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Orthonormal approximate joint block-diagonalization

Cédric Févotte and Fabian J. Theis

Abstract: The aim of this work is to give a comprehensive overview of
the problem of jointly block-diagonalizing a set of matrices. We discuss
how to implement methods in the common case of only approximative block-
diagonalizability using Jacobi algorithms. Standard Jacobi optimization tech-
niques for diagonalization and joint diagonalization are reviewed first, before
we study their generalizations to the block case and give some new theoretical
insights on existence and uniqueness issues as well as on the interplay between
block and standard diagonalization problems. Simulations on synthetic data
show that in the block case convergence to the optimal solution is not always
observed in practice and that the behavior of the Jacobi approach is very much
dependent on the initialization of the orthonormal basis and also on the choice
of the successive rotations.

Bloc-diagonalisation simultanée approchée avec contrainte
orthonormale

Cédric Févotte and Fabian J. Theis

Résumé: Ce rapport présente de manière unifiée des techniques de diago-
nalisation, bloc-diagonalisation (BD), diagonalisation simultanée (DS) et bloc-
diagonalisation simultanée (BDS) par méthode de Jacobi. Nos contributions
principales concernent le problème de la bloc-diagonalisation simultanée. Les
conditions d’existence et d’unicité des solutions sont étudiées. Il apparâıt en
pratique que la convergence des méthodes de Jacobi vers une solution opti-
male (minimisant le critère choisi), généralement observée dans le cas de la
DS, n’est pas toujours observée pour la BDS, et qu’elle dépend largement de
l’initialisation et du choix des rotations successives. A ce titre nous décrivons
une nouvelle méthode de sélection des rotations qui maximise d’un point de vue
empirique les chances de convergence vers une solution optimale (sans toutefois
la garantir).
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ORTHONORMAL APPROXIMATE JOINT
BLOCK-DIAGONALIZATION

CÉDRIC FÉVOTTE ∗ AND FABIAN J. THEIS †

Abstract. The aim of this work is to give a comprehensive overview of the problem of jointly
block-diagonalizing a set of matrices. We discuss how to implement methods in the common case of
only approximative block-diagonalizability using Jacobi algorithms. Standard Jacobi optimization
techniques for diagonalization and joint diagonalization are reviewed first, before we study their
generalizations to the block case and give some new theoretical insights on existence and uniqueness
issues as well as on the interplay between block and standard diagonalization problems. Simulations
on synthetic data show that in the block case convergence to the optimal solution is not always
observed in practice and that the behavior of the Jacobi approach is very much dependent on the
initialization of the orthonormal basis and also on the choice of the successive rotations.

Key words. simultaneous unitary diagonalization, Jacobi optimization, matrix factorization

1. Introduction. Joint diagonalization techniques have received much atten-
tion in the last fifteen years within the field of signal processing, and more specifically
within the fields of Independent Component Analysis (ICA) and Blind Source Separa-
tion (BSS). JADE, a standard ICA algorithm developed by Cardoso and Souloumiac
[9], is based on joint diagonalization (JD) of a set of cumulant matrices. To this pur-
pose the authors designed a Jacobi algorithm for approximate joint diagonalization of
a set of matrices [10]. In a BSS parlance, JADE allows for separation of determined lin-
ear instantaneous mixtures of mutually independent sources, exploiting fourth-order
statistics. Other standard BSS techniques involving joint diagonalization include the
SOBI algorithm [2], TDSEP [18] and TFBSS [12], which all rely on second-order sta-
tistics of the sources, namely covariance matrices in the first and second case and
spatial Wigner-Ville spectra in the third case.

Joint block-diagonalization (JBD) came into play in BSS when Abed-Meraim,
Belouchrani and co-authors extended the SOBI algorithm to overdetermined convo-
lutive mixtures [5]. Their idea was to turn the convolutive mixture into an overde-
termined linear instantaneous mixture of block dependent sources, the second-order
statistics matrices of the source vector thus becoming block-diagonal instead of diag-
onal. Hence, the joint-diagonalization step in SOBI needs to be replaced by a joint
block diagonalization step. Another area of application can be found in the context
of multidimensional or group ICA [8, 14]. Its goal is to linearly transform an ob-
served multivariate random vector such that its image is decomposed into groups of
stochastically independent vectors. It has been shown that by using fourth-order cu-
mulants to measure the independence, JADE now translates into a JBD problem [17];
similarly also SOBI and other JD-based criteria can be extended to this group ICA
setting [11,16].

Abed-Meraim et al. have sketched several Jacobi strategies in [1, 3, 4]: the JBD
problem is turned into a minimization problem, where the matrix parameter (the joint
block-diagonalizer) is constrained to be unitary (because of spatial prewhitening). The
minimizer is searched for iteratively, as a product of Givens rotations, each rotation
minimizing a block-diagonality criterion around a fixed axis.

∗GET/Télécom Paris (ENST), 37-39 rue Dareau, 75014 Paris, France (fevotte@tsi.enst.fr).
†Bernstein Center for Computational Neuroscience, MPI for Dynamics and Self-Organisation,

Göttingen, Germany, (fabian@theis.name), partially supported by the DFG (grant GRK 638).
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Convergence of the algorithm is easily shown (as seen in the following), but con-
vergence to an optimal solution (which minimizes the chosen JBD criterion) is not
guaranteed. In fact, we observed that results vary widely according to the choice of
the successive rotations and the initialization of the algorithm, which is not discussed
in previous works [1, 3, 4].

In this paper, we propose a review of Jacobi methods for approximate ortho-
normal diagonalization, joint diagonalization, block-diagonalization and joint block-
diagonalization of matrices. Moreover, novel contributions are brought to the block
case. In particular, we point out that the choice of rotations is a sensitive issue which
greatly influences the convergence properties of the Jacobi algorithm, as illustrated
on extensive simulations with synthetic data. We propose a new method for choos-
ing the rotations, which, from empirical testing, offers better chances to converge to
the optimal solution (while still not guaranteeing it), as compared to the standard
cyclic Jacobi technique. We also point out the interest of initializing JBD with the
output of JD, coroborating the idea that JD could in fact perform JBD up to permu-
tations, as suggested by Cardoso in [8], more recently conjectured by Abed-Meraim
and Belouchrani in [1], and partially proved in this paper. Existence and uniqueness
conditions for the solutions of the JBD problem are also investigated.

This manuscript is organized as follows. Section 2 reviews ‘historical’ approaches
for Jacobi diagonalization of a matrix. Section 3 reviews how the Jacobi approach
to diagonalization was extended to the joint diagonalization problem by Cardoso and
Souloumiac. Section 4 considers the extension of the Jacobi approach to the block-
diagonalization of one matrix, and discusses related existence and uniqueness issues of
the underlying block-diagonalization problem. Section 5 describes the generalization
to the joint block-diagonalization problem, and gives some theoretical insight in the
structure of its solutions. This section in particular reports and discusses various
results of the proposed JBD algorithms, and theoretically connects them with the
simpler JD problem. Section 6 gives brief conclusions.

2. Approximate diagonalization. We first recall results on the diagonaliza-
tion of complex and real matrices, and specifically review approximative solutions
based on Jacobi algorithms.

2.1. Complex orthonormal basis. Two standard Jacobi methods for the ap-
proximate diagonalization of a matrix A ∈ C

n×n in a complex orthonormal basis are
presented in the following. Further details can be found in [13] and in the references
therein. Some notations and derivations are also inspired from [10]. If A is diagona-
lizable in an orthonormal basis, then the algorithms we describe essentially compute
this basis, see next section. If A is not diagonalizable in an orthonormal basis, then
the following algorithms yield an orthonormal basis in which A is the most diagonal,
in a quadratic sense. In other words, we look for an orthonormal matrix U ∈ C

n×n

such that

UAUH = D

where D ∈ C
n×n minimizes the deviation from zero of the off-diagonal elements,

i.e. the following diagonality criterion

off (A) :=
∑

1≤i6=j≤n

|mij |2 = ‖A‖F −
∑

1≤i≤n

|mii|2, (2.1)
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where ‖A‖F denotes the Frobenius norm of the matrix A. In other words, we look
for U via minimization of the following criterion

Cd(V;A) := off
(

VAVH
)

(2.2)

with respect to the unitary matrix V ∈ U(n), i.e. V ∈ C
n×n with VVH = In.

