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Abstract :

Subspace methods are a powerful tool to recover unknown filters by looking at the second order statistics of various signals
originating from the same source (also called a SIMO problem). An extension to the multiple source case is also possible
and has been investigated in the literature.

In this report, we show how the blind superresolution problem can be solved by this tool. We first present the problem of
superresolution as a multiple input multiple output (MIMO) one. We show that the subspace method can not be used, as is,
to recover the filters affecting each image, and we present two possible solutions, based on the statistical characteristics of
the images to solve this problem. Experiments are shown which validate these ideas.

Résumé:

Les méthodes de sous-espaces sont un outil puissant d’identification aveugle des filtres par l’étude de statistiques du second
ordre de plusieurs sorties issues d’une même source (problème dit SIMO). L’extension de ce problème au cas de sources
multiples peut être envisagée, et a été développée dans la littérature.

Dans ce rapport, nous montrons comment ces méthodes permettent de résoudre le problème de superrésolution aveugle.
Nous présentons tout d’abord le problème de superrésolution comme un problème à entrées multiples et à sorties multiples
(MIMO). Nous montrons que la méthode de sous-espace ne peut être utilisée seule pour retrouver les filtres affectant chaque
image, et nous proposons deux solutions possibles utilisant les propriétés statistiques des images pour résoudre le problème.
Nous présentons des résultats expérimentaux qui valident notre approche.
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Chapter 1

Introduction

Blind superresolution is the task of estimating a high-resolution restored image from a set of low-resolution images, blurred
by unknown filters and noisy. We propose a blind superresolution algorithm in three steps: first a registration step, then
a filter identification step using subspace methods, and finally a restoration step : a regularized inversion of the observed
images.
The superresolution algorithm first requires a registration step when the set of frames comes from a video with camera
motion, or from several sensors with different perspectives. The registration step consists in mapping the observed frames
into the coordinate system of a reference one.
Then the filters are identfied using subspace methods. The subspace method has been introduced by [1] and further inves-
tigate in a multitude of papers [2, 3, 4, 5]. The idea of the method is to observe multiple outputs of various unknown filters
having all the same input (namely SIMO system). In this case, the second order statistics of the received signals carry
enough information to allow the recovery of the filters and furthermore the recovery of the original signal.
The main application that authors had in mind was to conceive wireless protocols in a varying environment, in which no
training sequence have to be transmitted. Indeed, in such an environment, the filters that affect the signal can change and
have to be re-learned very often. Being able to learn them without the use of a training signal would be a great asset and
could save an important amount of bandwidth.
Extensions to the case where a multitude of signals are transmitted through the same channel (namely MIMO systems)
have been investigated [2, 3]. In this late approach, a crucial step is the use of a source separation technique.

We investigate the possibility of using the subspace method in the context of image superresolution. We extend subspace
methods to image superresolution : the observed low-resolution images are the outputs of a high-resolution original image
acquired through various filters, and then subsampled. The problem can be modeled as a multiple-input multiple-output
system (MIMO).

Subspace methods applied to MIMO systems need an additional source separation step. Source separation methods pre-
viously investigated [2, 3] are not suitable in our case, as the inputs of the system are strongly correlated. We propose to
minimize a functional to evaluate the mixing matrix.

This report is divided as follows:
Chapter 2 presents the registration step.
Chapter 3 presents the subspace method for 1D signal and images, in order to provide the reader with a self contained
overview.
Chapter 4 states the problem of superresolution as a multiple input multiple output (MIMO) one, in which the multiple
inputs are the various subsampled versions of the image (they differ by a translation). This presentation allows us to
understand that:

• The separation of sources is impossible in the case of superresolution because the sources are very correlated with
each other and have exactly the same statistics (Section 4.2).

• The subspace method provides us with a mixture of the actual filters. Therefore, we have to implement a method to
unmix and recover the actual filters. In the same time, the subspace method allows us to restrain the search for the
filters to a relatively small affine space. In Section 4.3, we introduce our method to disambiguate the results of the
subspace method and recover the actual filters.

In Chapter 5, we provide the restoration step based on the minimization of a functional including a data driven term and a
regularization one.
Finally, Chapter 6 presents experimental results for both filters recovery and image restoration based on this recovery.
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Chapter 2

Frame registration

The superresolution algorithm first requires a registration step when the different frames comes from a video with camera
motion, or from several sensors with different perspectives. The registration step consists in mapping the observed frames
into the coordinate system of a reference one, usually the first or the middle one. In order to register the frames, we need
to estimate the motion between each frame and a frame of reference, more precisely, the camera motion between these
frames, that is to say the dominant motion (small moving objects are excluded). We choose to model the camera motion by
an affine parametric model, as this is the best trade-off between accuracy and complexity. This model is robustly estimated
from a pre-estimated motion vector field.

2.1 Camera motion estimation
The camera motion is defined as the main motion between two frames. When a video contains moving objects, these
objects are assumed to be small enough so that the definition is still valid.

Motion estimation between two frames depends mainly on two choices :

• the motion model : dense or parametric,

• the motion estimation method : feature-based or direct.

A parametric motion model is well adapted for estimating a camera motion. We choose a 6 parameter motion model, as it
is a good tradeoff between complexity and accuracy [6].

We propose a camera motion estimation between two frames in two steps:

• first a block-matching algorithm provides a field of motion vectors between the frames,

• and then a minimization algorithm searches for the parametric model fitting at best the set of motion vectors.

2.1.1 Motion estimation : block-matching
A block-matching algorithm proceeds as follows :

• the frames are first partitioned into blocks,

• then, for each block of one frame, we look for the matching block in the other frame, i.e the block which fits at best,
following a correlation criterion (see figure 2.1).

Among all the existing block-matching methods, let us cite the exhaustive block-matching, which compares the block in
the first frame with all the other blocks in the research window of the second frame. This exhaustive research ensures to
find the global minimum of the correlation criterion in the research window, but for a high computational cost.
Other block-matching methods try to reach the best tradeoff between computational cost and accuracy of the estimation.
The precursor three-step algorithm [7] looks for a local minimum in a 8-neighborhood far from 4 pixels, then looks for the
local minimum around this first local minimum in a 8-neighborhood far from 2 pixels, and finally in a 8-neighborhood far
from 1 pixel.
Zhu et al. [8] propose two iterative algorithms using different research patterns, for example diamond patterns, instead of
squared ones as in the three-step search. These algorithms try to improve the accuracy of the estimation over the three-step
search, and to reduce the computational cost in the same time.
However, although these methods are very attractive due to their low computational cost, they can not ensure to find the

7
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Figure 2.1: Backward motion estimation

global minimum and are therefore less accurate than an exhaustive search.

The accuracy of a block-matching algorithm depends also on several parameters :

• the correlation criterion : we use the zero-mean normalized sum of squared differences (ZNSSD), as this criterion is
robust to affine variations of intensity;

znssd(vt,t−1) =

∑
xt∈Bt

(It−1(xt + vt,t−1)− Īt−1(xt + vt,t−1)− It(xt) + Īt(xt))2√∑
xt∈Bt

(It−1(xt + vt,t−1)− Īt−1(xt + vt,t−1))2
√∑

xt∈Bt
(It(xt)− Īt(xt))2

(2.1)

where Ī(x) is the mean value of I over block B.

• the size of the search window : all block-matching methods look for the matching block in a limited window of
research, defined by (or defining) a maximal displacement. The search window has to be largest than the camera dis-
placement, but smaller as possible, as an increase of the search window size increases dramatically the computational
cost;

• the size of the blocks : usually blocks are 8× 8 or 16× 16;

• the interpolation : to provide a sub-pixel accuracy, the images are interpolated.

The block-matching algorithm provides a set of vectors, one for each block of the image, and the next step consists in
estimating the parameters of the motion model which best fit these motion vectors.

2.1.2 Robust camera motion model
The camera motion between the current frame, denoted It, and the previous one, denoted It−1, is represented by an affine
model :

At,t−1 =
(
a1 a2

a3 a4

)
and Tt,t−1 =

(
b1
b2

)
(2.2)

Let xt denotes a pixel in frame It and xt−1 its matching pixel in frame It−1, provided by the block-matching algorithm,
xt is, for example, the center of a block of It.
The motion vector between these two pixels is denoted vt,t−1 and we have :

xt−1 = xt + vt,t−1 (2.3)

The camera motion model must fit at best all the different displacements of each block belonging to frame It. We aim
to minimize the difference between the image of the pixel xt following the motion model, i.e. At,t−1xt + Tt,t−1, and its
matching pixel xt−1 estimated by block-matching, for each xt center of a block of It.
Let us note xn

t the center of the nth block of It, where n = 1 : N if It is partitioned in N blocks.
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The estimation of the camera motion model can be modeled as the minimization of the following criterion:

N∑
n=1

‖xn
t−1 −At,t−1xn

t − Tt,t−1‖2 (2.4)

As we use the quadratic norm, the solution of this problem is well-known .

