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Résumé

Considérons un graphe connexe et non orienté G = (V, E), un sous-
ensemble de sommets C ⊆ V , et un entier r ≥ 1 ; pour tout sommet v ∈ V ,
on dénote par Br(v) la boule de rayon r centrée sur v, i.e., l’ensemble de tous
les sommets à distance au plus r de v. On dit que C est un code r-identifiant
de G si et seulement si tous les ensembles Br(v)∩C sont non vides et distincts
deux à deux. Ces codes peuvent être utilisés pour concevoir des procédés de
localisation-détection dans des réseaux. Ils ont été initialement définis pour
modéliser un problème de détection de pannes dans des réseaux de multipro-
cesseurs. En effectuant un test sur tous les processeurs correspondant aux
sommets de C, on peut vérifier s’il existe un processeur en panne dans le
réseau, et si oui, le localiser. Dans cet article, nous présentons une version
adaptative des codes identifiants, qui permet de tester les processeurs du
réseau l’un après l’autre. Nous donnons un exemple simple où, dans le pire
cas, l’identification adaptative réclame un nombre de tests qui est logarith-
mique en le nombre minimum de tests dans le cas non adaptatif. Le but de cet
article, après avoir défini l’identification adaptative dans les graphes et donné
des bornes générales sur les codes r-identifiants adaptatifs, est d’étudier ces
codes sur des tores dans les grilles carrée et royale. Nous montrerons que
l’identification adaptative peut être rapprochée d’un problème de recherche
de type Rényi, étudié par M. Ruszinkó [M. Ruszinkó, On a 2-dimensional
search problem, Journal of Statistical Planning and Inference 37(3) (1993),
371-383].
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Abstract
Consider a connected undirected graph G = (V, E), a subset of

vertices C ⊆ V , and an integer r ≥ 1; for any vertex v ∈ V , let Br(v)
denote the ball of radius r centered at v, i.e., the set of all vertices
within distance r from v. We say that C is an r-identifying code of
G if and only if all the sets Br(v) ∩ C are nonempty and pairwise
distinct. These codes are used for devising location-detection schemes
in wireless sensor networks. They were originally introduced to model
a fault-detection problem in multiprocessor networks. By running a
test procedure on all the processors corresponding to vertices of C,
one can check if there is a faulty processor in the network, and locate
the faulty processor if there is one. In this paper we introduce an
adaptive version of identifying codes, which enables one to run a test
procedure on the processors of the network one after the other. We
show a simple example where, in the worst case, adaptive identifica-
tion requires a number of tests which is logarithmic in the minimum
number of tests for the non-adaptive case. The purpose of this paper,
after introducing adaptive identification in graphs and giving general
bounds on adaptive r-identifying codes, is to study these codes in torii
in the square and in the king lattices. We show that adaptive identi-
fication can be closely related to a Rényi-type search problem studied
by M. Ruszinkó [M. Ruszinkó, On a 2-dimensional search problem,
Journal of Statistical Planning and Inference 37(3) (1993), 371–383].
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1 Introduction and motivations

Given a connected undirected graph G = (V,E) and an integer r ≥ 1, we
define Br(v), the ball of radius r centered at v ∈ V , by

Br(v) = {x ∈ V : d(x, v) ≤ r},
where d(x, v) denotes the number of edges in any shortest path between x
and v. For short, a ball of radius r will be called an r-ball in the following.
Whenever d(x, v) ≤ r, we say that x and v r-cover each other (or simply
cover if there is no ambiguity). A set X ⊆ V covers a set Y ⊆ V if every
vertex in Y is covered by at least one vertex in X.

A code C is a nonempty set of vertices, and its elements are called code-
words. For each vertex v ∈ V , we denote by

KC,r(v) = C ∩Br(v)

the set of codewords which r-cover v. Two vertices v1 and v2 with

KC,r(v1) 6= KC,r(v2)

are said to be r-separated, or separated, by code C.
A code C such that |KC,r(v)| ≥ 1 for all v ∈ V is called an r-covering

code of G (it is sometimes also called an r-dominating set of G). In other
words, the set of vertices V is r-covered by C.

A code C such that |KC,r(v)| ≤ 1 for all v ∈ V is called an r-packing (of
r-balls) in G. In other words, the r-balls centered at vertices of C are all
pairwise disjoint.

A code being both an r-covering code and an r-packing of G is called an
r-perfect code.

A code C is called r-identifying (or simply identifying if there is no am-
biguity), if the sets KC,r(v), v ∈ V , are all nonempty and distinct [15]. In
other words, all vertices must be r-covered and pairwise r-separated by C.

Remark 1. For given graph G = (V,E) and integer r, there exists an
r-identifying code C ⊆ V if and only if

∀v1, v2 ∈ V (v1 6= v2), Br(v1) 6= Br(v2).

If this holds, we say that G is r-identifiable, or identifiable. In the following,
we consider only identifiable graphs.
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The motivations come, for instance, from sensor networks, where identify-
ing codes are used to devise location and detection systems [19]. Identifying
codes were originally defined for the purpose of fault diagnosis in multipro-
cessor systems [15]. Such a system can be modeled as a graph, where vertices
are processors, and edges are links between processors. Assume that at most
one of the processors is faulty, and that we wish to test the system and lo-
cate the faulty processor. For this purpose, some processors (constituting the
code) will be selected and assigned the task of testing their neighbourhoods
(i.e., the vertices at distance at most r). Whenever a selected processor
(i.e., a codeword) detects a fault, it sends an alarm signal, saying that one
element in its neighbourhood is faulty. We require that we can uniquely tell
the location of the faulty processor based only on knowledge of the set of
codewords which gave alarm.

