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Abstract—In a recent research report, we introduced a general
stochastic reverberation model that aims to represent the statis-
tical properties of reverberation in a broad variety of acoustic
environments. A simplified version of this model, dedicated
to the particular case of diffuse (i.e. uniform and isotropic)
acoustic fields, omnidirectional sources and microphones, and
constant attenuation w.r.t frequency, has been investigated both
mathematically and experimentally in a recent research paper.
We showed that this model provides a common mathematical
framework that unifies several well-known results regarding the
statistical properties of reverberation in the space, time and
frequency domains.

In this research report, we aim to extend this mathematical
analysis to uniform and non-diffuse acoustic fields, and directive
sources and microphones. We show that the predictions of the
general stochastic model experimentally match the observations,
based on both synthetic and real room impulse responses,
measured in various acoustic environments.

Index Terms—Reverberation; Diffusion; Room impulse re-
sponse; Stochastic models.

Résumé—Dans un récent rapport de recherche, nous avons
introduit un modeéle stochastique général de réverbération qui
vise a représenter les propriétés statistiques de la réverbération
dans une grande variété d’environnements acoustiques. Une
version simplifiée de ce modele, dédiée au cas particulier de
champs acoustiques diffus (c’est-a-dire uniformes et isotropes), de
sources et microphones omnidirectionnels, et d’une atténuation
indépendante de la fréquence, a été étudiée mathématiquement
et expérimentalement dans un récent article de recherche. Nous
avons montré que ce modele fournit un cadre mathématique
commun qui unifie plusieurs résultats bien connus concernant
les propriétés statistiques de la réverbération dans les domaines
spatial, temporel et fréquentiel.

Dans ce rapport de recherche, nous visons a étendre cette
analyse mathématique a des champs acoustiques uniformes et
non diffus, et a des sources et des microphones directifs. Nous
montrons que les prédictions du modele stochastique général cor-
respondent aux observations expérimentales, a partir de réponses
impulsionnelles de salles synthétiques et réelles, mesurées dans
divers environnements acoustiques.

Mots clés—Réverbération; Diffusion; Réponse impulsionnelle
de salle; Modeles stochastiques.

I. INTRODUCTION

In [1]], [2], we introduced a common mathematical frame-
work for stochastic reverberation models, that aimed to unify
several well-known results regarding the statistical proper-
ties of reverberation, in the spatial, temporal and spectral
domains [3]]-[10]. This framework was based on the source
image principle [11]], [[12], which represents the sound wave
reflected by a flat surface as if it was emitted by a so-called
source image. In [1]], [2]], the positions of the source images
were modeled as random, and uniformly distributed according
to a Poisson point process.

However, the stochastic reverberation model introduced
in [1]], [2]] was limited to diffuse (i.e. uniform and isotropi
acoustic fields, omnidirectional sources and microphones, and
constant attenuation w.r.t. frequency. In [13], we proposed
several extensions of this model, that aim to represent reverber-
ation more realistically, by considering anisotropic and non-
uniform acoustic fields, directive sources and microphones,
and frequency-varying attenuation coefficients.

In this research report, we aim to investigate the statistical
properties of this generalized model. In order to keep the
mathematical analysis as simple as possible, we chose to
restrict the study to uniform acoustic fields and constant
attenuation w.r.t. frequency as in [1], [2f], but we address
the generalization to anisotropic acoustic fields and directive
sources and microphones as introduced in [13]]. We will first
provide a mathematical analysis of the statistical properties of
the model, regarding its first and second order moments in the
spatial, temporal, spectral and time-frequency domains, and its
asymptotic Gaussianity. Then we will show that the predicted
statistical properties experimentally match the observations,
based on both synthetic and real room impulse responses
(RIRs), measured in various acoustic environments.

This research report is organized as follows: the uniform
stochastic reverberation model will be formally defined in

YUniform means invariant under any translation, and isotropic means
invariant under any rotation in the three-dimensional (3D) space.



Section[II} then its statistical properties will be analyzed math-
ematically in Section and experimentally in Section
Conclusions will be drawn in Section |V} and the proofs of the
mathematical results will be presented in Appendices [A] to
Throughout the report, we will use the following mathematical
notation:

¢ N: set of whole numbers;

e R, C: sets of real and complex numbers, respectively;

o R, : set of nonnegative real numbers;

o 1 =+/—1: imaginary unit;

: equal by definition to;

: equal up to an additive constant to;

: proportional to;

o x (bold font), z (regular): vector and scalar, respectively;

o Z: complex conjugate of z € C;

e |.|: absolute value of a scalar or a vector (entrywise);

e T,,: m-th entry of vector x;

e x': transpose of vector x;

o S?: unit sphere in R3 (§% = {z € R3; ||z|2 = 1});

o I: identity matrix;

e span(A): column (or range) space of matrix A;

e [a,b]: closed interval, including a and b € R;

e ]a,b[: open interval, excluding a and b € R;

e {a,...,b}: set including all elements listed from a to b;

o L>(V), where V is a Borel set: Lebesgue space of
essentially bounded functions f of support V' (i.e. such
that || f|leco = esssupy | f] < +00);

e LP(V), where V is a Borel set and p € N\{0}: Lebesgue
space of measurable funlctions f of support V, such that
1y = (fy |f(@)|Pda)> < +oo;

e ||-|l2: Euclidean/Hermitian norm of a vector or a function;

o J4(.): Jacobian matrix of the multivariate function q(.);

o O(.): asymptotically bounded by;

e 0(.): asymptotically dominated by;

o ~: has distribution or is asymptotically equivalent to;

e J: Dirac delta function;

o E[X]: expected value of a complex random variable X;

o ¢x () = E[e*?¢(X)]: characteristic function of X;

e Covariance of two complex random variables X and Y:

cov[X,Y] = E[(X — E[X])(Y — E[V])];

L]
[[o |I>

K

e var[X] = cov[X, X]: variance of a random variable X;
o Correlation of two complex random variables X and Y:

cov[X,Y]
var[X|var[Y]’
o P()): Poisson distribution of parameter A > 0:

N ~P(A) & P(N=n) = e 2. & ¢n(0) = eA(e’9—1);

n!

corr[X,Y] =

e sinc(z) = 2% cardinal sine function;

e 14: indicator function of a set A (14(z)is 1 if z € A
or 0 if z ¢ A);

e (t) = 1(—1): conjugate and time-reverse of ¢ : R — C;

o Convolution of two functions v; and 95 : R — C:

(1 % 2)(t) = [, er Y1 (w)ha(t — u)du;

« Fourier transform of a function ¢ : R — C:
O(f) = fiep (e >t (f € R);

o ®: outer product ((¢1 ® 12)(t1,t2) = ¥1(t1)v2(t2));
o Wigner distribution (a.k.a. Wigner-Ville distribution) of
a function v : R2 = R:

woe.) = [

T7ER

Y(t+ Tt — e 2™ Tdr. (1)

Note that the Wigner distribution satisfies several important
properties [[14]]:
o even symmetry: Vt, f € R, W, (t,—f) = W, (¢, f);
e real property: if v is symmetric (Vt1,t2 € R, v(t1,12) =
v(t2,t1)), then V¢, f € R, W, (¢, f) € R;
e projection property: for any functions 1, ¥ : R — R,

Waneus (t F)dt = 01 (f)va(f), ©)

teR

W, (t, fdf = ~(t,1); (3)
feRrR

o comvolution property: if y(t1,t2) = (1 4 tﬂ?’yg)(tl,tg),

Wit £) = Wy, % W) (E, £), @)

where i denotes convolution over variable ¢;

e temporal support property: if the support of function
v : R? — R is compact, then the temporal support of
W, (t, f) is also compact.

Finally, in order to model the spatial distribution of the
source images, we will use the concept of Poisson random
measure with independent increments (also refered to as
Poisson point process), as we did in [1]], [2]: given a Borel
set V' C R? of finite volume |V|, we assumed that the number
N(V) of source images contained in V follows a Poisson
distribution of rate parameter A\|V|: N(V) ~ P(AV]|) with
A > 0. Formally, given a non-negative, locally integrable
function A() on RP, the Poisson random increment d N (x) ~
P(A(x)dx) corresponds to an infinitesimal volume |V| = da.
Then for any Borel set V' C R? of finite Lebesgue measure,
the number N(V) = [i, dN(z) of points contained in V'
follows a Poisson distribution of rate parameter fv A(x)de:
N(V) ~ P([, A(z)dx), and for any disjoint Borel sets
Vi and V3, N(Vi) and N(V2) are independent. Note that
in the stochastic reverberation model proposed in [1f, [2],
we considered a spatially uniform distribution of the source
images in the 3D-space, so that p = 3 and A(z) = A > 0 is
constant.

II. UNIFORM STOCHASTIC REVERBERATION MODEL

In this research report, we consider the following stochastic
reverberation model (see [13] for a description of the basic
geometric principles that underlie this model):

Definition 1 (Uniform stochastic reverberation model). For
any sensor i € {1...1}, time t € R, and frequency f € R,
let



hl(t) = fm€R3 fyeRJVI V;(CL', Y; y_q(w_wl» 9i (|\$:£1”2 ’ )

T~
LT—XT; —x _Yy o
¢ s(6@w) e 2il2) o~

* To—w:T, AN (z,y),
hi(f) = Jpers Jyern Vi@ y3y-q(@-2:)) §i (ﬁf)
- z—; _y at2nfllm-mily (6)
S(@(m,y)m,f)e c
[le—a;], dN(:l:,y),
where

e hi(t) € R (resp. hi(f) € C) is the room impulse response
(resp. room frequency response) at sensor i,

e gi(u,t) € R (resp. i (u, f) € C) is the response of
sensor i at direction u € S? (taking into account both its
directivity and orientation) and time t (resp. frequency f);

e s(u,t) € R (resp. 5(u, f) € C) is the response of
the source at direction w € S? (taking into account its
directivity) and time t (resp. frequency f);

o vector ¢; € R3 (in meters) is the position of sensor i;

o vector x € R? (in meters) represents the possible posi-
tions of the source images,

o ¢ > 0 is the speed of sound (in meters.hertz);
2inflle—a;lp

o the term © Hm*wc'\l corresponds to the propagation
1. 2 .
of a monochromatic spherical wave from x to x;;
e« ac RJXI is a vector of attenuation coefficients (in hertz);

o the term e~ "= corresponds to the total attenuation of
the sound wave during its propagation from x to x;;

o 7 €R3— g(r) € RY (in meters) is a I-homogeneous
function (i.e. Vr € R3, Vv € Ry, q(vr) = vq(r));

e the coordinates (z,y) € R> x RM (in meters) are
distributed according to a uniform Poisson point process
dN(x,y) ~ P(Adxdy) with X > 0 (in meters—G+M));

e O(x,y) € SO(3) is a random rotation matrix that
represents the orientation of the source image of coor-
dinates (x,y). Its distribution is i.id. w.rt. (x,y) and
not necessarily uniform on the rotation group SO(3);

o Vi(x,y; z;) € {0,1} is a Boolean that indicates whether
the source image of coordinates (x,y) is visible from
sensor i or not. Formally, V;(x,y; z;) is a random field
on R? x RM | whose probability distribution is parame-
terized by the vector z; € RM. The joint distribution for
all sensors 1 of the random vector

V(z,y;21...21) £ [Vi(z,y:21) ... Vi(@,y; 20)licqi..1y

is iid  wrt  (x,y), and it is denoted
p(bi...br;z1...21) € [0,1] where b; € {0,1}
and z; € RM. The marginals for every sensor i are
denoted p(b; z) € [0, 1] (they are such that the closer z is
to zero, the higher p(1; z)), and the marginals for every
pair of sensors (i, j) are denoted p(b;, b;; z;, z;) € [0,1];

o the three random fields AN, © and V on R? x RM are
independent.

Then let the attenuation function be defined as

Vr € R3,

a(r)=q(r)Ta>0. (7)

Based on (1), we define the following prime notation for
functions:

o for any function \(u,t) defined on S? xR, let ¢/ (u,t) =
w(u7 t) e&(u)t,.

o if function Q(.) is constant on S? (i.e. Vu € §?,a(u) =
ai™t), then for any function v)(t) defined on R, let ' (t) =
(t) e,

In addition, we assume that:

o all functions defined above are not identically zero;

o 7+ q(T) is four times continuously differentiable;

. ai“f £ infuesz a(u) > 0;

o Vi € {1...1}, function g; (u,t) is continuous w.rt. t €
R and twice continuously differentiable w.rt. u € S2.
Moreover, Yu € 82, the temporal support of function
t — gi (u,t) is included in [0,T4] with T, > 0;

o function s(u,t) is continuous wrt. t € R and twice
continuously differentiable w.rt. uw € S2%. Moreover,
Vu € 82, the temporal support of function t — s (u,t)
is included [0, Ty] with Ty > 0;

e at least one of the three following properties holds Yu €
S%at f=0:

- Vi€ {1...1}, g{(u,0) = 0 and m(u,0) = 0;

- mg(u,0) =0 and —57 (u,0) = 0;
where Yu € S%, Vf € R, V(z,y) € R? x RM,

mg (u, f) =E |3 (O(@,y)u. )|

e function z — p(l;z) is continuously differentiable and
it is not constant;

o the support of function z — p(1; z) is left-bounded, i.e.
3zt € RM such that Ym € {1... M}, 2" < 0, and
Vz € RM, if 3m € {1... M} such that z,, < z*!, then
p(L;2) =0;

e function (z1,z2) — p(1,1;21,29) is continuous and
differentiable almost everywhere in RM x RM | and all
its partial derivatives belong to L>=(RM x RM);

o (21,22) = p(1,1; 21, z9) is such that Yz € RM,

(®)

9

Note that (9) is derived from geometrical considerations:
when ; — «;, a source image of coordinates (x, y) is visible
from both sensors ¢ and j if and only if it is visible from
sensor 4. This can be expressed as Va € R?, Yy € RM,

p(L,1;2,2) = p(1; 2).

lim p(1, 1,y —q(z-z:), y — q(z-z;)) = p(1;y — q(x-z:)),
xj—x;

which implies (). Moreover, because of (@), function
(z1,22) — p(1,1; 21, z2) cannot be smoother than what we
assumed in Definition [1| (¢f Lemma |5 in Appendix @) ﬂ
Also note that since functions g; (u,t) and s(u,t) are
causal Vu € &2, the RIR h;(t) defined in () is also

2This remark is very important, because the fact that this function is not
twice continuously differentiable is the reason for the slower speed of conver-
gence O(%) in late asymptotic state (see the discussion in Section [[II-E).



causal. Besides, all functions g; (u,t), g; (u,t), s(u,t) and
s' (u,t) are continuous w.rt. ¢ € R and twice continuously
differentiable w.r.t. u € S2, and since they all have finite
temporal support, all functions g; (u, f), ¢! (u, f), 5(u, f)
and s/ (u, f) are smooth w.r.t. f € R and twice continuously
differentiable w.r.t. u € S%. Moreover, since 7 — q(r) is four
times continuously differentiable, function r» — &(r) is also
four times continuously differentiable.

The stochastic model in Definition [I]is a particular case of
the general stochastic reverberation model presented in [[13]],
from which we introduced two simplifications’}

« the attenuation coefficients in vector & are constant and
do not depend on frequency f;

« the acoustic field is uniform: function » — g(r) does not
depend on sensor 1.

In this report, we will address several particular cases of
interest:

Definition 2 (Diffuse acoustic field). Considering the uniform
stochastic reverberation model in Definition |I| the acoustic
field is diffuse when the two following conditions hold:

o Vr € R3, q(r) = qlr||> where ¢ € RY is a constant
(dimensionless) vector, therefore function a(.) defined
in () is constant on §%: Yu € 82, a(u) = a™, where

mf
q

o the random rotation matrices O(x,y) are uniformly

distributed on SO(3).

