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Estimation de fréquence pour les modèles AM/FM dans le

cadre du vocodeur de phase: compléments expérimentaux et

théoriques

Michaël Betser, Patrice Collen, Bertrand David and Gaël Richard

Abstract

Ce document technique est un complément expérimental et théorique à l’article intitulé "Estima-
tion of frequency for AM/FM models using the phase vocoder framework" (IEEE Trans. on Signal
Processing, 2007). Plusieurs propriétés concernant certains estimateurs de fréquences basés sur la
transformée de Fourier sont démontrés. La première démonstration concerne le réassignement spec-
tral, et prouve que la méthode est toujours valide pour le modèle AM/FM d’ordre 1. Les autres
démonstrations concernent les estimateurs de fréquences basés sur le vocodeur de phase, dans le
cas AM/FM, et développés dans l’article cité ci-dessus. Il s’agit principalement des développements
des biais et des variances théoriques. Des compléments expérimentaux sont également présentés et
apportent un éclairage sur l’influence de certains paramètres (notamment le zéro padding).

Estimation of frequency for AM/FM models using the phase
vocoder framework: Experimental and theoretical complements

Abstract

This technical report is a theoretical and experimental complement to the IEEE Transactions
on Signal Processing paper [5]. Several demonstrations concerning Fourier-based estimators are pre-
sented. The first demonstration concerns the reassignment, and shows that this method is still valid
for the AM/FM case. The other demonstrations concern the phase-vocoder-based frequency estima-
tion, in the AM/FM case.
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1 Introduction

This technical report is a theoretical and experimental complement to the IEEE Transactions on Signal
Processing paper [5].

The model under study in this report is the first-order AM/FM model, defined as:

x(τ) , eλ+µτ · ej(α+βτ+γτ2/2) (1.1)

where α is the phase, β is the frequency, γ is the Frequency Change Rate (FCR), λ is the log-amplitude
and µ is the Log-Amplitude Change rate (ACR). τ is the local time. The time of the nth sample is
τn = n/F where F is the sampling frequency.

2 Reassignment and the AM/FM model

The frequency reassignment is known to perfectly localize chirp signals [2]. A simple demonstration for
the continuous Fourier Transform in the FM case is presented in [3]. Using the same method, it can be
shown easily that the time-frequency Reassignment is also perfectly valid for the AM/FM model.

Let’s define the continuous Fourier Transform as:

FT (x; ω) ,
∫ +∞

−∞
x(τ) e−jωτ dτ (2.1)

Let g be g(τ) , x(τ)h(τ), where h is the Fourier Transform window. Using (1.1), we have:

dg

dτ
(τ) =

dx

dτ
(τ)h(τ) +

dh

dτ
(τ)x(τ)

=(j(γτ + β) + µ)x(τ)h(τ) +
dh

dτ
(τ)x(τ) (2.2)

The FT is applied to the relation (2.2) for a frequency ω such that the sinusoid x has a non-zero energy
for this particular frequency (FT (g;ω) 6= 0), on the definition interval of the window h:

jωFT (g;ω) = jγFT (τg; ω) + (jβ + µ)FT (g; ω)

+ FT (
dh

dτ
x; ω)

⇔ β − jµ + γ
FT (τg; ω)
FT (g; ω)

= ω + j
FT (dh

dτ x;ω)
FT (g;ω)

(2.3)

⇒ β + γ<
(FT (τg;ω)

FT (g;ω)

)
= ω −=

(FT (dh
dτ x; ω)

FT (g;ω)

)
(2.4)

This formula is exactly the same as the one obtained in [3] for the FM model. The influence of the ACR
has been removed by taking the real part of equation (2.3). Accordingly to the usual formulation of the
reassignment, let’s define ḣ(τ) , dh

dτ (τ). The first term of equation (2.4) is the frequency of the partial
for the time

t̂ = t + <(
FT (thx;ω)
FT (hx;ω)

) (2.5)

which is the time reassignment operator. The second part of the equation corresponds to the frequency
reassignment operator

β̂ = ω −=(
FT (ḣx; ω)
FT (hx; ω)

) (2.6)

3 The phase vocoder frequency estimator and the AM/FMmodel

In this part the model is supposed valid on an interval W , and λ, α, β corresponds to the log-amplitude,
phase and frequency for the time tM , i.e. the time corresponding to the middle of the window W ).

x(τ) = eλM+jαM eµτ+j(βM τ+γτ2/2) (3.1)
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Let’s define Γ as:

Γ(β, µ, γ; h) =
(N−1)/2∑

i=−(N−1)/2

h(τi) eµτi ej(βτi+γ
τ2

i
2 ) (3.2)

The STFT of x for the time tmi
and the frequency ωki

is:

X(tmi
, ωki

;h) = eλi+jαi Γ(βi − ωki
, µ, γ;h) (3.3)

X(tmi , ωki ;h) = eλi+jαi Γi (3.4)

where αi = αM + βM (tmi − tM ) + γ(tmi − tM )2/2, βi = βM + γ(tmi − tM ), ωki is the frequency of the
closest maximal bin ki to βi for the time tmi . Finally, h is the window.