Using r-identifying codes can be seen as follows: given the graph G and the
code C, we ask, in one step, |C| queries to the codewords (“is there a faulty
vertex in Br(c)?”, for all c ∈ C). Thanks to the global answer from the
codewords, we can locate the faulty vertex (if there is one) or conclude that
all vertices work correctly.

Adaptive identification [18, Sec. 1.2.7] consists in asking the queries one after
the other; this allows to choose a new query according to the answers we
received so far. This can also be seen as a game, where the first player
secretly chooses a vertex to be faulty in a graph, or no vertex, and the
second player tries to locate it by asking queries of the type

“is there a faulty vertex in Br(v) ?”

for v ∈ V . If the graph is identifiable, then the second player will always
succeed. In the following, “query” and “ball” will be equivalent.

We denote by ir(G) the minimum cardinality of an r-identifying code in
a graph G; in adaptive identification, we want to minimize the maximum
number of queries required for identification, and we denote by ar(G) this
minimum number. Obviously, for all r ≥ 1 and all r-identifiable graphs G,
we have

ar(G) ≤ ir(G).

Sometimes we also consider the density of such codes, which is simply the
ratio of ar(G) (or ir(G)) over the number of vertices of G. We mentioned
previously that any r-identifying code must r-cover all vertices. In adaptive
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r-identification, it may happen that all vertices have to be r-covered by
queries (for instance, if there is no faulty vertex in the graph), but this will
not always be the case.

We illustrate adaptive identification with the following detailed example,
which will be the basis for several subsequent generalizations.

Example 1. Let T5,5 be the 5× 5 torus in the square lattice (see Figure 1),
that is to say the graph having vertex set

V = {(i, j) : 0 ≤ i ≤ 4, 0 ≤ j ≤ 4},

and edge set

E = {{(i, j), (i, j + 1)}, {(i, j), (i + 1, j)} : 0 ≤ i ≤ 4, 0 ≤ j ≤ 4},

with all sums carried modulo 5.

(0,4) (4,4)

(0,0)

  

Figure 1: The 5× 5 torus, T5,5.

It is known that this graph admits a 1-perfect code, that is, a set of five
balls of radius one (and cardinality five) which do not intersect and contain
all 25 vertices (see Figure 2).

Since the minimum density of a 1-identifying code in the infinite square
grid is equal to 0.35 [1], the cardinality of a 1-identifying code in T5,5 is at
least d0.35× 25e = 9. Indeed, suppose that there exists a 1-identifying code
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Figure 2: The 5× 5 torus and a 1-perfect code, with two different representations
of the balls of radius 1.

C in T5,5 with smaller cardinality. Then, by tiling torii, one can construct

a 1-identifying code of density |C|
25

< 0.35 in the infinite grid, contradicting
[1]. With adaptive 1-identification however, we can locate a faulty vertex, or
conclude that there is none, with at most 7 queries, as we now show (we will
show later in Theorem 2 that 7 is the best possible, i.e., a1(T5,5) = 7).

First, we consider a ball of radius one, for instance

B1((2, 2)) = {(2, 2), (2, 1), (2, 3), (1, 2), (3, 2)},

and we assume that it contains at most one faulty vertex, and that there
is no faulty vertex outside. How to locate this vertex or know that there is
none? This will be the heart of adaptive identification, as we shall see later.
Here, it is easy to see that we can answer with at most three queries (see
Figure 3):

Q1) is there a faulty vertex in B1((1, 1))?
If YES,

Q2) is there a faulty vertex in B1((3, 1))?
If YES, the faulty vertex is (2, 1).
If NO, the faulty vertex is (1, 2).

If NO,
Q2) is there a faulty vertex in B1((3, 3))?
If YES,
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FAULTY

FAULTY VERTEX (2,1)

YES

YES

(1,2)

Q1

NO

Q2

NO

Q3

NO NO

VERTEX

NO

YES

(2,3)
YES

(3,2)NO

(2,2)
YES

Figure 3: Three queries to B1((2, 2)) in the 5× 5 torus T5,5.

Q3) is there a faulty vertex in B1((1, 3))?
If YES, the faulty vertex is (2, 3).
If NO, the faulty vertex is (3, 2).

If NO,
Q3) is there a faulty vertex in B1((2, 2))?
If YES, the faulty vertex is (2, 2).
If NO, there is no faulty vertex.

Note that if we already know from the start that there is a faulty vertex in
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B1((2, 2)), we still need three queries to locate it, because dlog2 5e = 3.
Now, how to locate a possible faulty vertex in the 5×5 torus? Consider the

perfect code given in Figure 2, where the centers of the balls are (0, 0), (2, 1),
(4, 2), (1, 3) and (3, 4). We question each of the first four balls in turn. At
the first positive answer, we apply the three-query process described before,
which guarantees that we need at most 4 + 3 = 7 queries. If we get four
negative answers, then we do not need to question the last ball, but instead
immediately apply the three-query process, which leads also to 7 queries.