Definition 3 (Omnidirectional sensor). Considering the
stochastic reverberation model in Definition [I| sensor i is
omnidirectional when g; (u,t) = g; (t) Vt € Rand g; (u, f) =
g (f) Vf € R do not depend on u € S>.

Definition 4 (Omnidirectional source). Considering the
stochastic reverberation model in Definition |I| the source is
omnidirectional when s (u,t) = s(t) Vt € R and §(u, f) =
5(f) Vf € R do no not depend on u € S>.

Note that in the case of an omnidirectional source, the
random rotation matrices O (z, y) disappear from Definition|[1}

Finally, in order to characterize the correlations between
sensors in the time-frequency domain, we will use two kinds of
indicators that will be illustrated in the experiments presented
in Section

Definition 5 (Time-frequency correlation). Considering the
stochastic reverberation model in Definition [I| the time-

frequency correlation between two sensors i,j € {1...1} is
defined Vt, f € R as
W, (t f
pij(t. f ) — i) 1GED (10)

\/W’YL i <t7

3Moreover, compared to [13], we simplified the mathematical expres-
sions (without loss of generality), by removing the rotation matrix ©;

in g; and by changing the
— t) and

Hw 93”2

’yJ_[(t7f)

and g; eiﬁ»]v

. T—x;
OiTo—a,T;t

sign of the rotation matrices ©(x,y) in s(@(:c Y)

(e(m y)m f)~

whenever the denominator is positive, where VV denotes the
Wigner distribution defined in (1)), and

’Yi,j(tth) = COV[hi(t1)7hj(t2)]. (11)

In (T0), we introduced the redundant notation p; ;(t, f, x; —
@;) (which makes a double use of indexes 4 and j) in order
to insist on the fact that p; ; will depend on x; and x;,
only via their difference x; — x;, since the acoustic field is
uniform (i.e. invariant under any translation). Also note that,
since function f — W, (¢, f) is even symmetric, function
fpiit fe; — ;) is "also even symmetric.

If the time-frequency correlation converges when ¢ — +o0,
we also define the following indicator:

Definition 6 (Asymptotic correlation function). Considering
the stochastic reverberation model in Definition[I| the asymp-
totic correlation function between two sensors i,j € {1...1}
is defined V7 € R as

CTZ'J'(T7 T; — CCl) = /fe]R t—lggloo Pi J(t f, T; — ) +2Z7Tdef,

12)
whenever the limit exists and the integral converges, where
pi.; was defined in (10).

Note that, since function f +— p; ;(t, f, x;
symmetric, 0 ;(7,x; — x;) € R Vr € R.

— x;) is even

III. MATHEMATICAL ANALYSIS

In this section, we analyze the statistical properties of the
stochastic model introduced in Definition[I] in terms of first or-
der (Section [[TI-A)) and second order moments (Section [[II-B).
Then we will be able to relax some restricting assumptions
regarding the acoustic field, the source and the microphones,
by focusing on late reverberation only, i.e. by assuming that
t — +o00. Actually, the mathematical analysis in Section|[II} as
well as the observations in Section [[V]based on both synthetic
and real RIRs, will show that two different asymptotic states
can be distinguished: at first, the variations of the attenuation
a(.) defined in (7)) over the direction u € S? can be neglected;
this period of time will be called early asymptotic state
(Section [[I-C)). Then after a while, the directions w that are
less attenuated (i.e. such that @(u) > 0 is the lowest) start to
dominate the other directions; this period of time will be called
late asymptotic state (Section [[II-D). In both asymptotic states,
we will prove that the RIR h;(t) is asymptotically normally
distributed.

A. First order moments

Before analyzing the first order moments, we need to define
some coefficients that are related to the discrete probability
distribution p introduced in Definition [T} and that will play an
important role throughout this research report:

Lemma 1. Let p(b, z) (where b € {0,1} and z € RM) be the
probability distribution introduced in Definition |I| Let ¥n €

N\{0}, :
Bn = / p(1;2)e " " dz > 0.
z€RM

13)



Then we have the following majoration: ¥n € N\{0},

enlzinf‘Ta
c
ﬂn =0 M

n

(14)

Lemma [T] is proved in Appendix [D] We are now ready to
investigate the first order moments of the stochastic reverber-
ation model:

Proposition 1 (First order moments). Given the stochastic
reverberation model in Definition[I| the room response has the
following first order moments: for any sensor i € {1...1},

o Temporal domain: ¥t > T = T, + Ts, E[hi(t)] = 0.

o Spectral domain: let Yu € S%, Vf € R,

mg (u, f) =E [§(@(:1:,y)u, f)]

V(z,y) € R® x RM. Then function my is twice continu-
ously differentiable w.r.t. u € S? and smooth w.r.t. f € R.
Moreover, Vf € R,

Emunkﬂﬁfaﬂiggfgggwu

where (31 is defined in (13) for n = 1, and function f
E[h;(f)] is smooth.

5)

(16)

Proposition [T] is proved in Appendix Note that this
proposition generalizes the results already established in [2].
In particular, h;(t) is centered for ¢ > T (the fact that it is not
centered for ¢ € [0, 7] explains why the expected value of the
frequency response E[h;(f)] in (I6) is not zero).

B. Second order moments

Before analyzing the second order moments, we need to
further investigate the properties of the discrete probability
distribution p introduced in Definition [T}

Lemma 2. Let p(b;,b;, z;,2;) (where b;,b; € {0,1} and

z;,2j € RM) be the joint probability distribution introduced
in Definition |l| Let Ve € RM,

Be)= [ pltiz—gz+ )

2z

Ta
“*dz>0. (17)

Then function e — [(e) is even. Moreover, it is continuous
and differentiable almost everywhere in RM | and all its partial
derivatives belong to L>(RM).

At e =0, 3(0) = Ba, where (33 is defined in (13) for n = 2.
Besides, Ve ¢ RM,

Ble) < Bre= =

In particular, function e — [(e) reaches its maximum at e =
0, and it is not differentiable at e = (.

(18)

Lemma 2]is proved in Appendix [D] Note that, in connection
with the remark in Footnote |2 the fact that function 5(.) is not
twice continuously differentiable is the reason for the slower
speed of convergence O(it) in late asymptotic state (see the
discussion in Section

In the following lemma, we introduce a function that
will play a prominent role to characterize the second order
moments of the RIR in the spatial, temporal, spectral and time-
frequency domains.

Lemma 3. Given the stochastic reverberation model in Def-
inition [I} let 3(.) be the function introduced in Lemma 2]
in (T7), let B2 be defined in (13) for n = 2, and let D > 0
denote the distance between two sensors. We also assume that
Vr € R3 q(r) = qllr||z where q € RY is a constant
vector, therefore function a(.) defined in is constant on
S2: Yu € 82, a(u) = a™, where ™ = q"a. If D > 0, let

b(r,D) = 558 (QCT)1[7%7+D}(T) >0 VreR, (19

c

otherwise if D = 0, let b(1,0) = (2(7) and g(f,O) = [
Vf € R. Then function T — b(7, D) is even. Moreover; it
is continuous w.r.t. T and differentiable almost everywhere in
the interior of its support, and %(T,D) eL>(-L2 42
Function f — b(f, D) is smooth and real-valued. Moreover,
we have the two majorations: V1 € R,

b(r. D) < §he " p | oy(7), (20)
and Vf € R, R

In particular, function T — b(T, D) reaches its maximum at
7 =0, and it is not differentiable at T = .
Besides, when D — 0, we get

b(r, D) = (% + 0(1)) 1

21

o)) @)

and

B(f, D) = asinc (222 + O(D).

Lemma [3] is proved in Appendix [} We are now ready
to investigate the second order moments of the stochastic
reverberation model in the case of diffuse acoustic fields:

(23)

Proposition 2 (Second order moments in diffuse acous-
tic fields). Considering the stochastic reverberation model
in Definition [I} suppose that the acoustic field is diffuse
(cf. Definition [2)) and that the source and microphones are
omnidirectional (cf. Definitions [3] and [{). For any sensors
i,j € {1...1}, let D = ||, — ;|2 denote the distance
between the two sensors, and let v; ;(t1,t2) be the function
defined in (T1). Finally, let b(t, D) be the function introduced
in Lemma 3] Then the room response has the following second
order moments:

o Temporal domain: Vt, +to > 2T + % with T £ Ty+Ts,

vij(t1,t2) =
Arrce=8 (itt) <b(.,D) * g; * gz * s x s~’) (t1 —t2),
(24)
and function (ti,t2) — 7, ;(t1,t2) is continuous. In
particular, if i = j, Vt > T,

var[h;(t)] = 47 e Bpe~20"1 (g: * L(Z * s * .;7) (0)
(25



and Vt; +to > 2T + %, the temporal correlation

(b(.,D)*g;*éz*Sl*;)(t17t2)

corr|h;(t1), hi(ta)]= — —
[ ( 1) J( 2)] B2\/((gé*gé*s'*s’)(o))((93*99*5/*5/)506))
(26)

only depends on t1 — to.
o Spectral domain: ¥V f1, fo € R,

ha(f1), by (f2)]
2exeb(LE2 DY g (1) )35 2)e~

cov|

@ fon(f1—f2))D
c

anf o (fi—f2)

and function (f1, f2) — COV[}/L\i(fl),}/L;'(fQ)] is smooth.

In particular, if i = j, Vf € R,
varliy(f)] = 222 lG PSP

and vf17f2 S R,
cortlhi (f1), b (f2)]=

(28)

(L3 (f1) =235 (f2)+£5(f1)—£5(f2))

~ @ fam(f1—f2))D
b({142 pye~ :

B2 (14512 )

o Time-frequency domain: ¥t > T + 2 Vf e R, =
Wi, (8, f) = e 28" B, (. D) (30)

where
B; ;(f.D) = dn\cb(f, D) N, (NIS (NI, (31

and function f — B, ;(f, D
In particular, if 1 = j,

Wy, (t, f) = dmhc Boe ™20t |g]

) is smooth.

HHPIS ()2 >0 (32)

and the time-frequency correlation introduced in Defini-
tion |5| only depends on f:

~ay) = LAD-LGIBLD) - (33)
K3 52 .

pi,j(ta fa T

Finally, if Vf € R, égz(f) = Aé\;(f), the asymptotic
correlation function introduced in Definition [6] is

€ [0, 35);
and function T — o, ;(T,2; — :1:1) is continuous in the
interior of its support [—%, %] it reaches its maximum

at T =0, and it is not differentiable at T = 0.

(T D)

oij(T,x; — i) = (34)

Proposition [2]is proved in Appendix [ Note that Lemma 3]
shows that when D — 0, the results in Proposition |Z| come
down to those already established in [2].

C. Early asymptotic state

Proposition[2]holds only in the case of diffuse acoustic fields
and omnidirectional source and microphones. If we now focus
on late reverberation (i.e. ¢ — +00), these assumptions can
be relaxed:

Proposition 3 (Early asymptotic state). Considering the
stochastic reverberation model in Definition [I} suppose that
Vr € R® q(r) = q|r|2 where ¢ € RY is a constant

@n

vector, therefore function a(.) defined in (I) is constant on
S2: Yu € 8% a(u) = a™, where ™ = q"a. For any
sensors 1,5 € {1...1}, let 7; ;(t1,t2) be the function defined
in (T1). Then the room response has the following statistical
properties:

o Temporal domain: let Vu € S?, Vt € R,

mmﬂwﬂ=EF@@meiﬁM%wwd
(35)
V(z,y) € R® x R™. Then function m, 5 (u,t) is con-
tinuous w.rt. t € R and twice continuously differentiable
w.rt. w € 82, Moreover, ¥t > T £ T, + T,

var[h;(t)] = AcBae” 20t ( Jucs2

(36)
(g1u,.) * ghfaw, ) 5y, 5 (w,.) ) (0)dw)
o Time-frequency domain: let Vu € S?, Vf € R,
~ 2

mopu, f) =E[[7 @@y | 6D

V(z,y) € R® xRM. Then function M52 is smooth w.r..

f € R and twice continuously differentiable w.r.t. u € S>.
Moreover, Vf € R, when t — +00,

Wa, (8, f) = e (Biy(fm; — ) + O (1))
(38)
where Vf € R, Vr € R3,
BF.r) = e au™) -

ulr
gv(uvf)g](uvf) ‘;’|2(u: f) 217rdeu’
and function f — B; ;(f,r) is smooth and even symmet-
ric. In particular, if i = j, then ¥Vt > T,

W’)’i,i (t, f) =

mtt

Acfoe”
(quS’Z |gi(uv f)|2m|;,|2(’u,7 f)du) >0

(40)
and the time-frequency correlation in Definition [3]

+0 (1) @D

B, ,J (f mj_m7)
V/Bi,i(£,0)B; ;(f,0)

pii(t, fixj —®i) =
only depends on f when t — 400, and it is asymptoti-
cally smooth and even symmetric w.r.t. f.

o Asymptotic Gaussianity: when t — +o00, the sequence

of random variables ) converges in law to the
var[h; (t)]

standard Gaussian distribution.

Proposition [3] is proved in Appendix [G] By introducing
an additional assumption that holds in various experimental
setups (cf. Section [[V), the results in Proposition [3| can be
simplified:

Corollary 1 (Early asymptotic state). Considering the
stochastic reverberation model in Definition [I} suppose that
Vr € R3 q(r) = qlr||z where q € RY is a constant
vector, therefore function &(.) defined in (J) is constant on S?:
Vu € 82, a(u) = a™, where o™ = q" a. Also suppose that



the product gA;(u,f)gA;(u, Fym g2 (u, f) with my5 . defined
in can be factorized as

G, F) (s iz (s f) = &g (W) x(F), (42)
where function w — & ;(u) > 0 is twice continuously
differentiable, and function f — x(f) > 0 is smooth. For
any sensors i,j € {1...1}, let D = ||x; — x||2 denote the

distance between the two sensors and let %J(tl,tg) be the
function defined in (T1). Then Vf € R, Vt > T £ T, + Ty,

X(f) [uese &ii(w)du.

Besides, the asymptotic correlation function o; ;(T,x; — ;)
introduced in Definition [6] is nonnegative and it is continuous
w.r.t. T in the interior of its support [—%, %]

If moreover function &; ;(.) is even on S? (symmetric case),
then function T — o; ;(T,x;—x;) is also even, and its Fourier
transform limy_, y o p; ;(t, f, @ — ;) is real-valued.

If moreover function &; ;(.) is constant on S* (isotropic

case), then when t — 4o,

inft

Wy, (t, ) = AeBae™2® (43)

pii(t fray — @) = "L L O(d) (44)
and
oi (T, @; — ;) = b(g’zD) €[0,55], (45)

and function T — 0; ;(T,2; — x;) reaches its maximum at
7 =0, and it is not differentiable at T = 0.
If in addition D — 0, we get

lim pij(t, f,@; — a;) = sinc (2”-“’) +O(D)  (46)

t——+oo ¢

and

O'i)j(T,iL‘j —HJZ') = (%—FO(:[)) 1[_%7%](7). A7

Corollary [I] is proved in Appendix [G.5} Note that the
additional assumption in Corollary [T] is necessary to conclude
that the asymptotic correlation function o; ;(7,x; — ;) is
nonnegative and that its temporal support lies in [f%, %]
Under the more general assumptions of Proposition [3] these

properties may not hold.