2.1.1. Existence and uniqueness. The question whether a solution of the ap-

proximate diagonalization problem exists can be easily answered in the affirmative,
however it is not clear how many minima of (2.1) exist. We answer this only in the
limit case of perfect factorization, where off (V) = 0: it is well known that a diago-
nalizer can be found if and only if A is normal i.e. AAH = AHA. Hence a sufficient
condition for such a diagonalization to exist is that A is hermitian, cf. Sec. 2.1.6.

The number of solutions i.e. diagonalizing matrices V depends on the eigenvalue
distribution. In the case of A having pairwise different eigenvalues, which we will
denote by unispectral A in the following, all eigenspaces of A are of dimension one.
But by construction, the rows of V consist of a basis of unit-length eigenvectors of
A, so V is unique except for permutations of the rows. Moreover the eigenvectors
may be multiplied by a unit scalar, so V is unique except for left multiplication by a
permutation matrix and a diagonal unitary matrix. In the case of larger-dimensional
eigenspaces, additional indeterminacies arise, as non-trivial linear combinations from
eigenvectors of a single eigenspace again produce a valid diagonalizer M′. In many
applications, V has to be determined from an observed A, so this case may be avoided
by adding additional matrices with possibly different eigenstructure into the diago-
nalization criterion in the form of joint diagonalization, see Sec. 3.

2.1.2. The Jacobi idea. Jacobi methods rely on the fact that any unitary
matrix V ∈ U(n) can be written as the product of complex Givens (rotation) matrices
G(p, q, c, s) ∈ U(n), defined for p < q by

G(p, q, c, s) =



























1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s̄ . . . 0 p
...

...
. . .

...
...

0 . . . −s . . . c . . . 0 q
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1
p q



























with (c, s) ∈ R × C such that c2 + |s|2 = 1. The Jacobi idea consists of successively
applying Givens rotations to A in order to minimize criterion (2.2). For fixed p and
q, one iteration of the method consists of the following two steps:

• select (c, s) such that Cd(G(p, q, c, s);A) is minimal
• A← G(p, q, c, s)AG(p, q, c, s)H

An interesting aspect of this method is that the minimization step can be done alge-
braically.

2.1.3. Method. Let us check the effect of a Givens rotation on A. For fixed p
and q with p < q, we note that B = G(p, q, c, s)AG(p, q, c, s)H . Simple calculations
show that B equals A everywhere except on the p-th and q-th rows and columns, so
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B =






















aij c aip + s aiq aij −s̄ aip + c aiq aij

c apj + s̄ aqj c2 app + |s|2 aqq c apj + s̄ aqj c2 apq − s̄2 aqp c apj + s̄ aqj p
+c s apq + c s̄ aqp +c s̄ (aqq − app)

aij c aip + s aiq aij −s̄ aip + c aiq aij

−s apj + c aqj c2 aqp − s2 apq −s apj + c aqj c2 aqq + |s|2 app −s apj + c aqj q
+c s (aqq − app) −c s apq − c s̄ aqp

aij c aip + s aiq aij −s̄ aip + c aiq aij

p q























(2.3)
Let us look for c and s that minimize Cd(G(p, q, c, s);A). We have:

Cd(G(p, q, c, s);A) = off (B) =
∑

1≤i6=j≤n

|bij |2 = ‖B‖2F −
n
∑

i=1

|bii|2

Invariance of the Frobenius norm under rotation guarantees ‖B‖F = ‖A‖F . Moreover,
the diagonal terms of B are equal to the diagonal terms of A except for entries p and
q. Hence, according to Eq. (2.1),

off (B) = ‖A‖2F −
(

n
∑

i=1

|aii|2 − |app|2 − |aqq|2 + |bpp|2 + |bqq|2
)

= off (A) + |app|2 + |aqq|2 − |bpp|2 − |bqq|2 (2.4)

A does not depend on c and s, hence the minimization of Cd(G(p, q, c, s);A) with
respect to c and s amounts to the maximization of |bpp|2 + |bqq|2. Eq. (2.4) can be
further expanded. Indeed, using the triangle equality, we get

|bpp|2 + |bqq|2 =
1

2

(

|bpp + bqq|2 + |bpp − bqq|2
)

|app|2 + |aqq|2 =
1

2

(

|app + aqq|2 + |app − aqq|2
)

Moreover, the trace being invariant under rotation, we have bpp + bqq = app + aqq.
Hence

off (B) = off (A) +
1

2

(

|app − aqq|2 − |bpp − bqq|2
)

(2.5)

and thus

minimize
c,s

Cd(G(p, q, c, s);A) ⇐⇒ maximize
c,s

C ′
d(c, s) := |bpp − bqq|2

For the sake of clarity in the notations, we discard the dependence of C ′
d(c, s) of p, q

and A. Let us now study the maximization of C ′
d(c, s). From Eq. (2.3), we get

bpp − bqq = (c2 − |s|2)(app − aqq) + 2 c s apq + 2 c s̄ aqp (2.6)

Defining

v(c, s) :=
(

c2 − |s|2, c s + c s̄, i (c s− c s̄)
)T

h(A) := (app − aqq, apq + aqp, i (aqp − apq))
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we have bpp − bqq = h(A)v(c, s) and hence

C ′
d(c, s) = v(c, s)T h(A)Hh(A) v(c, s)

Notice that v(c, s) is a real vector. Together with h(A)Hh(A) being by construction
a positive semidefinite matrix, we therefore get

C ′
d(c, s) = v(c, s)T Qd v(c, s)

with the positive semidefinite real matrix Qd = Re
{

h(A)Hh(A)
}

. Hence, the max-
imization of C ′

d(c, s) boils down to the maximization of the non-negative quadratic
form qd(x) = xT Qd x on the real domain {v(c, s) | (c, s) ∈ R× C, c2 + |s|2 = 1}.

Let us now show that the maximization of qd(x) on the latter domain is equivalent
to the maximization of qd(x) on the unit sphere, which will in turn amount to compute
the eigenvector corresponding to the largest eigenvalue of Qd.

Lemma 2.1. Let E = {v(c, s) | (c, s) ∈ R × C, c2 + |s|2 = 1} and let S2 =
{(x, y, z)T ∈ R

3 | x2 + y2 + z2 = 1} be the 2-sphere. Then E = S2.

Proof. Let (u, v, w)T ∈ E . Let us show that (u, v, w)T ∈ S2. By definition, there
exists (c, s) such that u = c2 − |s|2, v = c s + c s̄, w = i (c s− c s̄). We have:

u2 + v2 + w2 = (c2 − |s|2)2 + (c s + c s̄)2 − (c s− c s̄)2

= (c2 − |s|2)2 + 4 c2 |s|2 = (c2 + |s|2)2 = 1

Hence (u, v, w)T ∈ S2, and thus E ⊂ S2.
Now, let (u, v, w)T ∈ S2. If u 6= −1 we define

c =

√

u + 1

2
, s =

v − iw
√

2 (u + 1)
, (2.7)

and if u = −1 (and thus v = w = 0) we set c = 0 and s = 1. Simple algebra shows

that c2 + |s|2 = 1 and (u, v, w)T =
(

c2 − |s|2, c s + c s̄, i (c s− c s̄)
)T

= v(c, s). Hence
(u, v, w)T ∈ E , and thus S2 ⊂ E .