The topic of this paper is, after introducing adaptive identification, to gen-
eralize Example 1 in several directions (torii of bigger sizes, torii in the king
lattice, and adaptive r-identification for r ≥ 1), and to analyze the perfor-
mances of adaptive identification with respect to classical identifying codes.

Before that, we give a somewhat extreme example, where adaptive 1-
identification requires a number of queries which is only logarithmic with
respect to the size of any 1-identifying code.

Example 2. Our construction is recursive (see Figure 4): we consider the

G G
1

x = 1

7

158

2
4 6

v’v

G

0

2

w’ = 3

v

v
2

v
1

w

Figure 4: The recursive graphs constructed in Example 2.

graph G0 = (V0, E0), with V0 = {v, v1, v2} and E0 = {{v, v1}, {v, v2}}, we
take a copy G′

0 of G0, we consider a new vertex w, and we link w to v′ and
to all vertices in V0, to obtain the graph G1. We take a copy G′

1 of G1, we
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consider a new vertex x, and we link x to w′ and to all vertices in V1, to
obtain the graph G2, and so on, until we obtain the graph Gh, which has
Xh = 2h+2 − 1 vertices, which we number from 1 to Xh, going from left to
right and from top to bottom.

If we ask whether there is a faulty vertex in the ball of radius one centered
at vertex 1, a YES answer tells us that the vertex is either equal to 1 or 3,
or belongs to Vh−1; whereas a NO answer shows that if it exists, it belongs
to V ′

h−1 \ {3}: the query divides the graph into approximately two halves.
Asking the second query in the appropriate half again divides the graph into
two halves. This informal argument shows that, by successive dichotomies, it
is possible to perform adaptive 1-identification in a number of queries which
is logarithmic in Xh.

On the other hand, consider, in Xh, two consecutive “leaves” 2` and 2`+1
(where 2h+1 ≤ 2` ≤ 2h+2 − 2). The only vertices that can 1-separate these
two leaves are themselves, which shows that at least one of them must belong
to a 1-identifying code. This implies that any 1-identifying code has a size
which is linear in Xh.

The paper is structured as follows: the next section contains general
bounds on ar(G) for a regular graph G, Section 3 is dedicated to torii in
the square lattice, Section 4 is dedicated to torii in the king lattice, and we
conclude the paper by giving perspectives for further research in the area of
adaptive identification in graphs.

2 General bounds

Recall that ar(G) denotes the minimum number of queries for an adaptive
r-identifying code in an r-identifiable graph G = (V, E). We also define the
following parameters:

• cr(G) is the maximum cardinality of an r-packing of G,

• γr(G) is the minimum cardinality of an r-covering code in G.

Note that cr(G) ≤ γr(G), with equality if r-perfect codes exist in G.
If G is r-regular, that is, if all r-balls have the same cardinality, then, if

we denote by vr(G) this cardinality, we have

cr(G)× vr(G) ≤ |V | ≤ γr(G)× vr(G),
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with equalities if r-perfect codes exist in G.
Let also dr(G) be the minimum number of queries to identify an r-ball

in G, i.e., the minimum number of queries for identifying a given r-ball Br

in G, assuming that there is no faulty vertex outside Br (hence there is one
or zero faulty vertex in Br). In the introduction we have already shown that
d1(T5,5) = 3 (see Example 1).

Theorem 1 Let r ≥ 1 and let G be an r-regular r-identifiable graph. Then
we have

cr(G)− 1 + dlog2(vr(G) + 1)e ≤ ar(G) ≤ γr(G)− 1 + dr(G).

Proof : Let G = (V, E) be an r-regular r-identifiable graph. For the
lower bound, it suffices to notice that it is possible that the answer to
the first cr(G) − 1 queries is NO. Indeed, by definition, cr(G) − 1 r-balls
Br(x1), . . . , Br(xcr(G)−1) cannot cover the whole vertex set of G, hence there
may be a faulty vertex in V r (Br(x1)∪ . . .∪Br(xcr(G)−1)), or no faulty ver-
tex at all. Hence after the (cr(G)− 1)-th query, there remain at least vr(G)
uncovered vertices, and there are at least vr(G) + 1 possibilities: either one
of these uncovered vertices is the faulty vertex, or there is no faulty vertex
at all in the graph. To discriminate between these vr(G) + 1 possibilities, we
need at least dlog2(vr(G) + 1)e queries.

For the upper bound, let us consider {x1, . . . , xγr(G)} an r-covering code
of minimum cardinality in G. Let us consider the following strategy: we
ask the query “is there a faulty vertex in Br(xi)?” for i = 1, . . . , γr(G) − 1,
until the answer is YES. If we get a positive answer at the k-th query, 1 ≤
k ≤ γr(G) − 1, then we know that there is a faulty vertex in Br(xk) and
we find it with, by definition, at most dr(G) queries. Hence we located the
faulty vertex in at most γr(G)− 1 + dr(G) queries. If the answer to the first
γr(G)− 1 queries is NO, then we know that either there is a faulty vertex in
Br(xγr(G)), or there is no faulty vertex at all. Hence if we identify Br(xγr(G)),
then we are done. By definition, this can be done it at most dr(G) queries,
which leads to a total number of queries of γr(G)− 1 + dr(G). 2

3 Torii in the square lattice

In Sections 3 and 4, we assume that the dimensions of the torii are “large
enough” with respect to r.
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Given two integers p and q, the p× q torus in the square lattice, denoted
Tp,q, is the graph having vertex set

V = {(i, j) : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1},

E = {{(i, j), (i, j + 1)}, {(i, j), (i + 1, j)} : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1},
with sums on the first coordinate carried modulo p, and sums on the sec-
ond coordinate carried modulo q. The torus T5,5 is depicted in Figure 1.
Obviously, vr(Tp,q) = 2r2 + 2r + 1.