D. Late asymptotic state

In Section [MI=C] we assumed that the attenuation function
a(.) in (@) is constant on S?. Now we aim to relax this
assumption:

Definition 7 (Regular attenuation function). Let & : S? —
R, denote the restriction to S? of the function introduced
in Definition |I| in (I). Let @™ = inf,cs2 a(u) > 0, and
suppose that function u — a(u) reaches its global minimum
a™ at a finite set U = {uy}rex of distinct points uy, € S2.
We further assume that the Hessian aj € R of function a at
every minimum point uy, on the Riemannian manifold S? is
positive.

Proposition 4 (Late asymptotic state). Considering the
stochastic reverberation model in Definition (I| suppose that
the attenuation function is regular (Definition|7). Let Vu € S?,

.(iq(u) =Jq(u) (I —uu”) (48)

where Jq(x) denotes the Jacobian matrix of function q(.) at
x € R3. For any sensors i,j € {1...1}, let v; j(t1,t2) be
the function defined in (T1). Then the room response has the
following statistical properties when t — 4-00:

o Temporal domain:

sinfy

var[h, ()] = mAcb2e ™ 1

(g (ur,) g, (ui, ) ¥m_, ~ (ur,.))(0) 1 ) (49)
et +0(%
(%% Vo 2

where Yup € U, t — m, 5(ug,t) is the continuous
function defined in (33).
Time-frequency domain: let Vf € R, Vr € R3,
Bij(f,r) = mAcYkex Bi(r)
91 (un )G (wa ) o (wsf)e™ > ™

Var

(50)
where Yk € IC, ¥r € RS,

Br(r) =p ((q (up) ul +jq(uk)> T)

and Vup €U, f— mlg,lz(uk, f) is the smooth function
defined in (37). Then function f — B, ;(f,r) is smooth
and even symmetric. Moreover, Vf € R,

(G

(&2

_oginfy
W’Yi,,j (t, f) =& Fa— (Bid'(f? x; — :131) +0 (%))
(52)
In particular, if © = j,
—oginfy
Ww,,-(t7f) — %
|9} (e, )P 5 o (wk, f) (53)
(Suep B0 4 0(4)) 20

and the time-frequency correlation in Definition [3}

- ) — _ Bii(fri—wi) (L)
pii(t, ey —x;) VB (1.0)B,,(1.0) +0 i (54)
only depends on f when t — 400, and it is asymptoti-
cally smooth and even symmetric w.rt. f.
Asymptotic Gaussianity: the sequence of random vari-
ables converges in law to the standard Gaus-

var([h; (t)]
sian distribution.

Proposition [] is proved in Appendix [G} By introducing the
same additional assumption as in Corollary [I] that holds in
various experimental setups (cf. Section [[V), the results in
Proposition 4] can be simplified:

Corollary 2 (Late asymptotic state). Considering the stochas-
tic reverberation model in Definition[l) suppose that the atten-
uation function is regular (cf. Definition[]). Also suppose that

the product gAg(u,f)gA;(u,f)m“;/lz(u, f) with m 5. defined



in can be factorized as in {@2), where function u —
&, j(uw) > 0 is twice continuously differentiable, and function
f = x(f) > 0 is smooth. For any sensors i,j € {1...1},
let ~; j(t1,t2) be the function defined in (II). Then when
t — 4oo, Vf €R,

sainfy

Wi, (tf) = macB—— [ x(f) 3 S2l) 1 o(d) ),

ayg
kek
(55)
the time-frequency correlation introduced in Definition [3] is
such that

pig(t, foai—x) = > ap(xj—a;)e 2 @) 10 ( )

kek
) (56)
_ $’L) — Uy (mjiwi) c [7%’ Q] and

C c

where Yk € K, 11, (x;

£ ](uk)

5%(7') >0
: \/Zle)c & L(ul)\/zle/c = J(Aul)

where By(r) is defined in (B1). Finally, the temporal support of
the asymptotic correlation function introduced in Definition (6]

D
):Zak(mj

lies in [-2, 2]:
ke

akr

c’c

(57

0'1‘7]‘(7', (I)j — XI;

) 6 (1 — Ti(;

Corollary [2]is proved in Appendix Again, note that the
additional assumption in Corollary [2]is necessary to conclude

that the asymptotic correlation function o; ;(7,&; — ;) is
nonnegative and that its temporal support lies in [—2, Z].

Under the more general assumptions of Proposition |4} these
properties may not hold.

E. Conclusions of the asymptotic analysis

Let us conclude Section [III| with a brief discussion about the
various orders of convergence that appear in Propositions [3]
and [4] and in Corollaries [T and 2] First, in Proposition [3] and
Corollary [ in Section we observe that:

o var[h;(t)] and W,, ,(t, f) are in closed-form V¢ > T,

o if i # 5, W, (1, f) and p; ;(t, f,¢; — «;) converge to

their asymptotic forms as O(}).

Second, in Proposition 4] and Corollary [2]in Section
we observe that:

o var[h;(t)] and W,, ,(t, f) converge to their asymptotic

forms as O(1);

o if i # 5, W,, ,(t, f) and p”(t frz;
their asymptotic forms as O( t)

— x;) converge to

Finally, we can make two additional observations:

o in all cases, the convergence to the asymptotic form
is faster in Proposition [3] than in Proposition f] which
justifies the terms early and late asymptotic states;

« the convergence speed of O(%) is obtained in late asymp-
totic state for var[h;(t)] and W,, (¢, f), and in early
asymptotic state for W,, . (t, f) and p; ;(t, f, ; — x;).

This last observation is very important: in the case of real
RIRs obtained from real measurements as in Section [[V-B|
the RIRs are observed on a limited time interval, because the
measurement noise ends up dominating the reverberation after
a while. It appears that a convergence speed of O(it) is too
slow to permit the asymptotic form to be reached within the
reverberation time. Therefore we will not be able to observe
the asymptotic forms (56) and of pij(t, f,x; — x;)
and o, ;(T,¢; — x;) in late asymptotic state. However, a
convergence speed of O(%) is fast enough to permit the
asymptotic form to be observed within the reverberation time.
This explains why in real conditions, the observed behavior of
var[h;(t)] and W,, (¢, f) will match the predictions of the late
asymptotic state, whereas the behavior of p; ;(t, f,z; — x;)
and o, ;(7,x; — ;) will match the predictions of the early
asymptotic state.

IV. EXPERIMENTAL RESULTS

In this section, we will study both synthetic and real room
impulse responseﬂ and for each of them, we will check
whether their asymptotic statistical behavior corresponds to
one of the following states:

« diffuse acoustic field (characterized in Proposition @;

« carly asymptotic state of non-diffuse acoustic field (char-
acterized in Proposition [3] and Corollary [I), in the par-
ticular symmetric or isotropic cases, or in the general
anisotropic case;

« late asymptotic state of non-diffuse acoustic field (char-
acterized in Proposition ] and Corollary [2).

In order to perform this classification, we will consider the
four following statistical signatures of reverberatiorﬂ

o temporal power profile: var[h;(t)];

o time-frequency power profile: W,, (t, f);

o time-frequency correlation: p; ;(t, f,; —

o asymptotic correlation function: o; ;(T, x;

x;) in (10);
— ;) in (12).
In Table [l we summarize some results obtained in
Propositions [2] [B] and [] and in Corollaries [I] and [
Remember that _the results in Corollaries [Il and 2] hold
when gz(u f)g](u fim ‘(u,f) can be factorized as
& j(uw) x(f), with & ;(u) 2 0 and x(f) > 0. This assumption
holds in various setups:

1) if the source response does not depend on frequency
and if the microphones’ responses are nonnegative and
do not depend on frequency either, we get &; j(u) =
gz( )gj( > 0 and x(f) =1 (as illustrated

u)m s/ 2 (u)
in Section [[V-A);

2) in the isotropic case, if the microphones are omnidirec-
tional and have the same response g, we get &; j(u) = 1

“The Matlab code generating all the figures in Section is available at
https://perso.telecom- paristech.fr/rbadeau/techreport2019-04-code.zip.

°Note that the four signatures of reverberation are based on the second
order moments of the RIR. In the following experiments, we will display
neither the expected values nor the higher order cumulants of h;(t): the zero
mean and asymptotic Gaussianity of RIRs (which are mathematically proved
in Propositions [T} | and [f) are well-known experimental facts.


https://perso.telecom-paristech.fr/rbadeau/techreport2019-04-code.zip

Convergence Diffuse acoustic field

Non-diffuse acoustic field, early asymptotic state

Non-diffuse acoustic field,

speed to (Proposition [2) (Proposition [3| & Corollary late asymptotic state
asymptotic Omnidirectional source Anisotropic ‘Symmetric Isotropic (Proposition & Corollary '
state Same omnidirectional sensors (general case) (&, even) (&;,; constant)
var[h; (t)] o e—2a"t
261t ~inf
Immediate W'“w%((tjf ﬁ)) e e >2<(QD var[h;(t)] oc e=2% t
D o _ b(/,D) ioe(2mfD _oainf
Vt>T+ )| Pij —( ﬁ)2 Dj>o sinc( 2 ) W, (L, f) o e 26"ty (f)
b(r,D ~ C
i,j=" 5, D—s0 2D1[‘%v%](7)
. 1131 pi,; smooth, 54.D)
fire , )
O (3) even symmetric; t_lﬁm pi,j reals | i t e B2 Vary;g(itn)f]t“ V\i'v;;]rgtt f)
(fast) oi,; >0, contrnuousD 05,5 even cij = b(;zD) € ; € T x(f)
within support | — =, =
Observed be- Shoebox room, Great Hall| Octagon room Classroom All rooms | Shoebox room
fore RTgo in: (Sections [IV-A] & [IV-B3) | (Section [IV-B2)) | (Section [[V-BI)) (Sectionm (Section [TV-A)
L. —2v Ty
o(2) i 5
(slow) oij = >, apd(T —Ty)
kex
Observed Shoebox room
after RTgo in: (Section [IV-A)
TABLE I
THE FOUR STATISTICAL SIGNATURES OF REVERBERATION IN VARIOUS EXPERIMENTAL SETUPS
and x(f) lg’(f) ‘lesA’lz (f) = 0 (as illustrated in where 7 is a time interval of length |7, on which
Section [[V-BI); p1,2(t, f,x2 — x1) is approximately stationary (i.e. does not

3) if the microphones are omnidirectional and have the

same response ¢, and if m‘gp(u,f) > 0 can be fac-
torized as m|§'\2(u7f) = &s(u) xs(f) with &(u) > 0
and Xs(f) >0, we get &; (u) =& (u) > 0and =
17 (F)2xs(f) > 0 (as illustrated in Sections
and [[V-B3).

In the following sections, the four statistical signatures
of reverberation are estimated from a pair (/ 2) of
L observed room impulse responses h(ll)(t) and hgl)(t)
for | € {1...L}, that are such that x3 — @; is fixed.
For ¢ € {1,2}, the temporal power profile var[h;(t)]
is thus estimated as %Zf:1|h§l)(t)\2. The Wigner dis-
tributions W, . (t, f) and W, ,(t,f) are estimated as
Want 1) = £ |50) (NP and W, (0 )

Lt 82, s, f), where S;7(t, f) (resp s“; (t, 1))
is the short time Fourier transform (STFT) of h ( ) (resp.
h(l (t)). The distributions W (¢, f) and le’z(uf) ob-
tamed in this way are smoothed estimates of W,, (¢, f) and
W, ,(t, f) in the time-frequency domain [[14]]. Then the time-
frequency correlation pq 2(t, f, 2 — @1) is estimated as

Wi (¢ f)
ml L Wt f)

The asymptotic correlation function oy o(7, 2 — @1) is esti-
mated as the inverse discrete Fourier transform (DFTY| of

ﬁl,Q(t7f7 o —

1 ~
==Y Pralt, frwa — 1) (58)
7]
teT
%In Section in order to denoise the estimate of o1, 2(7’ T2 — x1),

B8) will be truncated to the frequency band [-5000 Hz, +5000 Hz] before
computing the inverse DFT, which is equivalent to smoothing in time domain.

depend on t) on average.

A. Numerical simulation

We first considered synthetic RIRs generated by the Room-
simove toolbox [15]], which is a state-of-the-art RIR generator
based on the source image principle. Roomsimove is dedicated
to parallelepipedic (“shoebox”) rooms and applies high-pass
filtering above 20 Hz. We used it with the default physical pa-
rameters (humidity: 40%, temperature: 20°C, speed of sound:

= 343 m/s), and we removed the modeling of absorption
due to the airﬂ We thus simulated a shoebox room having
the same volume as the classroom described in [12, p. 84]:
200 m3 (the room dimensions are 74 m x 9 m x 3 m). The
values of the absorption coefficients for the six room surfaces
are described in Table [

Surface =0 | x2=74 | y=0|y=9 | 2=0] z=3
Absorption 0.25 0.3 0.35 0.4 0.5 0.6
TABLE II

ABSORPTION COEFFICIENTS FOR THE SIX ROOM SURFACES

Let RTjo denote the reverberation time, defined as the time
the sound pressure level takes to reduce by 60 dB. For this
setup, RTgy = 0.23 s. We considered omnidirectional sources
and directional (cardioid) microphones. The distance between
the two microphones is 20 cm, and the vector x5 — 1,
pointing from the first microphone to the second one, is in

7The modeling of absorption due to the air involves a frequency-varying
attenuation, which is not accounted for by the model presented in this research
report. However, frequency-varying attenuations are handled by the general
stochastic reverberation model introduced in [13]], and will be analyzed both
mathematically and experimentally in future work.



the horizontal plane, forming an angle of 50° from the x-
axis and 40° from the y-axis. We used the sensor orientations
described in Table [T

Sensor Azimuth | Elevation | Roll offset
Sensor 1 15° 25° 35°
Sensor 2 45° 55° 65°

TABLE III

SENSOR ORIENTATIONS (AZIMUTH, ELEVATION AND ROLL OFFSET IN
DEGREES, POSITIVE FOR SLEW LEFT, NOSE UP OR RIGHT WING DOWN)

We thus generated L = 1000 RIRs sampled at 16 kHz, with
random source positions and random middle positions of the
sensors (both uniformly distributed inside the room volume).
We computed all the STFTs with a 128-sample-long Hann
window and an overlap of 64 samples in the time domain.

Note that the particular numerical values of the parameters
used in this simulation are only provided here for the sake
of reproducible research. They were not chosen for their
realism, but rather for reducing the computation time and for
improving visualization. The observations that we will make
below regarding the four signatures of reverberation would
qualitatively be the same with different numerical values.