The maximization of C ′
d(c, s) on E is thus equivalent to the maximization of qd(x)

on S2. Furthermore, the quadratic form qd(x) is maximized on the unit sphere S2

by any unit-norm eigenvector corresponding to the largest eigenvalue of Qd. Let
(u⋆

d, v⋆
d, w⋆

d)T be such an eigenvector, chosen with u⋆
d ≥ 0. From Eq. (2.7), the values

(c⋆
d, s⋆

d) which minimize criterion Cd(G(p, q, c, s);A) with p and q fixed are thus

c⋆
d =

√

u⋆
d + 1

2
, s⋆

d =
v⋆
d − iw⋆

d
√

2 (u⋆
d + 1)

. (2.8)

2.1.4. Choice of the rotations. Given p and q we have shown how to find the
Givens rotation that guarantees maximum decrease of criterion Cd. In this paragraph,
we briefly recall two strategies for the choice of p and q.

Classical Jacobi. This algorithm takes its full meaning for diagonalization of a
hermitian matrix. It consists of choosing p and q at each iteration such that |apq|2
is maximum, in order to ensure maximum decrease of Cd at each iteration, see Algo-
rithm 1.

Cyclic Jacobi. The algorithm consists of methodically sweeping all the rows of A,
see Algorithm 2. The exploration of all nondiagonal positions (p, q), p < q, is called
a sweep. For hermitian matrices, it can be shown that this algorithm is faster than
Classical Jacobi, see [13].
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Algorithm 1: Classical Jacobi

Input: matrix A
Output: unitary diagonalizer U

U← In

ǫ← tol · ‖A‖F
while off (A) > ǫ do

choose p and q such that |apq|2 is maximum
compute c⋆

d and s⋆
d according to Eq. (2.8)

A← G(p, q, c⋆
d, s⋆

d)AG(p, q, c⋆
d, s⋆

d)H

U← UG(p, q, c⋆
d, s⋆

d)

Algorithm 2: Cyclic Jacobi

Input: matrix A
Output: unitary diagonalizer U

U← In

ǫ← tol · ‖A‖F
while off (A) > ǫ do

for p← 1 to n− 1 do
for q ← p + 1 to n do

compute c⋆
d and s⋆

d according to Eq. (2.8)
A← G(p, q, c⋆

d, s⋆
d)AG(p, q, c⋆

d, s⋆
d)H

U← UG(p, q, c⋆
d, s⋆

d)

2.1.5. Convergence of the algorithm. By construction, the algorithm en-
sures decrease of criterion Cd at each iteration. Indeed, by definition of c⋆

d and s⋆
d, we

get for all (c, s) ∈ R× C with c2 + |s|2 = 1 that

Cd(G(p, q, c⋆
d, s⋆

d)) ≤ Cd(G(p, q, c, s)).

In particular, for (c, s) = (1, 0) we find

off (B) ≤ off (A) .

At each iteration of the algorithm, the matrix B obtained after rotations is thus ‘at
least as diagonal as’ matrix A at previous iteration. Since every bounded monotonic
sequence in R converges, the convergence of our algorithm is guaranteed. However,
this does not guarantee that the algorithm converges to the minimum of Cd, except
when A is hermitian, as shown in the next paragraph.

2.1.6. Special case: hermitian matrices. If A ∈ C
n×n is hermitian, then it

is diagonalizable in a unitary basis, and its eigenvalues are real. In that case it is
possible to give an explicit form of off (B) − off (A), as a function of the coefficients
of A only. Indeed, in this case, the vector h(A) is real and thus Qd = h(A)T h(A).
We saw previously that the maximum of C ′

d(c, s) is equal to the largest eigenvalue of
Qd. Now, Qd is by construction a positive semidefinite matrix of rank 1, hence it has
only one nonzero eigenvalue, equal to its trace. Thus

|bpp − bqq|2 = trace(Qd) = |app − aqq|2 + |apq + aqp|2 + |apq − aqp|2
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Then, from Eq. (2.5):

off (B)− off (A) =
1

2

(

|app − aqq|2 − |bpp − bqq|2
)

= −1

2

(

|apq + aqp|2 + |apq − aqp|2
)

= −
(

|apq|2 + |aqp|2
)

= −2 |apq|2.
Hence, in the case of hermitian matrices, absolute decrease of the criterion is ensured
at each iteration, as long as one of the nondiagonal entries of A is nonzero. This guar-
antees convergence of the algorithm to the minimum of Cd, which is 0 for hermitian
matrices.

2.2. Real orthonormal basis. We now present a few simplifications of the
previous method in the specific case where we want to diagonalize A ∈ C

n×n in an
orthonormal basis, i.e U is from the orthogonal group O(n) and D ∈ C

n×n. Note
that a perfect diagonalizer exists if and only if A is symmetric, and any solution is
unique only up to left multiplication by a permutation and sign matrix.

In the real case, we look for an orthonormal basis in the form of a product of real

Givens matrices Gr(p, q, c, s), defined for p < q by

Gr(p, q, c, s) =



























1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s . . . 0 p
...

...
. . .

...
...

0 . . . −s . . . c . . . 0 q
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1
p q



























(2.9)

with (c, s) ∈ R
2 such that c2 + s2 = 1. As before, for fixed p and q, one iteration

consists of the following steps:
• determine (c, s) with minimal Cd(Gr(p, q, c, s);A)
• set A← Gr(p, q, c, s)AGr(p, q, c, s)T

Like in the complex case, minimizing Cd(Gr(p, q, c, s);A) amounts to maximizing
C ′

d(c, s) = |bpp − bqq|2. However, from Eq. (2.6) in the real case we have:

bpp − bqq = (c2 − s2)(app − aqq) + 2 c s (apq + aqp)

Defining

vr(c, s) =
(

c2 − s2, 2 c s
)T

hr(A) = (app − aqq, apq + aqp)

we obtain bpp − bqq = hr(A)vr(c, s) and hence

C ′
d(c, s) = vr(c, s)

T hr(A)T hr(A) vr(c, s).

Like before, the maximization of C ′
d(c, s) is equivalent to the maximization of the

quadratic form qr(x) = xT Qdr x on the unit sphere, with Qdr = Re
{

hr(A)T hr(A)
}

.
Let (u⋆

dr, v
⋆
dr)

T be a unit-norm eigenvector of Qdr corresponding to its largest eigen-
value, chosen such that u⋆

dr ≥ 0. From Eq. (2.7), the expressions of (c⋆
dr, s

⋆
dr) which

minimize criterion Cd(Gr(p, q, c, s);A) for given p and q are

c⋆
dr =

√

u⋆
dr + 1

2
, s⋆

dr =
v⋆

dr
√

2 (u⋆
dr + 1)

.
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Note that it is possible to give algebraic expressions of c⋆
dr and s⋆

dr using closed form
expressions of the eigenvectors of a 2× 2 matrix.

3. Approximate joint diagonalization. Many applications [2, 5, 9, 12,16,17],
especially in the field of blind signal processing, face the problem of recovering a diag-
onalizing orthonormal basis U of one or possibly multiple matrices Ak. As discussed
in Section 2.1.1, diagonalization of only a single matrix A1 might result in consider-
able indeterminacies due to a degenerate eigenvalue structure and of course due to
estimation noise in A1 itself.

Consider for example

A1 = UH





1 0 0
0 1 0
0 0 2



U, A2 = UH





1 0 0
0 2 0
0 0 2



U.

Diagonalization of only A1 or A2 separately may produce solutions different from U,
because the basis in the two-dimensional eigenspace corresponding to the eigenvalue
k ∈ {1, 2} cannot be uniquely chosen. If however a common basis of these two matrices
A1 and A2 is to be found, U is the unique solution except for permutations and signs,
see Section 3.1.1. Also, if the Ak are deteriorated by noise — coming for instance from
estimation errors in practical settings — then again the search for an (approximate)
common basis increases the statistical validity of the resulting diagonalizer as estimate
of some underlying unknown basis. This is the fundamental reason for generalizing
diagonalization problems to the joint diagonalization of multiple matrices.