If p and q are both multiples of 2r2 +2r+1, then there exists an r-perfect
code in Tp,q [7, 8]. In this case, we have

cr(Tp,q) = γr(Tp,q),

and to get good lower and upper bounds on ar(Tp,q), one could derive bounds
on dr(Tp,q) and use Theorem 1.

Hence, the next section is dedicated to computing general bounds on
dr(Tp,q), that we use in Section 3.2 to derive close bounds on — and, for many
values of r, exact values of — ar(Tp,q) in the perfect case. In Section 3.3, we
give the asymptotic value of ar(Tp,q) in the general case.

3.1 General bounds on dr(Tp,q)

Lemma 1 Let r ≥ 1, p ≥ 2 and q ≥ 2, and let Tp,q be the p× q torus in the
square lattice. Then we have

⌈
log2(2r

2 + 2r + 2)
⌉ ≤ dr(Tp,q) ≤ 2 dlog2(r + 1)e+ 1.

Proof : The lower bound is the general one for a dichotomic search in a set
of cardinality 2r2 + 2r + 2 (there can be either a faulty vertex – 2r2 + 2r + 1
possibilities – or no faulty vertex at all). For the upper bound, one can see an
r-ball in Tp,q as the disjoint union of r+1 “packets”, each of them containing
exactly 2r + 1 vertices, except for one which contains only r + 1 vertices (see
Figure 5 for r = 3).

Now, to identify an r-ball Br((i, j)) of Tp,q, one can use the following
three-fold strategy: first, look in which packet of Br((i, j)) could the faulty
vertex be; then, look in which row of the candidate packet could the faulty
vertex be; finally, look if there is a faulty vertex in the candidate row, and
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Figure 5: A 3-ball in Tp,q, seen as the disjoint union of 3 packets of 7 vertices and
a packet of 4 vertices.

if yes locate it. We have to be careful with the fact that we do not know a
priori whether there is a faulty vertex in Br((i, j)) or not.

The first phase in the identification of Br((i, j)) is as follows. We apply
a dichotomic search using queries of the form “is there a faulty vertex in
Br((i− k, j − k))?”, where the values of k are taken among 1, 2, . . . , r. This
provides us with the candidate packet, and uses at most dlog2(r + 1)e queries.

We move to the second phase. If the candidate packet is the lowermost
one, i.e., consists of r + 1 vertices, then the faulty vertex, if it exists, can
be trivially located in dlog2(r + 1)e queries. Assume then that the candidate
packet consists of 2r+1 vertices. The packet is a disjoint union of r+1 rows,
each of them containing exactly two vertices, except for one which contains
only one vertex. In this packet, denote by (a, b) the unique vertex which
is the center of an r-ball that contains the packet. By a dichotomic search
using queries of the form “is there a faulty vertex in Br((a + k, b + 1− k))?”,
where the values of k are taken among 1, 2, . . . , r, one can find the candidate
row to contain a faulty vertex in at most dlog2(r + 1)e queries. Note that no
query covers the uppermost row, since k ≥ 1. Hence, the candidate row is
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the uppermost one if and only if all the queries in the second phase answer
NO.

We move to the third phase. Here we have the candidate row and need to
decide whether there is a faulty vertex, and if yes, which of the two vertices is
the faulty one. If the candidate row consists of two vertices then necessarily
there was a query in the second phase that answered YES, hence we know
that there is a faulty vertex, and in order to locate it it suffices to check one
of two vertices. If the candidate row consists of a single vertex, then a single
query checks if it is faulty. We conclude that the third phase consists of one
query.

Summing up the number of queries in the three phases we obtain that
the overall number of queries is at most 2 dlog2(r + 1)e+ 1. 2

Note that it is easy to check that for all r ≥ 1,

(2 dlog2(r + 1)e+ 1)− ⌈
log2(2r

2 + 2r + 2)
⌉ ∈ {0, 1}.

3.2 Perfect case

We start by the case r = 1, where we can directly apply Theorem 1.

Theorem 2 Let p ≥ 5 and q ≥ 5 be both multiples of 5, and let Tp,q be the
p× q torus on the square lattice. Then we have

a1(Tp,q) =
pq

5
+ 2.

Proof : We have already seen in the introduction of this paper (see Exam-
ple 1) that

d1(Tp,q) = dlog2(v1(Tp,q) + 1)e = dlog2 6e = 3.

This also follows immediately from Lemma 1. If p and q are both multiples
of 5, then we know that there exists a 1-perfect code in Tp,q, i.e.,

c1(Tp,q) = γ1(Tp,q) =
pq

5
.

The conclusion follows from Theorem 1. 2

In general, when p and q are both multiples of 2r2 + 2r + 1, there exists
an r-perfect code in Tp,q, and we have

cr(Tp,q) = γr(Tp,q) =
pq

2r2 + 2r + 1
.

14



Hence, by Theorem 1 and Lemma 1, we know that

pq

2r2 + 2r + 1
− 1 +

⌈
log2(2r

2 + 2r + 2)
⌉ ≤ ar(Tp,q)

and
ar(Tp,q) ≤ pq

2r2 + 2r + 1
+ 2 dlog2(r + 1)e .

