

− 1 = (2 + 1)p − 1 = 3p − 1

vertices, and n can be as large as 3p + pr + 1. In all cases, the degree of x
is n − pr − 2.

This ends the description of our basic construction, and proves the penul-
timate claim, (b6), in Theorem 6, since pr + 3 ≤ 3p + p(r − 2) + 1 for all
p ≥ 2.
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Figure 5: The particular case n = 2r + 6.

We denote by G(n) = (V (n), E(n)) the graph obtained, with n ranging
between pr + 3 and 3p + pr + 1.

There is a first trivial modification to G(n), which works best when n =
3p + pr + 1: just add a “tail” to w, that is, a path z1, z2, . . ., with z1 linked
to w. The degree of x remains the same, equal to 3p − 1. This proves the
last claim, (b7), in Theorem 6, since the tail can be as long as necessary.

Slightly more difficult is to try to remove the vertex w. If we remove w
from G(3p+pr+1), then there are twins: the sets Br(ai,1), i ∈ I0, consist
of all vertices except {aj,r : j ∈ I0 \ {i}}, and if we compare to (10),
which still holds after the removal of w, we see that Br(ai,1) = Br(yI0,{i}).

Therefore, in the basic construction of G(n), we are led to forbid the ver-
tices yI0,{i}, i ∈ I0. Similarly, the sets Br(ai,2) consist of all vertices except
{aj,r, aj,r−1 : j ∈ I0 \ {i}} when r ≥ 4, whereas, when r = 3, in addition the
vertex y∅,∅ does not belong to any set Br(ai,2). We see that in the former
case, Br(ai,2) = Br(y{i},{i}), and we are moreover led to banish the ver-

tices y{i},{i}. In conclusion, we modify G(3p+pr+1) by removing the vertex w,
but forbidding the p vertices yI0,{i} if r = 3, or the 2p vertices yI0,{i}, y{i},{i}
if r ≥ 4; we leave it to the reader to check that the new graph is indeed
twin-free. If r = 3 (respectively, r ≥ 4), this graph has 3p +2p (respectively,
3p +(r−2)p) vertices, the degree of x is 3p−p−1 = n−3p−1 (respectively,
3p − 2p − 1 = n − rp − 1). Obviously, more vertices yI,J can be removed,
down to pr+2. This proves claim (a9), since 3p+2 ≤ 2×3p−1+2p+2 for all
p ≥ 4, and claim (b5) (except for λ(p) = 1, i.e., p = 2 and n = 2r +6), since
pr + 2 ≤ 2× 3p−1 + p(r − 2) + 4 for all p ≥ 2. When n = 2r + 6, we use the
special construction given by Figure 5, where x has degree 5 = n − 2r − 1;
we leave the checking to the reader.

Still more difficult are the proofs of the remaining claims, of which we
only give a sketch.

One idea is to remove the vertex w and merge two vertices, a1,r and a2,r,
into one, see Figure 6(a). Then of course, vertices have to be removed in V0,
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Figure 6: Different ways of contracting vertices in the proof of Theorem 6.

or, equivalently, couples (I, J) must be forbidden. This is where we drop the
delicate details, only to mention that the set V0 can have up to 2×3p−1−p+1
vertices if r = 3 and up to 2× 3p−1 − 2p + 3 vertices if r ≥ 4. In the former
case, the graph has between 3p + 1 and 2 × 3p−1 + 2p + 1 vertices, in the
latter case, it has between rp + 1 and 2 × 3p−1 + (r − 2)p + 3 vertices, and
in both cases x has degree n − rp, which establishes claims (a8) and (b4).

Another idea is, after removing w, to merge two vertices twice, namely,
a1,r and a2,r on the one hand, and a3,r and a4,r on the other (so necessarily,
p ≥ 4), see Figure 6(b). This leads to graphs with a number of vertices
ranging between 3p and 4 × 3p−2 + 2p + 2 if r = 3, or between pr and
4×3p−2 +p(r−2)+2 if r ≥ 4. In both cases, x has degree n− rp+1, which
treats claim (a7) and the second part of claim (b3).

When p = 3 and r ≥ 4, it is possible to merge the three vertices a1,r,
a2,r, and a3,r into one, see Figure 6(c), to obtain the first part of claim (b3).

Finally, claims (a1)–(a6) are shown using the same kinds of construc-
tions. There is no point describing these constructions here. One of the
difficulties, as for the previous constructions, is to find the most efficient
balance between the number of vertices in Vr and in V0. 4

Tables 7 and 8 give the results obtained by Theorems 3 and 6, for r = 3, 4, 5
and 10 and 2r + 1 ≤ n ≤ 66, as well as for some larger values of n.

