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Performance of ESPRIT for Estimating Mixtures of
Complex Exponentials Modulated by Polynomials:

Supporting Document
Roland Badeau, Gaël Richard, and Bertrand David

Abstract—High Resolution (HR) methods are known to pro-
vide accurate frequency estimates for discrete spectra [1]. The
Polynomial Amplitude Complex Exponentials (PACE) model was
presented as the most general model tractable by HR methods. A
subspace-based estimation scheme was recently proposed in [2],
derived from the ESPRIT algorithm [3]. In [4], we focused on the
performance of this estimator. We first presented some asymptotic
expansions of the estimated parameters, obtained at the first
order under the assumption of a high signal-to-noise ratio (SNR).
Then the performance of the generalized ESPRIT algorithm for
estimating the parameters of this model was analyzed in terms
of bias and variance, and compared to the Cramér-Rao bounds.

In this supporting document, we present the proofs of the
theoretical results introduced in [4]. This document, written as a
sequel of [4], is not intended to be read separately. It is organized
as follows: section I is devoted to the perturbation analysis, then
the performance of the estimators is analyzed in section II.

Performance d’ESPRIT pour l’estimation de mélanges

d’exponentielles complexes modulées par des polynômes:

document de support

Résumé—Les méthodes à Haute Résolution (HR) sont connues
pour fournir une estimation fréquentielle précise des spectres
discrets [1]. Le modèle d’Exponentielles Complexes à modulation
d’Amplitude Polynomiale (PACE) a été présenté comme le modèle
le plus général que l’on puisse traiter par des méthodes HR. Une
procédure d’estimation de type sous-espace a été récemment pro-
posée dans [2], développée à partir de l’algorithme ESPRIT [3].
Dans [4], nous avons porté notre attention sur les performances
de cet estimateur. Nous avons d’abord présenté des développe-
ments asymptotiques des paramètres estimés, obtenus au premier
ordre sous l’hypothèse d’un rapport signal-à-bruit (RSB) élevé.
Les performances de l’algorithme ESPRIT généralisé visant à
estimer les paramètres de ce modèle ont ensuite été analysées
en terme de biais et de variance, et comparées aux bornes de
Cramér-Rao. Dans ce document de support, nous présentons les
preuves des résultats théoriques introduits dans [4]. Ce document,
conçu pour être lu en complément de [4], est structuré de la façon
suivante : la section I porte sur l’analyse des perturbations, puis
les performances des estimateurs sont analysées dans la section II.

Index Terms—ESPRIT, high resolution (HR), multiple eigen-
values, performance analysis, perturbation theory, polynomial
modulation.
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I. PERTURBATION ANALYSIS

A. Perturbation of the spectral matrix

Proof of proposition 10: First, note that the function
ε 7→ det

(
W (ε)H

↓ W (ε)↓

)
is continuous. As W ↓ is full-

rank, it is non-zero at ε = 0. Thus it remains non-zero
in a neighborhood of 0. Consequently, W ↓(ε) is full-rank
in this neighborhood. Moreover, according to proposition 9,
the function ε 7→ W (ε) is C∞. Thus the function Φ(ε) =(
W (ε)H

↓ W (ε)↓

)−1

W (ε)H
↓ W (ε)↑ is also C∞. Thus equa-

tions (34) to (36) can be derived by calculating the first order
expansion of the equality

(
W (ε)H

↓ W (ε)↓
)
Φ(ε) = W (ε)H

↓ W (ε)↑.

B. Perturbation of the Jordan matrix

Proof of corollary 11: Left-multiplying equation (34) by
G−1 and right-multiplying it by G yields (37) and (38), where

∆J⊥ = G−1∆Φ
⊥ G. (55)

Left-multiplying equation (36) by G−1, right-multiplying it
by G, and substituting equations (55), (7), and (8) yields

∆J⊥ = −V n
↓
†∆W⊥

↓ G J + J V n
↑
†∆W⊥

↑ G. (56)

In other respects, equation (4) yields S† = V l†T D−1V n†.
Thus substituting equations (29) and (7) into (56) yields

∆J⊥ = −V n
↓
†
(
In↓ − V n

↓V n†
)

∆S V l†T D−1J

+J V n
↓
†
(
In↑ − V n

↑V n†
)

∆S V l†T D−1.

From this last equation, lemma 15 below proves equation (39).