For infinitely many values of r, we actually have
⌈
log2(2r

2 + 2r + 2)
⌉

= 2 dlog2(r + 1)e+ 1. (1)

For instance, computation shows that this is the case for r = 1, 3, 6 and 7,
and for r = 2m − s, 1 ≤ s ≤ 2m−2, m ≥ 4. For r = 2, 4 and 5, we shall give
ad hoc strategies showing that

dr(Tp,q) =
⌈
log2(2r

2 + 2r + 2)
⌉
.

Theorem 3 For all r = 1, . . . , 7, and for all r = 2m − s, 1 ≤ s ≤ 2m−2,
m ≥ 4, we have

ar(Tp,q) =
pq

2r2 + 2r + 1
− 1 +

⌈
log2(2r

2 + 2r + 2)
⌉
,

for all p and q which are both multiples of 2r2 + 2r + 1.

Proof : The cases r = 1, 3, 6, 7 and r = 2m − s follow from Theorem 1,
Lemma 1 and (1). For the cases r = 2, 4, 5, we exhibit (see Figures 6, 7 and 8)
ad hoc strategies showing that

dr(Tp,q) =
⌈
log2(2r

2 + 2r + 2)
⌉
.

2

For other values of r, however, the bounds of Lemma 1 differ by at most 1,
hence we have:

Theorem 4 For all r ≥ 8, we have

ar(Tp,q)−
(

pq

2r2 + 2r + 1
− 1 +

⌈
log2(2r

2 + 2r + 2)
⌉) ∈ {0, 1},

provided that p and q are both multiples of 2r2 + 2r + 1.

Proof : Straightforward from Lemma 1 and the remark following its proof.
2
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Figure 6: Proof of d2(Tp,q) = 4.

3.3 General case

We consider the general case, of a torus which does not necessarily admit an
r-perfect code. We have the following asymptotic result:

16



Figure 7: Proof of d4(Tp,q) = 6.

Theorem 5 Let r ≥ 1, p ≥ 2 and q ≥ 2, and let Tp,q be the p × q torus in

17



Figure 8: Proof of d5(Tp,q) = 6.

the square lattice. Then we have

ar(Tp,q) =
pq

2r2 + 2r + 1
+ Θ(p + q).

Proof : By Theorem 1, we know that

ar(G) ≥ cr(G)− 1 + dlog2(vr(G) + 1)e

18



for any r-regular r-identifiable graph G. Let us define p′ as the greatest
multiple of 2r2 + 2r + 1 which is smaller than or equal to p. Similarly, let
us define q′ as the greatest multiple of 2r2 + 2r + 1 which is smaller than or
equal to q. Clearly, we have

cr(Tp,q) ≥ cr(Tp′,q′) =
p′q′

2r2 + 2r + 1
.

Now, since p′ ≥ p− (2r2 + 2r + 1) and q′ ≥ q − (2r2 + 2r + 1), we have

p′q′

2r2 + 2r + 1
=

pq

2r2 + 2r + 1
+ Ω(p + q).

Since dlog2(vr(G) + 1)e = O(1), we have

ar(Tp,q) =
pq

2r2 + 2r + 1
+ Ω(p + q).

Still by Theorem 1, we know that

ar(G) ≤ γr(G)− 1 + dr(G)

for any r-regular r-identifiable graph G. Let us define p′′ as the smallest
multiple of 2r2 + 2r + 1 which is greater than or equal to p. Similarly, let
us define q′′ as the smallest multiple of 2r2 + 2r + 1 which is greater than or
equal to q. Clearly, we have

γr(Tp,q) ≤ γr(Tp′′,q′′) =
p′′q′′

2r2 + 2r + 1
.

Now, since p′′ ≤ p + (2r2 + 2r + 1) and q′′ ≤ q + (2r2 + 2r + 1), we have

p′′q′′

2r2 + 2r + 1
=

pq

2r2 + 2r + 1
+ O(p + q).

Since dr(Tp,q) is clearly independent of p and q, dr(Tp,q) = O(1), and we have

ar(Tp,q) =
pq

2r2 + 2r + 1
+ O(p + q),

which concludes the proof. 2
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This confirms the intuitive idea that an optimal strategy consists in, first,
r-covering the graph, and then locating the faulty vertex with a dichotomiza-
tion of the first r-ball answering YES. Asymptotically, the cost of the op-
timal strategy is then approximately equal to the cardinality of an optimal
r-covering code of the graph, that is to say

pq

2r2 + 2r + 1
+ Θ(p + q),

which has density tending to

1

2r2 + 2r + 1

as p and q tend to infinity. One can compare this density with the non-
adaptive case, where we know that any minimum r-identifying code has
density greater than or equal to

3

8r + 4

as p and q tend to infinity, for all r ≥ 1 [3]. When r = 1, it is known that the
best possible density is equal to 0.35 [1], vs 0.2 for adaptive 1-identification.