Indeed, if the difference is written:

xn
t−1 −At,t−1xn

t − Tt,t−1 = xn
t−1 −Mn

t p (2.5)

where

p = (a1 a2 a3 a4 b1 b2)T (2.6)

is the vector of the motion model parameters, and

Mn
t =

(
(xn

t )i (xn
t )j 0 0 1 0

0 0 (xn
t )i (xn

t )j 0 1

)
(2.7)

where xn
t = ((xn

t )i, (xn
t )j)T , for n = 1 : N ,

N∑
n=1

‖xn
t−1 −At,t−1xn

t − Tt,t−1‖2 =
N∑

n=1

‖xn
t−1 −Mn

t p‖2 (2.8)

Minimization of equation (2.4) is equivalent to minimization of:

‖X −Mp‖2 (2.9)

where

X =

x1
t
...

xN
t

 and M =

M1
t

...
MN

t

 (2.10)

the solution of equation (2.4) is given by :

p = (MTM)−1MTX (2.11)

However, such an estimator is not robust to errors due to moving objects, or to matching outliers.

To improve the accuracy of the motion model estimation, we use an M-estimator ϕ. The camera motion model minimizes
the following criterion : ∑

xt∈It

ϕ(‖xt−1 −At,t−1xt − Tt,t−1‖) (2.12)

Thanks to M-estimators, the effects of an high dissimilarity ‖xt−1 − At,t−1xt − Tt,t−1‖ on the motion model estimation
are less important. A high dissimilarity is mainly due to a a moving object or a wrong matching, these pixels are so-called
outliers. The less the outliers are taken into account, the more robust is the estimation of the motion model. By allocating
small weights to the outliers, M-estimators improve the model motion estimation and make it more robust to errors.
The main drawback of such a weighting function is that the differentiation of criterion (2.12) is no more straightforward.
We use the following theorem, demonstrated by Charbonnier et al.[9], to provide the minimization of criterion (2.12) :

Theorem 2.1.1 Let ϕ be a potential function that satisfies :

1. ϕ continuously differentiable.

2. ϕ(r) ≥ 0 ∀r with ϕ(0) = 0.

3. ϕ increasing on <+.

4. ϕ(r) = ϕ(−r).

5. ϕ′(r)/2r continuous and strictly decreasing on [0,+∞).
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6. limr→+∞
ϕ′(r)
2r = 0.

7. limr→0+
ϕ′(r)
2r = M, where 0 < M < +∞.

Then :

1. there exists a strictly convex and decreasing function ψ, ψ : (0,M ] → [0, β) where :

β = lim
r→+∞

(
ϕ(r)− r2

ϕ′(r)
2r

)
such that :

ϕ(r) = inf
0<w≤M

(wr2 + ψ(w))

2. For every fixed r, the value wr for which the minimum is reached, i.e. such that :

inf
0<w≤M

(wr2 + ψ(w)) = (wrr
2 + ψ(wr)),

is unique and given by :

wr =
ϕ′(r)
2r

You can find a demonstration of this theorem in [9, 10].

Thanks to theorem 2.1.1 we know that minimize criterion (2.12) is equivalent to minimize the semi-quadratic criterion :∑
n=1:N

(wn‖xn
t−1 −At,t−1xn

t − Tt,t−1‖2 + ψ(wn)) (2.13)

where

wn =
ϕ′(‖xn

t−1 −At,t−1xn
t − Tt,t−1‖)

2 ∗ ‖xn
t−1 −At,t−1xn

t − Tt,t−1‖
(2.14)

The minimization algorithm consists of iteratively estimating :

1. Motion model parameters At,t−1 and Tt,t−1 by minimizing equation (2.13), for a given wn

The optimal parameter vector is given by:

p = (MTWM)−1MTWX where W = diag(wn)n=1:N (2.15)

2. Weights wn following (2.14) for given model parameters

We choose Geman and McClure’s [11] potential function :

ϕ(r) =
r2

σ2 + r2

The weighting function associated to Geman and McClure’s potential function is

w(r) =
ϕ′(r)
2r

=
σ2

(σ2 + r2)2

See figure 2.2 for an illustration of Geman and McClure’s potential and weighting functions.
Let us note that Geman and McClure’s function satisfies the conditions of theorem 2.1.1.

The camera motion estimation has been developed between frames It and It−1, but it can be applied as well between the
current frame and a reference one.
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(a) potentialfunction (b) weightingfunction

Figure 2.2: Geman and McClure’s weighting function for σ2 = 1

Figure 2.3: backward registration between frames It and It−1

2.2 Camera motion compensation
The registration of the current frame consists in compensating the camera motion i.e. in mapping the current frame into the
coordinate system of a reference one. This can be done in a forward or backward way.

In a forward compensation, we estimate, for each pixel xt−1 in frame It−1 its location xcomp in registered frame Icomp
t−1 :

xcomp = At−1,txt−1 + Tt−1,n (2.16)

where At−1,t and Tt−1,t denote the camera motion model between frames It−1 and It.

We assign to pixel xcomp the value of its matching pixel xt−1:

Icomp
t−1 (xcomp = At−1,txt−1 + Tt−1,t) = It−1(xt−1) (2.17)

The main drawback of the forward compensation, is that it does not ensure that we assign a value at each pixel of the regis-
tered frame, and the registered frame may contain holes. On the other hand, several pixels of frame It−1 may be registered
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in the same location of Icomp
t−1 , leading to overlapping areas.

In a backward compensation, we assign, at each pixel xcomp in frame Icomp
t−1 the value of its matching pixel xt−1 in frame

It−1, pixel whose coordinates are given by :

xt−1 = At,t−1xcomp + Tt,t−1 (2.18)

where At,t−1 and Tt,t−1 denote the camera motion model between It and It−1.

We deduce that:

Icomp
t−1 (xcomp) = It−1(xt−1 = At,t−1xcomp + Tt,t−1) (2.19)

In a backward compensation, we ensure that each pixel of the registered frame has a value, an this value is unique. How-
ever, two pixels of the registered frame may have the same matching pixel in It−1, resulting in redundancies.
Figure 2.3 shows a backward registration, as implemented in our algorithm.

The registration algorithm has been developed between the frames It and It−1, but it can be implemented as well between
frames It and Iref .



Chapter 3

Filter identification : the subspace method

In this chapter, we present the subspace method such as developed by [4] for 1D signals. This method, first introduced
by [1], considers multi-output systems. This allows the use of second order statistics of the outputs, instead of higher
order statistics, to identify blindly the filters. This method, under some mild assumptions, estimates the noise and signal
subspaces from the eigenvalue decomposition of the autocorrelation matrix of the outputs, and exploits the orthogonality
between these subspaces to identify the filter coefficients.
First, we state the problem for 1D signals and extend the formulation to images, then, we develop the subspace method for
images. We refer the reader to [4] for a presentation of the subspace method for 1D signals.

3.1 Problem statement

3.1.1 1D signals
Let us consider L signals X l as noisy outputs of an unknown system driven by an unknown input D. We aimed to identify
the system function H blindly, i.e. using only the outputs of the system.
The outputs are described by a convolution model:

X l(.) = H l(.) ∗D(.) +B(.) (3.1)

where ∗ denotes the convolution operator, and B is a white zero-mean noise.

Using a matrix formulation, we can write :

X = HD +B (3.2)

where

• X stacks the L output signals of size (N, 1) :

X =

X
1

...
XL

 =
(
x1

0 . . . x1
N−1 . . . xL

0 . . . xL
N−1

)T
(3.3)

• H stacks the L Toeplitz matrices Hl :

H =

H
1

...
HL

 (LN,N +M − 1) (3.4)

where Hl, for l = 1 to L, is the filtering matrix associated to filter H l of size (M, 1) :

H l = [hl
0 . . . h

l
M−1]

T (3.5)

i.e. :

Hl =

 hl
0 . . . hl

M−1 0
. . . . . .
0 hl

0 . . . hl
M−1

 (N,N +M − 1) (3.6)

• D is the unknown original signal of size (N +M − 1, 1),

• and B is a white zero-mean noise, assumed to be uncorrelated with D.

13
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3.1.2 Images
Let us consider L blurred images acquired by multiple cameras, or by a single camera through different conditions (focus
changes, camera motion...). 1

.

.

.
I

B1

X1

B2

BL

XL

h1

h2

hL

X2

Figure 3.1: Model of acquisition for single-input multiple-output system

The L observed images are modeled as noisy outputs of a FIR system H driven by an input original image D :

X = HD +B (3.7)

where :

• X stacks L observed images X l, for l = 1 to L, more precisely, a vectorized formulation of a processing windowed
area, of size (Ny , Nx), extracted from the observed images :

X l = [xl(Ny − 1, Nx − 1) xl(Ny − 2, Nx − 1) · · · xl(0, 0)]T (3.8)

• D is a vectorized formulation of the related windowed area of the original image of size (Ny +My−1, Nx−Mx−1),

D = [d(Ny +My − 2, Nx +Mx − 2) · · · d(0, 0)]T (3.9)

• H stacks L block-Toeplitz filtering matrices Hl associated with each filters H l of size (My,Mx)

H l =

 hl(0, 0) . . . hl(0,Mx − 1)
...