3.1. Complex orthonormal basis. We consider the problem of approximate
joint diagonalization, also encountered under the name of approximate simultaneous
diagonalization. Let A = {A1, . . . ,AK} be a set of K complex (n×n)-matrices. Our
objective is to find a unitary matrix U ∈ U(n) such that for all k = 1, . . . ,K, the
matrices

UAk UH = Dk

are as diagonal as possible, in the sense of criterion (2.1). In other words, we want to
minimize

Cjd(V;A) =

K
∑

k=1

off
(

VAk VH
)

(3.1)

with respect to V ∈ U(n).

3.1.1. Existence and uniqueness. Again, we will only discuss the limit case
of perfect factorization, where Cjd(U;A) = 0. According to the case of K = 1 from
Section 2.1.1, a necessary condition for a joint diagonalizer U to exist is that each Ak

is normal. In order to guarantee a common orthonormal basis, moreover it is sufficient
for the Ak to commute, so a joint diagonalizer exists if and only if the normal Ak

commute.
If one of the matrices Ak is unispectral, then the solution U is unique except for

permutation and unit-length scalars according to Section 2.1.1. However, due to the
fact that we now jointly diagonalize multiple matrices, this condition can be relaxed
considerably. Indeed, U is unique except for the trivial indeterminacies from above if
and only if for any two different eigenvectors (rows of U) at least one Ak has distinct
corresponding eigenvalues, see [2], theorem 3.
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3.1.2. Method. As before the common orthonormal basis U is estimated iter-
atively. For fixed p and q one iteration of the method consists of

• finding (c, s) with minimal Cjd(G(p, q, c, s);A), and
• ∀k : Ak ← G(p, q, c, s)Ak G(p, q, c, s)H .

If we set Bk = G(p, q, c, s)Ak G(p, q, c, s)H for all k = 1, . . . ,K, then

Cjd(G(p, q, c, s);A) =

K
∑

k=1

off (Bk) .

Using the notation Ak = {akij}, Eq. (2.4) shows

Cjd(G(p, q, c, s);A) =

K
∑

k=1

off (Ak) + |akpp|2 + |akqq|2 − |bkpp|2 − |bkqq|2

=

K
∑

k=1

off (Ak) +
1

2

(

|akpp − akqq|2 − |bkpp − bkqq|2
)

. (3.2)

Like in Section 2.1.3, the minimization of Cjd(G(p, q, c, s);A) amounts to the maxi-

mization of C ′
jd(c, s) :=

∑K

k=1 |bkpp − bkqq|2. With same notations as before we thus
get

C ′
jd(c, s) =

K
∑

k=1

v(c, s)T h(Ak)Hh(Ak) v(c, s)

= v(c, s)T

(

K
∑

k=1

h(Ak)Hh(Ak)

)

v(c, s)

= v(c, s)T Re

{

K
∑

k=1

h(Ak)Hh(Ak)

}

v(c, s).

The maximization of C ′
jd(c, s) on E as defined in lemma 2.1 is hence equivalent to the

maximization of the quadratic form qjd(x) = xT Qjdx on the unit sphere S2, with

Qjd = Re

{

K
∑

k=1

h(Ak)Hh(Ak)

}

.

Let (u⋆
jd, v⋆

jd, w⋆
jd)T be a unit-norm eigenvector of Qjd corresponding to the largest

eigenvalue, and chosen such that u⋆
jd ≥ 0. From Eq.(2.7), the expressions of (c⋆

jd, s⋆
jd)

which minimize criterion Cjd(G(p, q, c, s);A) for fixed p and q are

c⋆
jd =

√

u⋆
jd + 1

2
, s⋆

jd =
v⋆
jd − iw⋆

jd
√

2 (u⋆
jd + 1)

.

3.1.3. Algorithm convergence. Like for the approximate diagonalization of a
complex matrix (Section 2.1), the algorithm guarantees decrease of criterion Cjd at
each iteration. Indeed, for all (c, s) ∈ R× C with c2 + |s|2 = 1, we have

Cjd(G(p, q, c⋆
jd, s⋆

jd)) ≤ Cjd(G(p, q, c, s)),
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and in particular, for (c, s) = (1, 0)

K
∑

k=1

off (Bk) ≤
K
∑

k=1

off (Ak) .

Cardoso and Souloumiac’s algorithm [10] generalizes the Cyclic Jacobi algorithm of
Section 2.1.4; all the off-diagonal entries (p, q) are swept row by row. A MATLAB
implementation of their approach is available on Cardoso’s webpage [7]. In this im-
plementation the algorithm stops when all the values of s⋆

jd within a sweep are lower
than a given threshold (set by default to the square root of the machine precision).
However, like for the diagonalization case, the convergence of the algorithm to the
minimum of Cjd is not guaranteed; except in the case where A is a set of commuting
hermitian matrices. A counter example is found in [6].

3.2. Real orthonormal basis. Like in Section 2.2, a few simplifications can
be made when real coefficients are used, and U ∈ O(n). Then the expressions of
(c⋆

jdr, s
⋆
jdr) minimizing Cjd(Gr(p, q, c, s);A) for fixed p and q are

c⋆
jdr =

√

u⋆
jdr + 1

2
, s⋆

jdr =
v⋆
jdr

√

2 (u⋆
jdr + 1)

where (u⋆
jdr, v

⋆
jdr)

T , u⋆
jdr ≥ 0, is a unit-norm eigenvector of Qjdr =

∑K

k=1 hr(Ak)T hr(Ak)
associated to the largest eigenvalue.

4. Approximate block-diagonalization. For the sake of clarity we now con-
sider the extension of the latter techniques to approximate block diagonalization of a
single matrix, before approximate joint block diagonalization is finally investigated in
the next section. We will only deal with the case of fixed block-size, which is known
in advance — a situation relevant to many practical applications [4, 5], although the
problem of unknown block-structure is worth investigating by itself.

4.1. Complex orthonormal basis. Let A ∈ C
n×n. Our objective is to find

an orthonormal matrix U ∈ C
n×n such that

UAUH = D

is as block-diagonal as possible. In the following we note L the (fixed) dimension of
the diagonal blocks of D and m = n/L the number of blocks. We decompose

A =







A11 . . . A1m

...
...

Am1 . . . Amm







into matrices Aij of dimension L × L, where i, j = 1, . . . ,m. Our block-diagonality
criterion is chosen as

boff (A) :=
∑

1≤i6=j≤m

‖Aij‖2F (4.1)

and we look for U ∈ U(n) via minimization of criterion

Cbd(V;A) = boff
(

VAVH
)

(4.2)

with respect to V ∈ U(n).
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4.1.1. Existence and uniqueness. Consider again the case of perfect factor-
ization, where Cbd(U;A) = 0 i.e. where UAUH is block-diagonal with blocks of size
L. Obvious indeterminacies of U are left-multiplication by a unitary block-diagonal
matrix as generalization of the unit-scaling indeterminacy in the case of block size 1
from Section 2.1.1. Moreover, a permutation of blocks of rows of U yields again a
block-diagonalizer; in other words, an additional indeterminacy is given by the left-
multiplication by a block-permutation matrix i.e. a matrix consisting of blocks that
are either zero or IL such that in each row and column exactly one block is non-zero.

Additional indeterminacies might come into play if the block size has not been
chosen adequately: consider for example the situation

A =









3 1 0 0
1 3 0 0
0 0 3 1
0 0 1 3









,U1 =
1√
2









1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1









,U2 =
1√
2









1 1 0 0
0 0 1 1
−1 1 0 0
0 0 −1 1









.

Then A is already block-diagonal with blocks of size 2, but of course A is real sym-
metric, so diagonalizable, and indeed U1AUT

1 is diagonal with entries 4, 2, 4, 2 on the
diagonal. But so is U2AUT

2 (with diagonal (4, 4, 2, 2)), and U1 and U2 do not differ
only by a block-permutation. This additional indeterminacy comes from the fact that
the block-decomposition of A into blocks of size 2 is not maximal — a finer decompo-
sition, 1-diagonality in this case, may be chosen. Also note that this is no special case
for symmetric matrices; indeed by replacing one block in A by some non-symmetric
block, a finer (1, 1, 2)-decomposition may be found.