4 Torii in the king lattice

Given two integers p and q, the p× q torus in the king lattice, denoted Tk
p,q,

is the graph having vertex set

V = {(i, j) : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1},

and edge set

E = {{(i, j), (i, j + 1)}, {(i, j), (i + 1, j)} : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1}
∪ {{(i, j), (i + 1, j + 1)} : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1}
∪ {{(i, j), (i + 1, j − 1)} : 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1}

with sums on the first coordinate carried modulo p, and sums on the second
coordinate carried modulo q.
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We present results similar to those for torii in the square lattice. If p and
q are both multiples of 2r + 1, then there exists a perfect r-code in Tk

p,q. In
this case, we have

cr(T
k
p,q) = γr(T

k
p,q),

and to get good lower and upper bounds on ar(T
k
p,q), one could derive bounds

on dr(T
k
p,q) and use Theorem 1.

The next section is dedicated to computing general bounds on dr(T
k
p,q),

that are used in Section 4.2 to derive close bounds on — and, for many
values of r, exact values of — ar(T

k
p,q) in the perfect case. Our computation

of dr(T
k
p,q) involves a result on a similar problem studied by M. Ruszinkó [20].

In Section 4.3, we give the asymptotic value of ar(T
k
p,q) in the general case.

4.1 General bounds on dr(T
k
p,q)

A ball of radius r in the king lattice can be seen as a square of side 2r+1 (see
Figure 9). Hence, our problem is equivalent to finding out if a given square,
containing at most one faulty vertex, indeed contains one, and if yes, then
locate it, using queries of the following kind. In each query, two numbers

1 ≤ m,n ≤ 2r + 1

and two symbols
s(x), s(y) ∈ {≤,≥}

are chosen. The query has the form:

“is there a faulty vertex in the rectangle {(x, y) : x s(x) m, y s(y) n}?”
A similar problem has been proposed by G. O. H. Katona [16], and studied

by M. Ruszinkó [20]. Let us name our problem the “identification problem”
and the problem discussed in [20], the “search problem”. The search problem
is different from the identification problem in three ways:

1. The search problem considers the dichotomization problem in a rect-
angle {(x, y) : 1 ≤ x ≤ a, 1 ≤ y ≤ b}, which is not necessarily a
square.

2. The search problem assumes that there is exactly one faulty vertex in
the rectangle (rather than at most one faulty vertex in the identification
problem).
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Figure 9: A 2-ball in Tk
p,q, seen as a square of side 5.

3. In the search problem, all the queries are of the form: “is the faulty
vertex in the rectangle {(x, y) : x ≤ m, y ≤ n}?”, where 1 ≤ m ≤ a,
1 ≤ n ≤ b. In the following, we shall refer to these queries as “type 2
queries”, while queries corresponding to the identification problem will
be called “type 1 queries”.

Denote by Q(a, b) the minimum number of type 2 queries required to
locate the faulty vertex in an a × b rectangle for the search problem. We
shall use the following results.

Theorem 6 (Ruszinkó [20]) For a natural number x, denote `(x) as the
fractional part of log2 x, that is to say

`(x) := log2(x)− blog2(x)c .
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If the natural numbers a and b satisfy at least one of the following conditions:

`(a) + `(b) > 1 (2)

`(a) + `(b) ≤ 0.8 (3)

`(a) ≤ 0.49 and `(b) ≤ 0.49 (4)

a = b and a ≤ 180, (5)

then there exists an algorithm using at most dlog2(ab)e queries which locates
the faulty vertex for the search problem in an a× b rectangle, i.e.,

Q(a, b) = dlog2(ab)e .

We note that the range of values of a and b for which dlog2(ab)e queries are
sufficient is extended in [20] beyond Theorem 6. This extension is however
small and we shall not use it here.

Theorem 6 could be easily used for the identification problem if we were
only guaranteed that a faulty vertex exists. One way to overcome this is to
add a query that questions the entire ball. However, in many cases this extra
query is unnecessary. The following lemma is the analogue of Lemma 1 for
the king lattice.

Lemma 2 Let r ≥ 1, p ≥ 2 and q ≥ 2, and let T k
p,q be the p× q torus in the

king lattice. Then we have

⌈
log2((2r + 1)2 + 1)

⌉ ≤ dr(T
k
p,q) ≤ Q(2r + 1, 2r + 2)

≤ dlog2(2r + 1)e+ dlog2(2r + 2)e .

In order to prove it, we first need the following lemma.

Lemma 3 Let A be an optimal algorithm for the search problem, i.e., an
algorithm that locates the faulty vertex in an a × b rectangle using at most
Q(a, b) queries. Denote by x = (a, b) the rightmost and uppermost vertex of
the rectangle. Then no query covers x. Furthermore, x is the faulty vertex if
and only if all the queries answer NO.

Proof : We first show that since A is optimal, then no query covers x.
Indeed, the only query that contains x is the query that questions the entire
rectangle, and it is known a priori that the answer to this query is YES. This
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query is thus unnecessary and, if posed, can be removed from any optimal
algorithm.