If we take the argument of this last equation:

ψi , arg(Xi) = αi + arg(Γi) (3.5)

If we consider the phase difference between two time-frequency points, X1 and X2, such that tk2 − tM =
tM − tk1 = T/2:

∆ψ = arg(X2)− arg(X1) (3.6)

= TβM + arg(Γ2Γ̄1) + 2πn (3.7)

The first two subsections will recall how work the two methods presented in the article [5], namely the
phase corrected vocoder and the reassigned vocoder. Then, in the next three subsections, the property
of these estimators, concerning the unwrapping factor n, their biases and their variances, will be derived.

3.1 Phase corrected vocoder (PCV)

This method is derived for the FM model (µ = 0). The Fourier transform is not a direct estimator of the
phase for chirp signals. An improvement to the phase vocoder consists in correcting the Fourier phase
estimation, as in [4], using the error function Γ(∆β, 0, γ; h). The estimation scheme proposed involves
two steps:

1. Estimation of the corrected phases (modulo 2π) α̂1 and α̂2, and the unwrapping factor n̂.

2. Estimation of βM using the phase vocoder formula1

β̂M =
mod(α̂2)−mod(α̂1) + 2πn̂

T
(3.8)

The function Γ requires the knowledge of the frequencies corresponding to tm1 and tm2 (namely β1

and β2). Therefore the first step of the estimation scheme will involve a first frequency estimation for β1

and β2. As there is no knowledge about the FCR in this step, it is proposed to use one of the frequency
estimators based on the classical sinusoidal model. Although these estimators are biased for the FM
model, it is shown in [4] that this scheme can greatly improve the precision on the phase estimates.

The parameter γ, and the unwrapping factor n can be deduced from the frequencies β1 and β2, using
the formulas:

γ̂ =
β̂2 − β̂1

T

n̂ = round

(
1
2π

(
mod(α̂1)−mod(α̂2) +

β̂1 + β̂2

2
T

))

1mod() is the modulo 2π function
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3.2 Reassigned vocoder (RV)

For this method, an accurate approximation of arg(Γ2Γ̄1) will be derived. The first step is to express
arg(Γ1Γ̄2) as a function of βM , the frequency to be estimated. In this process, ∆β1 and ∆β2 can
be decomposed into two bounded terms B and G, described below. Let’s define ωM as the mean bin
frequency and ∆ω as half the frequency variation in bins:

ωM =
ωk1 + ωk2

2
, ∆ω =

ωk2 − ωk1

2
(3.9)

In addition, from the definition of the quadratic phase model (3.1), the FCR γ follows this relation:

γ
T

2
=

β2 − β1

2
(3.10)

Let B = βM − ωM and G = ∆ω − γ T
2 . From the previous definitions, ∆βi can be expressed as:

∆β1 = B + G, ∆β2 = B −G (3.11)

And since ωk1 and ωk2 are respectively the closest maximal bins to β1 and β2, then |G| < R, where R

is half the FT precision. In the pure FM case the relation |B| < R is also verified. In the AM case
the maximal bin ωi are not anymore the closest bin to the βi, and B will be bounded by a constant C,
depending on ACR, and such that C > R. The theoretical value of C is difficult to obtain, but numerical
analysis shows that C increases very slowly when the ACR increases.

The first-order Taylor expansion in G = 0 of Γ1 and Γ2 is given by:

Γ1 = Γ(B, µ, γ;h) + GΓ′(B,µ, γ; h) + ε1

Γ2 = Γ(B, µ, γ;h)−GΓ′(B,µ, γ; h) + ε2

Where ε1 and ε2 are the Lagrange remainders. The frequency derivation property of the STFT leads to:

Γ1 = Γ(B,µ, γ; h) + jGΓ(B,µ, γ; th) + ε1

Γ2 = Γ(B,µ, γ; h)− jGΓ(B,µ, γ; th) + ε2

For an order 1 Taylor expansion in 0 of the argument function, we obtain:

arg(Γ1Γ̄2) = 2G<(
Γ(B,µ, γ; th)
Γ(B,µ, γ;h)

) + ε (3.12)

This approximation has proven to be quite accurate for the intervals of parameter considered. Indeed the
deterministic bias has a magnitude of 10−3Hz in average for µ ∈ [0, 100] and γ ∈ [0, 8000] (cf. section 3.4).