...
hl(My − 1, 0) . . . hl(My − 1,Mx − 1)

 (3.10)

i.e. :

Hl =

 Hl
0 · · · Hl

Mx−1 0
. . . . . .
0 Hl

0 · · · Hl
Mx−1

 (3.11)

where Hl
j is a Toeplitz matrix of size (Ny , Ny +My − 1) associated to the jth column of H l :

Hl
j =

h
l(0, j) . . . hl(My − 1, j) 0

. . . . . .
0 hl(0, j) . . . hl(My − 1, j)

 (3.12)

Hl contains Nx rows of blocks and Nx + Mx − 1 columns of blocks of size (Ny , Ny + My − 1). H is of size
(LNyNx , (Ny +My − 1)(Nx +Mx − 1)),

• and B is a white zero-mean noise, assumed to be uncorrelated with D.
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3.2 The subspace method for SIMO systems
Let RX denotes the autocorrelation matrix of outputs X:

RX = E(XXT ) (3.13)

where E denotes the expectation operator. RX is of size (LNxNy , LNxNy).

From equation (3.2) we deduce that:
RX = HRDHT + RB (3.14)

where RD and RB denote respectively the autocorrelation matrices of the input D and of the noise B. We recall that the
noise is assumed to be uncorrelated with the input.

From now on, we make two assumptions:

1. H is full column rank, a necessary condition is :

LNyNx > (Nx +Mx − 1)(Ny +My − 1) (3.15)

2. and RD is full rank.

We deduce from equation (3.14) and thanks to these assumptions, that the signal part of autocorrelation matrix RX , i.e.
HRDHT , has rank

dH = (Nx +Mx − 1)(Ny +My − 1) (3.16)

Through an eigenvalue decomposition of RX , we obtain a subspace decomposition between the signal and noise subspaces:

• The signal subspace is spanned by the eigenvectors associated with the dH largest eigenvalues of RX

• The noise subspace, its orthogonal complement, is spanned by the eigenvectors associated with the LNxNy − dH

smallest eigenvalues of RX .

The signal subspace is also the subspace spanned by the columns of the filtering matrix H.

By orthogonality between signal and noise subspaces, we deduce that each vector of the noise subspace is orthogonal to
each column of the filtering matrix.
Let Gi denotes an eigenvector associated with one of the LNxNy − dH smallest eigenvalues of the matrix RX . The
orthogonality condition can be formulated as, for i = 0 : LNxNy − dH − 1:

GT
i H = 0(1,dH)

(1, LNyNx)(LNyNx, dH) (3.17)

where 0(1,dH) is a null vector of size (1, dH).

Since we have only an estimate of the autocorrelation matrix, the orthogonality condition is solved using a least square
method. This leads to the minimization of the quadratic form:

q(H) =
LNxNy−dH−1∑

i=0

|GT
i H|2 (3.18)

Thanks to the following structural lemma, we provide an expression of the quadratic form in terms of the filter coefficients
instead of the filtering matrix :

Lemma 1 :
GT

i H = HTGi (3.19)

You can find a proof of this lemma in [4].

In this expression, matrix Gi, for i = 0 : LNxNy − dH − 1, denotes a matrix of size (LMyMx , dH). This matrix is
constructed as follows:

• Each eigenvector Gi, for i = 0 to LNxNy − dH − 1 is partitioned into L vectors Gl
i of size (NyNx , 1).
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• Each part Gl
i can be considered as a vectorized formulation of the matrix:

Gl
i =

 gl
i(0, 0) . . . gl

i(0, Nx − 1)
...

...
gl

i(Ny − 1, 0) . . . gl
i(Ny − 1, Nx − 1)

 (3.20)

Note that we use the same notation for both the matrix form or the vectorized form of Gl
i, as the reader can easily

differentiate them by looking at the size of Gl
i in the given expression.

• Let us define block-Toeplitz matrix Gl
i as the “filtering” matrix associated to Gl

i. The term “filtering” points out that
we obtain Gl

i from Gl
i in the same way we obtain Hl from H l (see eq. (3.11) and (3.12)).

Gl
i =

 Gl
i,0 · · · Gl

i,Nx−1 0
. . . . . .
0 Gl

i,0 · · · Gl
i,Nx−1

 (3.21)

where Gl
i,j is a Toeplitz matrix of size (My , My +Ny − 1) associated to the jth column of Gl

i in the matrix form
(see eq. (3.20)):

Gl
i,j =

g
l
i(0, j) . . . gl

i(Ny − 1, j) 0
. . . . . .
0 gl

i(0, j) . . . gl
i(Ny − 1, j)

 (3.22)

Gl
i contains Mx rows of blocks and Mx +Nx − 1 columns of blocks of size (My , My +Ny − 1).

• Finally, Gi stacks the L matrices Gl
i and is of size (LMyMx, dH).

The quadratic form is now expressed in terms of the filter coefficients:

q(H) = HT QH where Q =
LNxNy−dH−1∑

i=0

GiGT
i (3.23)

The filter coefficients are identified, up to a constant, by the minimal eigenvector of Q.
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Modelization

X = HD +B X : L observed images each of size (Ny, Nx)

D : the unknown original image

H : L unknown filtering matrices

(LNyNx, dH = (Ny +My − 1)(Nx +Mx − 1))

B : white noise uncorrelated with D

Autocorrelation matrices

RX = HRDHT + RB R∗ : autocorrelation matrix of ∗

Decomposition between signal and noise subspaces

Eigenvalue decomposition of RX : {λi, Gi}

. signal subspace : dH eigenvectors (largest eigenvalues)

. noise subspace : LNxNy − dH eigenvect. (smallest eigenvalues)

Orthogonality condition

GT
i H = 0(1,dH) ∀Gi in the noise subspace

Structural lemma

GT
i H = HTGi proof of this lemma in [4]

Minimization of the quadratic form

q(H) = HT QH where Q =
∑LNxNy−dH−1

i=0 GiGT
i

The filter coefficients are identified, up to a constant,
by the minimal eigenvector of Q

Figure 3.2: Subspace methods for filter identification
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Chapter 4

Filter identification : extension to
superresolution

We now extend the subspace method to the case of subsampled observed images. The subsampling accounts for the aliasing
that occurs in every image acquisition process. The purpose is to estimate, from the low-resolution observed images, a
deconvolved image at a higher resolution: this problem is called superresolution. To this end, we assume that the original
image is filtered by L high-resolution filters, and the L output images are then subsampled by a factor P . The estimation is
blind, that is to say, we do not know the filters.
In this chapter, we first state the problem of superresolution as a multiple-input multiple-output (MIMO) one, for 1D signals
and for images (section 4.1). Then, in section 4.2, we focus on the limits of the subspace method for MIMO systems. For
MIMO systems, the subspace method provides only a mixture of the filters, and no more the actual filters, such as in the
single-input multiple-output (SIMO) case. Source separation methods have been used to unmix the result of the subspace
method and retrieve the actual filters, but these methods assume that the input signals are not correlated. In our case, the
inputs are strongly correlated as they are the various subsampled versions of the same image. We present in section 4.3 our
method to disambiguate the mixture, and provide the actual filter, for subsampled input signals.

4.1 Problem statement

4.1.1 1D signals

Each observed signal X l is modeled as a noisy output of a FIR system driven by an input D (see equation (3.2) page 13) :

X l = Hl D + Bl

(N, 1) (N,N +M − 1) (N +M − 1, 1) (N, 1) (4.1)

where Hl is the filtering matrix associated to filter H l, for l = 1 to L.

After the convolution step, the output signals are subsampled by a factor P . These subsampled signals, denoted X l
LR, can

be deduced from D following :

X l
LR = Hl

LR D + Bl
LR

(n, 1) (n, P (n+m− 1)) (P (n+m− 1), 1) (n, 1) (4.2)

where n = N
P , m = M

P and D is the original signal cut by its P − 1 last samples. Note that we assume that N and M are
multiples of P .

We obtain filtering matrix Hl
LR by extracting one row every P from filtering matrix Hl. If Hl is written by :

Hl =


hl

0 . . . hl
M−1 0 . . . . . . 0

0 hl
0 . . . hl

M−1 0 . . . 0
...

. . . . . .
...

0 . . . 0 hl
0 . . . hl

M−1 0
0 . . . . . . 0 hl

0 . . . hl
M−1

 (N,M +N − 1) (4.3)

19
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filtering matrix Hl
LR is written by :

Hl
LR =



hl
0 . . . hl

M−1 0 . . . . . . 0
0 . . . 0︸ ︷︷ ︸
P zeros

hl
0 . . . hl

M−1 0 . . . 0

...
. . . . . .

...
0 . . . 0 hl

0 . . . hl
M−1 0 . . . 0︸ ︷︷ ︸

P zeros
0 . . . . . . 0 hl

0 . . . hl
M−1


(n, P (m+ n− 1)) (4.4)

Let us denote H l
p the subsampled component of filter H l, also called a polyphase component of H l :

H l
p =

[
hp hp+P . . . hp+(m−1)P

]
(4.5)

The filtering matrix associated to H l
p is denoted by Hl

p and is of the form :

Hl
p =

 hl
p hl

p+P . . . hl
p+(m−1)P 0

. . . . . .
0 hl

p hl
p+P . . . hl

p+(m−1)P

 (n, n+m− 1) (4.6)

By switching on purpose the columns ofHl
LR, we obtain an expression ofHl

LR in terms of the filtering matrices associated
to the polyphase components of filter H l :

Hl
LR =

0BBBBBB@
hl
0 hl

P . . . hl
(m−1)P

0

. . .
. . .