Lemma 15. The Pascal-Vandermonde matrix V n satisfies the

following identities:
[

V n
↓
†
, 0(n×1)

]
− V n† = −v′

↓ e′
↓
H

(57)
[

0(n×1), V n
↑
†
]
− V n† = −v′

↑ e′
↑
H

. (58)

where

• v′
↓ =

Z−1v↓

1−vH

↓
Z−1v↓

• v′
↑ =

Z−1v↑

1−vH

↑
Z−1v↑

• e↓ = [0 . . . 0, 1]T − V nZ−1v↓
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• e↑ = [1, 0 . . . 0]T − V nZ−1v↑

• Z = V nH
V n.

Proof: Let us show equation (57). Since the ma-

trix V n
↓ is full-rank, V n

↓
† =

(
V n

↓
H

V n
↓

)−1

V n
↓

H . Be-

sides, V n
↓

H
V n

↓ = Z − v↓ vH
↓ . Applying the matrix inver-

sion lemma [5, pp. 18-19] to this last equality and right-
multiplying it by V n

↓
H yields

V n
↓
† = Z−1V n

↓
H + v′

↓ vH
↓ Z−1V n

↓
H

. (59)

Besides,

V n† =
[

Z−1V n
↓

H
,
(
1 − vH

↓ Z−1v↓

)
v′
↓

]
. (60)

Substituting equations (60) and (59) into the left member
of equation (57) finally leads to the right member of equa-
tion (57). Equation (58) can be derived in a similar way.

C. Perturbation of the poles

Proof of proposition 12: Remember that the matrix J

in equation (37) is block-diagonal, with blocks of dimensions
Mk ×Mk. The perturbation theory shows that for all ε in the
neighborhood of 0, the matrix J(ε) in equation (37) can also
be block-diagonalized, with blocks of the same dimensions,
and that the functions which associate each of these blocks to
ε are C∞. More precisely, the function which associates the
Mk × Mk block related to the pole zk to ε admits the first
order expansion:

Jk(ε) = Jk + ε
(
∆J⊥

k + A′
kJk − JkA′

k

)
+ O(ε2).

However the sum of the eigenvalues z
(m)
k (ε) is equal to the

trace of this block. Thus the function ε 7→ zk(ε) is C∞ and
admits the first order expansion

z
(m)
k (ε) = zk + ε

Mk

trace
(
∆J⊥

k + A′
kJk − JkA′

k

)
+ O(ε2).

(61)
Since matrix products can be commuted inside the trace op-
erator, trace

(
A′

kJk − JkA′
k

)
= 0. Therefore equations (40)

and (41) directly follow from equation (61). Moreover, sub-
stituting equation (39) into equation (41) shows that

Mk∆zk = trace
(
v′
↓k ×

(
e′
↓
H

∆S V l†T D−1J
))

− trace
((

J v′
↑k

)
×
(
e′
↑
H

∆S V l†T D−1
))

= trace
((

e′
↓
H

∆S V l†T D−1J
)
× v′

↓k

)

− trace
((

e′
↑
H

∆S V l†T D−1
)
×
(
J v′

↑k

))

= e′
↓
H

∆S V l†T D−1Jv′
↓k − e′

↑
H

∆S V l†T D−1Jv′
↑k,

from which equations (42) and (43) are derived1.
Proof of proposition 3: The complex logarithm is a C∞-

diffeomorphism of C into R×] − π, π[, thus the functions
ε 7→ δk(ε) and ε 7→ fk(ε) are C∞. A first order expansion

1It can be noticed a scaling factor 1

α
(Mk−1)

k

is artificially introduced in

equation (42), and counterbalanced in equation (43). This trick makes the
vectors f↓k and f↑k not depend on the complex amplitudes, in the particular
case of single poles.

yields, by using equation (40), ln(zk(ε)) = ln(zk) + ε
∆zk

zk

+

O
(
ε2
)
. Finally, equation (12) can be derived by substituting

equation (44) into this first order expansion.

D. Perturbation of the amplitudes and phases

Proof of lemma 13: The coefficients of the matrix V N (ε)
are powers of the estimated poles zk(ε). Since these poles are
C∞ functions of the variable ε, the function ε 7→ V N (ε) is
also C∞. In other respects, the column of V N (ε) related to the
pole zk(ε) at index m < Mk is 1

m!
dmv
dzm (zk(ε)), where v(z) =

[1, z, . . . , zN−1]T . Consequently, its first order expansion is

1
m!

dmv

dzm
(zk) + ε 1

m!

dm+1v

dzm+1
(zk)

dzk

dε
(0) + O(ε2)

= v
(m)
k + ε(m + 1)∆zkv

(m+1)
k + O(ε2).

where v
(m)
k is the column of V

N
related to the pole zk at

index m ≤ Mk. Thus equations (46) to (49) can be derived
columnwise.