<(Γ(B,µ,γ;th)
Γ(B,µ,γ;h) ) is in fact equivalent to the discrete version of the reassigned time. Indeed, the STFT

can be rewritten as a function of Γ:

X(tM , ωM ; th) = eλM+jαM Γ(B,µ, γ; th)

X(tM , ωM ; h) = eλM+jαM Γ(B,µ, γ;h)

where th(τ) , τh(τ) and αM = α + βτM + γ
2 τ2

M . We can therefore conclude that:

<(
Γ(B,µ, γ; th)
Γ(B, µ, γ;h)

) = <(
X(tM , ωM ; th)
X(tM , ωM ; h)

)

and

arg(Γ1Γ̄2) = 2G<(
X(tM , ωM ; th)
X(tM , ωM ; h)

) + ε

Using the previous expression in equation (3.7):

TβM = ∆ψ + 2πn + 2G<(
X(tM , ωM ; th)
X(tM , ωM ; h)

) + ε
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Replacing G by its definition leads to:

βM + γ<(
X(tM , ωM ; th)
X(tM , ωM ;h)

) =
∆ψ + 2πn

T

+ 2
∆ω

T
<(

X(tM , ωM ; th)
X(tM , ωM ;h)

) +
ε

T

(3.13)

The left part of this expression is the frequency for the time: t̂ = tM + <(X(tM ,ωM ;th)
X(tM ,ωM ;h) ). The right

part is the vocoder estimator corrected by a term depending on the reassigned time and on 2∆ω
T , which

can be interpreted as a first FCR estimate using frequency bins.

3.3 Study of the unwrapping factor

The last problem to solve is the computation of the unwrapping factor n. It will be achieved using the
estimator

n̂ = round
(
(ΩT −∆ψ)/(2π)

)
(3.14)

where Ω is a chosen reference frequency Ω = ωM [8]. This choice imposes a theoretical limit on the
hop-size length of the phase vocoder, which is now discussed. From (3.7), n verifies this relation:

n =
1
2π

[
ωMT −∆ψ + ∆βMT − arg(Γ1Γ̄2)

]
(3.15)

where ∆βM = βM − ωM . The chosen estimator of n is:

n̂ = round
(

ωMT −∆ψ

2π

)
(3.16)

The condition for identity between n and n̂ is:

n = n̂ ⇔ |T∆βM − arg(Γ̄1Γ2)| ≤ π (3.17)

But from the triangular inequality, we have:

|T∆βM − arg(Γ̄1Γ2)| ≤ T∆m + Γm(∆m, µm, γm; h) (3.18)

where ∆m is the largest difference between βM and the maximal bin ωM . Γm is the maximal value of
the corrective term for the system parameters considered:

Γm(∆m, µm, γm; h) = max
|∆βi|≤∆m,|µ|≤µm,|γ|≤γm

| arg(Γ1Γ̄2)| (3.19)

Therefore, a sufficient condition for (3.17) to be verified is:

T∆m ≤ π − Γm(∆m, µm, γm; h) (3.20)

As T = H/F (H is the hop-size in samples), we finally get:

H ≤ πF

∆m

(
1− Γm(∆m, µm, γm; h)

π

)
(3.21)

In the classical and AM cases (γm = 0), arg(Γ1Γ̄2) = 0 and we find the classical unwrapping condition
H ≤ N .

In the FM case, ∆m is equal to R, half the Fourier precision:

H ≤ N

(
1− Γm(R,µm, γm;h)

π

)
(3.22)

Table 1 presents a numerical evaluation of the maximal hop-size values for various system parameters.
It can be seen that the maximal theoretical hop-sizes decrease very slowly when the FCR increases. For
usual applications, which use much lower hop-sizes than this limit, this means that the FCR will have no
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Table 1: Maximal hop-size values in samples for the RV method (N = 512, F = 16000)
Hann Hamming Blackman Gaussian

γm = 1000 508 505 509 506
γm = 8000 495 492 500 494

Table 2: Evaluation of εRV for different values of µm, and γm: maximal bias and absolute mean in Hz.
Hann Hamming Blackman Gaussian

µm =10,γm =2π1000 2E-2;1.6E-3 3E-2;2.6E-3 6.6E-3;5.3E-4 1.9E-2;1.8E-3
µm =100,γm =2π8000 0.39;2.8E-3 0.49;3.2E-2 0.19;9.5E-3 0.37;2.3E-2

impact on the unwrapping estimation. The rectangular window cannot be used with this method (the
time reassignment requires smooth functions) and is therefore not present in the table.