Besides, in the Roomsimove toolbox, the source response
does not depend on frequency and the microphones’ responses
are nonnegative and do not depend on frequency either,
thus Vi,j € {1...I}, gg(u,f)g;;(u,f)mlg,lz(mf) can be
factorized as in_Corollaries |I| and [2| as &; ;(u) x(f), with
§ij(w) = gi(u)g;(w)m 5. (u) = 0 and x(f) = 1. Thus we
expect the measurements on the data to match the results in
Table [ with x(f) =1 Vf € R.
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Fig. 1. Temporal power profile var[h;(¢)] in the shoebox room

Fig.[1}(a) represents the temporal power profile var[h;(¢)] in
dB (blue curve), superimposed with a straight red line obtained
by linear regression. We can observe that the temporal power
profile is slightly bent compared with the straight line, so
we are neither in a diffuse acoustic field, nor in the early
asymptotic state of a non-diffuse acoustic field in Table []

10

(otherwise, we would have In(var[h;(t)]) = —2a™ft). Fig.
(b) represents tvar[h;(t)] in dB (blue curve), and a straight
red line obtained by linear regression. This time the blue curve
is not bent and matches the output of linear regression much
better. This corresponds to the behavior predicted by the late
asymptotic state of a non-diffuse acoustic field in Table [}
In(tvar[h;(t)]) = —2a™ft.
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Fig. 2. Time-frequency power profile Wy, ; (t, f) in the shoebox room

Fig. [2] represents the time-frequency power profile
W,,.(t,f) in dB. We note that it can be approximately
factorized as a function of time multiplied by a fixed spectrum,
which is the behavior predicted by the reverberation model
in all asymptotic states in Table [ Due to the projection
property (3), the function of time is necessarily proportional to

ginf

the temporal power profile: #, which corresponds to the
late asymptotic state. Besides, we observe that the fixed spec-
trum is approximately constant, which is again the behavior
predicted by the reverberation model in all asymptotic states,
since x(f) = 1 Vf € R. Finally, we can conclude that the
time-frequency power profile is the one predicted by the late
asymptotic state of a non-diffuse acoustic field (cf. Table [I).
Fig. [3] (resp. Fig. [d) represents the real part (resp. the imagi-
nary part) of the time-frequency correlation p; o(¢t, f, €2 —x1).
A very interesting phenomenon can be observed: the time-
frequency correlation is not stationary, its ”’spectrum’ evolving
from a shape similar to that of a cardinal sine (at low values
of ¢ in Fig. EI), to the shape of a sine wave (at high values of
¢ in Fig. 3] and [). Note that the time axis goes up to 0.8 s,
far beyond the RTsy = 0.23 s (we have deliberately modified
Roomsimove’s code in order to synthesize such long RIRs).
Fig. 5] and [] will help us understand what is at stake here.
The blue curve in Fig. B}(a) (resp. Fig. [5}(b)) represents
the real part (resp. the imaginary part) of the last spectrum
of the time-frequency correlation p; »(t, f, 2 — 1) in Fig.
(resp. Fig. ). The red curves in these figures represent the
asymptotic time-frequency correlation predicted by the late
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Fig. 3. Real part of the time-frequency correlation p1 2(¢, f, 2 — ®1) in
the shoebox room
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Fig. 4. Imaginary part of the time-frequency correlation p1,2(t, f, €2 — 1)
in the shoebox room

asymptotic state of a non-diffuse acoustic field (cf. Table [I).
Indeed, it appears that the minimum of function u — a(u)
is reached at a single direction ug. Consequently, the real
(resp. imaginary) part of lim;_, o p1.2(¢, f, @2 — 1) in (36)
is a cosine function (resp. a sine function). The good match
between the ground truth and the estimation in Fig. [5] shows
that the time-frequency correlation in Fig. [3] and [ does
converge to the behavior predicted by the late asymptotic state
of a non-diffuse acoustic field?

8Since the acoustic field in this rectangular room is not isotropic, it is
not diffuse. The reader might notice that yet, we used a simulated shoebox
room in the experimental section of 2] to illustrate the properties of a diffuse
acoustic field. Actually, we made the experimental setup isotropic in by
randomizing the orientation of vector a:él) — x;’ according to a uniform
probability distribution, and by averaging the results.
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o1,2(T, @2 — 1) in

The blue curve in Fig. [6}(a) represents the correlation
function o1 2(7T, 2 — @1 ), obtained by computing the inverse
Fourier transform of the last spectrum of the time-frequency
correlation py 2(%, f, 2 —x1). We observe that it is formed of
a single peak lying in the interval [—2, £] (whose boundaries
are represented by red vertical lines and which is zoomed in
in Fig. |§|-(b)), as predicted in (37), which confirms what we
already observed in Fig. [5]

However, up to the reverberation time RTgy = 0.23 s, the
average spectrum in Fig. [3] and [] behaves very differently.
The blue curve in Fig. [7}(a) represents the correlation function
01,2(T, T2 — @1), obtained by computing the inverse Fourier
transform of the time-frequency correlation p1 2(t, f, 2 — 1)
averaged from 0 to 0.23 s. We observe that the temporal
support of this correlation function approximately lies in the
interval [—%, %] (whose boundaries are represented by red
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vertical lines), as predicted by the reverberation model in all
asymptotic states (cf. Table [[). Moreover, within this temporal
support (Fig. [7H(b) represents a zoom in on this interval), the
correlation function is nonnegative and not even, and it has
continuous variations, as predicted by the anisotropic case of
the early asymptotic state of a non-diffuse acoustic field in
Table [I

We can conclude that up to the RTyg, the time-frequency
correlation p1 5(t, f, @2 — @1) represented in Fig. [3] and [
actually behaves as in the early asymptotic state, whereas
the late asymptotic state is actually reached much later. This
makes a difference with the temporal power profile var[h;(t)]
in Fig. E] and the time-frequency power profile W,, (¢, f) in
Fig. 2| which match the predictions of the late asymptotic state
almost right from the beginning.

This remark confirms our conclusions in Section [II-El
regarding the asymptotic analysis in Section When we
will analyze real RIRs in Section obtained from mea-
surements in real acoustic environments, we will not be able
to estimate the time-frequency correlation pq 2(%, f, 2 — 1)
beyond the reverberation time, because the measurement noise
ends up dominating the reverberation. Therefore we will never
be able to observe the late asymptotic state in the time-
frequency correlation, which stays stuck in early asymptotic
state in its temporal observation interval. This explains why in
real conditions, the behavior of the first two reverberation sig-
natures (temporal power profile var[h;(t)] and time-frequency
power profile W, (¢, f)) will match the predictions of the
late asymptotic state, whereas the last two signatures (time-
frequency correlation p; 2(t, f, €2 — «1) and asymptotic cor-
relation function oy 2(7, €2 — 1)) will match the predictions
of the early asymptotic state.

B. Real RIR measurements

We used the collection of room impulse responses measured
in a classroom, the Octagon room, and the Great Hall at
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the Mile End campus of Queen Mary, University of London
in 2008 [16]. The measurements were created using a sine
sweep technique [[17] with a Genelec 8250A loudspeaker
(which forms a directive sound source) and two microphones,
an omnidirectional DPA 4006 and a B-format Soundfield
SPS422B. Each measurement has source and receiver heights
of 1.5 m. We used the RIRs measured with the omnidirectional
microphone. We resampled the RIRs at 48 kHz, and we
truncated them so as to remove both their beginning (formed
of early reflections) in order to focus on late reverberation
only, and their end, which is dominated by the measurement
noise. All STFTs are computed by means of Hann windows
of length 2400 samples, with a 95% overlap.

As we will show in the following subsections, the acoustic
field in the three rooms is uniform and non-diffuse. Even
though we did not report here the results in order to avoid
overloading this document, the uniformity of the acoustic
field over space was checked by computing the four rever-
beration signatures (temporal power profile var[h;(t)], time-
frequency power profile W,, (¢, f), time-frequency correla-
tion py 2(¢, f, 2 — @1), and asymptotic correlation function
01.2(7, 2 — x1)) through space averages in different parts of
the rooms (we separated the half-left side from the half-right
side, and the half-up side from the half-bottom side, along
the two horizontal directions). We thus observed a remarkably
accurate match of the four signatures in the different parts of
the room, which permitted us to conclude that the acoustic
field is uniform (at least in the space areas where the mea-
surements were carried out). In the following subsections, the
reported signatures are computed through space averages over
all available measurements in the rooms.

1) Classroom: In the QMUL Classroom Impulse Response
”Omni” dataset, 130 RIRs were measured within a classroom.
As described in [[16], the room measures 7.5 x 9 x 3.5 m
(236 m?) with reflective surfaces of a linoleum floor, painted
plaster walls and ceiling, and a large whiteboard. Measure-
ments were 50 cm apart arranged in 10 rows and 13 columns
(over a 9 m x 12 m area) relative to the speaker, with the
7th column directly on axis with the speaker. For this setup,
the average measured reverberation time RT3q is about 1.8 s
around 1000 Hz [[16} Fig. 4]. For the correlation measurements
(time-frequency correlation p; o(¢, f, 2 — 1) and asymptotic
correlation function oy (7,22 — ®1)), we computed space
averages over all pairs of microphones placed 50 cm apart, and
such that the vector o —a 1, pointing from the first microphone
to the second one, is in the horizontal plane, in the direction
of the y-axis.

Fig. 8| represents the temporal power profile var[h;(t)]. As
for the simulated shoebox room (cf. Fig. E]) we observe that
its behavior is predicted by the late asymptotic state of a non-

. . ~inf
diffuse acoustic field: var[h;(t)] does not decrease as e 2% " f,
2a

~inf
" (cf. Table [l).

Fig. [ represents the time-frequency power profile
W,, . (t, f). We observe that this power profile can no longer
be approximately factorized as a function of time multiplied

but rather as &
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by a fixed spectrum: the temporal decrease rate depends on
frequency, which is not predicted by the reverberation model
studied in this research report. Indeed, remember that we
simplified the general stochastic reverberation model intro-
duced in by removing the dependency of vector & on
frequency f, in order to simplify the mathematical analysis
of the model (cf. Sections [] and [M)). Actually, the general
model introduced in does account for a frequency-varying
decrease rate, but its mathematical analysis is left for future
work.

Fig. (resp. Fig. [I1) represents the real part (resp.
the imaginary part) of the time-frequency correlation
p1,2(t, f, 2 — x1). We notice that the imaginary part is zero
on average (the surface in Fig. [TT] looks like centered noise),
and that the real part is approximately stationary (it does not
depend on time), as predicted by the reverberation model in

13

05

Correlation

-05
0.2

0.3

06 2500
Time (seconds) 1540
1000

Frequency (Hz)

0.7 500

Fig. 10. Real part of the time-frequency correlation p1 2 (¢, f, @2 — @1) i
the classroom

0.3
04

0.2

0.1

Correlation

-0.1
-0.2

-0.3

06 2500
Time (seconds) -
1000

Frequency (Hz)

0.7

500

Fig. 11. Imaginary part of the time-frequency correlation p1 2 (¢, f, 2 — 1)
in the classroom

all asymptotic states (cf. Table [).

The blue curve in Fig. [T2}(a) (resp. Fig. [[2}(b)) represents
the average over time of the real part (resp. the imaginary
part) of the time-frequency correlation pi 2(t, f, 22 — 1) in
Fig. [I0] (resp. Fig. [TT). The red curve in Fig. [I2}(a) represents
the cardinal sine function sinc (2—"62 with ¢ = 343 m/s and
D =50 cm, whereas the red curve in Fig. [T2H(b) represents the
zero prediction. We thus observe that the shape of the time-
frequency correlation is well predicted by the isotropic case of
the early asymptotic state of a non-diffuse acoustic field when
D — 0 (cf. Table ).

Indeed, the results of Corollary [T hold in this experimental
setup, because in this dataset, the microphones are omnidirec-
tional and have the same response g. In addition, if we assume
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that the second-order source response ™5 is also omnidi-

rectional, then Vi,j € {1...1}, gAg(u,f)gA;(u,f)m‘g,lg(u,f)
can be factorized as & ;(u)x(f), with & ;(u) = 1 and
x(f) = |gA’(f)|2m|;,|2(f) > 0, which corresponds to the
isotropic case of the early asymptotic state in Corollary [T}
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Fig. 13. Normalized asymptotic correlation function
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2oy (1,2 — @1)

The blue curve in Fig. [I3}(a) represents the asymptotic
correlation function oy 2(7, 22 — x1). We observe that the
temporal support of this correlation function lies in the interval
[—2, L] (whose boundaries are represented by red vertical
lines), as predicted by the reverberation model in all asymp-
totic states. Moreover, within this temporal support (Fig.[T3}(b)
represents a zoom in on this interval), the correlation function
is nearly constant, as predicted in the isotropic case of the
early asymptotic state when D — 0, which confirms what
we already observed in Fig. However, the assumption
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D — 0 does not seem to hold completely, because in
Fig. [13}(a), the shape of the asymptotic correlation function

_ b=D) — ;
01,2(7'7 Ty — x1) = =5, Is rather peaky at 7 = 0. This
behavior confirms the prediction of Lemma [3| which states
that function 7 — b(7, D) reaches its maximum at 7 = 0, and
is not differentiable at 7 = 0.

We repeated the correlation measurements represented in
Fig. with different experimental setups: we tested various
distances between microphones, and orientations of the vector
xo — x1, pointing from the first microphone to the second
one. We did not include here all the results in order to avoid
overloading this document, but all experimental setups led to
figures looking like Fig. This confirms that, regarding the
time-frequency correlation between sensors, the reverberation
in the classroom behaves as in the isotropic case of the early
asymptotic state of a non-diffuse acoustic field.

2) Octagon room: In the QMUL Octagon Impulse Re-
sponse Omni” dataset, 169 RIRs were measured in the center
of the Octagon room (a Victorian building completed in 1888
and originally designed to be a library). As described in [16],
the walls of the room are lined with books, with a wooden
floor and plaster ceiling. The room has eight walls each 7.5 m
in length and a domed ceiling reaching 21 m over the floor,
with an approximate volume of 9500 m®. Measurements were
1 m apart arranged in 13 rows and 13 columns (over a
12 m x 12 m area) relative to the speaker, with the 7th
column directly on axis with the speaker. For this setup,
the average measured reverberation time RT35q is about 2 s
around 1000 Hz [16| Fig. 4]. For the correlation measurements
(time-frequency correlation p 2(%, f, 2 — 1) and asymptotic
correlation function o1 2(7, 22 — 1)), we computed space
averages over all pairs of microphones placed 1 m apart, and
such that the vector &2 —x1, pointing from the first microphone
to the second one, is in the horizontal plane, in the direction
of the x-axis.

Fig. to Fig. respectively represent the temporal
power profile var[h;(t)], the time-frequency power profile
W,,.(t, f), and the real and imaginary parts of the time-
frequency correlation p; (¢, f, 2 — x1). All observations
made in Section still hold here.

Regarding the asymptotic correlation function oy o(7, €2 —
x1) represented in Fig. (a), the observations are a bit dif-
ferent. First, the temporal support of this correlation function
still essentially lies in the interval [— 2, £] (whose boundaries
are represented by red vertical lines). Besides, Fig. [T8}(b)
shows that within this interval, the correlation function is still
nonnegative and has continuous variations, but it can no longer
be considered as approximately constant. Instead, it looks
approximately even, which suggests that function u — &; 2(u)
may also be even, as stated in Corollary [T} Therefore, contrary
to what we observed in the classroom, the observations in the
Octagon room can no longer by explained by the isotropic
case, but rather by the symmetric case of the early asymptotic
state of a non-diffuse acoustic field (cf. Table [I).