0 hl
0 hl

P . . . hl
(m−1)P| {z }

Hl
0

. . .

hl
P−1 hl

2P−1 . . . hl
mP−1 0

. . .
. . .

0 hl
P−1 hl

2P−1 . . . hl
mP−1| {z }

Hl
P−1

1CCCCCCA (4.7)

By switching at the same time the relating rows ofD, we obtain an expression ofD in terms of its subsampled components :

D =

 D0

...
DP−1

 (4.8)

where Dp, for p = 0 to P − 1, denotes a subsampled component of D :

Dp = [dp dp+P . . . dp+(n+m−2)P ]T (n+m− 1, 1) (4.9)

Equation (4.2) can be written as :

X l
LR =

(
Hl

0 . . . Hl
P−1

)  D0

...
DP−1

 + Bl
LR

(n, 1) (n, P (n+m− 1)) (P (n+m− 1), 1) (n, 1)

(4.10)

Let us illustrate this step by an example :

D = [d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10]T denotes a signal of size M +N − 1 = 11, filtered by H l = [h0 h1 h2 h3 h4 h5]
of size M = 6, and noisy.
The resulting observed signal, denoted by X l = [x0 x1 x2 x3 x4 x5], is of size N = 6.
Output signal X l is related to D following :


x0

x1

x2

x3

x4

x5

 =


h0 h1 h2 h3 h4

0 h0 h1 h2 h3

0 0 h0 h1 h2

0 0 0 h0 h1

0 0 0 0 h0

0 0 0 0 0

h5 0 0 0 0 0
h4 h5 0 0 0 0
h3 h4 h5 0 0 0
h2 h3 h4 h5 0 0
h1 h2 h3 h4 h5 0
h0 h1 h2 h3 h4 h5





d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10


+Bl (4.11)
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Then the output signal is subsampled by a factor P = 3 and subsampled output signal X l
LR is expressed by :

(
x0

x3

)
=
(
h0 h1 h2 h3 h4 h5 0 0 0
0 0 0 h0 h1 h2 h3 h4 h5

)


d0

d1

d2

d3

d4

d5

d6

d7

d8


+BLR

l (4.12)

By switching the columns of the filtering matrix, and at the same time the rows of the original signal, we obtain :

(
x0

x3

)
=
(
h0 h3 0 h1 h4 0 h2 h5 0
0 h0 h3 0 h1 h4 0 h2 h5

)


d0

d3

d6

d1

d4

d7

d2

d5

d8


+BLR

l (4.13)

The filtering matrix can be partitioned into three sub-matrices :

Hl
0 =

(
h0 h3 0
0 h0 h3

)
Hl

1 =
(
h1 h4 0
0 h1 h4

)
Hl

2 =
(
h2 h5 0
0 h2 h5

)
(4.14)

which can be seen as the filtering matrices of the polyphase components H l
0 = [h0 h3]T , H l

1 = [h1 h4]T , and H l
2 =

[h2 h5]T .
Let us denotesD0 = [d0 d3 d6], D1 = [d1 d4 d7] andD2 = [d2 d5 d8]. Dp, for p = 0 to P −1, is a subsampled component
of the original signal.

Subsampled output signal X l
LR can be expressed in terms of the subsampled components of the original signal D :

XLR
l =

(
Hl

0 Hl
1 Hl

2

)D0

D1

D2

+BLR (4.15)

(4.16)

Through this example, and in a more general framework, we show that the superresolution problem can be stated as a
multiple-input multiple-output (MIMO) system, more precisely a P -input and L-output system, where the inputs are the
subsampled components of the original signal.X

1
LR
...

XL
LR

 =

H
1
0 . . . H1

P−1
...

...
HL

0 . . . HL
P−1


 D0

...
DP−1

 + BLR

(Ln, 1) (Ln, P (n+m− 1)) (P (n+m− 1), 1) (Ln, 1)

(4.17)

4.1.2 Images
Each observed image X l, l = 1 : L, is modeled as a noisy output of a FIR system Hl driven by an input image D (see
section 3.1.2):

X l = HlD +Bl (4.18)

Then, the outputs are subsampled by a factor P :

X l
LR = Hl

LRD +Bl
LR (4.19)

In this expression :
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• X l
LR is a subsampled component of X l, of size (nxny, 1),

where nx = Nx

P and ny = Ny

P ,

• D is the same as in equation (4.18), apart from the last P − 1 rows and columns which are truncated,

• Hl
LR is defined by extracting one row every P from matrix Hl

and is of size (nxny, dh), as we discard all the null columns,
where dh = P 2(nx +mx − 1)(ny +my − 1), mx = Mx

P and my = My

P .

1

.

.

.
I

P

P

Ph1

h2

hL

X1

X2

XL

BL

B2

B1

Figure 4.1: Model of acquisition for multiple-input multiple-output system

By switching on purpose the columns of Hl
LR (and at the same time the rows of D) in equation (4.19), the subsampled

output images can be related to the subsampled components of the original image:

X l
LR =

(
Hl

0,0 Hl
0,1 . . . Hl

P−1,P−1

)


D0,0

D0,1

...
DP−1,P−1

+Bl
LR (4.20)

where :

• Dp1,p2 is a vectorized subsampled component of the input image D, i.e., if

D =

 d0,0 . . . d0,Sx−1

...
...

dSy−1,0 . . . dSy−1,Sx−1

 (4.21)

where Sy = Ny +My − 1 and Sx = Nx +Mx − 1,
thus, for all p1, p2 = 0 : P − 1, then Dp1,p2 is a vectorized form of

Dp1,p2 =

 dp1,p2 dp1,p2+P . . . dp1,p2+P (sx−1)

...
...

...
dp1+P (sy−1),0 dp1+P (sy−1),P . . . dp1+P (sy−1),p2+P (sx−1)

 (4.22)

where sy = ny +my − 1 and sx = nx +mx − 1,
note that we use the same notation for the vectorized and the matrix forms of Dp1,p2 ,

• and Hl
p1,p2

is the block-Toeplitz matrix of size (nynx, sysx) associated to filter

H l
p1,p2

=


hl

p1,p2
. . . hl

p1,p2+(mx−1)P

hl
p1+P,p2

. . . hl
p1+P,p2+(mx−1)P

...
...

hl
p1+(my−1)P,p2

. . . hl
p1+(my−1)P,p2+(mx−1)P

 (4.23)

one of the P 2 polyphase components of high resolution filter H l (see eq. (3.10)).
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By stacking all vectors and matrices coming from equation (4.20) for all l = 1 : L, we obtain the following model:X
1
LR
...

XL
LR

 =

H
1
0,0 . . . H1

P−1,P−1
...

...
HL

0,0 . . . HL
P−1,P−1


 D0,0

...
DP−1,P−1

+BLR (4.24)

The superresolution problem is now expressed like a multiple-input multiple-output problem. In multiple-input systems,
the inputs usually come from different sources, and are considered as independent from each other [3]. In our case, the
inputs are the different subsampled components of the same source image and are therefore strongly correlated.

4.2 Limits of the subspace method
In this section, we show that, for subsampled images, the subspace method is not sufficient to determine the filters, but
provide an identification up to a (P 2, P 2) mixing matrix.

Let us call RLR
X the autocorrelation matrix of L subsampled images X l

LR.
If we apply the subspace method, we find that the eigenvectors, denoted Gi, associated to the dh = P 2(ny +my−1)(nx +
mx − 1) largest eigenvalues of RLR

X span the signal subspace, and that the eigenvectors associated to the Lnynx − dh

smallest eigenvalues of RLR
X span the noise subspace.

The orthogonality condition between noise and signal subspaces is expressed by:

GT
i Hp1,p2 = 0(1,sysx)

(1, Lnynx) (Lnynx, sysx) (1, sysx) (4.25)

where i = 0 : Lnynx − dh − 1, 0(1,sysx) is a null vector of size (1, sysx),
and Hp1,p2 a block column of the filtering matrix in equation (4.24).

Hp1,p2 =

H
1
p1,p2
...

HL
p1,p2

 (4.26)

The structural lemma (see equation (3.19)) provides an expression of the orthogonality condition in terms of the filter
polyphase components, instead of in terms of the columns of the filtering matrix:

HT
p1,p2

Gi = 0(1,sysx) where Hp1,p2 =

H
1
p1,p2
...

HL
p1,p2

 (4.27)

where Gi is a (Lmymx, sysx) filtering matrix defined from eigenvectors Gi, and Hp1,p2 , for p1, p2 = 0 : P − 1 is of size
(Lmymx, 1).

By stacking the contributions of all the polyphase components of the filters, we obtain:

HTGi = 0(P 2,sysx) where H =
(
H0,0 . . . HP−1,P−1

)
(4.28)

The minimization of the quadratic form associated to the orthogonality condition provides a set of P 2 vectors, denoted
V. We can not distinguish these eigenvectors using only the orthogonality condition. Indeed, each column of V is in the
nullspace of the quadratic form, therefore H is a combination of the P 2 columns of V. We can identify filters H only up to
a reversible (P 2, P 2) mixing matrix denoted MX , such as:

H = VMX (4.29)

Source separation methods have been used to estimate such a matrix [2, 3], but these methods usually state the assumption
that the input signals are uncorrelated. This is not our case, as the inputs are the different subsampled components of the
same source image.