When the amplitude varies, the energy attributed to each frequency will be shifted depending on the
ACR. The maximum of energy will no longer correspond to βM , the sinusoid frequency for the middle
of the window. Therefore, ∆m will be superior to R, and will increase as the ACR increases. In the
AM/FM rate model, the maximal theoretical hop-sizes for the unwrapping estimation are more difficult
to compute in this case, as ∆m is not explicitly known. They should be lower than the values presented
in table 1. Nevertheless, this problem can be minimized by using intermediate phases.

3.4 Study of the bias

All experiments are done for a window size of 32ms and a hop-size of 8ms.

For the RV method

For high FCR, a bias will appear, caused by the approximation (3.12). Although the bias does not have
a simple expression, it can be easily evaluated numerically as

εRV =
1
T

∣∣∣∣(arg(Γ1Γ̄2)− 2G<(
Γ(B, µ, γ; th)
Γ(B, µ, γ; h)

)
∣∣∣∣ (3.23)

Table 2 shows values of this bias for different windows and two different ACR and FCR intervals. In
each case, the first figure corresponds to the maximal bias, and the second figure is the mean value. The
RV method is applied to the maximal bins of the Fourier Transform and is used without padding. The
mean value is an average of 10000 experiments. It can be seen that the biases are kept within 1 Hz even
for strong AM/FM modulations. If γm = 0, all the biases disappear. The bias only slightly increases
when µm increases and is lower when the window is more concentrated in time, as for the Blackman
window. The bias will be reduced even more if a padding factor is used (cf. Figure 1).

For the PCV method

As for the RV method, the bias in the PCV does not have a simple mathematical expression and is
evaluated numerically:

εPCV =
1
T

∣∣∣(arg(Γ1Γ̄2)− arg(Γ̂1
¯̂Γ2))

∣∣∣ (3.24)

In the first step, the frequency estimation method chosen is the interpolator described in [6]. The
method is applied to maximum bins, without padding, and the results are based on an average of 10000
experiments. In the PCV case, Table 3 shows that the bias is within 1Hz for high FCR, if the ACR stays
relatively small. For high ACRs, the method no longer works, as the PCV does not take into account
this parameter. The use of a padding factor greatly decreases the biases (cf. Figure 2).
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Figure 1: Influence of the padding factor on the RV method (µm = 100,γm = 2π8000, Hann window)

Table 3: Evaluation of εPCV and for different values of µm, and γm: maximal bias and absolute mean in
Hz.

Hann Hamming Blackman Gaussian

µm =0,γm =2π8000 0.5;5.6E-2 0.65;9.7E-2 0.27;2.3E-2 0.56;8.6E-2
µm =10,γm =2π1000 0.37;8.6E-2 0.47;0.1 0.26;6.5E-2 0.43;9.6E-2
µm =10,γm =2π8000 1.1;0.14 1.2;0.19 0.64;9.6E-2 1.0;1.7E-2

3.5 Study of the variance

The influence of a white noise on the classical phase vocoder is studied in [9]. A more recent reference [1]
uses the same method, but presents a simpler formula applicable to any window. The results presented
in [9, 1] are generalized here for the AM/FM model.

It is well known that when the frequency is constant, the Fourier Transform asymptotically resolves
the sinusoid. In the FM case, the Fourier Transform will no longer resolve the chirp when N → ∞2.
Instead of an asymptotic property of the estimator, we will suppose that the sinusoid is well resolved.
This has two consequences. First the energy of the noise is negligible compared to the energy of the
sinusoids within the chosen bins, Xi À Ni. Secondly, for a chirp to be resolved, the width of the main
lobe window must be superior to the maximum frequency variation of the chirp inside the window. If not,
multiple peaks will appear on the main lobe. For example, if γm is the largest FCR possible for the signal
considered, and if the main lobe of the window frequency response has a width of K bins (independently
of the window size N), this condition can be expressed as: γm

N
F < 2π KF

N ⇔ N
F <

√
2πK
γm

. For strong
chirps (γm À 1πK), this condition can be expressed τN = N/F ¿ 1s.