Hence in full generality, we have to treat different block sizes and therefore have
to look for a maximal-length decomposition in that setting. It can be shown that
such a decomposition is then unique except for scaling and permutation of blocks of
the same size. Our interest in this manuscript however lies in fixed block sizes.

Regarding existence of a block-diagonalizer of block-size L we generalize the re-
sults from the case L = 1 as follows: consider a Schur decomposition A = UHSU of
A [13]; here U is unitary and S upper triangular. The Schur decomposition may not
be unique if there are zeros in the upper triangular part of S. It may of course be
interpreted as generalization of a diagonalizer, and we can show the following simple
lemma:

Lemma 4.1. A matrix A ∈ C
n×n is block-diagonalizable of block-size L if and only

if there exists a Schur decomposition A = UHSU such that S is L-block-diagonal.

Proof. If such a Schur decomposition exists, it already is an L-block diagonal-
ization. Now assume the converse; let B := UAUH be block-diagonal with blocks
B11, . . . ,Bmm on the diagonal. Let Bii = VH

i SiVi be Schur decompositions of the
blocks Bii on the diagonal, so Vi ∈ U(L) and Si ∈ C

L×L upper triangular. Then
putting together these matrices,

V :=







V1 0
. . .

0 Vm






, S :=







S1 0
. . .

0 Sm







yields a unitary matrix U ∈ U(n) and an upper triangular, block-diagonal matrix
S ∈ C

n×n. Moreover, by construction B = VHSV and therefore

A = UHBU = UHVHSVU = (VU)HS(VU)
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is a Schur decomposition of A with block-diagonal triangular part S.
This lemma characterizes block-diagonalizability of A, however it cannot be used

to test efficiently for it, simply because it states that A must have a block-diagonal
Schur decomposition, but not all Schur decompositions share this property. For ex-
ample, with

A =









1 2 0 0
0 3 0 0
0 0 1 2
0 0 0 3









,U =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









,UAUH =









1 0 2 0
0 1 0 2
0 0 3 0
0 0 0 3









we get an upper triangular, 2-block-diagonal matrix A, which is a block-diagonal
Schur decomposition of itself. But also UAUH is upper-triangular and thus consti-
tutes a Schur decomposition of A with non-block-diagonal upper triangular part (for
L = 2). Of course, the desired block-diagonal decomposition may be reconstructed
from UAUH simply by permutations.

But how to choose the permutation? We propose using Algorithm 3; we denote its
resulting permuted matrix by P(A) when applied to the input A. By construction,
P(A) is constructed from A by iteratively permuting columns and rows in order
to guarantee that all non-zeros of A are clustered along the diagonal as closely as
possible. Clearly, if applied to a block-diagonal matrix, it will stay block-diagonal and
only involve permutations within blocks, which belong to the trivial indeterminacies
of block-diagonalization as subsumed above.

Algorithm 3: Block-diagonality permutation finder

Input: (n× n)-matrix A
Output: block-diagonal matrix P(A) := B such that B = PAPT for some

permutation matrix P

B← A
for i← 1 to n do

repeat
if (j0 ← min{j|j ≥ i and aij = 0 and aji = 0}) exists then

if (k0 ← min{k|k > j0 and (aik 6= 0 or aki 6= 0)}) exists then
swap column j0 of B with column k0

swap row j0 of B with row k0

until no swap has occurred ;

We conjecture the following theorem:
Theorem 4.2. A matrix A ∈ C

n×n is maximal block-diagonalizable of block-size

L if and only if for any Schur decomposition A = UHSU, the matrix P(S) after

application of Algorithm 3 is L-block-diagonal.

One direction is obviously true: If we assume that we have found a Schur de-
composition A = UHSU with block-diagonal P(S). Then P(S) = PSPH for some
permutation matrix P, so A = (PU)HP(S)PU is a block-diagonalization of A.

However the converse cannot be shown as easily. We are currently working on
proofing the theorem using the uniqueness result of block-diagonalizability mentioned
above. Nevertheless, care has to be taken with respect to the maximality condition.
In any case, extensive simulations confirm the validity of the above conjecture.
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This theorem now allows for easy testing whether or not a given matrix is block-
diagonalizable; simply take any Schur decomposition, apply Algorithm 3 and check if
the resulting upper-triangular matrix is block-diagonal. Moreover, this also directly
yields a simple algorithm for perfect block-diagonalization. However, it is not easily
extended to approximate block-diagonalization, nor to joint block-diagonalization, so
in the following we will introduce a different algorithm, based on the ideas presented
in the previous Sections.

4.1.2. Notations. In order to simplify notation in the block case, we introduce
the following notation: Let I1, . . . , Im define a partition of J1, nK := {1, 2, . . . , n} such
that

I1 = J1, LK

...

Ii = J(i− 1)L + 1, i LK

...

Im = J(m− 1)L + 1,mLK ,

and let i(k) := ⌈k/L⌉ for k ∈ J1, nK, where ⌈x⌉ is the smallest integer larger than or
equal to x. So i(k) gives the index i of the interval Ii to which k belongs.

4.1.3. Method. As before, we apply successive Givens rotations to A, until the
criterion (4.2) is minimal; for fixed p and q, one iteration of the method consists of

• minimizing Cbd(G(p, q, c, s);A) with respect to (c, s), and
• updating A← G(p, q, c, s)AG(p, q, c, s)H .

Note that according to section 4.1.1, U can only be estimated up to a block-diagonal
unitary matrix with m blocks of dimension L and possibly a permutation of these
blocks. Let (p, q) ∈ J1, nK

2
, p < q and B = G(p, q, c, s)AG(p, q, c, s)H . From

Eq. (4.1), Eq. (4.2) and with ‖B‖2F =
∑

ij ‖Bij‖2F , we have

Cbd(G(p, q, c, s);A) = boff (B) = ‖B‖2F −
m
∑

i=1

‖Bii‖2F = ‖A‖2F −
m
∑

i=1

‖Bii‖2F .

Assume that p and q belong to the same sub-interval Ii, i.e, i(p) = i(q). From
Eq. (2.3), B is everywhere equal to A, except on the pth and qth rows and columns.
Hence

m
∑

i=1

‖Bii‖2F =

m
∑

i=1

‖Aii‖2F −
∥

∥Ai(p)i(p)

∥

∥

2

F
+
∥

∥Bi(p)i(p)

∥

∥

2

F
.

Now, because p and q belong to the same sub-interval,
∥

∥Bi(p)i(p)

∥

∥

F
=
∥

∥Ai(p)i(p)

∥

∥

F
,

which follows from the invariance of Frobenius norm under unitary transformation.
Hence, if i(p) = i(q) then

∑m

i=1 ‖Bii‖2F =
∑m

i=1 ‖Aii‖2F , i.e. boff (B) = boff (A), so
Cbd remains constant. In the following we will thus assume i(p) 6= i(q), i.e, q−p ≥ L.
In that case we have

Cbd(G(p, q, c, s);A) =

‖A‖2F −
{

m
∑

k=1

‖Akk‖2F −
∥

∥Ai(p)i(p)

∥

∥

2

F
−
∥

∥Ai(q)i(q)

∥

∥

2

F
+
∥

∥Bi(p)i(p)

∥

∥

2

F
+
∥

∥Bi(q)i(q)

∥

∥

2

F

}

= boff (A) +
∥

∥Ai(p)i(p)

∥

∥

2

F
+
∥

∥Ai(q)i(q)

∥

∥

2

F
−
∥

∥Bi(p)i(p)

∥

∥

2

F
−
∥

∥Bi(q)i(q)