4.3 Evaluation of the Mixing Matrix
The determination of matrix MX is, as we showed theoretically, impossible in the case where the mixed sources (here the
polyphase components of an image) have the same distribution.
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Despite this fact, we try to estimate the mixing matrix by introducing some prior knowledge on the statistics of the image
or the filters. Indeed, natural images have a spectrum which is far from constant (as in the case of a white noise or a
compressed signal). On the other hand, filters that are encountered in image processing are often very smooth with a single
local (and global) maximum at the origin, whereas a multi-reflection filter, that affects wireless communications, can be
irregular and display a multitude of local maxima. The subspace method was designed to deal with such irregular filters,
with the counterpart that the sources are of different statistical nature, allowing an efficient separation of sources.

In this section we will use a continuous notation, and the Fourier transform of a sampled signal at rate 1 will live in
[−1/2, 1/2] whereas the Fourier transform of a subsampled version at rate P , will live in [−1/2P, 1/2P ]. H̃ l will refer to
the estimated filters we are trying to define.

4.3.1 Imposing Regularity of the Filters
First, let us see what happens when some regularity is imposed to the filters. We do so by minimizing a certain regularity
measure of the filters under the constraint that the integral of each filter is one1.

Two principal choices have been proposed for the measure of filters regularity.
The first one (which presents the advantage of a low computational cost) is the integral of the squared norm of the gradient
(the H1 norm [12]) :0

J1(H̃1, ..., H̃L) =
∑

l

∫ ∥∥∥∇H̃ l
∥∥∥2

2
. (4.30)

The other one is the integral of the gradient (the total variation norm [13]).

The first choice may lead to smooth solutions and disadvantages the non continuous filters (such as motion blur). Never-
theless, we use this H1 criterion, for two reasons:

• We search for the best solution in a small-dimensional affine space (namely the vector space in which MX lives
intersected with the affine space represented by constraint

∫
H l(x)dx = 1). In such a case, the smoothing effect of

H1 norm compared to TV norm could be ignored.

• The computational cost of such a minimization is much smaller than TV one (see for example [14] for the numerical
intricacy of TV minimization, although recent advances have been made [15] but are not, as is, applicable to our
problem).

4.3.2 Imposing Similarity of the Double-Filtered Images
In the following, we take advantage of the fact that we have multiple views of the same original scene to recover the filters
(which implies the estimation of MX ). Let’s assume that we have two versions I1 and I2 of the same image, formed after
being filtered by F1 and F2, and that we have two candidates F̃1 and F̃2: we can check easily if these candidates are
reasonable or not. Indeed filtering I2 using F̃1 should yield the same result as filtering I1 using F̃2.

Based on this simple observation, we define a functional which should be minimized by our computed filters:

J2(H̃1, ..., H̃L) =
k,l=L∑
k,l=1

∥∥∥H̃ l ∗Xk − H̃k ∗X l
∥∥∥2

2
. (4.31)

where Xk are the observed images and H̃k are the estimated filters.
Note that we don’t have access to a fully sampled version of theXk, thus we interpret the convolutions that occurs in (4.31)
as the product of the low frequencies of the filter H̃ with the Fourier transform of X , squaring the result and summing over
the low-frequency domain.

We define2 ‚‚‚H̃l ∗Xk − H̃k ∗Xl
‚‚‚2

2
=

Z 1
2P

− 1
2P

˛̨̨̨
ˆ̃

Hl(u)X̂k(u)−
ˆ̃

Hk(u)X̂l(u)

˛̨̨̨2
du (4.32)

This last functional could be the perfect criterion if no subsampling were present. Indeed, J2 is null in a noise-free,
well-sampled setting only if the filters are the real filters (after checking that J2 is a positive definite quadratic form).

1This is a physical requirement for imaging filters. It may not be true if different images have been acquired under different illumination conditions.
In this case, the mean of each image gives a very accurate estimation of the integral of the filter that generated it.

2We use a one dimensional notation to simplify the equations, we consider an infinite-size discrete signal subsampled at rate P . The hat denotes the
time-discrete Fourier transform of a signal
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Unfortunately the subsampling that affects our images is expressed by :∣∣∣Ĥ l(u)X̂k(u)− Ĥk(u)X̂ l(u)
∣∣∣2

=

∣∣∣∣∣Ĥ l(u)
P−1∑
n=0

X̂0(u+
n

P
)Ĥk(u+

n

P
)− Ĥk(u)

P−1∑
n=0

X̂0(u+
n

P
)Ĥ l(u+

n

P
)

∣∣∣∣∣
2

=

∣∣∣∣∣
P−1∑
n=1

X̂0(u+
n

P
)
(
Ĥk(u)Ĥ l(u+

n

P
)− Ĥ l(u)Ĥk(u+

n

P
)
)∣∣∣∣∣

2

(4.33)

for u ∈ [− 1
2P ,

1
2P ],

where Hk are the actual filters and X0 is the original image.

Criterion J2 being not null when applied to the actual filters prevents us from concluding that its minimum is obtained for
those filters. Nevertheless, images have a strong low-frequency component. This means that the minimizing filters for J2

must reduce as much as possible the terms of the form | ˆ̃Hk(u)X̂0(u)− ˆ̃H l(u)X̂0(u)|2, because these terms dominate the
others (see [16] for a review of proposed statistical models of images). As the experiments will show it, the error introduced
by the aliasing is negligible and does not lead to a noticeable error in the recovery of the filters.

One can also say that the high frequency components of the filters are not taken into account. Although this point is correct,
the filters, thanks to the subspace method, are constrained to live in a small-dimensional affine space, thus controlling the
low frequency part of them is sufficient to yield a positive definite quadratic form on the subspace the filters live in.
In the next section we see how these two ideas can be applied to the disambiguation of mixing matrix MX .

4.4 Effects of noise
In this section, we try to answer to the question: what is the effects of noise on the filter identification? To this end, we
study the impact of noise on the main steps of the subspace method.

The first main step is the partition of the eigenvectors of the autocorrelation matrix between noise subspace and signal
subspace. Without noise, we have seen, in section 3.2 page 15, that the signal subspace is spanned by the eigenvectors
associated with the dH largest eigenvalues of RX , and the noise subspace is spanned by the eigenvectors associated with
the LNxNy − dH smallest eigenvalues of RX .

For example, we simulate the acquisition process of a scene, represented by the image Lena, through a set of L = 6
sensors. Let us apply the subspace method to this set of images, with the following parameters: P = 1, Ny = Nx = 5,
My = Mx = 4 and several values for the noise standard deviation std = 0, 0.2, 1, 5 (see figure 4.2 page 25 for an equiva-
lence of this standard deviation in term of psnr between the noisy blurred images and the blurred ones).

std 0 0.2 1 5
psnr (dB) ∞ 60.43 46.46 32.48

Figure 4.2: Link between the noise standard deviation and the psnr of the acquisition

For std = 0, the signal subspace is of size dH = (Nx + Mx − 1)(Ny + My − 1) = 64. If the autocorrelation matrix
eigenvalues are sorted by increasing order, the first 86 eigenvalues span the noise subspace, and their value is zero, and the
last 64 eigenvalues span the signal subspace. This partition is illustrated in figure 4.3.(a) by a peak in the ratio between the
eigenvalues λi+1

λi
,∀i = 1 : LNyNx. This peak illustrates the gap between the eigenvalues of the noise subspace and those

of the signal subspace and materializes the separation between signal and noise subspace.
As the noise increases, the separation between noise and signal subspace is less and less obvious (see figure 4.3), as noise
affects the autocorrelation matrix eigenvalues.

Another main step of the subspace method is the computation of the quadratic form associated to the orthogonality con-
dition between signal and noise subspaces. Without noise, the minimal eigenvector of the quadratic form Q provides the
filter coefficients.

But in noisy conditions, how many eigenvectors of Q are necessary to estimate the filter coefficients? To answer this ques-
tion, we study, for each noise standard deviation, the decomposition of the filter coefficients in the basis of eigenvectors of
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(a) std = 0 (b) std = 0.2

(c) std = 1 (d) std = 5

Figure 4.3: Ratio of the autocorrelation matrix eigenvalues for σ = 0, 0.2, 1, 5

Q.

The results are shown in figure 4.4 page 26. In this figure, we can see that, for std = 5, the minimal eigenvector contains
95% of the energy of the projection of the filter coefficients in the eigenvectors basis. But we need at least 6 eigenvectors
to reach 99% of the energy.

(a) std = 0.2 (b) std = 1 (c) std = 5

Figure 4.4: Decomposition of the filter coefficients in the eigenvectors of Q basis.

From these results, we ask if using several eigenvectors can improve the filters identification in noisy conditions.

Figure 4.5 page 27 presents the relative minimal error expected (in %) relative to the number of eigenvectors implied in
the filters identification. As several eigenvectors are taken into account, we can identify the filters up to a mixing matrix.
We estimate the minimal error which can be expected using only a given number of eigenvectors, this error is given in
percentage relative to the real known filter coefficients.