Indeed, the results of Corollary E] hold in this experimental
setup, because in this dataset, the microphones are omnidirec-
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tional and have the same response g. In addition, if we assume
that the second-order source response m o 2(u, f) > 0 can
be approximately factorized as m, ;,lz(u, fS ~ Es(u) xs(f)
where xs(f) > 0 and function u — &;(u) > 0 is even,
then Vi,j € {1...1}, gg(u,f)éz-(u, f)m‘;,P(u,f) can be

~

factorized as &.;(w) X(f), where x(f) = |¢/(f)[*xs(f) > 0
and function u — & ;j(u) = &(u) > 0 is even, which
corresponds to the symmetric case in Corollary [T}

However, outside the interval [—2, 2], the estimated cor-
relation represented in Fig. [I8}(a) has a particular shape that
cannot be modeled as centered noise, whereas Corollary |I|
predicts that it should be zero. This discrepancy may be ex-
plained by the inaccuracy of the approximation m, . (u, f) =
Es(w) xs(f)-

We repeated the correlation measurements represented in
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Fig. [I8] for other experimental setups: we tested various
distances between microphones, and orientations of the vector
xo — x1, pointing from the first microphone to the second
one. Again we did not include here all the results in order
to avoid overloading this document, but to put it simply,
we obtained correlation functions oy 2(7, 22 — x1) whose
support still essentially lies in the interval [—2, 2], and still
with nonnegative values and continuous variations, but with
different shapes within this support. Therefore the asymptotic
correlation function does depend on vector xo — xp, as
predicted by Corollary [I]

3) Great hall: In the QMUL Great Hall Impulse Response
”Omni” dataset, 169 RIRs were measured within the Great
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Hall (a multipurpose hall that can hold approximately 800
seats). As described in [16], the hall has a stage and seating
areas on the floor and a balcony. The microphones were
placed in the seating area on the floor, approximately a 23 m
x 16 m area, but the room is significantly bigger as the
balcony extends 20 m past the rear wall. Measurements were
1 m apart arranged in 13 rows and 13 columns (over a
12 m x 12 m area) relative to the speaker, with the 7th
column directly on axis with the speaker. For this setup,
the average measured reverberation time RT3 is about 2 s
around 1000 Hz Fig. 4]. For the correlation measurements
(time-frequency correlation p; o(¢, f, 2 — 1) and asymptotic
correlation function 0172(7', Ty — 1)), we computed space
averages over all pairs of microphones placed 1 m apart, and
such that the vector &2 —a 1, pointing from the first microphone
to the second one, is in the horizontal plane, in the direction
of the y-axis.

Fig. [19] to 2] respectively represent the temporal power pro-
file var[h;(t)], the time-frequency power profile W., . (t, f),
and the real and imaginary parts of the time-frequency cor-
relation p1 2(t, f,22 — @1). All observations made in Sec-
tion still hold here. Note however that the imaginary
part of the time-frequency correlation in Fig. 22]is not approxi-
mately zero at low frequencies, thus the real-valued asymptotic
correlation function in Fig. @ is not even, as in the case
of the shoebox room (cf. Section [[V-A] Fig [6). Therefore
function & 2(w) is not even either, as showed in Corollary [}
This behavior corresponds to the anisotropic case of the early
asymptotic state of a non-diffuse acoustic field (cf. Table [I).

V. CONCLUSION AND PERSPECTIVES

In this research report, we extended the mathematical anal-
ysis of the stochastic model initially proposed in [I]l, [2],
which was dedicated to the particular case of diffuse acoustic
fields, omnidirectional sources and microphones, and constant
attenuation w.r.t frequency, to the more general case of uniform
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and non-diffuse acoustic fields, and directive sources and mi-
crophones. The experiments confirmed that the predictions of
the generalized stochastic model introduced in match the
observations, based on both synthetic and real room impulse
responses, measured in various acoustic environments.

The next step in this research project will be the extension of
both the mathematical analysis and the experimental validation
to the more realistic case of frequency-varying attenuation
coefficients, before addressing the most general case of non-
uniform acoustic fields. Our purpose is then to develop ef-
ficient algorithms for estimating the model parameters, in
order to investigate the potential of the general stochastic
reverberation model in various signal processing applications.
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APPENDIX A
GENERAL STATISTICAL PROPERTIES

In this appendix, we introduce a common formulation of the
two equations (3) and (6) in Definition [T} which are expressed
in the temporal and the spectral domains, respectively. This
will permit us to prove general results that hold in both
domains.

A.1. Common formulation of temporal and spectral equations

Lemma 4. Both () and (6) in Definition [I| can be written in
the form
Ta

—dN(z,y)
(59)

Vi, y;y-q(x-x:)) i (z,y;@-x:)e”
le—:|l,

hi= fw€R3 nyJRM

)
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where ©;(x,y;T) is a random field on R® x RM whose
distribution is parameterized by » € R® and is iid. w.rt.
(z,y), and such that

loile = sup i, yim)] < +oc.

R3xRM xR

Proof. With r = x — x;, (§) is derived by applying (59) to
t
i@, y;7) = gi (m ) xS (e(w, Y)

where V(z,y) € R? x RM, vr € R?,

r
lI~]

S CY

[27

lpi(@,y;r)| < min(Ty, Ts) supyese refo,r,) 19: (u, 1) |
SUPyes2 10,7, s (u,t) ],

and (6) is derived by applying (39) to
3 (7 1) (0@ ). f) e

where V(z,y) € R3 x RM, vr € R3,

_ 2w flirlle
c

(pz(wayv 1“) )
(61)

sup
u€eS?, feR

[pi(e,y;m)| < sup |gi(u, f)] |5 (u, ) |-

ueS?, feR

O

A.2. First order moments

Proposition 5. Considering the stochastic reverberation
model in Definition[I] the expected value of (39) for any sensor
ie{l...1}is

a(r)

Efhi] = AB1 [, cps 22" dr < 4oo

[E31

(62)

where function &(.) is defined in (1), 31 is defined in (13) for
n=1, and Y,y € R? x RM, vr c R3,

my, (r) = Elpi(z,y;r)] € L (R?). (63)



Proof. First, we note that 37 is finite, as proved in Lemma
We also note that m,, € L>®(R?) because [|¢;[ < +oo,
and @™ = inf,cgs2 a(u) > 0, so that Vr € R?,

ainfyr
c

_a(m)

My, (T)e N
[EgP?

”ms@i 006_

7l

which proves that the integral in (62) converges.

Let us now prove (62). The expected value of (39) can be
written as E[h;] = E[I], where the mathematical expectation
is w.r.t. the three random fields ;, V; and dN on R? x RM,

with I = [ s [, cpn ¥(@,y)dN (2, y), and
Ta

_Yy o
_ Vilzyy—q@—zi))pi(zy;z—xi)e” ©
B

Y(z,y) (64)

By applying Proposition 4 in [2]] to A(z,y) = A and I defined
above, equation (B4) in [2] yields

E[I] = AE U / Y(x,y)dzdy| , (65)
z€R3 JyecRM

where the mathematical expectation is now w.r.t. the two
random fields ¢; and V; only. Substituting (64) into (63) yields

E[hi] = A
Ta
%(%y;yfq(w*fll:‘i))w(ﬁay;fcfmi)fyC
L—Ei|[o

E

dxdy

(66
With the change of variable » = o — x;, which is such that
dr = dx, since E[V;(x,y;y — q(r))] = p(1l;y — q(r)) and
Elp;(z,y;r)] = my, () as defined in (63), (66) yields
Ta
p(Ly—a(r)me, (r)e” =
(RS

me]Rs yeRM

E[hi] = A [, cps yERM drdy. (67)
Finally, with the change of variable z = y — g(r), which is
such that dz = dy, and by substituting (7)) and (13) for n = 1

into (67), we get (62). O

A.3. Second order moments

Proposition 6. Considering the stochastic reverberation
model in Definition [I| the covariance of (B9) for any sensors
,5€{l... I} is

covihi, hjl = A [, cps Bla(z — x:) — q(z — x;))
m —(x—x,;, . x—a; 87w (68)
075 ( i ) o

le—:l,lz—;,

where function &(.) is defined in (1), function 3(.) is defined
in (T7), and V(z,y) € R® x RM, vr; r; € R3,

My, g7 (ri,r;) = E [%(ﬂ%y;"i)sﬁj(m,y;m)} € L®(R*xR?).
(69)
Proof. First, Lemma [2| shows that function 3(.) in (I7) is

upper bounded by pJ3; however (o is finite, as proved in
Lemma We also note that m,, 7 € L (R3 x R3) because
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llilloe < oo, and @™t
Yz € R3,

inf,cs2 a(u) > 0, so that

_a(z—zj)t+a(z—=;)
ﬂ(q(w—aci)—q(a:—wj))7er,i,LP—j(a:—wi,w—wj)e c
le—;|l,llz—z;,

_arf(le—a;llp+le—w;llz)
ﬂﬂ‘"@p@”oce <
le—zill,[lz—z;l, ’

<

which proves that the integral in (68) converges.
Let us now prove (68). For k € {1,2}, let

I = / / n(, y)dN (z, ),
zeR3 JyeRM

with
y' &
— Vieyy—g@—z))ei(@yz—wi)e” <©
U1 (x, y) yiy—q Hw_wwi”zy =
y &
Vi@ ysy—q(z—z;))pj(zy;z—z;)e” <
Po(x,y) = i(xysy—a(z aﬁ;av)ls:j(lr‘czyw xj)e .
(70)
We note that
E[IlE] = COV[[l,IQ] —l—IE[Iﬂ]E[TQ]’ (71)

where the mathematical expectation is w.r.t. the random fields
©i» ¢4, Vi, V; and dN on R® x RM. By applying Proposi-
tion 4 in [2] to A(x,y) = A and I; and I> defined above,
equation (B4) in [2] yields

AE fweR?’ fye]RM ¢1($,y)daf:dy ,
AE f:cER3 yERM 7/12(58,y)da:dy ,

where the mathematical expectations in the right members of
these equalities are now w.r.t. the random fields ¢;, ; and
Vi, V; only. In the same way, by applying Proposition 5 in [2]
to A(x,y) = A and I; and I, defined above, equation (B8)E|
in [2] yields

(72)

COV[Il7I2] = AE |:fm€]R3 nyRM ¢1 ($7y)¢2(w,y)d$dy} .
(73)
By substituting and into (71), we get

E[I1 I = ME [fmema fyeRM i (z, y)mdmdy}
+/\2E |: fmle]Rfi y, ERM 1/)1 (2131, y1)d931dy1
fngRS ny cRM 1/}2 (iL’Q, y2)d1’2d’y2:| .
(74)

However, since the random increments q(x1,y;) and
a(x2,y,) are independent when (x1,y,) # (x2,y5), we

get Va1, xy € R3, Vy,,y, € RM,

NE {%(ml’yﬁ%(mmyz)}
Neov(vy (21, Y1), Y2 (X2, Y2) |02, 200y, 1y,
+X2E [y (21, y,)]| E [1#2(93271/2)} )

where d,. , denotes the Kronecker delta: 0, , = 1 if x =y, or
0z,y = 0 if © # y. Since the Lebesgue measure of the support

(75)

9Equation (B8) was proved in [2] in the real case; we use here its extension
to the complex case, which is straightforward.



of 0z, 250y, ,y, is zero in (R® x RM)2 integrating (73) over
(R? x RM)? yields

2 E {1#1(«’617 Y1)V (22, yz)} dz1dy,dxady,

where the mathematical expectation is w.r.t. the random fields
©i» ¢4 Vi, V; and dN on R® x RM with § = 1, I =
IZGRS fyeRM ¢($, y)dN(.’B, y)’ and

T1,Y1,%2,Yo
—— — (2 yy—g(@—x:)) i (&, y;2—2;)
=X\ T1,Y1,T2,Ys E[ip1(z1, Y1) E[p2(22, yo)|dz1dy dz2dy, Vi, y) = Re<91 le—ill, T
= E[IﬂE[E], +9*2Vj(wyy;y—q(‘flc—wj))”saj(a:,y;:c—wj))e_y Ca.
mfccj 2

(76)
where we have used (72). By substituting (74) and (76)
into (71), we get
COV[Il7 IQ] = E[[lfg] — E[Il]E[TQ]

= B[ fycnn Jyen ¥1(@,9)ta(@, y)dady]
7
Since V(z,y) € R? x RM,

EVi(z,y;y — q(x — z:)Vj(z, y;y — g(z — x;))]
= p(1, Ly —q(x — =),y — q(x — x;))

and
E {%(w,y; z-x;)pi (T, y; 33‘33]')} = My, 77 (T-xi, -T;)

as defined in (69), by substituting (70) into (77), we get

COV[Il’ 12] =A fm€R3 fyGRM
QyT&

p(LLiy—q(@—m:),y—q(@—a;))my, g7 (z—mi,z—wj)e” ¢
le—:l,llz—z;]l,

dxdy.

Finally, with the change of variable z = y— 2&=zi)ta@=2;)

2

which is such that dz = dy, and by substituting (7) and
into (78), we get (68). O
A.4. Characteristic function

Proposition 7. Considering the stochastic reverberation
model in Definition |1} for any sensors i,j € {1...1}, the
characteristic function

Do, (01,02) = B [/ (Fe@rtPh))] vy 6, € ¢ (719)

of the random vector [h;, h;]" with h; and h; defined in (59)

is such that

ln ¢h1,hJ (01702) = )\meRS ny]RM
p(1, Ly —q(x — =),y — q(x — x;))

pova o uTa
<¢<Pi(wmi)w@j(wmj) ( ||1:§7:c,f||2 ) |2afmf|2> - 1)
+p(1,0;y — q(@ — =),y — q(x — x;)) (80)

[ e_}@
(%xwmi) (M) - 1)

+p(0, Ly — q(x — ),y — q(x — x;))

) ula
(‘bwj(wmj) (szve—%> - 1) dzdy.

Proof. By substituting (39) into (79) we get

Ghip,; (01,02) = Efe?],

(81)
By applying Proposition 4 in [2] to A(z,y) = A, and 0, T
defined above, equation (B1) in [2f] yields

On (01,02) = B [ fecrd e (€72 —tnan]

n
= 5520 5B [(M facpo fyc (79 — 1)y ]
(32)
where the mathematical expectation is now w.r.t. the random
fields ¢;, @j, Vi, and V; only. Since the random increments
Y(x1,y,) and ¢ (x2,y,) are independent when (x1,y,) #
(z2,y5), we get

E (M fycns fyem (€7@ —1)dwdy) n}
= (E [)\ fmeRS nyRM(eW(w,y) _ 1)d$dyDn

because when developing the product in the left member, all
terms but the one in the right member are zero, since they
result from integrations on Borel sets whose Lebesgue measure
is zero in (R? x RM)™ (we use here the same argument as in
the proof of Proposition [@). Substituting ([83) into (82) yields

T (0 92)

iy AR ——
= Maers fyeRM (Efe W(m’y)]_l)dwdy.

(83)

(84)
By substituting (81) into (84), we get:
In ¢hi,hj (91702) = )\fmeR?’ yERM
WRe (?Vi(wvy5y7Q(w7mi))§9i(m’yﬁl:*mi) )e—yTTa
Ele ! le—=ill,
zRe(G V(@ yy— q(lf‘c w;))HcpJ(m,yw w;))e v'a
e TT® } — ldzdy.

Then, by considering the conditional expectation given
Vile,y;y — q( — a;)) and Vj(z,y;y — q(x — z;)), we
get

In ¢hi7hj (91’ 02) = AmeR?’ nyRM
p(L, Ly —q(x— =),y — q(z —x;))

B pi(z,y;x—x;) —p;(xy;z—x;) ,yT&
(E lRe(f’l lo—ill, 027 Ja—,1, )e ‘ ]_1>
+p(1,0;y — q(a — x:),y ;)
[ zRe<01 pil@yiz—wi) ml) -
£ |\ T e, _4
+p(0, Ly —q(x —z;),y — qm—w])

zRe(Oz s (. yiw— mJ)
E|e P — 1| dzdy,
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where the mathematical expectation is now w.r.t. the random
fields ¢; and ¢, only, which finally proves (80). O

Note that Proposition [/| provides a straightforward proof
for Proposition 1 in [13]]. Indeed, equation (8) in [13]] can be
proved by applying Proposition [/|to 6; = 6, 8, = 0, & = 0,
x; = 0, and Yo,y € R® x RM, gy(z,y;7r) = |rll29(r) €
L (R3 x RM x R?) since ¢ € L>°(R?) has compact support.