∥

∥

2

F
. (4.3)
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Minimization of Cbd(G(p, q, c, s);A) is thus equivalent to maximization of
∥

∥Bi(p)i(p)

∥

∥

2

F
+

∥

∥Bi(q)i(q)

∥

∥

2

F
. However, because only the pth and qth rows and columns of B depend

on c and s, the minimization of Cbd finally amounts to the maximization of criterion

C ′
bd(c, s) := |bpp|2 + |bqq|2 +

∑

j∈Ii(p),j 6=p

|bpj |2 + |bjp|2 +
∑

j∈Ii(q),j 6=q

|bqj |2 + |bjq|2,

where we recall from (2.3) the expressions of bpp, bqq, bpj , bjp, bqj :

bpp = c2 app + |s|2 aqq + c s apq + c s̄ aqp

bqq = c2 aqq + |s|2 app − c s apq − c s̄ aqp

bpj = c apj + s̄ aqj (j ∈ Ii(p), j 6= p)

bjp = c ajp + s ajq (j ∈ Ii(p), j 6= p)

bqj = −s apj + c aqj (j ∈ Ii(q), j 6= q)

bjq = −s̄ ajp + c ajq (j ∈ Ii(q), j 6= q)

Like before, for sake of clarity in the notations we discard the dependence of C ′
bd(c, s)

on p, q and A.
It may be shown [1, 3] that the maximization of C ′

bd(c, s) boils down to the con-
strained maximization of a linear quadratic form. This optimization can be achieved
using Lagrange multipliers. The computation of the latter requires solving a poly-
nomial of degree 6 in the complex case (i.e, U ∈ C

n×n), and of degree 4 in the real
case (i.e, U ∈ R

n×n). First order approximations of the criterion are also considered
in [1, 3] to simplify its maximization. A tensorial rank-1 approximation is also found
in [15].

4.2. Real matrices. We now consider a somehow different approach for the
particular case of the block-diagonalization of a real matrix in a real orthonormal basis
(which is the problem usually encountered in BSS). Our approach, sketched in [15],
also boils down to the calculation at each iteration of the roots of a polynomial of
degree 4, however its derivation is straight-forward; for example no parametrization
of O(n) using Lagrangian methods was necessary to construct the polynomial. As
will be seen in the simulations of Section 5, the important issue that will have to
be addressed is not how to maximize C ′

bd(c, s) at each iteration, but rather how to
choose the couples (p, q).

Let A ∈ R
n×n be a matrix that we want to block-diagonalize in a real orthonormal

basis U ∈ R
n×n. Let us shortly remark that the complex existence and uniqueness

results from Section 4.1.1 also hold in the real case — slight care has to be taken
due to the fact that in a real Schur decomposition, the middle matrix is only ‘block-
triangular’ in the sense that 2×2-blocks might occur on the diagonal, which correspond
to complex eigenvalues of A. However in such a case, the containing block of a
possible block diagonalization is necessarily also of size at least 2, and includes the
corresponding two columns, because otherwise we would get a real eigenvalue. Hence,
the uniqueness results from above can be translated to the real case in a similar
fashion.

As before we now look for an orthogonal basis as a product of real Givens matrices
Gr(p, q, c, s). C ′

bd(c, s) is then equal to C ′
bdr(c, s), defined by

C ′
bdr(c, s) := (bpp)

2 +(bqq)
2 +

∑

j∈Ii(p),j 6=p

(bpj)
2 +(bjp)

2 +
∑

j∈Ii(q),j 6=q

(bqj)
2 +(bjq)

2 (4.4)
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with entries

(bpp)
2 = (c2 app + s2 aqq + c s (apq + aqp))

2

(bqq)
2 = (c2 aqq + s2 app − c s (apq + aqp))

2

(bpj)
2 = (c apj + s aqj)

2 (c2 + s2) (j ∈ Ii(p), j 6= p)

(bjp)
2 = (c ajp + s ajq)

2 (c2 + s2) (j ∈ Ii(p), j 6= p)

(bqj)
2 = (−s apj + c aqj)

2 (c2 + s2) (j ∈ Ii(q), j 6= q)

(bjq)
2 = (−s ajp + c ajq)

2 (c2 + s2) (j ∈ Ii(q), j 6= q)

C ′
bdr(c, s) is a polynomial in c and s of degree 4. The expressions of (bpj)

2,(bjp)
2,(bqj)

2

and (bjq)
2 have been multiplied by (c2 + s2) = 1 in order to obtain an expression of

C ′
bdr(c, s) homogeneous in c and s (i.e all the terms in C ′

bdr(c, s) are on the form
αijc

i sj with i + j = 4).
Using polar coordinates, for all (c, s) ∈ R

2 with c2 + s2 = 1, there exists a unique
θ ∈ [0, 2π[ such that (c, s) = (cos θ, sin θ). C ′

bdr(c, s) can thus be solely expressed
as a function of θ. Expanding expression (4.4) gives the following polynomial, to be
maximized in θ:

C ′
bdr(θ) = q40 cos4 θ + q04 sin4 θ + q31 cos3 θ sin θ + q13 cos θ sin3 θ + q22 cos2 θ sin2 θ.

The expressions of the coefficients qij are given the Appendix.
The function C ′

bdr(θ) is periodical with period π. We may thus determine its
maximum on the interval ]− π

2 , π
2 ], so cos θ ≥ 0. The derivative of C ′

bd(θ) is given by

∂ C ′
bd/∂θ(θ) = q31 cos4 θ − q13 sin4 θ − 2 (2 q40 − q22) cos3 θ sin θ+

2 (2 q04 − q22) cos θ sin3 θ + 3 (q13 − q31) cos2 θ sin2 θ.

Dividing C ′
bdr(θ) by cos4 θ for θ 6= π

2 , we get altogether:

∂ C ′
bdr/∂θ(θ) = 0 ⇐⇒

{

θ = π
2 if q13 = 0

P (tan θ) = 0 if θ ∈]− π
2 , π

2 [

where P (x) is the polynomial defined by

P (x) = q13 x4 − 2 (2 q04 − q22) x3 − 3 (q13 − q31) x2 + 2 (2 q40 − q22) x− q31.

Thus, the maximization of C ′
bdr(θ) amounts to computing the roots the latter poly-

nomial of degree 4. The roots of P can be calculated in closed form, however the
expressions are unfeasibly long; in the following we will simply estimate them numer-
ically and keep the real root x⋆

bdr whose inverse tangent θ⋆
bdr maximizes C ′

bdr(θ).

5. Approximate joint block-diagonalization. We finally combine the ideas
of simultaneous or joint diagonalization with the idea of block diagonalization. In this
Section, this combination is discussed and an algorithm is proposed. Moreover, some
results on reducing the joint block-diagonalization problem to joint diagonalization
are presented.

5.1. Complex orthonormal basis. The approximate joint block-diagonaliza-
tion of a set of K complex matrices A = {A1, . . . ,AK} is considered. The problem
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consist of finding an orthonormal matrix U ∈ C
n×n such that ∀k ∈ J1,KK, the

matrices

UAk UH = Bk

are as block-diagonal as possible, in the sense of criterion (4.1). Defining Ak = {akij}
and, for k ∈ J1,KK:

Ak =







Ak11 . . . Ak1m

...
...

Akm1 . . . Akmm







where ∀(i, j) ∈ J1,mK
2

and Akij is of dimensions L×L. We look for U by minimizing
criterion

Cjbd(V;A) :=

K
∑

i=1

boff
(

VAi V
H
)

with respect to the unitary matrix V ∈ U(n).

5.1.1. Existence and uniqueness. As before, we will only discuss the case of
perfect factorization, where Cjbd(U;A) = 0. First let us note that according to the
results for K = 1 from Section 4.1.1, uniqueness can only hold up to block-permutation
and unitary block-scaling, as these two transformations preserve block-diagonality.
And indeed, in many situations these are already all indeterminacies.