Proof of proposition 14: Since the poles zk are distinct
and since the functions ε 7→ zk(ε) are continuous, they
have distinct values in a neighborhood of 0. Therefore, the
Pascal Vandermonde matrix V N (ε) remains full-rank in this
neighborhood. Moreover, according to lemma 13, the function
ε 7→ V N (ε) is C∞, thus the function ε 7→ V N (ε)† is also C∞.
Therefore the function ε 7→ α(ε) = V N (ε)†s(ε) is C∞ in a
neighborhood of 0. Moreover, the first order expansion of the
equality V N (ε)α(ε) = s(ε) yields

V N ∆α + ∆V N α = ∆s.

Substituting equation (47) into this last equality yields

∆α = V N †
(
∆s − V

N
∆Z α

)
. (62)

Besides, substituting equations (44), (48) and (49) into equa-
tion (62), a simple rewriting shows that

∆Z α =
[
BT

0 , . . . ,BT
K−1

]T
∆s (63)

(where the matrices Bk are defined in equation (54)). Finally,
equations (52) and (53) are derived by substituting equa-
tion (63) into equation (62).

Proof of proposition 4: It is supposed that |α(m)
k (0)| =

a
(m)
k 6= 0. Then since the function ε 7→ α

(m)
k (ε) is C∞, the

function ε 7→ a
(m)
k (ε) = |α

(m)
k (ε)| is also C∞ in the neigh-

borhood of zero. Moreover, substituting the first row of equa-

tion (13) into the equation a
(m)
k (ε) = a

(m)
k

√
α

(m)
k

(ε)

α
(m)
k

α
(m)
k

(ε)∗

α
(m)
k

∗ ,

yields its first order expansion.
In other respects, the complex logarithm is a C∞-

diffeomorphism of C into R×] − π, π[, thus the function
ε 7→ φ

(m)
k (ε) is C∞. A first order expansion yields, by using

equation (51),

ln
(
α

(m)
k (ε)

)
= ln

(
α

(m)
k

)
+ ε

∆α
(m)
k

α
(m)
k

+ O
(
ε2
)

from which the first order expansion of the function ε 7→

φ
(m)
k (ε) can be derived.
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II. PERFORMANCE OF THE ESTIMATORS

A. First order performance

The results presented in section IV-A in [4] are proved
below.

Proof of proposition 5: Since the signal ∆s(t) is cen-
tered, equation (44) yields E[∆zk] = 0, thus the estimator ẑk is
unbiased at the first order. Moreover, var (ẑk) ∼ σ2

E[|∆zk|
2]

(where we have defined σ = ε), from which expression (15)
can be derived by using equation (44).

In other respects, since the signal ∆s(t) is centered, sub-
stituting equation (12) into equation (11) shows that the
estimators δ̂k and f̂k are unbiased at the first order. Moreover,

var(δ̂k) ∼
σ2

M2
k

E



ℜ
(

uk
H∆s

zk α
(Mk−1)
k

)2


 .

Substituting the identity (ℜ(z))2 = 1
2 (|z|2 + ℜ(z2)) into this

last equation shows that var(δ̂k) is asymptotic to

σ2

2M2
k




uk

H
E[∆s∆sH ]uk∣∣∣zkα

(Mk−1)
k

∣∣∣
2 + ℜ




uk

H
E[∆s∆sT ]uk

∗

(
zkα

(Mk−1)
k

)2







 .

However, since ∆s is a circular complex random vector,
E[∆s∆sT ] = 0N×N . Therefore

var(δ̂k) ∼
σ2

2M2
k




e−2δk

(
a
(Mk−1)
k

)2 uk
H
Γuk + 0



 ,

from which equation (16) is derived. Finally, equation (17) can
be derived in a similar way, by using the identity (ℑ(z))2 =
1
2 (|z|2 −ℜ(z2)).

B. Asymptotic performance

The results presented in section IV-B in [4] are proved
below. In order to keep the developments concise, it will be
supposed that all poles are single, although the results remain
valid if only the pole of interest is single. Before proving
corollaries 7 and 8, we present a lemma used in both proofs.

Lemma 16. For all k ∈ {0 . . . K − 1}, the coefficients of the

vector uk defined in equation (45) admit the second order

expansion2

uk(τ) = 1(τ≥n−1)
zt−l+τ
k

nl
− 1(τ≤l−1)

zt−l+τ
k

nl
+ O

(
1

N3

)
.