APPENDIX B
GEOMETRY WITH TWO MICROPHONES

B.1. Computation of integrals over space

We consider two sensor locations x;, x; € R and D =
|lz; — x;||2. In Appendices [E]to [G] we will need to compute
several integrals of the form:

Je = {(e—xi,x—x;) de, 85
¢ /EE]RS Te—eilale=a; 1 © (83)
where  — & (x — x;, ¢ — x;) € LY(R3) N L (R3).
In the particular case ¢ = j, let » =  — x; and
_ &(r)
Je = /TGRS IR (86)

where £ € LY(R3) N L*°(R3).

T;

Slis|

Fig. 24. Geometry with two microphones at «;, «; and a source image at x.

To compute such integrals, we will use the spherical co-
ordinates (0, ,r), as illustrated in Fig. where 6 =
corresponds to the direction of vector x; — x;, and the
origin of the coordinates is the middle of the line segment
[x;, ;] (so that Zitx; 0 as represented in Fig. .
We thus get @ = [rsin(6) cos(y), rsin(6) sin(y), r cos(6)]
and dx = r?drsin(9)dfdy, with r € Ry, 6 € [0,7] and
¢ € [0,27]. Moreover, as can be deduced from Fig.

|z — il]2 =

r2 4 B2 +rDcoe(t9)
e — ;] = \/r2 + 2% —rDcos(9),

0; = acos (\/ reos(9)+ D)2 >,

r2+DT2+7"D cos(60)
0; = acos
Vr

rcos(0)—D/2
2+D727TD cos(0)

20

By substitution into (83), we get
Je = f fe of

/ 2
&l Oi,o\ T + +7‘Dc05(9) 0,0, \/T2+D77TDCOS(6')>

\/r2+DT2+rD cos(@)\/r2+%2 —rD cos(0)
r2dr sin(0)dfde.

(87)
Note that in (87), the two arguments of function £ have been
replaced by their spherical coordinates. In the rest of this
research report, we will continue using this notation without
any further notice, as long as it is not ambiguous.
Finally, we make a last change of variables, that is also
illustrated in Fig. 24}

2 2
le—x;||l2+||le—x;]la _ \/r2+DT+rD cos(0)+\/r2+DT-rD cos(0)
2 - 2
2 2
le—z:|l2—|lz—; |2 _ \/r2+DT+rD Cos(@)—\/r2+DT-rD cos(6)
D - D

p:

v

which is such that p € [g,—i—oo[, v € [-1,1], 6;

2pv+D o 2pv—D
£ ), 0; = acos ( 2

2p+vD 2p—vD )° and

acos <
r2dr sin(6)de

~ = = dpdv.
\/T’2+DT+TD cos(0) \/r2+DT —rD cos(0)

(89)

Indeed we note that (88) implies that r cos() = pv and r? =
p? — (1 —2? )— thus

\/p? = %2\/1 —v2cos(p)

\/p? — DTQ\/ 1—v?sin(p) |- (90)
pU
and dx = |/ p? — (“2)2dpdvdyp, which proves @I)
Therefore substituting (88) and (§9) into (87) yields
+oo 1 27
J£ = f —7 v=—1 Jp=0
¢ (SZiﬁg,%H S N *) dpdvdp.
oD

Again, note that compared with (§7), in the angles 0;
and 6; have been replaced by their cosine. In the rest of this
research report, we will continue using this notation without
any further notice, as long as it is not ambiguous since 6;, ; €
[0, 7] and the cosine function takes values in [—1, 1].

Finally, in the particular case ¢ = j (i.e. D = 0), @]} shows
that (B6) is equivalent to

27
Je = / / / §(v,p,r)drdvdp. (92)
s —1 0

B.2. Differentiation of function q(.) on S?

In Appendix [G] we will need to express the quantity
8 (q (v, ) vD + 2302) (1 v2>D)
HmH € 82 when p — +oo (which is equivalent to 7 — +00),

where g (v,¢) denotes g(w). To that end, we first note
that (90) implies = (z; — ;) = pvD, therefore

vD =u' (x; — x;) (1 —|—O(%;)) .

as a function of u £

93)

9

(88)



Moreover, V& € R3, 29(z) = J,(x)%2, where J4(z)

denotes the Jacobian matrix of function g(.) at * € R3,

and implies

e | VP B con(o)

- = v 3 4

v | —\/PP - B sine) ©4)
p

However, by noting that function g(.) is 1-homogeneous, we
have Jq(x) = J4(u), since J4(x) does not depend on ||x||o.
Therefore we can write

oq oz

e (x) = Jq(u)%. (95)
We note that (90) and (©4) imply
0
1 7]
- ((1—v2)Dm—|—va) =0 | =z—x
p Ov D
Substituting (93)) into this last equation, we get
1 ox
;(1 - U2)D% =T -uu')(z; — =)+ O(%;). (96)

By multiplying (93) with %(17v2)D, and by substituting (96),
we get

o 3
%—g(w)(l — 03D =Jq(u) (I —uu') (z; — ;) + O(%).
Since function q(.) is 1-homogeneous, we note that %g—g(w) =
%(u) + O(%z), therefore we end up with

° 3
G (1 =)D = Jg(w)(@; — x:) + O(Fr),

where matrix Jg(u) is defined in (8). Finally, this last
equation and (93) yield

q (Ua QD) vD + % (U7 (P) (1 - ’U2)D

(awn” + 34w} @~ 2 +0(5). 7

Since function ((.) is continuous and differentiable almost
everywhere in R, and all its partial derivatives belong to
L>°(RM) as shown in Lemma [2| then implies

ISy

(a(v.0)vD+ 52 (v.0) (1 =)D
=8 ( (qwu™ +T4@w)) (@, - ;) ) +O(2).
(( ) .

APPENDIX C
ASYMPTOTIC EXPANSION

Proposition 8. Considering the stochastic reverberation
model in Definition [I| suppose that the attenuation function

a(.) defined in is regular (cf. Definition [7]) Let Vx € R,

I(z) = / D(w)e T W7y, (99)
ueS?

21

where 1 is a continuous function on S?. Then when & — 400,

o (Z k) o<1>> |

keKk a
In addition, if 1 is differentiable almost everywhere on S2,
and all its partial derivatives belong to L>(S?), then

(o) w

Finally, if ) is twice (or more) continuously differentiable,

I(2) (100)

_gint

3 2motu) | o (2

I(x) =< -
ke

xT ap

then
—ate 21y (uy) 1
I(z)=¢ ( 10 ()) S0
T ’gc \/516 T

Proof. Since vectors {uy }rex are distinct, let {S?}rex be a
partition of S2, such that every wy is in the interior of S7.
Then I(z) = ), cx Ix(x), where

Ii(z) = / Y(w)e ¥ Wy, (103)
u€eS?

Since uy, is the unique global minimum of the four times con-
tinuously differentiable function &(.) in the two-dimensional
(2D) Riemannian manifold S2, the following second order
expansion holds:

_ amf

>TA’“
2

a (u) (u—up) +O(|[lu—ugll3), (104)

+(u—ug
where the 3 x 3 Hessian matrix Ay, has rank 2 (with two pos-
itive eigenvalues and one zero eigenvalue), and span(Ay) =

span(ug)t is the tangent space of the Riemannian manifold
S? at point uy. By substituting (T04) into (T03), we get

—~in A '
/ T G GO e )L
uesS?

Ii(z)

With the change of variable v
element becomes dv = x du, thus

Vr(u — uy), the surface

ao.

(105)
If ¢ is continuous, when z — o0, since span(ug)*
span(Ay), we get the asymptotic form

)

I3
NS

_ginf,

—v " ﬂv+O
I, (z)== ’ (

= Y(up+-=)e
/«:emsg—uw Ve

_ginf,,

In(z (w(“k) Jocspan(an € " 2 Vv + 0(1))

27

(106)

where &) > 0 is the Hessian of function @(.) at wy, ie.
the product of the two positive eigenvalues of the Hessian
matrix Ak.

In addition, if ¢ is differentiable almost everywhere on
8?2, and all its partial derivatives belong to L>°(S?), then
the next term in the Taylor series expansion of t(uy +

sinf

e (wuk)

x

+o).



I3
vz

—v! ATkU+O< )
e in (I03) is of order ﬁ By integrat-

ing over span(Ay), we get
).

2T
<¢(Uk) — +0(
Vay
Finally, if ¢ is twice (or more) continuously differentiable,

then the term of order % in the Taylor series expansion of
x

—v ! %v—i—O(

_ainty

1

Ii(x) = e

(107)
X

I3
vz

Y(ug + %)e ) in (103)) is odd w.r.t. v, thus
its integral over span(Ay) is zero. The following term is of
order % and since it is even w.r.t. v, its integral over span(Ay)
is not zero in general. Therefore we can write

—+0

() (i)) : (108)
( Vak

By summing (I06) (resp. and (TO8)) for all k € K, we
finally get (I00) (resp. (I0T)) and (T02)). O

APPENDIX D
PROPERTIES OF PROBABILITY DISTRIBUTION p

Lemma 5. Let p(b, z) (where b € {0,1} and z € RM) and
p(bi,bj, zi, z;) (where bi,b; € {0,1} and z;,z; € RM) be
the probability distributions introduced in Definition [I| Then
function (z1,z2) — p(1,1; 21, z2) is not differentiable at any
point (z, z) such that Vp(1;z) # 0.

—Oszfr

Iu(z) = 27

X

Proof. First, since V;(x,y; z;) and V;(x, y; z;) are Booleans,
Vilz, y: zi)V;(x, y; z;) < min (Vi(z, y; zi), Vj(2, ¥: 2;)) -

By applying the mathematical expectation to both members of
this inequality, we get

p(1,1; 24, z5) <min (p(1;2,),p(1; 25)) - (109)

In other respects, since function z +— p(1; z) is continuously
differentiable and it is not constant, then there is z € R™ such
that h = Vp(1; z) # 0. Then V¢ > 0, since we have both (9)
and p(1,1;2z;, 2z;) < p(l;2;), we get

p(1,1;z+th,z—th)—p(1,1;2,2)
T

<

p(l;z—th)—p(1;2)
7 .

Therefore

lim sup
t—0,t>0

IN

p(1,1;z4+th,z—th)—p(1,1;2,2)
t

In the same way, V¢t < 0, since
p(1,1; 2z, 25) < p(1; 2;), we get

we have both (9) and

p(L,Liz4th,z—th)—p(1,1;z,z) -, p(l;z+th)—p(l;z)
t = t :

Therefore

lim inf 2Ozt th2) LSS > BTYp(1; 2) = A3,

Consequently, the limit of p(l’1;z+th’z_fh)_p(1’1;z’z) when

t — 0 and t € R does not exist, thus function (z1,z2) —
p(1,1; 21, z2) is not differentiable at (z, z). O

~h"Vp(1;2) = —||h|3.

22

Nevertheless, it is still possible to assume that function
(z1,2z2) — p(1,1;21,22) is continuous and differentiable
almost everywhere in RM x RM and that all its partial deriva-
tives belong to L>°(RM x RM), as we did in Definition

Proof of Lemma[ll We have assumed in Definition [1] that the
support of z — p(1; z) is left-bounded, i.e. Vm € {1... M},
3zinf < 0 such that Yz € RM, if 3m € {1... M} such that
Zm < 22f then p(1;2) = 0. Since Vz € RM, p(1;2) € [0, 1],
(13) implies the majoration Vn € N\{0},

T~
z o
—n
Bn < fz>zinf € ¢ dz
= inf|T 4
1= T &
_ Mo nlE—
T am oy
Linf T g
c

m=1 |
O (e : M ) )
where symbol > between two vectors is applied entrywise.
Moreover, 3, > 0 in (13) because function z — p(1; z) is
continuous, nonnegative, and not identically zero. [

Proof of Lemma [2] First, function e — [(e) is even because
function (z, 2’) — p(1,1;z,2') is symmetric, since in Defi-
nition |1} p is invariant under a permutation of the two sensors
1 and j.

Moreover, we have assumed in Definition [I] that the support
of z ++ p(1; 2) is left-bounded, i.e. Ym € {1... M}, 321" <
0 such that Vz € RM if 3m € {1... M} such that z,, < zf,
then p(1;z) = 0. Consequently, (z,2') — p(1,1;2,2') is
also left-bounded: Vz, 2z’ € RM if 3m € {1... M} such that
Zm < 28 or 2/ < 2t then p(1,1;2,2') = 0. Therefore
Vz € RM,if 3m € {1... M} such that z,, < 2 | then
Ve € RM, p(1,1;z — £,z + &) 0. Finally, function

(e,2) = p(l,1;z — §,2+ §)e” is continuous w.r.t.
e, and it is dominated by the integrable function z ~—
H%zl 1[.int 4 oo[(2m ). Therefore the theorem of con-
tinuity under the integral sign proves that function e — 3(e)
defined in 1S continuous on IR{MT. In the same way, function
(e,z) = p(l,1;z—5,2+5)e” 2% is differentiable w.r.t. e
almost everywhere in RM and all its partial derivatives w.r.t.
e are dominated by a constant multiplied by the integrable
function z — e~ I, 1Lint yoo[(2m). Therefore the
theorem of differentiability under the integral sign proves that
function e — [(e) defined in is differentiable almost
everywhere in R, and all its partial derivatives belong to
L (RM),

Besides, applying to e = 0 and substituting (9) yields
B(0) = Ba, with (B defined in for n = 2.

With the change of variables z = ”TzJ and e = z; — z;,
which is such that dzde = dz;dz;, by multiplying both mem-

221 &
<

2z &
c

2z"&
c

bers of (T09) with e‘#, integrating over z, and substitut-
ing and for n = 2, we get (I8). Since z;, z; can take
any value in RM, holds Ve € RM_ In particular, function
e — [(e) is not differentiable at e = 0 (otherwise, with e =
ger and 7 € R, we would have lim;_,g >0 M <
— B and lim, 0., <o w > +5,a™, so the two
limits cannot be equal). O



APPENDIX E
FIRST ORDER MOMENTS

Proof of Proposition [I|
Temporal domain: Substituting (60) and (63) into (62) yields

( r )im( r tﬁl\?\\2)€*$
i\ Tellz > R c

E[hl(t)] = )\51 fre]R3 HT'HQ

where function &(.) and j3; are defined in (7) and (I3) for
n=1,and Yu € S%, Vt € R, V(z,y) € R® x RM,

—E[s(6(z, y)u,1)].
Besides, E[h;(t)] = AB1Je where J¢ is defined in (86) and

dr

mg(u,t)

a(r)

[ t ™ r —
6r) = lIrlle gi (13- -) * (ot = o2y e
belongs to LI(R3) N L>(R3). Thus (92) yields
+oo 1l 2
B 0] = 390 75 S S

9i (U (2 ) : mg(v, @, t — e —awe)Crdrdude.

Let mgé*s’ (U7 ®, ) = (gz (’U, @, ) i ms (’U, ®, )) ea(v,ga)t =

g (v,,.) xm(v,,.) and let T = T, + Ts.
With the change of variable 7 =t — %, which is such that
dr = ﬂ, we get Vt > T,
27 e—a(v,tp)t

Eha(t)] = A6 1, [
(t reR mgi*g/ (v, 0, 7)dT — [ cgmgres (v,0,7) 7dr) dvdyp

=X [,__, jﬂo —a(v,p)t

oo
(tm/g:E (v,,0) — ﬁagi} (v, ¢, 0)) dvde,

- (110)
where m (v,0,f) = gi(v,o, f)mg(v, e, f) with mg
defined in (8). Note that we have proved in Section [II] that
function f +— gi(u, f) is smooth. Moreover, VO(x,y) €
SO(3), Vu € 82, Vg € N, function f sA’A(@(m,y)u,f)
is ¢ times continuously differentiable and %w;y)"’f) is
dominated by |[|t?s’ (u,t)||;. Since SO(3) is a compact set,
the differentiability under the integral sign theorem proves
that function f +— ms, (u, f) is smooth. Therefore functions

J*S

WTg-i*\s (v, ¢, f) and (v, ¢, f) are Well defined.