For simplicity, we now only consider normal matrices Ak — a situation often en-
countered in practice. If we moreover assume that they are unispectral, then unique-
ness follows already from Section 2.1.1, as all matrices Ak are diagonalizable. But
how about existence? For this, at first in the case of K = 2, given an eigenvector v
of A1, we define an index

κ(v;A1,A2) := min
k
∃ eigenvectors v1, . . . ,vk−1 6= v of A1

∃ eigenvectors w1, . . . ,wk of A2 such that

〈v1, . . . ,vk−1,v〉 = 〈w1, . . . ,wk〉. (5.1)

So κ(v;A1,A2) is the minimal dimension of a vector space generated by eigenvalues
of A1 and containing v such that it may also be generated by eigenvalues of A2.
In other words, it measures the minimal number of additional eigenvalues needed to
group with v such that compatibility (or ‘block-commutativity’) with eigenvectors of
A2 is achieved. Note that if we do not want to assume unispectral A, the eigenvectors
simply have to be replaced by maximal eigenspaces.

Lemma 5.1. The eigenvectors vi and wi from Eq. (5.1) are already uniquely

determined by v except for permutation and unit scalars.

Proof. Let k = κ(v;A1,A2), and consider two different minimal eigenvector
representations

〈v1, . . . ,vk−1,v〉 = 〈w1, . . . ,wk〉
〈v′

1, . . . ,v
′
k−1,v〉 = 〈w′

1, . . . ,w
′
k〉.

Then the intersection on each side must consist again of eigenvectors, as the corre-
sponding eigenspaces 〈vi〉 are orthogonal, similarly for 〈wi〉. Moreover

v ∈ 〈v1, . . . ,vk−1,v〉 ∩ 〈v′
1, . . . ,v

′
k−1,v〉 6= ∅,
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and

〈v1, . . . ,vk−1,v〉 ∩ 〈v′
1, . . . ,v

′
k−1,v〉 = 〈w1, . . . ,wk〉 ∩ 〈w′

1, . . . ,w
′
k〉

is another equality according to Eq. (5.1). But this means that the dimension of the
above intersection may not decrease (due to minimality), so

〈v1, . . . ,vk−1〉 = 〈v′
1, . . . ,v

′
k−1〉

〈w1, . . . ,wk〉 = 〈w′
1, . . . ,w

′
k〉.

and the claim follows.
Theorem 5.2. Given a set of normal unispectral matrices A = {A1, . . . ,AK}, a

joint L-block-diagonalizer exists if for each eigenvector v of A1 and all k = 2, . . . ,K,

we have κ(v;A1,Ak) = L.

Proof. First assume K = 2. Then according to the uniqueness result of lemma 5.1,
the space R

n may be decomposed into subspaces of dimension L:

R
n =〈v1, . . . ,vL〉 ⊕ . . .⊕ 〈vm(L−1)+1, . . . ,vmL〉

=〈w1, . . . ,wL〉 ⊕ . . .⊕ 〈wm(L−1)+1, . . . ,wmL〉
Here, the vi and wi are eigenvectors of A1 and A2 respectively. But the above
decomposition implies that a unitary basis of R

n may be chosen that maps the above
L-dimensional subspaces of the vi onto those of the wi.

For K > 2, we may now choose an L-block-diagonalizer Uk according to the above
for each tuple (A1,Ak). However due to the fact the Uk are essentially unique block-
diagonalizers of A1, after possible block-scaling and permutation, we may assume
that they are all equal, hence we get the desired joint block-diagonalizer.

If A is joint L-block-diagonalizable, then necessarily κ(v;A1,Ak) ≤ L, as the
index κ(v;A1,Ak) is a lower bound on the joint block size of the two matrices, where
the block is given by the condition that it must contain v. Only if the matrices are
minimally L-block-diagonalizable, the equality of the two conditions holds.

Note that the case of varying block sizes may now easily be implemented by re-
quiring different values of κ(v;A1,Ak), which essentially measures the joint block size.
The case of larger-dimensional eigenspaces follows easily by extending the definition of
κ to include eigenspaces instead of eigenvalues only. An extension toward non-normal
matrices may be realized as generalization of the case K = 1 from Section 4.1.1 by
using the Schur decomposition, however it is not straightforward.

5.1.2. Method. For fixed p and q, one iteration of the algorithm again consists
of the two steps

• minimizing Cjbd(G(p, q, c, s);A) with respect to (c, s), and
• updating Ak ← G(p, q, c, s)Ak G(p, q, c, s)H for all k.

If we define Bk = G(p, q, c, s)Ak G(p, q, c, s)H , we get

Cjbd(G(p, q, c, s);A) =

K
∑

k=1

boff (Bk) .

From (4.3), for fixed p and q such that i(p) 6= i(q), we therefore have

Cjbd(G(p, q, c, s);A) =

K
∑

k=1

boff (Ak) +
∥

∥Aki(p)i(p)

∥

∥

2

F
+
∥

∥Aki(q)i(q)

∥

∥

2

F
−
∥

∥Bki(p)i(p)

∥

∥

2

F
−
∥

∥Bki(q)i(q)

∥

∥

2

F
. (5.2)
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The minimization of Cjbd(G(p, q, c, s);A) is thus equivalent to the maximization

of
∑K

k=1

∥

∥Bki(p)i(p)

∥

∥

2

F
+
∥

∥Bki(q)i(q)

∥

∥

2

F
. However because only the pth and qth rows

and columns of Bk depend on c and s for all k, the minimization of Cjbd amounts to
maximizing the criterion

C ′
jbd(c, s) :=

K
∑

k=1







|bkpp|2 + |bkqq|2 +
∑

j∈Ii(p),j 6=p

|bkpj |2 + |bkjp|2 +
∑

j∈Ii(q),j 6=q

|bkqj |2 + |bkjq|2






where the expressions of bkpp, bkqq, bkpj , bkjp, bkqj and bkjq are given by Eq. (2.3).
As in Section 4.1, we now consider the particular case of real matrices to be joint-
diagonalized in a real orthonormal basis.

5.2. Real matrices. If we assume that A is a set of real matrices and that
we are looking for a common real basis U ∈ O(n), criterion Cjbd(c, s) reduces to
Cjbdr(c, s) defined by

C ′
jbdr(c, s) :=

K
∑

k=1







(bkpp)
2 + (bkqq)

2 +
∑

j∈Ii(p),j 6=p

(bkpj)
2 + (bkjp)

2 +
∑

j∈Ii(q),j 6=q

(bkqj)
2 + (bkjq)

2







.

Using results of Section 4.2 and setting (c, s) = (cos θ, sin θ), C ′
jbdr(c, s) can be written

as a polynomial in cos θ and sin θ:

C ′
jbdr(θ) = q40 cos4 θ + q04 sin4 θ + q31 cos3 θ sin θ + q13 cos θ sin3 θ + q22 cos2 θ sin2 θ

with coefficients given in the Appendix. The computation of the optimal value θ⋆
jbdr

maximizing C ′
jbdr(θ) is done as in Section 4.2.

5.3. Joint block-diagonalization by joint diagonalization. In this section
we show that the form of the joint-diagonaliation minimization criterion Cjd(U;A)
may already imply joint block-diagonalization. For simplicity, we only treat the real
case. Algorithmically this result implies that for JBD we may simply perform joint
diagonalization and then permute the columns of E to achieve block-diagonality using
Algorithm 3 — in experiments this turns out to be an efficient solution to JBD [1].

The result is based on a conjecture from [1] essentially claiming that a minimum
of the JD cost function Cjd(U;A) already is a JBD i.e. a minimum of the function
Cjbd(U;A) up to a permutation matrix. Indeed, in the conjecture it is required to
use the Jacobi-update algorithm from [9], but indeed this is not necessary, and we
can prove the conjecture partially:

We want to show that JD implies JBD up to permutation; i.e. if U is a minimum
of Cjd(U;A), then there exists a permutation P such that Cjbd(PU;A) = 0 (given
existence of a JBD). But of course Cjd(PU;A) = Cjd(U;A), so we will show why
(certain) JBD solutions are minima of Cjd(U;A). However, JD might have additional
minima. First note that clearly not any JBD minimizes Cjd(U;A), only those such
that in each block, Cjd(U;A) when restricted to the block is maximal over U ∈ O(L).
We will call such a JBD block-optimal in the following.