Since no query contains x, all the queries answer NO if x is the faulty
vertex. For the other direction, assume that all the queries answer NO. In
each step of the algorithm, the candidate set of faulty vertices is the set of
vertices that have not been covered by any of the preceding queries. Since
x is not covered by any of the queries, x belongs to this set all along the
execution of A. By the end of the algorithm, the candidate set of faulty
vertices contains exactly one vertex, which is the faulty vertex. Therefore x
is the faulty vertex. 2

Proof of Lemma 2 : The first inequality

⌈
log2((2r + 1)2 + 1)

⌉ ≤ dr(T
k
p,q)

is trivial since vr(T
k
p,q) = (2r+1)2. To prove the second inequality, we exhibit

an algorithm A1 which solves the identification problem with Q(2r+1, 2r+2)
type 1 queries. Given a square with side 2r + 1 and vertices (1, 1), . . . , (2r +
1, 2r + 1), we add a new line of non-faulty vertices

{(1, 2r + 2), (2, 2r + 2), . . . , (2r + 1, 2r + 2)}
above the uppermost line of the square. Let A2 be an optimal algorithm for
the search problem in this newly created rectangle. Using type 1 queries on
the square, we simulate the execution of A2 on the rectangle in the following
way. For each type 2 query

“is there a faulty vertex in {(x, y) : x ≤ m, y ≤ n}?”,

where 1 ≤ m ≤ 2r + 1, 1 ≤ n ≤ 2r + 2, algorithm A1 produces the type 1
query

“is there a faulty vertex in {(x, y) : x ≤ m, y ≤ min{2r + 1, n}}?”
which is equivalent to the query

“is there a faulty vertex in Br((m− r, min{2r + 1, n} − r))?”

If the square contains a faulty vertex, then it will be located by A2 and
hence also by A1, since we know in advance that the line

{(1, 2r + 2), (2, 2r + 2), . . . , (2r + 1, 2r + 2)}
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contains no faulty vertices. If the square does not contain a faulty vertex,
then the vertex x = (2r + 1, 2r + 2) will be declared as the faulty vertex
by A2. Indeed, by Lemma 3, no query of A2 covers x, therefore A2 will be
properly executed without being bothered by the fact that the rectangle does
not contain a faulty vertex: the possibility that x is the faulty vertex always
remains valid. Furthermore, since the rectangle does not contain a faulty
vertex, all the queries answer NO, hence, by Lemma 3, x will be declared as
the faulty vertex.

The third inequality is easy: in general, to locate the faulty vertex in
an a × b rectangle, one can still use a dichotomic search to find the row
containing the faulty vertex (at most dlog2 ae queries), and then find the
column containing the faulty vertex (at most dlog2 be queries), hence

Q(a, b) ≤ dlog2 ae+ dlog2 be
for all natural numbers a and b. 2

We remark that in the proof of Lemma 2, we did not use the fact that
in the identification problem we are free to choose the signs s(x) and s(y) in
each query, i.e., we used only r-balls with centers (x, y) such that x ≤ r + 1,
y ≤ r + 1.

Observe that it is easy to check that for all r ≥ 1,

(dlog2(2r + 1)e+ dlog2(2r + 2)e)− ⌈
log2((2r + 1)2 + 1)

⌉ ∈ {0, 1}.

4.2 Perfect case

Theorem 6 enables us to find many values of r for which dlog2((2r + 1)2 + 1)e
coincides with Q(2r + 1, 2r + 2), which directly gives the value of dr(T

k
p,q) by

Lemma 2.

Theorem 7 We have

dr(T
k
p,q) =

⌈
log2((2r + 1)2 + 1)

⌉

for all 1 ≤ r ≤ 100, except maybe for r = 22 and r = 90, as well as for
r = 2m − s, 1 ≤ s ≤ 2m−2, m ≥ 7. Consequently, we have

ar(T
k
p,q) =

pq

(2r + 1)2
− 1 +

⌈
log2((2r + 1)2 + 1)

⌉

for all r ≤ 100, r 6= 22, r 6= 90, and for all r = 2m−s, 1 ≤ s ≤ 2m−2, m ≥ 7,
provided that p, q are both multiples of 2r + 1.
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Proof : For all the values of r ≤ 100, Theorem 6 guarantees that

Q(2r + 2, 2r + 2) = d2 log2(2r + 2)e .

Indeed, for 1 ≤ r ≤ 89, we can directly apply (5) in Theorem 6, and for
91 ≤ r ≤ 100 we use (2) in Theorem 6. Since we always trivially have

Q(2r + 1, 2r + 2) ≤ Q(2r + 2, 2r + 2)

for all r ≥ 1, then by Lemma 2 we have

dr(T
k
p,q) ≤ d2 log2(2r + 2)e .

Computation reveals that
⌈
log2((2r + 1)2 + 1)

⌉
= d2 log2(2r + 2)e

for all 1 ≤ r ≤ 100, except for r = 2, 5, 22, 90. The cases r = 2, 5 are given
in Figures 10 and 11, which show that

d2(T
k
p,q) = 5

and
d5(T

k
p,q) = 7,

and we conclude by Theorem 1 and Lemma 2. The case r = 2m − s comes
from the fact that the bounds of Lemma 2 coincide for these values of r:

⌈
log2((2r + 1)2 + 1)

⌉
= dr(T

k
p,q) = dlog2(2r + 1)e+ dlog2(2r + 2)e .

2

However, as for the torus in the square lattice, the general bounds from
Lemma 2 differ by at most 1, hence:

Theorem 8 For all r ≥ 1 we have

ar(T
k
p,q)−

(
pq

(2r + 1)2
− 1 +

⌈
log2((2r + 1)2 + 1)

⌉) ∈ {0, 1},

provided that p and q are both multiples of 2r + 1.

Proof : Straightforward from Lemma 2 and the observation following its
proof. 2
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Figure 10: Proof of d2(Tk
p,q) = 5.