If Si = S(tmi , ωki ; h) and Ni = N(tmi , ωki ; h) are the Fourier Transform of s and n respectively, then:

Si = Xi + Ni

Si = Xi(1 + N
′
i )

where N
′
i , Ni/Xi. The conjugate product S2S̄1 can be written as:

S2S̄1 = X2X̄1(1 + Z) (3.25)

where Z , 1 + N
′
2 + N̄

′
1 + N

′
2N̄

′
1.

2Indeed,for a pure FM signal, when N tends to infinity, the chirp covers all the frequency range, with equal energy, and
will no longer be resolved by the Fourier Transform.
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Figure 2: Influence of the padding factor on the PCV method (µ = 0,γ ∈ [0, 8000], Hann window)

As it is assumed that the STFT resolves the sinusoid x from the disturbance n, Xi À Ni for the bins
close to the maximum, and arg(1 + Z) ≈ =(Z) ≈ =(N

′
2)−=(N

′
1). arg(S2S̄1) can be written as

arg(S2S̄1) ≈ arg(X2X̄1) + =(Z)

From equation (3.7), this relation becomes:

arg(S2S̄1) ≈ TβM + arg(Γ2Γ̄1) + 2πn + =(Z)

And the expression of βM is:

βM ≈ arg(S2S̄1)− arg(Γ2Γ̄1) + 2πn−=(Z)
T

Let’s note εN,voc = =(Z). The PCV and RV methods both use an estimate of arg(Γ2Γ̄1) and n to
compute the frequency. As the sinusoid are supposed resolved from the noise, there will be no error in
the estimation of n. It will now be proved that the stochastic error resulting from the estimation of
arg(Γ2Γ̄1) is negligible compared to εN,voc.

PCV case

In the PCV case, Γi will be replaced by an estimate Γ̂i = Γ(β̂i−ωi, 0, γ̂; h), where β̂i and γ̂ are estimates
computed using other Fourier-based estimators. The PCV estimation scheme has been derived for the
FM model, i.e. µ = 0. As there is no knowledge on γ in a first step, the frequency estimator used will
be based on the classical model, and will be biased when the slope is present. It will now be proved that
the influence of the stochastic error from this first step is negligible.

Let εβ
Di

and εβ
Ni

be respectively the deterministic and the stochastic error of the first step estimator
for the frequency βi. It is supposed that this estimator verifies the following assumptions:

1. β̂i = βi + εβ
Di

+ εβ
Ni

2. τN εβ
Ni
¿ 1

3. E(εβ
Ni

) = 0

4. var(εβ
Ni

) ≤ var(=(N
′
i ))

9



In the classical case, many Fourier-based estimators verify these assumptions asymptotically, in particular
the discrete Fourier spectrum interpolators using phase, such as the methods described in [6, 10, 7]. If
we suppose that the sinusoids are well resolved within the bins used, assumptions 1-4 will remain true.

The FCR estimate is defined as:

γ̂ =
β̂2 − β̂1

T
(3.26)

Therefore, from the first assumption, the stochastic error of γ̂ will also verify:

γ̂ = γ + εγ
D + εγ

N (3.27)

εγ
N ,

εβ
N2
− εβ

N1

T
(3.28)

Let’s define:

Γk,i = Γ(βi + εβ
Di

ωi, 0, γ + εγ
D;hτk) (3.29)

From the second assumption, the following approximation will hold:

arg(Γ̂i) ≈ arg(Γ0,i) + arg(1 + j(εβ
N

Γ1,i

Γ0,i
+ εγ

N

Γ2,i

2Γ0,i
)) (3.30)

≈ arg(Γi) + arg(
Γ0,i

Γi
) + εβ

Ni
C1,i + εγ

NC2,i (3.31)

≈ arg(Γi) + εDi + εNi (3.32)

where,

C1,i = =
(

Γ1,i

Γ0,i

)
, C2,i = =

(
Γ2,i

2Γ0,i

)
(3.33)

Using equation (3.28), εN1 can be written as:

εN1 = (C1,i − C2,i

T
)εβ

N1
+

C2,i

T
εβ
N2

(3.34)

As explained earlier, for a system aimed at analyzing chirps with high FCR, the relation τN ¿ 1 holds.
From this relation, it can be proved that C1,i ¿ 1 and C2,i/T ¿ 1. From assumption 4, we can conclude
that var(εβ

N1
) ¿ var(=(N

′
1)). Similarly, it can be shown that var(εβ

N2
) ¿ var(=(N

′
1)). Combining these

results, we therefore have var(εβ
N1

+ εβ
N2

) ¿ var(εN,voc).
In summary, if the frequency estimator of the first step verifies the assumption 1-4 and if the sinusoid

is well resolved, the stochastic error due to the first estimates will be negligible, and the noised PCV
equation can be written as:

βM ≈ 1
T

arg(S2S̄1)− 1
T

arg(Γ̂2
¯̂Γ1) + 2πn + εPCV − =(Z)

T
(3.35)

where εPCV is the deterministic error of the PCV method.