Finally, both mgé*sf (U, »,0)=0 and (v »,0) =0,
since we have assumed in Definition 1] that at least one of the
following properties holds Vu € S? at f = 0:

e Vie{l...1}, gl(uO)—Oandm (u,0) =0
e Vie{l...I}, gl(u o) =0 and 891 (u,0) = 0;
o my(u,0)=0 and 20 # (u,0) = 0.

Therefore (TT0) proves that Vi > T, E[h;(t)] = 0.

Spectral domain: First, VO(x,y) € SO(3), Vf € R,
function u — $(O(x,y)u, f) is twice continuously differ-
entiable, and all its second order derivatives are bounded
on S82. Since SO(3) is a compact set, the differentiability
under the integral sign theorem proves that function u +—
mz(u, f) defined in (T3)) is twice continuously differentiable.
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Second, VO(z,y) € SO(3), Vu € 82, Vq € N, function
f = 5(O(x,y)u, f) is ¢ times continuously differentiable
and %}W is dominated by ||¢9s (u, t)]|,. Since SO(3)
is a compact set, the differentiability under the integral sign
theorem proves that function f +— mgz(u, f) is smooth.

By substituting (61) and (63) into (62)), we get

r _a(r)+2erflirila
f nls(‘|"'”27f>e €

[E31

Eh;(f)] = AB1 [ gAi(H:Hz d
¢ = M1 Jrers r

where function @(.) and $3, are defined in (7) and (I3) for
n = 1. We note that E[h;(f)] = AB1Je where J is defined
in (86) and

&) = Il (s f) ms (g f) e

belongs to L*(R3) N L>°(R?). Thus ©2) yields

_am+2enflirlly
-

E[l’/)‘\l(f)] = Aﬁl fvffl jﬂ-og\l(v <)07f)m5 (U 2 f)
fr 5 re” @@RF2TNE drdydep.

2 (v, mz(v,
= Ah fv— 1Je=0 q((a(f,:;))m(wfﬁ?f)d”d@’

which proves (16)). Finally, E[hi(f)] is obtained as the integral
over the compact set S? of a function of (u,f) which
is smooth w.r.t. f, and whose derivatives of all orders are
bounded; therefore the differentiation under the integral sign
theorem proves that function f +— E[h (f)] is smooth. O

APPENDIX F
SECOND ORDER MOMENTS

Proof of Lemma [3] First, function 7 — b(7,D) defined
in (T9) is even because Lemma [2| shows that function j3(.) is
even. As a consequence, function f +— b( f, D) is real-valued.

Second, function 7 — b(7, D) is continuous and differen-
tiable almost everywhere in the interior of its support, and
gg (,D) € L>*(] — 2,+2]), because Lemma [2| shows
that function ((.) is continuous and differentiable almost
everywhere in R, and all its partial derivatives belong to

L>(RM). As a consequence, function f + b( f,D )1s smooth.
Besides, applying in Lemma 2] to e = gcr leads
to B(ger) < B e=@"I7I which proves (20). In partlcular
function 7 — b(7,D) reaches its maximum at 7 = 0,
and it is not differentiable at 7 = 0 (otherwise we Would
have lim;_,o ;>0 5r.D)=50.D) _ %(O D) < —Boa™ an
('r D)—b(0, D)

hmT—>0 7<0 s

= 20, D) > +B.a™). More-
over, Vf € R, |b f,D)| <

[, cg 0(7, D)dr, thus 20) im-
plies 1).

If D — 0, since function $(.) is continuous and dif-
ferentiable almost everywhere in RM, and all its partial

derivatives belong to L>°(RM), we have 3 (qcr) = B2 +0O(7)
vr € [—L£ 2] Therefore (T9) yields (22), whose Fourier
transform leads to (23). 0O



Proof of Proposition [2]
Temporal domain: Substituting (60) and (69) into (68) yields

’Yi,j(tlatZ) = )‘fmeRii B(q(m wl) - q((li - w]))

G-z ta(z—x;) o a;
(e (FE ) v

- i
[z—=;] [e—a;l, "
le—:|l,lle—z;],
T—x; _ =iz
Ms,s (wamil\z’tl dx
(111)

where functions &(.) and 3(.) are defined in (7) and (T7), and
Vuy, us € 8%, Vty,t2 € R, V(z,y) € R? x RM,

T —x
€

T—T;

_ == %Hz
) To—az;[l27 2

=E[s (O(x,y)ui,t1) s (O(x, y)us, ta)].
(112)

Note that 7; ;(t1,t2) = X Je with J¢ defined in (83), and
(r2))e”
)9 (nrznz t2)
tl _ [~

il _r
c rall2?

ms,s(u1,t1, w2, ta)

a(ry)+a(rg)

f(r1;7'2) = —-q
7t1

Ty
lrell2?

B(q(r1)
9i (uffuz

ms s (

is such that ¢ — ¢ (x —x;, @ —
Thus @©T) yields

ty t2
* ok

llr2]l2
C

to —

)

;) € L'(R?) N L®(R?).

2
Yigltite) = A [ [ [
2pv+D D 2 D D
B ( (2£3—’UD’ ) (P+ UT) —-q (szvD’(p) (p_ ’UT))
gpi“tg V’)(P+”D)+a(%‘%«v)(pff)
2 D -D t1 t2
9i (ggitpa@ah) gj (#Zﬁ,(ﬂ,tz) * ok
2pv+D p+*2 2pv—D p—22
s (2p+vD750’t1 - 02 » 2p— UDMP,t 2 )dpdvd<p

(113)

If the acoustic field is diffuse (¢f. Definition [2)) and if the

microphones and the source are omnidirectional (cf. Defini-
tions [3] and @), we get the simplification

5 amf

’}/iyj(tl,tg) = 27T)\f+:oz o=

o [,—_1 8 (quD)e”
(9 5) (11 = 25 ) (g5 % 9) (t2 =

p**

(114)

) dpdv.

With the changes of variables ¢ = — 2 and 7 =
%, which are such that dt = d—cp and dr = %dv, and
by substituting (T9) into (T14), we get @24). Moreover, if
D > 0, b(.,D) € L'(R) and has compact support, or if
D =0, b(.,0) = B26(.). In both cases, since functions ¢;
and s’ are continuous with compact support, then function
b(., D)xg, *gé. xs' % is also continuous with compact support.
Therefore function (¢1,%2) — 7, ;(t1,t2) is continuous.

In particular, if © = 7 and ¢; = to = ¢, we get @, hence
the expression of the temporal correlation in (26).

Spectral domain: Substituting (61) and (69) into (68) yields

cov[hi(f1), by (f2)] = A [, cas
Bla(e - =) - al@ - ;)5 (221, 1)
g/;(mv f2)m§7§< wa:;iﬂz ) f17 ”;c:c:.j”z ) f2)

_A(e—zy)F2infi|lz—z; |2+ &(z—zj)— 2 follz—z;l2
¢

ti+to
2

e

dx

lz—a;|l,llz—=z;]l,
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where functions &(.) and 3(.) are defined in (7) and (I7), and
Yug,us € S, VS, f2 €R, V(z,y) € R? x RM,

=E[5(0(z, y)u1, /1)5(0(x, y)uz, f2)]-

mg‘,?(ulafhuQan)

Note that cov[h,

i(f1)s ‘(fg)]Z)\Jg with J¢ defined in (83) and

§(ri,ma) = Blatry) — a(r2)g: (2. 1) 3 (7 /2)

(ri)+2enfyllrallata(ra)—2emfalralle
— 1 T2 -2
m§,§( ||7‘1H2’f1’ HTzHQ’fz)e ¢

is such that ¢ — & (x
Thus ©T) yields

z;) € L'(R3) N L®(R3).

—xT;, T —

. 2
cov[hi(f1), b, f:% S @zo
2 D D
MU TR S R AP
(a( 22558 o) +2oms1 ) o+ 22+ (a (% ¢)—2imfa)(p—2L2)
e c

~ ([ 2pv+D

A<A

2pv—D
2p— D P

f1)d ( fz)

0. 1,3 QP,UDAP, fz) dpdvdep.

gi 2p+vD> 2

2pv+D
2p+vD?

If the acoustic field is diffuse (¢f. Definition [2) and if the mi-
crophones and the source are omnidirectional (cf. Definitions 3]
and [), we get the simplification

ha(f1). hy(f2)] = 200 Gi (f1) G5 (F2)3(f1)3 (fzgf
f:_:o% . (2a'n +2m;<f1—f2)>p dp fvlz_lﬁ(qu
(115)

With the change of variable 7 = , which is such that
dr Ldv, by substituting @) 1nt0 (TI5), we get 7).
Moreover, function (f1, f2) — cov[ i(f1), hj(f2)] is smooth,
as a product of smooth functions.
In particular, if i = j and f1 = fo = f, we get (28), hence
the expression of the spectral correlation in (29).
Time-frequency domain: The Wigner distribution of (TTT) is

cov|

217r

dv.

c

vD

Wa () = A [ crs Bla(x — x:) — q(x — x)))
t
Tr— CB
Wosg; \Te-wT, =l To=a, Ty o f )
o, z-o i |-+l
Wi, (oailss Toa st~ e o f)

_a(@—z)ta@—e)+2rf(lz—2ila-llz—=;l2)

€

dx

c
lo—a:l,llz—z;]l,

where we have used the convolution property (@) of the Wigner
distribution, and m s is defined in (T12).
Note that W, (¢, f) = A J¢ with J¢ defined in (85), and

_a(ry)ta(rag)t2inf(lrilio—lralle)
£(r1,r2) = Blg(r) —q(rz))e E
T1 T2
Wyiog, (iunuwinmnz’ ’f)
t T T HT1|\2+H7‘2||2
W (il Tl ot~ )

is such that x — & (x
Thus @1) yields

—x;,x —x;) € L'(R3) N L>®(R3).



+ 1 2
W’Yi,j (ta f) = Af :O% v=—1 QPZO
D -D
5 (aq (ﬁﬁﬂD,w) (r+%) -4 (ﬁﬁ“iw,w) (p— %))
a( 538555 @) o+ 2P +a( 38558 ) (o= 2P )+2umfoD

c

2pv+D 2pv—D t
Wy, (2p+vD’(p’ 20—0D> P f) *

Win, (32523, ¢, 3255, ¢,t — £, f)dpdvdep.

(116)

If the acoustic field is diffuse (¢f. Definition [2)) and if the
microphones and the source are omnidirectional (cf. Defini-
tions and , with the changes of variables ¢’ = ¢ — % and
7= L which are such that dt' = % and dr = 2dv, (T16)

c

yields V¢ > T + 2,

2 ~inf D
W%j (tf) - %e—za thC:,Q ﬁ(qcr) e~ 2T 41

Joex @ Wassg, () % Wan, (¢ )d.

(117)

Finally, by using the projection property (Z) of the Wigner

distribution and by substituting (T9) into (I17), we get (30).

Moreover, function f +— B; ;(f, D) defined in (31)) is smooth,
as a product of smooth functions.

In particular, if ¢ = j, we get @), hence the expression of
the time-frequency correlation in (33). Then (34) is obtained
as the inverse Fourier transform of the right member of (33)
when ¥f € R, Zg)(f) = 2g,(f)-

Finally, function 7 — o ;(7,x; — x;) in (34) has the
same support as function 7 — b(7, D) defined in (19). It
is continuous in the interior of this support, it reaches its
maximum at 7 = 0, and it is not differentiable at 7 = O,
because so is function 7 — b(7, D) as shown in Lemma
Moreover, 20) yields o; (7, z; — x;) € [0, 55]. O

APPENDIX G
ASYMPTOTIC RESULTS

In this Appendix, we first prove Propositions [3| and [
in Section [} Then Corollaries [T] and 2] will be proved in

Appendix [G3]

G.1. General asymptotic results

First, we compute a few simple asymptotic forms, that will

be used in Appendices [G.2] and [G.3]
Suppose that p — +oc0. Then we get

2pv+D (1—U2)D o
2p+vD v+ 2p+vD v+ O(

2pv—D __ = (1—v*)D _
2p—vD v 2p—vD Gl O(

),

b

(118)

Nlsh)ls]

and since function &(.) is twice continuously differentiable,

90) (r—42)

~ ( 2pv+D vD ~ (2pv—D
« (2p+vD"'0> (p+ ) +a <2pva’

A D supy |28
= 2a(v,9)p+0 (S”p‘f"w > :
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therefore

_(2pv+D vD . _(2pv=D vD
7@ 2ptvD ¢ (bt )+a 2p—vD ¥ (=757
¢

e

’a
_2a(w,e)p D? sup, 2| ‘
= e " < <1+O (jc Jv? )

In the same way, since function g(.) is twice continuously
differentiable,

a(355.0) 0+ ) —a (358.9) (0 - 2P)
0 D supgs |1 59
= q(v,go)vD—l— qg;’”(l—#)D—i—O SZ 1 0v .

P

(120)
Since function §(.) is continuous and differentiable almost
everywhere in R, and all its partial derivatives belong to
L>°(RM) as shown in Lemma [2} then (120) yields

B (q (gﬁiﬁg#p) (p+%2)—q (32’1},3,@) (p— %))

9%q
Dsupgz | 5771

(119)

= 8 (q (v, ) vD+W(1-vz)D) +O 5

(121)

G.2. Temporal domain

Since functions g;, g; and s have finite temporal support,
when t; +t5 — 400 with t; —to fixed, (II3) can be simplified
by noting that p — +o0. Indeed, substituting the asymptotic

forms (T18), (T19) and (121) into (T13) yields:
[e§] _2a(,e)p
Yig(tritz) = A [ e e (
oq(v,
8 (q(v,0)vD + 2222 (1 = 0*)D) g, (v, 0, 1)
E p+%av7¢7t2_pic%)

9gj (v7(pat2) >(} >‘?Tns,s <U>¢7t1 - c
+0 (%) )dvdgpdp,

1 27

v=—1Jp=0

(122)
where m , is defined in (I12).

By substituting (93) and (98) into (122)), we get
_ 2a(w)
it t2) = /\fioé wes2€ T (

5 ((atwu” +34w) (@ - ) 0 (w00 g5 (.12

{1t PECT) pot @i
* Ak mgs | u,ty — —2—— u,fg — ——2—

+0 <%) )dudp. 123)

By applying the change of variable 7 = 142 — 2 which is
such that dr = d—cp, to (123), we get Vt; + t5 > 2T + %,

Yi,j (tlv t2) = Ac quSZ e—a(u)(t1+t2)

8 <(Q(U)uT + jq(u) (wj - (Ez)) gz’- (u, ) * gé, (u7 )
(u,tl—tg—w)_i_O(%

* ~
ms’*s’ c

where m_,, 5 is defined in (33).



Note that VO(x,y) € SO(3), V¢ € R, function u
s (O(x,y)u,.) % g (O(x,y)u,.) is twice continuously dif-
ferentiable, and all its second order derivatives are bounded
on S2. Since SO(3) is a compact set, the differentiability
under the integral sign theorem proves that function m,, =
is twice continuously differentiable w.rt. w € S2. In the
same way, VO(z,y) € SO(3), Vu € &2, function t
s (O(x, y)u, )ig’ (©(x,y)u,.) is continuous and dominated
by Ts sup,cs2 |8’ (u,.) ||%. Since SO(3) is a compact set, the
continuity under the integral sign theorem proves that function
m. is continuous w.r.t. t € R.