4.3 General case

Theorem 9 Let r ≥ 1, p ≥ 2 and q ≥ 2, and let T k
p,q be the p × q torus in

the king lattice. Then we have

ar(T
k
p,q) =

pq

(2r + 1)2
+ Θ(p + q).
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Figure 11: Proof of d5(Tk
p,q) = 7.

Proof : The proof is similar to that of Theorem 5. By Theorem 1, we know
that

ar(G) ≥ cr(G)− 1 + dlog2(vr(G) + 1)e
for any r-regular r-identifiable graph G. Let us define p′ as the greatest
multiple of 2r +1 which is smaller than or equal to p. Similarly, let us define
q′ as the greatest multiple of 2r + 1 which is smaller than or equal to q.

28



Clearly, we have

cr(T
k
p,q) ≥ cr(T

k
p′,q′) =

p′q′

(2r + 1)2
.

Now, since p′ ≥ p− (2r + 1) and q′ ≥ q − (2r + 1), we have

p′q′

(2r + 1)2
=

pq

(2r + 1)2
+ Ω(p + q).

Since dlog2(vr(G) + 1)e = O(1), we have

ar(T
k
p,q) =

pq

(2r + 1)2
+ Ω(p + q).

Still by Theorem 1, we know that

ar(G) ≤ γr(G)− 1 + dr(G)

for any r-regular r-identifiable graph G. Let us define p′′ as the smallest
multiple of 2r +1 which is greater than or equal to p. Similarly, let us define
q′′ as the smallest multiple of 2r + 1 which is greater than or equal to q.
Clearly, we have

γr(T
k
p,q) ≤ γr(T

k
p′′,q′′) =

p′′q′′

(2r + 1)2
.

Now, since p′′ ≤ p + (2r + 1) and q′′ ≤ q + (2r + 1), we have

p′′q′′

(2r + 1)2
=

pq

(2r + 1)2
+ O(p + q).

Since dr(T
k
p,q) is clearly independent of p and q, we have dr(T

k
p,q) = O(1), and

ar(T
k
p,q) =

pq

(2r + 1)2
+ O(p + q),

which concludes the proof. 2

Hence, the density of an optimal adaptive r-identifying code in Tk
p,q tends

to
1

(2r + 1)2

29



as p and q tend to infinity. One can compare this density with the non-
adaptive case, where we know that a minimum r-identifying code has density
tending to

2

9

if r = 1 [5] and
1

4r

if r > 1 [4], as p and q tend to infinity.

5 Conclusions and perspectives

In this paper we introduced adaptive identification in graphs, that we studied
on torii in the square and in the king lattices. For some values of r and p, q, we
gave the exact values of ar(Tp,q) and ar(T

k
p,q). In general, if G is an r-regular

graph, the value of ar(G) − γr(G) strongly depends on dr(G), which is the
minimum number of queries required to identify an r-ball Br in G, assuming
that there is no faulty processor outside Br. The computation of dr(G) is
closely related to a Rényi-type search problem, proposed by G. O. H. Katona
and studied by M. Ruszinkó [20] and M. Ruszinkó and G. Tardos [21]. In

particular, we used results of [20] to compute the exact value of dr(T
k
p,q).

We do not know the exact value of dr(G) for all values of r when G is
a torus in the square or in the king lattice, and we leave here as an open
problem the computation of dr(Tp,q) and dr(T

k
p,q) for all r ≥ 1. One can also

consider other types of grids, like the triangular or the hexagonal grids, which
were already studied in the non-adaptive case [3, 5, 10]. The study of the hy-
percube could also be of interest, since it is maybe the most studied topology
for identification [2, 12, 13, 15] (and for many other coding problems too).
In the case of the hypercube, we predict that things do not behave so nicely
as in the 2-dimensional square or king lattice. Indeed, like multidimensional
square grids, hypercubes are (0− 2)-graphs, that is to say that the intersec-
tion of two 1-balls is of cardinality either 0 or 2. This means that it is not so
easy to identify a 1-ball with 1-balls in the hypercube, since a 1-ball cannot
split another 1-ball into two halves of roughly even cardinalities like in the
case of the square or the king lattice.

We suggest also two possible generalizations of adaptive identification.
The first one consists in locating not only one, but at most a fixed number
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t ≥ 1 of faulty vertices, that is to say to study adaptive (r,≤ t)-identifying
codes. This problem has already been studied for the non-adaptive version
of these codes [9, 10, 11, 12, 17]. The second perspective for further research
is to consider that vertices have probabilities of defection, which would lead
to minimizing the expected number of queries and not only the greatest
possible number of queries (worst-case analysis). We show in Figure 12 a
simple example, taken from [18, Sec. 1.2.7], where the expected number of
queries is less than the greatest number of queries in the worst case. In this
example, p ∈ [0, 1] is the probability that no vertex is faulty in the path on
three vertices P3, and 1−p

3
is the probability that any vertex of P3 is faulty.

It is easy to see that a1(P3) is 2, and that an optimal adaptive strategy is
to ask first “is there a faulty vertex in B1(x1)?”, and then “is there a faulty
vertex in B1(x3)?”. However, we let the reader check that, if we take into
account the probabilities, it is cleverer to ask first “is there a faulty vertex
in B1(x2)?” as soon as p > 2

5
.

Figure 12: Assignment of defection probabilities to vertices. For p > 2
5 , the

expected number of queries is less than in the worst case.

Observe that the path P3 is such that a1(P3) = i1(P3). An open problem
is to characterize all graphs G for which ar(G) = ir(G).
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