RV case

In the RV case, arg(Γ2Γ̄1) is replaced by the approximation (3.12), with a noise perturbation. In keeping
with the previous notations, SM = S(tM , ωM ; h) (idem for XM and NM ) and SM,1 = S(tM , ωM ; th)
(idem for XM,1 and NM,1).

̂arg(Γ1Γ̄2) = 2G<(
SM,1

SM
)

= 2G<(
XM,1 + NM,1

XM + NM
)
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Table 4: Value of Q for usual windows
Hann Hamming Blackman Gaussian

Q(h) 0.02 0.02 0.01 0.02

As in the PCV case, the sinusoid is supposed well resolved from the noise, X(tM , ωM ;h) À N(tM , ωM ; h).
The previous equation can be approximated as:

̂arg(Γ1Γ̄2) ≈ 2G<(
XM,1

XM
) + εN,RV

εN,RV , 2G<(
NM

XM

X̄M,1

X̄M
+

NM,1

XM
) (3.36)

As in the PCV case, it will now be proved that εN,RV is negligible compared to εN,voc.
We know that var(N1) = var(N2) = var(NM ). As k1, k2 and kM are maximum bins, if µ = 0 then

|X1| ≈ |XM | ≈ |X2|. Recall that N
′
i = Ni/Xi, therefore if µ 6= 0 we have:

eµT |X1|2 ≈ |XM |2 ≈ e−µT |X2|2

e−µT var(N
′
1) ≈ var(N

′
M ) ≈ eµT var(N

′
2)

var(N
′
M ) ≤ max

(
var(N

′
1), var(N

′
2)

)

But εN,voc also verifies:

var(εN,voc) = var(=(N
′
1)) + var(=(N

′
2))− E(=(N

′
1)=(N

′
2))

var(εN,voc) =
1
2
(var(N

′
1) + var(N

′
2))− E(=(N

′
1)=(N

′
2))

var(εN,voc) ≈ 1
2

max
(
var(N

′
1), var(N

′
2)

)

Therefore the following relation is approximately verified:

var(εN,voc) ≥ 1
2

var(N
′
M )

var(εN,voc) ≥ var(<(N
′
M )) (3.37)

From the definition of G, we have |G| ≤ R and R = π F
PcN = π

PcτN
, where Pc is the padding factor

used. As var(NM,1) = σ2
∑

i h2
i τ

2
i and var(NM ) = σ2

∑
i h2

i , the variance of 2G<(NM,1
XM

) verifies these
inequalities:

var(2G<(
NM,1

XM
)) ≤ 2π2

P 2
c τ2

N

σ2

|XM |2
∑

i

h2
i τ

2
i

var(2G<(
NM,1

XM
)) ≤ 4π2

P 2
c τ2

N

∑
i h2

i τ
2
i∑

i h2
i

var(<(N
′
M ))

var(2G<(
NM,1

XM
)) ≤ 4π2

P 2
c

Q(h,N) var(<(N
′
M ))

Q(h,N) ,
∑

i h2
i τ

2
i

τ2
N

∑
i h2

i

As
P

i h2
i τ2

iP
i h2

i
is O(N2), Q(h,N) will have a finite limit Q(h) as N tends to infinity. For a rectangular

window, Q(h) is equal to 1/12. For the other windows, a numerical evaluation of Q(h) has been done in
Table 4. From the value of Table 4, we can see that Q(h) ¿ 1. Given that the padding factor Pc is large
enough, we have:

var(2G<(
NM,1

XM
)) ¿ var(<(N

′
M )) (3.38)

11



Table 5: Value of Q
′
for usual windows, for N = 512 and µ = 100
Hann Hamming Blackman Gaussian

Q
′
(h, 512, 100) 0.03 0.04 0.02 0.04

The variance of 2G<(XM,1
XM

N
′
M )) verifies this relation:

var(2G<(
XM,1

XM
N
′
M )) ≤ 4π2

P 2
c τ2

N

∣∣∣∣
XM,1

XM

∣∣∣∣
2

var(<(N
′
M ))

Parseval’s theorem states that for any signal y with a DFT equal to Yk for the bin k:

(N−1)/2∑

i=−(N−1)/2

|yi|2 =
1
N

N−1∑

k=0

|Yk|2 (3.39)