Figure 4.5 page 27 shows that, for a noise standard deviation of 5, if we use only one eigenvector, the error is of 21.24%,
but it can be reduced to 13.69% by using only 3 eigenvectors.
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(a) std = 0.2 (b) std = 1

(c) std = 5

Figure 4.5: Minimal error expected vs the number of eigenvectors taken into account

We conclude that, if noise affects the subspace method, the use of a few more additional eigenvectors than those expected
can improve significantly the results, by it requires the estimation of a mixing matrix, even in the case where P = 1.
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Chapter 5

Restoration

Once the filters are estimated, the recovery of the original image can take place. Recovered image Dopt must satisfy some
straightforward conditions, namely :

• The image filtered by the estimated filters H l and subsampled must be close to the observed images, which yields
the first data-driven functional :

A(Dopt) =
L∑

l=1

∥∥SP (H l ∗Dopt)−X l
∥∥2

2
, (5.1)

where SP is the subsampling operator at rate P .

• Since the observed images are affected by noise and, most importantly, the filters we computed are estimates of the
actual ones, a regularization functional must also be minimized:

R(Dopt) =
∫
‖∇Dopt‖2

2 (5.2)

These two criteria sum up to the minimization of a single functional given by:

J3(Dopt) = A(Dopt) + λR(Dopt), (5.3)

Let us denote Al the operator including the convolution by filter H l followed by the subsampling operator at rate P :

Al(D) = SP (H l ∗D), (5.4)

for l = 1 to L.

Minimum Dopt is obtained by solving the following system:(
L∑

l=1

AT
l Al + λ CT C

)
Dopt =

L∑
l=1

AT
l X l (5.5)

where C denotes the gradient operator.
The system is solved in the frequency domain, as the operations of convolution and subsampling benefit from an easy and
fast implementation.

First let us study operator Al: this operator provides the convolution of input signal D with filter H l and subsamples the
result at a rate P . In the frequency domain, this operation is equivalent to multiply the Discrete Fourier Transform (DFT)
of the input signal, denoted D̂, by the DFT of filter H l, denoted Ĥ l, and then, to take into account the aliasing resulting
from the subsampling :

ÂlD(w) = D̂(w) Ĥ l(w) + D̂(w +N) Ĥ l(w +N) + · · ·

+ D̂(w + (P − 1)) Ĥ l(w + (P − 1)N) (5.6)

where the DFT of each low-resolution signal is computed on N uniformly-spaced samples.

Now we focus on operator AT
l : this operator provides the up-sampling of the input signal at a rate P , followed by the

convolution of the result by filter (H l)H , the conjugate transpose of H l.

AT
l (D) = (H l)T ∗ SP (D) (5.7)

29
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In the frequency domain, this operation is equivalent to duplicate P times the spectrum of D, weighted by 1
P , then to

multiply the result by (Ĥ l)H :
ÂT

l D(w)

ÂT
l D(w +N)

...

ÂT
l D(w + (P − 1)N)

 =
1
P


Ĥ l

∗
(w)

Ĥ l
∗
(w +N)

...

Ĥ l
∗
(w + (P − 1)N)

 D̂(w) (5.8)

where w = 1 : N and Ĥ l
∗
(w) is the conjugate of Ĥ l(w).

We deduce the formulation of equation (5.5) in the Fourier domain :(
1
P

L−1∑
l=0

(
(Ĥl)H(w) Ĥl(w)

)
+ λ Ĉ2(w)

)
D̂opt(w) =

1
P

L−1∑
l=0

(Ĥl)H(w) X̂LR
l (w) (5.9)

where

Ĥl(w) =
[
Ĥ l(w) Ĥ l(w +N) · · · Ĥ l(w + (P − 1)N)

]
(5.10)

D̂opt(w) =
[
D̂opt(w) D̂opt(w +N) · · · D̂opt(w + (P − 1)N)

]
(5.11)

Ĉ2(w) =
[
|Ĉ(w)|2 |Ĉ(w +N)|2 · · · |Ĉ(w + (P − 1)N)|2

]
(5.12)

and w = 1 : N .

Resolution of equation (5.9) requires the inversion of a P 2×P 2 matrix for each point of the Fourier transform of the image.



Chapter 6

Experimental results

6.1 Simulations for objective evaluation
We want to estimate a deconvolved image, at a resolution increased by a factor P = 2, from a set of L = 6 low-resolution
images of the same scene, filtered by 6 different unknown filters. This can be expressed as a 4-input 6-output system.

To evaluate the results with an objective criterion, the psnr (see equation (6.1)), we have to simulate this case: we filter a
known original image D with 6 known filters H , and then subsample the outputs by a factor P = 2 in each directions.

PSNR(D,Dest) = 10 log10

(max(D)−min(D))2

MSE(D,Dest)
(6.1)

where MSE is the mean squared error between the images D and Dest.

The original image D is of size (576, 720), and the windowed area of study is of size (10, 10). The filters are (6, 6) 2D-
Gaussian centered at a random point with standard deviations: 0.7, 0.9, 1, 1.1, 1.3, 1.5.
To recover the filters, we use a weighted sum of the two criteria on the filters, defined in equation (4.30) and equation (4.31)
page 24: αJ1 + (1− α)J2. Note that J1 and J2 are normalized so their minimal eigenvalue is 1.
We obtain a psnr of 22.12 dB for α = 1, and a psnr of 21.46 dB for α = 0. The results are better when the two criteria are
mixed, in our case for α = 0.04, the filters are recovered with a psnr of 26.17 dB.

We present experimental results obtained with the observed output subsampled images and the filters estimated below.
Figure 6.1 shows 3 of the 6 output images, from the less blurred on the left, to the the more blurred on the right.
Figure 6.2 shows the restored image (psnr = 35.98 dB with λ = 10−3 in equation (5.3)) versus the original image.
To better display the results, we focus on a window area of the less blurred output image, and the related window area in
the superresolved image, and display them at their exact size (figure 6.3). For comparison purposes, a bilinear interpolation
of the output image area and the related window in the original image are also given.

Figure 6.1: 3 of the 6 output images: frames 1,3 and 6 (scale = 0.35)

31
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Figure 6.2: upper : the original image, down : the restored image (scale = 0.35)
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Figure 6.3: upper left : the 1st observed image; upper right : the restored image; down left : the bilinear interpolation;
down right : the original image (scale=1)



34 CHAPTER 6. EXPERIMENTAL RESULTS

6.2 Real images
We present experimental results obtained on real images, for blind restoration on sequence
C1V2P32_14h00_16b.oti in section 6.2.1 and for blind superresolution on sequence Enst-09.ptw (section 6.2.2) and on
images of the moon (section 6.2.3).

6.2.1 Sequence C1V2P32_14h00_16b
We apply our blind restoration algorithm on 5 frames of sequence C1V2P32_14h00_16b.oti, starting on the 530th of the
sequence. Figure 6.4 shows the observed frames.

As we aim to evaluate a restored frame, and not a superresolved one, we use the filter identification method as presented in
section 3 page 13, and the restoration method presented in 5 page 29 with P=1.

But first, as the frames comes from a sequence with in-motion camera, we have to register all the frames relatively to a
reference one : the middle one (the 532th).
The images are registered using the following parameters:

• The motion is estimated with an accuracy up to an half pixel, using a spline interpolation method.

• The exhaustive block-matching is performed over a (10, 10) research window, i.e. the largest displacement between
the current frame and the frame of reference is assumed to be lesser than +/ − 10 pixels in horizontal and vertical
directions. The frames are partitioned into blocks of size (8, 8), and the matching criterion is evaluated onto blocks
of the same size.

• We choose for parameter σ of the weighting function (2.16) the value 1.

The estimated motion model are :
between the first frame and the frame of reference :

A =
(

0.98268 −0.00040
−0.00078 0.97961

)
and T =

(
−4.00266
0.45556

)
(6.2)

between the second frame and the frame of reference :

A =
(

0.99131 −0.00004
−0.00025 0.98897

)
and T =

(
−2.06137
0.14216

)
(6.3)

between the fourth frame and the frame of reference :

A =
(

1.00839 −0.00016
0.00005 1.01040

)
and T =

(
2.13106
−0.02691

)
(6.4)

between the fifth frame and the frame of reference :

A =
(

1.01783 −0.00019
0.00029 1.02126

)
and T =

(
4.04494
−0.25224

)
(6.5)

Figure 6.5 shows the registered images (the third image is the image of reference).

The filter identification is provided following the method developed in section 3 page 13, assuming that the filters are of
size (4, 4). The resulting estimated filters are shown in Figure 6.6.

Finally, we estimate the restored image as proposed in section 5 page 29 with P = 1. For comparison purposes, we estimate
the median of the registered images. In figure 6.7 we show several restored images associated to different regularization
parameters, in order to illustrate the influence this parameter have on the accuracy of the restoration : too low and the
restored image is still noisy, too high and the restored image is blurred. However the restored image with a parameter of
regularization of 0.1 is sharpen that the median of the registered images, and than the observed frames, of course.
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Figure 6.4: Frames 530, 531, 532, 533 and 534 of sequence C1V2P32_14h00_16b.oti
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Figure 6.5: Registered images : 530, 531, 532 (image of reference), 533 and 534 of sequence C1V2P32_14h00_16b.oti
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Figure 6.6: Estimated filters
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Figure 6.7: In lexicographic order : restored images for a regularization parameter of 0.001, 0.05, 0.1 and 0.5, the median
of the registered images, and the third observed image.
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6.2.2 Sequence Enst09
In this section, we apply our blind superresolution algorithm on the 7 frames of sequence Enst-09.ptw, first frame is the
2nd one of the sequence. Figure 6.8 shows the observed frames.