(64)

Proof: Let V n be the n × r Vandermonde matrix intro-
duced in definition 5. The inverse of the matrix Z = V nH

V n

involved in corollary 11 admits the asymptotic expansion3

2The function 1(.) is one if its argument is true and zero otherwise.
3More generally, in presence of multiple poles, the matrix Z−1 admits

the expansion Z−1
=

1
n

Z−1
0 + O

(
1

n2

)
, where the matrix Z−1

0 is block-
diagonal.

Z−1 = 1
n
Ir + O

(
1

n2

)
. Consequently, the vectors introduced

in this corollary verify

e↑ = [1, 0 . . . 0]T + O

(
1

n

)
(65)

e↓ = [0 . . . 0, 1]T + O

(
1

n

)
(66)

v′
↑ =

1

n
v↑ + O

(
1

n2

)
(67)

v′
↓ =

1

n
v↓ + O

(
1

n2

)
. (68)

Then, substituting equations (67) and (68) into equa-
tion (43), and noticing that the matrix Hk introduced in
proposition 1 satisfies Hk = zt−l+1

k α
(0)
k , yields

f↓k =
z−t+l−n+1
k

nl
vl(z∗k) + O

(
1

N3

)
(69)

f↑k =
z−t+l
k

nl
vl(z∗k) + O

(
1

N3

)
(70)

where vl(z) = [1, z . . . zl−1]T . Finally, substituting equa-
tions (65), (66), (69) and (70) into equation (45) yields
expression (64).

Now let us prove corollaries 7 and 8.
Proof of corollary 7: Lemma 16 shows that

uH
k uk = 2

n2l
+ O

(
1

N4

)
if n ≥ l

= 2
nl2

+ O
(

1
N4

)
if n ≤ l

Equations (21) and (22) are obtained by substituting this result
into equations (16) and (17), where Γ = IN (white noise
hypothesis). The minimum variance under the constraint n +
l = N + 1 is reached for n = 2l = 2

3 (N + 1) or for l = 2n =
2
3 (N + 1).

Proof of corollary 8:

First, let us simplify the expression of the matrix B defined
in equation (53). Since all poles are supposed to be single,
the matrices Bk introduced in equation (54) have dimension
2×N and are equal to [0, 1]T uH

k . Besides, V N is the N ×K

Vandermonde matrix, and V
N

is the corresponding N × 2K

Pascal-Vandermonde matrix. Since the pseudo-inverse of V N

satisfies V N †
= 1

N
V N H

+ O( 1
N2 ), it can be verified that

V N †
V

N




B0

...

BK−1



 =
N

2
JHUH + O

(
1

N2

)
,

where J is the Jordan matrix4 introduced in section II-B in [4]
(here the K × K matrix J is diagonal since all poles are
supposed to be single), and U is the N × K matrix whose
columns are the vectors uk. By substitution in equation (53),
one obtains

BH =
1

N
V N H

−
N

2
JHUH + O

(
1

N2

)
.

4See [5, pp. 121–142] for a definition of Jordan canonical decomposition.
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Therefore BHB is equal to

1

N2
V N H

V N+
N2

4
JHUHUJ−ℜ

(
V N H

UJ
)
+O

(
1

N2

)
.

(71)
Besides, V N H

V N = NIr + O(1). Moreover, lemma 16
yields

UHU =
2

max(n, l)2 min(n, l)
Ir + O

(
1

N4

)
.

Lastly, lemma 16 also shows that the coefficient of indices
(k1, k2) in the matrix V N H

U is
(
V N H

U
)

(k1,k2)
= vN (zk1

)Huk2

=
z

t−l

k2

nl

(
n+l−2∑

τ=max(n−1,l)

zk2

zk1

τ
−

min(l−1,n−2)∑
τ=0

zk2

zk1

τ

)
+ O

(
1

N3

)

(where vN (z) = [1, z . . . zN−1]T ). This last expression is
equal to O

(
1

N3

)
if zk1

= zk2
, or O

(
1

N2

)
if not. Therefore

ℜ
(
V N H

UJ
)

= O
(

1
N2

)
. Finally, equation (71) yields

BHB =

(
1

N
+

N2

2max(n, l)2 min(n, l)

)
Ir + O

(
1

N2

)
.

Equations (23) and (24) are obtained by substituting this
result into equations (19) and (20), where Γ = IN (white
noise hypothesis). It can be noticed that the first order terms
of the diagonal coefficients of BHB are equal, and that
the minimum of their common value under the constraint
n + l = N + 1 is reached for n = 2l = 2

3 (N + 1) or for
l = 2n = 2

3 (N + 1).
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