Applying this formula to yi = h(τi)τix(τi), we can conclude that:

|XM,1|2 <

N−1∑

k=0

|X(tmM
;ωkM

; th)|2 (3.40)

|XM,1|2 < N e2λM

(N−1)/2∑

i=−(N−1)/2

h2
i τ

2
i e2µτi (3.41)

Consider now yi = h(τi)x(τi). From the hypothesis that the signal is well resolved, the Fourier Transform
of yi, which corresponds to X(tmM

; ωkM
; h), has its energy concentrated near the maximum kM . There-

fore, for the closest bin kM to the maximum, we have: |X(tmM
;ωkM

; h)|2 ≈ ∑N−1
k=0 |X(tmM

; ωkM
; h)|2.

From Parseval’s theorem, we can conclude that:

|XM |2 ≈ N e2λM

(N−1)/2∑

i=−(N−1)/2

h2
i e2µτi (3.42)

From equations (3.41) and (3.42), the following relation holds:

var(2G<(
XM,1

XM
N
′
M )) ≤ 4π2

P 2
c

Q
′
(h, N, µ) var(<(N

′
M ))

Q
′
(h,N, µ) ,

∑(N−1)/2
i=−(N−1)/2 h2

i τ
2
i e2µτi

τ2
N

∑(N−1)/2
i=−(N−1)/2 h2

i e2µτi

Q
′
is an increasing function of µ, and has a finite limit when N tends to infinity. When µ = 0, we find

that Q
′
(h,N, 0) = Q(h,N). In the case that µ = 100 and N = 512, Table 5 shows that Q

′
(h,N) ¿ 1.

Given that the padding factor Pc is large enough, we can say that:

var(2G<(
XM,1

XM
N
′
M )) ¿ var(<(N

′
M )) (3.43)

From (3.43) and (3.38), it holds that var(εN,RV ) ¿ var(<(N
′
M )), and, using equation (3.37), that

var(εN,RV ) ¿ var(εN,voc). Therefore, the RV noised estimation formula can be written as:

βM + γ<(
X(tM , ωM ; th)
X(tM , ωM ; h)

) ≈ 1
T

arg(S2S̄1)+2
∆ω

T
<(

X(tM , ωM ; th)
X(tM , ωM ; h)

)

+ 2πn + εRV − =(Z)
T

where εRV is the deterministic error of the RV method.
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Expression of the variance for both methods

In summary, if the sinusoids are well resolved, the noised expression of the PCV and RV estimators can
both be written as:

β̂ ≈ β + ε +
=(Z)

T
(3.44)

where β is the frequency to be estimated, which is βM for the PCV and βM + γ<(X(tM ,ωM ;th)
X(tM ,ωM ;h) ) for the

RV estimator. β̂ is the estimator for β and is given by equation (3.8) for the PCV and equation (3.13)
for the RV. ε is the deterministic bias. For both methods, the stochastic error is approximately =(Z)/T .

The expectation of the estimators is β + ε, and their variance is given by:

var(β̂) =
E(=(Z)2)

T 2
(3.45)

=
E((=(N

′
2)−=(N

′
1))

2)
T 2

(3.46)

=
E

(
=(N

′
1)

2 + =(N
′
2)

2 − 2=(N
′
2)=(N

′
1)

)

T 2
(3.47)

From the definition of N
′
k, we have:

=(N
′
k) = e−Lk

(∑

i

hin
I
mk+i cos(ωkτi + Θk)−

∑

i

hin
R
mk+i sin(ωkτi + Θk))

)
(3.48)

where Lk = λk + log(|Γk|), Θk = αk + arg(Γk). mk is the sample corresponding to the middle of the
STFT number k. nI

mk+i (resp. nR
mk+i) is the imaginary part (resp. real part) of the noise for the sample

mk + i. =(N
′
k) is a linear combination of independent, zero-mean random variables ni, with the same

variance and with real coefficients ai: =(N
′
k) =

∑
i aini. Using the property E(=(N

′
k)2) = E(n2

i )
∑

i a2
i ,

we get:

E(=(N
′
k)2) =

σ2

2
e−2Lk H0 (3.49)

where H0 =
∑

i h2
i .