Figure 6.8: Frames 2, 4, 6 and 8 of sequence Enst-09.ptw

As we aim to evaluate a superresolved image, we use the filter identification method as presented in section 4 page 19, and
the restoration method presented in 5 page 29 with a resolution increased by a factor 2 (P = 2).

But first, as the frames comes from a sequence with in-motion camera, we have to register all the frames relatively to a
reference one : the middle one (the 4th).
The images are registered using the following parameters:

• The motion is estimated with an accuracy up to an half pixel, using a spline interpolation method.

• The exhaustive block-matching is performed over a (5, 5) research window. The frames are partitioned into blocks
of size (8, 8), and the matching criterion is evaluated onto blocks of the same size.

• We choose for parameter σ of the weighting function (2.16) the value 1.

The estimated motion model are :
between the first frame and the frame of reference :

A =
(

0.99919 −0.00515
−0.00072 0.99788

)
and T =

(
0.86813
−2.53547

)
(6.6)

between the second frame and the frame of reference :

A =
(

0.99939 0.00198
0.00048 0.99805

)
and T =

(
0.30594
−3.20452

)
(6.7)

between the third frame and the frame of reference :

A =
(

0.99988 −0.00062
−0.00000 0.99999

)
and T =

(
0.00221
−0.13839

)
(6.8)

between the fifth frame and the frame of reference :

A =
(

0.99999 −0.00088
−0.00001 1.00032

)
and T =

(
0.04463
−0.11082

)
(6.9)
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Figure 6.9: On left : the motion vectors estimated by the block-matching; On right : the influence of each block on the
motion model estimation

between the sixth frame and the frame of reference :

A =
(

1.00118 −0.00313
−0.00031 1.00181

)
and T =

(
0.81031
−1.70650

)
(6.10)

between the seventh frame and the frame of reference :

A =
(

1.00018 0.00107
0.00031 1.00014

)
and T =

(
0.98933
−1.67958

)
(6.11)

Figure 6.9 shows, on the left, the motion vectors estimated by the block-matching, one for each block, and on the right,
the influence of each vector on the estimation of the motion model : the darkest blocks are not taken into account in the
estimation of the motion model; the lightest the blocks are, the most they influence the estimation. This image is provided
by the last value of the weighting map w in the robust motion model estimation algorithm (see equation (2.14)).
Figure 6.10 shows the registered images.

Figure 6.10: The registered images

The filter identification is provided following the method developed in section 4 page 19, assuming that the high-resolution
filters are of size (8, 8). We choose the criterion of regularity of the filters presented in section 4.3.1 page 24 to evaluate the
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mixing matrix. The resulting estimated filters are shown in Figure 6.11.

Finally, we estimate the superresolved image using the method detailed in section 5 page 29 with a resolution improved
by a factor 2. For comparison purposes, we provide the median of the registered and then linearly interpolated observed
images, and a linearly interpolated version of the image of reference (see Figure 6.12). Figure 6.13 shows the (visually)
best superresolved image, for a regularization parameter of 0.7.
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Figure 6.11: The estimated filters
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Figure 6.12: Up : the median image of the registered and interpolated observed images, down : an interpolation of the
image of reference

6.2.3 Sequence Moon

We apply our blind superresolution algorithm on 32 images of the moon of size (150, 150). Figure 6.14 shows some of the
observed frames.

As we aim to evaluate a superresolved image, we use the filter identification method such as presented in section 4 page
19, and the restoration method presented in 5 page 29 with a resolution increased by a factor 4 (P = 4).

But first, as the moon moved between each acquisition, we have to register all the frames relatively to a reference one : the
middle one (the 16th).
The images are registered using the following parameters:
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Figure 6.13: Our restored image

Figure 6.14: Some of the observed images (images 1, 6, 11, 16, 21, 26, 31 and 32)

• The motion is estimated with an accuracy up to a quarter pixel, using a bilinear interpolation method.

• The exhaustive block-matching is performed over a (15, 15) research window. The frames are partitioned into blocks
of size (8, 8), and the matching criterion is evaluated onto blocks of the same size.

• We choose for parameter σ of the weighting function (2.16) the value 1.

The block-matching algorithm runs in 231 s. As there are two many images, we provide results of the motion estimation
model only for the first and the last images of the set:
between the first frame and the reference one:

A =
(

1.00063 −0.00100
0.00126 1.00016

)
and T =

(
8.96587 −5.10574

)
(6.12)

between the last frame and the reference one:

A =
(

1.00106 0.00337
−0.00220 1.00057

)
and T =

(
−0.73827 11.90123

)
(6.13)

The filter identification is provided following the method developed in section 4 page 19, assuming that the high-resolution
filters are of size (12, 12). We choose the criterion of regularity of the filters presented in section 4.3.1 page 24 to evaluate
the mixing matrix. The resulting estimated filters are shown in Figure 6.15.

Finally, we estimate the superresolved image using the method detailed in section 5 page 29 with a resolution improved
by a factor 4. For comparison purposes, we provide the median of the registered and then linearly interpolated observed
images (see Figure 6.16). Figure 6.17 shows the (visually) best superresolved image, for a regularization parameter of 0.06.
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Figure 6.15: Some of the estimated filters (images 1, 11, 21 and 31)

Figure 6.16: The median of the registered and then bilinearly interpolated observed images
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Figure 6.17: The restored image (P=4)

6.3 Pre-denoising

6.3.1 Estimation of the fixed pattern noise
Noise contained in infrared images can be harmful to filter identification and restoration. We propose to coarsely denoise
the infrared images beforehand. This noise changes during the acquisition of the video, but it can be seen as a fixed pattern
noise on several following images. To estimate the fixed pattern noise, we assume that this kind of noise is additive, and
take advantage of its temporal redundancy. We start from the simple idea that this noise is the only low-level information
shared by several following images taken by an in motion camera.

The algorithm is the following:

1. First, we estimate smoothed images from the original images, by applying a mean filter for example.

2. Then we estimate the difference between the original images and the smoothed ones (see figure 6.18 page 47).
These difference images contain informations related to high-frequency components of the original images, such as
contours or noise. If the original images are dissimilar enough each others, contours are not in the same place from
one image to another, random noises neither, and the only redundant information at a given place is the fixed pattern
noise one.

3. The median of the difference images provides a good estimation of the fixed pattern noise, as it removes random
noise and contours, even if several images are quite similar, provided that the total number of images is large enough
(see figure 6.19 page 47).

4. The images are denoised by subtracted the fixed pattern noise, i.e. the median of the difference (see figure 6.20 page
48

Figure 6.18 page 47 shows two examples of original infrared images. We can easily see the fixed pattern noise on the
sky part of the second image (ENST04). This figure illustrates the second step of the algorithm and presents two original
images, their smoothed version, and the difference between the smoothed image and the original one.

Figure 6.19 page 47 illustrates the third step of the algorithm and shows the fixed pattern noise estimated from 8 images
extracted from 8 different sequences acquired with the same camera from different point of view. As the acquired scene is
dissimilar enough from one image to another, 8 frames are enough to compute a satisfying estimation of the fixed pattern
noise.

Figure 6.20 page 48 shows two results of denoising using this method, and compares the original images with the denoised
ones. We can see that this method is quite simple but provides a good estimation of the fixed pattern noise, and preserves
the contours of the images.
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=-

- =

ENST01

ENST04

Figure 6.18: Two original images, their smoothed version and the difference between them

ENST01
ENST02

ENST03
ENST04

ENST05
ENST06

ENST07
ENST08

Figure 6.19: The median of the difference images

6.3.2 Sequence enst10

We apply our blind superresolution algorithm on 6 images of sequence ENST10 from the 992th image of the sequence.
Figure 6.21 shows the observed images.

These images were acquired by an infrared bolometer sensor and contain a fixed pattern noise. We perform an additional
denoising step beforehand the filter identification step, following the method described in section 6.3.1 page 46.
We estimate the fixed pattern noise on 96 images of the sequence, from the 902th image to the 997th one, and denoise the



48 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.20: Comparison between original images and the denoised ones

Figure 6.21: Observed images

observed images. Figure 6.22 page 49 shows the denoised observed images.

As we aim to evaluate a superresolved image, we use the filter identification method such as presented in section 4 page
19, and the restoration method presented in 5 page 29 with a resolution increased by a factor 2 (P = 2).

But first, as the camera is in motion, we have to register all the frames relatively to a reference one : the middle one (the
4th).
The images are registered using the following parameters:

• The motion is estimated with an accuracy up to a quarter pixel, using a bilinear interpolation method.

• The exhaustive block-matching is performed over a (30, 30) research window. The frames are partitioned into blocks
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Figure 6.22: Denoised observed images

of size (16, 16), and the matching criterion is evaluated onto blocks of the same size.

• We choose for parameter σ of the weighting function (2.16) the value 0.1.