Note that we have the exact value of Fr,n(∆max) for infinitely many
values of n and r ; for instance, if k = 3p − 1, p ≥ 1, then (2) in Theorem 3
is satisfied by k and not by k + 1 for r ≥ 2 and n between

A = 3p + pr − (2p − dp log2 3e) and B = 3p + pr + r − 2 − (2p − dp log2 3e),

and Fr,n(∆max) ≤ 3p − 1 for these values. On the other hand, using Theo-
rem 6(b7), and 6(b6) with n = 3p + pr + 1, shows that Fr,n(∆max) ≥ 3p − 1
for r ≥ 4 and n between

C = 3p + pr + 1 and D = 3p + pr + r − 2.
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n r = 3 r = 4 r = 5 r = 10 n r = 3 r = 4 r = 5 r = 10

7 2 37 26–27 23–25 20–22 8

8 3 38 27–28 24–26 21–23 9

9 3 2 39 28–29 25–26 22–24 10

10 4 3 40 29–30 26 23–25 10–11

11 5 3 2 41 30–31 26–27 24–26 11–12

12 5–6 4 3 42 31 27–28 25–26 12–13

13 6–7 5 3 43 32 28–29 26 13–14

14 6–7 5–6 4 44 33 29–30 26 14–15

15 7–8 5–7 5 45 34 30–31 26–27 15

16 8 6–7 5–6 46 35 31 27–28 15–16

17 9 7–8 5–7 47 35–36 31–32 28–29 16–17

18 10 8 6–7 48 36–37 32–33 29–30 17–18

19 10–11 8 7–8 49 37–38 33–34 30–31 18–19

20 11–12 9 8 50 38–39 34–35 31 19–20

21 12–13 10 8 2 51 39–40 35–36 31–32 20–21

22 13–14 10–11 8 3 52 40–41 36–37 32–33 20–22

23 14–15 11–12 9 3 53 41–42 37–38 33–34 21–23

24 15 12–13 10 4 54 42–43 38–39 34–35 22–24

25 16 13–14 10–11 5 55 43–44 39–40 35–36 23–25

26 16–17 14–15 11–12 5–6 56 44–45 40–41 36–37 24–26

27 17–18 15 12–13 5–7 57 45–46 41–42 37–38 25–26

28 18–19 15–16 13–14 6–7 58 46–47 42–43 38–39 26

29 19–20 16–17 14–15 7–8 59 47–48 43–44 39–40 26

30 20–21 17–18 15 8 60 48–49 44–45 40–41 26

31 21–22 18–19 15–16 8 61 49–50 45–46 41–42 26

32 22–23 19–20 16–17 8 62 50–51 46–47 42–43 26

33 23–24 20–21 17–18 8 63 51–52 47–48 43–44 26

34 23–25 20–22 18–19 8 64 51–53 48–49 44–45 26

35 24–26 21–23 19–20 8 65 52–54 49–50 45–46 26–27

36 25–26 22–24 20–21 8 66 53–55 49–51 46–47 27–28

Figure 7: Some lower and upper bounds on the maximum degree.

n r = 3 r = 4 r = 5 r = 10

1 000 979–982 972–975 965–968 931–933

10 000 9 973–9 976 9 964–9 967 9 955–9 958 9 910–9 913

20 000 19 971–19 974 19 961–19 964 19 951–19 954 19 901–19 904

100 000 99 967–99 971 99 956–99 960 99 945–99 949 99 890–99 894

Figure 8: Some lower and upper bounds on the maximum degree.
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Now we have: A ≤ C,B ≤ D, and, for r ≥ 3 + 2p − dp log2 3e: C ≤ B.
Therefore, for r ≥ 3 + 2p − dp log2 3e and n between C and B, the value of
Fr,n(∆max) is 3p − 1.

For instance we see in Table 7 that F10,n(∆max) = 26 for n between
58 and 64. Another example, not from the tables, is p = 10, r = 100,
60050 ≤ n ≤ 60143, and F100,n(∆max) = 59048.

We conclude this section by grossly approximating the lower and upper
bounds given by Theorems 6 and 3, then their difference, for r ≥ 3 fixed
and n sufficiently large.

Inequalities in Theorem 6, where p is approximately equal to log3 n, show
that Fr,n(∆max) is approximately greater than

n − r log3 n. (11)

On the other hand, we can estimate the greatest integer k satisfying (2) in
Theorem 3 by approximating it with the greatest k′ such that

k′ + (r − 2) log3 k′ + log2 k′ ≤ n,

which, if we set s = 2 − log2 3 (the value of which is around 0.4), reads

k′ + (r − s) log3 k′ ≤ n.

Now let k1 = n− (r − s) log3 n and k2 = n− (r − s) log3 n + (r − s). We see
that

k1 + (r − s) log3 k1 ≤ k1 + (r − s) log3 n = n,

which shows that k′ ≥ k1. And, if r is fixed and n grows (and even with
weaker constraints actually), then log3 k2 ≥ log3 n − 1; therefore,

k2 + (r − s) log3 k2 ≥ k2 + (r − s) log3 n − (r − s) = n,

so k′ ≤ k2. This shows that k′, hence k, behaves approximately like

n − (r − s) log3 n, (12)

which, comparing to the approximate lower bound n − r log3 n, shows that
the difference between lower and upper bounds can be roughly estimated
by 0.4×log3 n (independent of r). This could already be empirically observed
for the large values of n given in Table 8.

3 Conclusion

We have a fairly good estimation of Fr,n(∆max). The table below recapitu-
lates some of the results obtained, for r = 1, r = 2, and r ≥ 3.
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r fr(∆max) fr,n(∆max) Fr,n(∆max)

1 2 [Th. 1] 2 [Th. 1] n − 1 [Th. 2]
2 2 [Th. 1] 2 [Th. 1] n − p − 1 for 2p−1 + p − 1 < n ≤ 2p + p [Th. 5]

≥ 3 2 [Th. 1] 2 [Th. 1] & n − r log
3
n [Th. 6 with (11)]

. n − (r − 0.4) log
3
n [Th. 3 with (12)]
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