Let’s define the following variables:

∆λ , L2 − L1 = τHµ + log(|Γ2

Γ1
|)

∆Θ , Θ2 −Θ1 = τHβM + arg(Γ2Γ̄1)

∆Φ , ∆Θ− τHωM

H1 ,
(N−1−H)/2∑

i=−(N−1−H)/2

hi+H/2hi−H/2 cos(τi(ω1 − ω2))

Now, the expectation of the cross term =(N
′
2)=(N

′
1) will be derived. From the definition of N

′
k, we have:

N
′
2N̄

′
1 = e−L1−L2−j∆Θ

∑

i

hinm2+i e−jωk2τi

∑

i

hin̄m1+i ejωk1τi

E(N
′
2N̄

′
1) = e−L1−L2−j∆Θ

(N−1−H)/2∑

i=−(N−1−H)/2

hi+H/2hi−H/2E(|ni|2) ej(ω1τi+H/2−ω2τi−H/2)

In the second equation, we have used the fact that E(nkn̄l) = 0 if k 6= l.

E(N
′
2N̄

′
1) = σ2 e−L1−L2−j∆Φ

(N−1−H)/2∑

i=−(N−1−H)/2

hi+H/2hi−H/2 ejτi(ω1−ω2)

E(N
′
2N̄

′
1) = σ2 e−L1−L2−j∆Φ H1

13



The last equality comes from the parity hypothesis on h. In a similar way, it can be proved that
E(N

′
2N

′
1) = 0 because E(n2

i ) = E(nR
i

2)− E(nI
i
2) + 2E(nR

i nI
i ) = 0. Let’s remark that

=(N
′
1)=(N

′
2) =

1
2
<(N̄

′
1N

′
2 −N

′
1N

′
2) (3.50)

E(=(N
′
1)=(N

′
2)) =

1
2
(<(E(N̄

′
1N

′
2))−<(E(N

′
1N

′
2))) (3.51)

We can therefore conclude that

E(=(N
′
1)=(N

′
2)) = σ2 e−∆λ cos(∆Φ)H1 (3.52)

Using equations (3.49) and (3.52), the variance of the estimators is finally obtained:

var(β̂) =
σ2

eL1+L2

[
cosh(∆λ)H0 − cos(∆Φ)H1

]

T 2
(3.53)

var(β̂) =
sinh(µτW )

µτW

[
cosh(∆λ)H0 − cos(∆Φ)H1

]

ηT 2|Γ2Γ1| (3.54)

where η is the Signal to Noise Ratio (SNR),

η , eλ1+λ2

σ2

sinh(µτW )
µτW

From equation (3.54), the variance for the AM, FM and classical models can be deduced directly.
For the classical model, µ = 0, γ = 0, ∆λ = 0 and ωk1 = ωk2 = ω, β1 = β2 = β. Equation (3.54)

simplifies to:

var(β̂) =

[
H0 − cos(∆Φ)H1

]

ηT 2|Γ|2 (3.55)

where,

η =
e2λ

σ2
, H1 =

(N−H)/2∑

i=−(N−H)/2

hi+ H
2

hi−H
2
,

∆Φ = T (βM − ωM ), Γ =
N/2∑

i=−N/2

hi

This last equation is the same as in [1].
Four examples are given on Figure 3(a) and 3(b). On Figure 3(a) the three upper curves correspond to

the FM model and three lower one to the AM/FM model. In areas where the stochastic errors dominate,
the theoretical variance matches the experimental MSE of the estimators. For the AM/FM model (upper
curves), biases appear at high SNRs and low SNRs. In the former case, it is caused by the deterministic
error of the estimator, and in the latter case, by the tracking scheme.

On Figure 3(a) the three upper curves corresponds to the FM model and three lower one to the
AM/FM model. The theoretical variance matches the experimental curves. For the AM model, in the
low SNRs case, the error due to the tracking scheme is slightly visible.

4 Conclusion

In this paper, it has been proved that the Fourier-based reassignment method is valid for an AM/FM
model, using an original method.

The phase-vocoder frequency estimator has also been studied in the case of an AM/FM model. Two
modified phase-vocoder-based schemes have been proposed: the Phase Corrected Vocoder (PCV) which
aims at correcting the biased Fourier phases, and the Reassigned Vocoder (RV) which is an accurate
estimator involving time reassignment. For both methods, the theoretical variance has been derived for
a white-Gaussian-noise perturbation, and an experimental study of the biases has been done.
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(a) Upper curves correspond to the AM/FM model with µ ∈ [0, 100] and γ ∈ [0, 8000], and lower curves to the FM model.
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(b) Upper curves correspond to the AM model with µ ∈ [0, 100] and lower curves to the classical model.

Figure 3: Comparison of the theoretical vocoder variance (‘+’ markers) to the CRB (doted lines) and to
the MSE of the RV method (‘o’ markers).
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