The motion models are the following:
between the first frame and the reference one:

A =
(

0.99540 0.00044
−0.00274 0.99938

)
and T =

(
3.23538 26.01583

)
(6.14)

between the second frame and the reference one:

A =
(

0.99627 0.00022
−0.00326 0.99939

)
and T =

(
1.05917 16.04571

)
(6.15)

between the third frame and the reference one:

A =
(

1.00029 −0.00008
−0.00127 0.99995

)
and T =

(
0.21819 7.66263

)
(6.16)

between the fifth frame and the reference one:

A =
(

0.99839 −0.00001
−0.00326 0.99996

)
and T =

(
−0.70913 −8.27551

)
(6.17)

between the sixth frame and the reference one:

A =
(

1.00057 −0.00017
−0.00519 1.00047

)
and T =

(
−1.23341 −17.85070

)
(6.18)

The filter identification is provided following the method developed in section 4 page 19, assuming that the high-resolution
filters are of size (8, 8). We choose the criterion of regularity of the filters presented in section 4.3.1 page 24 to evaluate the
mixing matrix.

Finally, we estimate the superresolved image using the method detailed in section 5 page 29 with a resolution improved by
a factor 2. For comparison purposes, we provide the mean of the registered and then linearly interpolated observed images
(see Figure 6.23). Figure 6.24 shows the (visually) best superresolved image, for a regularization parameter of 0.06.
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Figure 6.23: The mean of the registered and then bilinearly interpolated observed images

Figure 6.24: The restored image (P=2)

6.4 Panorama
Sequences like ENST09 or ENST10 are in-motion camera sequences and contain mainly blurred images. These sequences
pan across the same general scene, essentially buildings.
We have shown results of the superresolution algorithm obtained on these sequences, and proposed to compare these results
to the median of the interpolated and registered observed images, or to an interpolated image, as we had no other reference
to compare our results.
To overcome this problem, we acquired 8 sequences overlapping the same scene, with a still camera. Then, for comparison
purposes, we estimate a panorama from 6 of the 8 sequences.

The algorithm estimating the panorama proceeds as follows:

• first, we denoise the observed images using the algorithm described in section 6.3.1 page 46;

• then, we register each frame into the coordinate of a chosen reference one; the registration algorithm is detailed in
chapter 2 page 7
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• finally, we merge all the information coming from the different images, we called this step: image blending or fusion.

We refer the reader to the relevant sections for more details on the first and second steps of the algorithm, and we focus
here on the third step.

Once the images are registered in the same reference coordinates, we have several different informations at our disposal
for each pixel of the scene, as the images were acquired at different times and present changes in illumination from one to
another (see figure 6.25 page 51), or could be slightly misregistered. The quality of the panorama depends highly on the
way these different informations are merged.

Figure 6.25: Denoised images used for the estimation of the panorama

The first ideas are to assign to a pixel the mean or the median of the intensities of each image containing this pixel. But
these methods are not robust to changes in illumination between images, and the transition between overlapping areas
are rough. Figure 6.26 page 52 shows a panorama obtained using a mean blending function, and figure 6.27 page 52 a
panorama obtained using a median blending function. These panoramas are not visually satisfying but they allow us to
know if the images are well registered, as we can see the overlapping areas.

In order to have a smoother transition between overlapping areas, we assign a weight function to each image before merging
their contribution. This weight function is separable and varies linearly from 1 to 0, from the center of the image towards
the edges. Figure 6.28 page 53 shows a panorama obtained using this merging method. This panorama is obviously better
than the previous ones, as we do not see any more the transition between the frames.
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Figure 6.26: Panorama using a mean merging function

Figure 6.27: Panorama using a median merging function
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Figure 6.28: Panorama using a weight merging function
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Chapter 7

Conclusion

In this work, we showed how the subspace method may be applied to image superresolution. We showed that this method
is intrinsically ambiguous when presented with multiple sources which are, in fact, subsamples of the one same image. We
showed how statistical properties of images can be used to disambiguate the problem and achieve a satisfactory recovery of
the filters and of the original image. The advantage of using this method is that it can be applied to a wide range of filters
without further assumption than their smoothness. In future work, one may want to apply other types of regularization to the
image or the filters. The most promising lead is the TV regularization [15] which would be available as a usable technology
very soon. The other possibility of improvement is the extension to the case where the made algebraic assumptions fail to
be true, in such cases subspace method happens to be very unstable. We may apply the ideas presented here to stabilize the
problem.
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Appendix A

Notations

Signals or images :

• X :

– signal : stacks the L output signals of size N and is of size (LN, 1) :

X =

X
1

...
XL

 where X l =
(
xl

0 . . . xl
N−1

)T
(A.1)

– image : stacks the L observed images X l, for l = 1 to L, more precisely, a vectorized formulation of a
processing windowed area, of size (Ny , Nx), extracted from the observed images :

X l = [xl(Ny − 1, Nx − 1) xl(Ny − 2, Nx − 1) · · · xl(0, 0)]T (A.2)

• D :

– signal : is the unknown original signal of size (N +M − 1, 1)

– image : is a vectorized formulation of the related windowed area of the original image of size (Ny + My −
1, Nx −Mx − 1),

D = [d(Ny +My − 2, Nx +Mx − 2) · · · d(0, 0)]T (A.3)

Subsampled signal or images :

• Dp : (signal) for p = 0 to P − 1, denotes a subsampled component of D

Dp = [dp dp+P . . . dp+(n+m−2)P ]T (n+m− 1, 1) (A.4)

• Dp1,p2 : (images) is a vectorized form of

Dp1,p2 =

 dp1,p2 dp1,p2+P . . . dp1,p2+P (sx−1)

...
...

...
dp1+P (sy−1),0 dp1+P (sy−1),P . . . dp1+P (sy−1),p2+P (sx−1)

 (A.5)

for all p1, p2 = 0 : P − 1, where sy = ny +my − 1 and sx = nx +mx − 1.
Note that we use the same notation for the vectorized and the matrix forms of Dp1,p2

Filters:

• H : the filters coefficients

H =

H
1

...
HL

 (A.6)

• H l :
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– 1D : is a filter of size (M, 1) :

H l = [hl
0 . . . h

l
M−1]

T (A.7)

– 2D : is a filter of size (My,Mx)

H l =

 hl(0, 0) . . . hl(0,Mx − 1)
...

...
hl(My − 1, 0) . . . hl(My − 1,Mx − 1)

 (A.8)

• H l
p : (1D) one of the P subsampled components of the filter H l

H l
p =

[
hp hp+P . . . hp+(m−1)P

]
(A.9)

• H l
p1,p2

: (2D) one of the P 2 polyphase components of the filter H l

H l
p1,p2

=


hl

p1,p2
. . . hl

p1,p2+(mx−1)P

hl
p1+P,p2

. . . hl
p1+P,p2+(mx−1)P

...
...

hl
p1+(my−1)P,p2

. . . hl
p1+(my−1)P,p2+(mx−1)P

 (A.10)

• H : (2D) a formulation of H in terms of its polyphase components

H =
(
H0,0 . . . HP−1,P−1

)
(A.11)

where

Hp1,p2 =

H
1
p1,p2
...

HL
p1,p2

 (A.12)

Filtering matrices:

• H :

– signal : stacks the L Toeplitz matrices Hl :

H =

H
1

...
HL

 (LN,N +M − 1) (A.13)

where Hl, for l = 1 to L, is the filtering matrix associated to the filter H l :

Hl =

 hl
0 . . . hl

M−1 0
. . . . . .
0 hl

0 . . . hl
M−1

 (N,N +M − 1) (A.14)

– image : stacks the L block-Toeplitz filtering matrices Hl associated with each filters H l :

Hl =

 Hl
0 · · · Hl

Mx−1 0
. . . . . .
0 Hl

0 · · · Hl
Mx−1

 (A.15)

where Hl
j is a Toeplitz matrix of size (Ny , Ny +My − 1) associated to the jth column of H l :

Hl
j =

h
l(0, j) . . . hl(My − 1, j) 0

. . . . . .
0 hl(0, j) . . . hl(My − 1, j)

 (A.16)

Hl contains Nx rows of blocks and Nx +Mx − 1 columns of blocks of size (Ny , Ny +My − 1). H is of size
(LNyNx , (Ny +My − 1)(Nx +Mx − 1))



61

• Hl
p : (signal) the filtering matrix associated to H l

p

Hl
p =

 hl
p hl

p+P . . . hl
p+(m−1)P 0

. . . . . .
0 hl

p hl
p+P . . . hl

p+(m−1)P

 (n, n+m− 1) (A.17)

• Hl
p1,p2

: (image) is the block-Toeplitz matrix of size (nynx, sysx) associated to the filter H l
p1,p2

• HLR : the filtering matrix of the MIMO system

– signal : H
1
0 . . . H1

P−1
...

...
HL

0 . . . HL
P−1

 (A.18)

– image : H
1
0,0 . . . H1

P−1,P−1
...

...
HL

0,0 . . . HL
P−1,P−1

 (A.19)

• Hp1,p2 : (image) a block column of the filtering matrix HLR

Hp1,p2 =

H
1
p1,p2
...

HL
p1,p2

 (A.20)
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