1) Early asymptotic state: Suppose that ¥Vr € R3, q(r) =
g||r||2 where g € R} is a constant vector, therefore function
a(.) defined in (7) is constant on S?: Vu € 82, a(u) = amf
where @™ = g a. Then (124) becomes Vt; +to > 2T+ 2,

_ainf(t1+t2)(fu 52 ﬁ (quT(w]— CEZ)) g;( )
S,y -ty — L2y gy 4 O(

’Yi,j(tlth) = )\C@

L) %m, C(tlm)))
In particular, if ¢ = j (thus D=0) and t; = to = ¢, we get (36).
2) Late asymptotic state: Suppose that the attenuation
function is regular (cf. Definition |Z]) If we let x = t1 + to,
then (T124) shows that ; ;(¢1,t2)) can be decomposed as

*g;(u

s'xs’

Yi,j(t1,t2)) = Ii(x) + I2(z) O (ﬁ) (125)
where I(z) is the integral defined in (99) with ¢(u) = Ac,
so that (T02) proves that

—ainf(e; e
L) = 0 (<5, (126)

and I;(x) is the integral defined in (@9) with

i (a () + Jy(w)) v)

g;(u, ) * g;(u, ) My, 5 (u t1 —to — Tr)
(127)
where » = x; — x;. Since function 5(.) is continuous and
differentiable almost everywhere in R, and all its partial
derivatives belong to L°°, so is function ¢ in (127). If
in addition ¢ = 7, then » = 0 and function %) is twice
continuously differentiable.

Therefore if » # 0, substituting (I01), (126) and (127)

into (T23)) shows that when t; + t5 — 400,

P(u) =

() = 2mace” O 1 tt2) Br(r) 1
727]( 1 2) - t1+t2 k%:)(: \/OTkgz(ulw ) *gj(ukn )

*ms,*s,(uk,tl — 1ty — Tk) +0 (m) )

.
where 7, = “&° (r) is defined in @I). If i = j (thus
r = 0and 7, = 0) and t; = to = ¢, substituting (102)

and (126) into (123) proves @9).

G.3. Time-frequency domain

Because of the temporal support property of the Wigner
distribution, Wy, g4, and W,  have finite temporal support.
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Therefore when ¢ — +o0, (IT6) can be simplified by not-
ing that p — +oo. Indeed, by substituting the asymptotic

forms (T18), (I19) and (121) into (I16), we get:

27 _28(v,e)p
W’YIJ t f f 7 11——1 t,azoe ¢ (
B (q(v,9) oD + 22 (1 - ?)D) em20ns*2
t
Wgz@ﬁj (Uv @5 f) * Wms,s (U, 2 t'%7 f) + 0 <%) )d’l)dgodp,

(128)
where my ; is defined in (T12).

By substituting (93) and (98) into (128), we get

’Y7 7 t f - )\f quSQ e Qa(:)p

B (<11(u)uT + Jq(u)> (x; — mi)) ~2umf ™

ng®gj (u’ E f) i W"/Ls‘s(u’ t— gv f) +0 (%) )dU'dp
(129)
By applying the change of variable 7 = ¢ — £, which is such
that dr = %, to (129), we get V¢ > T—i—% with T = T, + Ty,

*mz)

W“/i,j (t7 f) = Xc fu682 e—2a(u)t(
p ((q(u)uT - 3q(u)> (z; — a:i)) oyt @y

Gi(w, )9 (w, fym g a(w, ) + O (B) )du,
(130)
where we have used the projection property ([2) of the Wigner
distribution, and the definition of m, ;,lz(u, /) in @7).

Flnally, note that V@(a: y) € SO(3), Vf € R, function

IOy |
and all its second order derivatives are bounded on S2. Since
SO(3) is a compact set, the differentiability under the integral
sign theorem proves that function u > |m;, (u, f )|2 is twice
continuously differentiable. Also note that VO(z,y) € SO 2(3),

s (O(z,y)u, f)
ox |s (O(xz,y)u f)|
afa
dominated by [|t9s’ (u, t)||? Since SO(3) is a compact set,
the differentiability under the integral sign theorem proves that
function f +— |m u, f)| is smooth.

1) Early asymptotic state: Suppose that Vr € R3, q(r) =
q||r||2 where g € RY is a constant vector, therefore function
a(.) defined in (7) is constant on S2: Vu € 82, a(u) = a'™,
where o™ = g " a; Then (T30) yields (38) and (39). More-
over, B; ;(f,r) is obtained as the integral over the compact
set 8% of a function of (w,f) which is smooth w.rt. f,
and whose derivatives of all orders are bounded; therefore
the differentiation under the integral sign theorem proves that
function f — B, ;(f,r) is smooth. The proof of the even
symmetry of f — B, ;(f,r) is straightforward. If ¢ = j
(thus D = 0), then (I30) implies @0), and (B38) leads to
the expression of the time-frequency correlation in @T)). This
time-frequency correlation is asymptotically smooth and even
symmetric w.r.t. f because so is function f — B, ;(f, x;—x;).

u— is twice continuously differentiable,

Yu € S2%, Vg € N, function f — is

q times continuously differentiable and



2) Late asymptotic state: Suppose that the attenuation func-
tion is regular (cf. Definition [7). If we let z = 2¢, then (130)
shows that W, (¢, f) can be decomposed as

D

Wi, (t, f) = Li(z) + I(z) O () (131)

where I(z) is the integral defined in (99) with (u) = Ac,
so that (T02) proves that

_oginfy

Ig(x)zo(e - ) (132)
and I;(x) is the integral defined in (@9) with
viw) = 2es ((atwu” +3yw) ) )

~ —~ T

gg(u,f)g;(u,f)m‘;/lz(u,f)eﬂmfucr
where » = x; — ;. Since function 3(.) is continuous and
differentiable almost everywhere in R, and all its partial
derivatives belong to L, so is function ¢ in (I33). If
in addition ¢ = j, then » = 0 and function @ is twice
continuously differentiable.

Therefore if r # 0, substituting (TOT) and @) into (T31)
proves (52). Moreover, function f +— B; ;(f,r) in (30) is
smooth, as a finite sum of smooth functions. The proof of its
even symmetry is straightforward.

If i = j (thus = 0), substituting (102), (I32) and
into (I3T) proves (33), and (32) leads to the expression of
the time-frequency correlation in (54). This time-frequency
correlation is asymptotically smooth and even symmetric w.r.t.
f because so is function f — B; ;(f, x; — x;).

G.4. Asymptotic normality

Substituting (60) into applied to 61 = 0 and 6 = 0
yields

In ¢hi(t (0) =A fweR?’ fye]RM p(1§ Y- Q(w - .’1}1))

a

(qsgl*s (Im Rl e Pl Pjilz) - 1) o
(134)
We consider the following series expansions:
@bgi*s (07 u, t) = n=0 %anun(uv t)

where Vt € R, k,(t) is the n-th order cumulant of h;(t), and
2 t "
vuest pn(u) =E|(g(u.)¢s(O@yu, )

is the n-th order moment of g; (u, .) ks (O(z, y)u,.).
Note that V¢ € R, V@@,y) € SO(3), function © +—
t . . . .
(gi (u,.) *s(@)(az,y)u,.)) is continuous, and it is domi-
nated by C", with
C = min(T,,Ts) |s(u,t)|.

sup —[gi(u, 1)

u€eS?,t€[0,Ty]

sup
u6827t€[01Ts]
Since SO(3) is a compact set, the theorem of continuity
under the integral sign proves that function w — p,(u,t)
is continuous on R®. Also note that

sup |pn(u,t)] < C™ (136)

u€S? teR
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By substituting (I33) into (I34) and by identifying the n-th
order terms, we get Vn € N\ {0},

Fn(t) = A [peps Jyern P(LY — @z — ;)
Yy
z—x; llz— ﬂhl\
I (Hw—mi\lz’t 2) dxdy.

The changes of variables » = x —x; and z = y —q(r), which
are such that dr = dx and dz = dy, yield

Kon(t) = ABn /reRs e Hn (nru2

HT||2
where function &(.) is defined in (7) and Vn € N\{0}, 5,
is defined in (T3). Note that (I37) is of the form .J¢ in (86)

where
€)= Mg (W’t’ )

belongs to L'(R3) N L>°(R3), because its support does not
contain the point » = 0, |uy| is upper bounded and &(r) >
a™t||r||2. Therefore (02) yields

)\Bn/r / —1 /QW —

The change of variable 7 = ¢ — E’ which is such that dr = %,
yields Vt > T =T, + T,

a
e c
[EZEHTH

na(m

a(m

n2,un

[l

i3 ¢

v, )
Hn(v p,t—
=2

)drdvdcp.

 ABa 1 27 _na(v,e)t
=l e 13
fT:O e (t T‘)‘T’; (Ra ) drdvdy

because the support of u, (v, p,.) lies in [0,T].

1) Early asymptotic state: Suppose that Vr € R3, q(r) =
q||r||2 where g € RY is a constant vector, therefore function
a(.) defined in (7) is constant on S2: Vu € S2, a(u) = a'™!,
where a'™f = g " a. Then (T38) becomes

AmABy . /T
7=0
wl

cn—3
2m
.
We note that (I36) implies
V7 ER, |un(r)] < C™.

naint

e T (T)
msr,

namf

Kn(t) =

where

(139)

1 1

wn(T) = tn (v, @, T) dvdep.

(140)
In particular, for n = 2, (I39) implies
lnf T 2Ainf
Ko (t) = dmAcPoe™? lt/ e“Y Tug (1) dr.
=0

Therefore, VYn > 3, when ¢ — 400,

k) _ o (Bn T e

(Ra(t))®
By substituting (T4)) and (T40) into (T41), we thus get Vn > 3,
" |z‘“f\7a+ame
1C"e ( ‘ )

t pMA1m—3m—3

nainf
"lpn (7)]dT
cn—3tn—2

(141)




hi(t)

If we consider the random variable ——=--—, we obtain
var[h;(t)]
2 n +oo
In e  (0) — Cgn_tin) | < HM
d)m( ) - X w LT | S L w00 Gt
=21 Ta | _inp
. lp|ce ™ +a™'T .
=0 ¢e ct =0(3)-

hi(t)
£/ var[h;(t
pointwise to that of the standard normal di[str(ilg]ution when
t — 400, which proves that it is asymptotically normally
distributed.

2) Late asymptotic state: Suppose that the acoustic field
is non-diffuse and the attenuation function is regular (cf.
Definition [7). Then (I38) shows that x,(t) can be written
as the integral I(z) in (99), if we let x = nt and

ABy, /T .
7=0

cn—3
Note that V¢ > T, V7 € [0, T], function u — e(#’)w

continuous since we have proved that function w — p,, (u,7)
. . o . o (sups2 8O)T o
is continuous, and it is dominated by e Since

[0,T7] is a compact set, the theorem of continuity under the
integral sign proves that function w — ¢ (w) is continuous on
R3. Since ¢ is continuous, (T00) proves that when ¢ — +oo,
S

keKx

Therefore the characteristic function of converges

na(u)r
n (7] g,

(t_.r)n—2

Plu) =

na(uw)T

Ginfy ené(up)T

27NBy e~ Y
nen—3 tn—1

pon (wg,7)dT

Var

fin (t) ~
In particular, for n = 2, we get

Zke)c

Therefore, Vn > 3, when t — +o0,

T

sinf 2a(uk)7' d
%) (t) ~ W)\Cﬂg ! pa(u,m)dr .

an

0 €T R)T |y (g 7 dT

S
Bn X pex 7=

‘S‘k
—1

(142)

nen—3t72 2

By substituting (T4) and (136) into (142), we thus get Vn > 3,
+(sup$2 a(.))T)

ir‘f|T&

c

1 C’”en<‘z
Vi

K (1)

(r2(1))®

h; (t)

If we consider the random variable ——=-—, we obtain
var[h;(t)]
2 +oo
1 0) — Cgn_ka(t) | < gl Ira(0]
n¢\/%( )mf %:1 o E| S & il PO
1 \ewce‘z c‘ a+(supsz &(.))T 1
-0\ v B4 =0(%):

hi(t)
v/ var[h;(t)]
pointwise to that of the standard normal distribution when
t — 400, which proves that it is asymptotically normally

distributed.

Therefore the characteristic function of converges
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G.5. Proofs of Corollaries [I| and 2] in Section
Proof of Corollary[l] By substituting @2) into @0), we

get [@3). Then substituting (39) and @2) into @I) yields

-
—2empu_T

)du

Jucs2 B(au )& (u)e
Ban/ [ues2 &os(w)dun/T, c 52 &5 (u

1

O(3)-

(143)
Applying the inverse Fourier transform to the limit when ¢t —
+00 of the right member of (I43) yields

pi,j(tv.f’ ’I‘) = +

Jues2 Blau”r)&,(w)s( “Tr)du
62\/fu€5‘2 iy u)du\/fuesz &4, J(u)du

oi,(T,7) = (144)
which proves that 7 — o ;(7,r) is nonnegative and that its
support is [f%, %} Moreover, with the change of variables
u [V1—v2cos(p), V1 — vZsin(p),v] with v € [-1,1]

and ¢ € [0,27], (T44) can be rewritten as

Sl 2T, B(quD)&i s (v,0)8(7— 42 )dvdp

Oi,j (r,7) = Ban/ [yes2 Goi(w)duy/ [, c g2 &5 (w)du
Therefore V7 € [-2, 2],
o _ ¢ B(ger) f;fio §i,i (5o p)de
Ti,j (T; 7") DB [, cs2 € i(wduy/J, g2 &5 (wdu’

(145)
which shows that function 7 — o, ;(7,2; — ;) is obtained
as the product of a continuous function of 7 (as shown in
Lemma [2)) and of the integral on the compact set [0, 27] of a
function of (7, ) which is bounded by ||&; ;|| and contin-
wous w.r.t. 7 in ] — £, 2| therefore the continuity under the
integral sign theorem proves that function 7 +— o; ; (T, &, —x;)
is continuous in | — 2, 2.

If function &; ;(.) is even on 82 (symmetric case), then (143)
shows that function 7 — o, ; (7, ¢; —x;) is also even, thus its
Fourier transform lim;_, 4 p; (¢, f, ®; — x;) is real-valued.

If moreover function & ;(.) is constant on
S?  (isotropic  case), the change of variables
u = [V1—1v2cos(p),V1—v2sin(p),v] with v € [-1,1]

and ¢ € [0,27] in (T43) yields

L}7—1 ﬁ(qu)e_me
232

pij(t, f,7) = -+ O(%). (146)
Finally, applying the change of variable 7 = ==, which is such
that dr = 2dv, and substituting (I9) into @) yields (@d).
Then (@3) is obtained as the inverse Fourier transform of the
limit when ¢ — +o0 of the right member of (@4). Moreover,
[20) yields o5 j(7,x; — ;) € [0, 55]. Besides, function 7
0;,(T,&; — x;) reaches its maximum at 7 = 0, and it is not
differentiable at 7 = 0, because so is function 7 — b(7, D) as
shown in Lemma 3] Finally, (46) is derived by substituting (23)

into (#4)), and is derived by substituting (22) into @3). O

Proof of Corollary 2] Substituting (@2) into (33) yields (33).

Then substituting (30) and @2) into (34) yields (36). Finally,
(57) is obtained as the inverse Fourier transform of the limit

when ¢ — 400 of the right member of (36). O
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