Theorem 5.3. Any block-optimal JBD of A i.e. U ∈ O(L) with Cjbd(U;A) = 0
is a local minimum of Cjd(V;A).
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Proof. The local minimality can be shown using Lagrange-multipliers, but an
even simpler (and somewhat sloppy but illustrative) method is to use the explicit
parametrization of O(n) by Givens matrices. Consider the infinitesimal, elementary
real Givens rotation Gpq(ǫ) := Gr(p, q,

√
1− ǫ2, ǫ) defined for p < q and 0 ≤ ǫ < 1.

Let U ∈ O(n) be block-optimal with Cjbd(U;A) = 0. We have to show that U
is a local minimum of Cjd(V;A) or equivalently a local maximum of Cjd(V;A), the
sum of the transformed squared diagonals. After substituting each Ak by UAkU

T ,
we may already assume that Ak is m-block diagonal, so we have to show that U = I
is a maximum of Cjd.

The Givens rotations from above can now be used to construct local coordinates
of the d := n(n− 1)/2-dimensional manifold O(n) at I, simply by

ι : (−1, 1)d −→ O(n)

(ǫ12, ǫ13, . . . , ǫn−1,n) 7−→
∏

p<q

Gpq(ǫpq).

This is an embedding, and ι(0) = I, so we only have to show that h(ǫ) := g(ι(ǫ)) has
a local maximum at ǫ = 0. We do this by considering h partially in each coordinate.
Let p < q. If p, q are in the same block (i(p) = i(q)), then h is locally maximal i.e.
positive semi-definite at 0 in the direction ǫpq because of the assumption that E = I
is block-optimal

Now assume p and q are from different blocks. After possible permutation, we
may assume that p = q + 1 so that each matrix Ak ∈ A is of the form

Ak =













. . .
... 0

· · · ak 0
0 bk · · ·

0
...

. . .













,

where ak is located at index (p, p). Then Gpq(ǫ)AkGpq(ǫ)
T equals













. . .
... 0

· · · ak − (ak − bk)ǫ2 (ak − bk)ǫ
√

1− ǫ2 · · ·
· · · (ak − bk)ǫ

√
1− ǫ2 bk + (ak − bk)ǫ2 · · ·

0
...

. . .













,

and entries on the diagonal other than at indices (p, p) and (q, q) are not changed, so

‖diag(Gpq(ǫ)AkGpq(ǫ))
T ‖2 − ‖diag(Ak)‖2 =

= −2ak(ak − bk)ǫ2 + 2bk(ak − bk)ǫ2 + 2(ak − bk)2ǫ4

= −2(a2
k + b2

k)ǫ2 + 2(ak − bk)2ǫ4.

Hence

h(0, . . . , 0, ǫpq, 0, . . . , 0)− h(0) = −cǫ2pq + dǫ4pq

with c = 2
∑K

k=1(a
2
k + b2

k) and d = 2
∑K

k=1(ak − bk)2. Now either c = 0, then also
d = 0 and h is constant zero in the direction ǫpq. Or, more interestingly, c 6= 0, then
c > 0 and therefore h is negative definite in the direction ǫpq.

Altogether we get a negative definite h at 0 except for ‘trivial directions’, and
hence a local maximum at 0.
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5.4. Simulations. The employed algorithms as well as some of the following ex-
amples are freely available for download at http://www.biologie.uni-regensburg.
de/Biophysik/Theis/researchjbd.html. The programs have been realized in MAT-
LAB, and sufficient documentation is given to reproduce the results and extend the
algorithms.

As for the diagonalization cases, the convergence of the proposed (joint) block-
diagonalization scheme is by construction guaranteed, whatever the chosen strategy
for the selection of the couples (p, q). If convergence to the global minimum was in
practice usually observed for the above diagonalization schemes, this is certainly not
the case for block-diagonalization. To illustrate this point we have tested 3 strategies
for the choice of rotations, applied to the JBD of real matrices in a real basis.

(M1) The first method is inspired from the Cyclic Jacobi approach of Algorithm 2,
except for the fact that the couples (p, q) are chosen out of the diagonal
blocks. The algorithm is initialized with the identity matrix, i.e U = In. The
algorithm is stopped when all the values of s⋆

jbdr = sin θ⋆
jbdr are lower than

10−4 within a sweep.
(M2) The second method is identical to (M1) except for the fact that the algorithm

is initialized with the matrix Ujdr provided by joint diagonalization of A.
(M3) The third method is inspired from Classical Jacobi (Algorithm 1) and consists

of choosing at each iteration the couple (p, q) ensuring a maximum decrease of

criterion Cjbd. This requires computing all the differences |∑K

k=1 boff (Bk)−
boff (Ak) | for all couples (p, q) and to pick up the couple which yields the
largest difference value. The algorithm stops when 20 successive value of s⋆

jbdr

are all lower than 10−4.

The three methods are applied to 100 random draws of K real matrices exactly block-
diagonalizable in a real common orthonormal basis. Various values of L (size of the
blocks), m (number of blocks) and K (number of matrices) are considered. The
number of failures over the 100 realizations (i.e, the number of times the methods do
not converge to a solution such that Cjbdr = 0) is reported in Table 5.1.

5.5. Discussion. The previous results emphasize the importance of the initial-
ization and the choice of the rotations. Failure rates of (M1) are very high, in par-
ticular when m and L increase. (M2) and (M3), which are both initialized by joint-
diagonalization, give much better results, with (M3) being in nearly every case more
reliable than (M2). However, none of the two methods systematically converge to a
global minimum of Cjbdr when m ≥ 3, and, interestingly, the methods do not usually
fail on the same sets of data. Also, Fig. 5.1 and Fig. 5.2 show that (M3) only need a
few iterations after JD to minimize Cjbdr.

Indeed, and this indicates the validity of the claim from Section 5.3, JD minimizes
the joint block-off-diagonality Cjbdr, however only up to a permutation. And in the
above simulation, the permutation is then discovered by application of the JBD algo-
rithm — this also explains why in Figures 5.1 and 5.2, the cost function after JD only
decreases in discrete steps, corresponding to identified permutations of one block.

6. Conclusions. After reviewing existence and uniqueness results as well as
algorithms for diagonalization and joint diagonalization, we proposed extensions to
the setting of (joint) block-diagonalization, a problem of considerable importance for
instance in the field of blind signal processing. The novel theoretical contributions are
partial existence results as well as the perhaps astonishing relation from theorem 5.3
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m 2
L 2 4 6
K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

M1 1 4 4 1 2 32 33 25 10 11 55 33 21 24 16
M2 0 0 0 0 0 11 1 0 0 0 43 2 0 0 0
M3 0 0 0 0 0 5 0 0 0 0 14 0 0 0 0

m 3
L 2 4 6
K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

M1 3 14 11 18 8 68 54 38 33 32 84 60 48 51 52
M2 0 0 0 0 0 29 5 1 2 0 53 10 8 7 8
M3 0 0 0 0 0 15 1 0 3 1 44 0 0 2 8

m 4
L 2 4 6
K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

M1 5 30 21 19 16 87 75 68 60 59 99 83 77 77 75
M2 0 0 0 0 0 47 7 6 4 2 88 15 8 4 10
M3 0 0 0 0 0 21 5 4 2 3 65 8 2 0 5

Table 5.1

Number of failures of methods M1, M2 and M3 over 100 random realizations of K
matrices exactly block-diagonalizable in a common orthonormal basis.
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Fig. 5.1. Evolution of criterion Cjbdr for a random set A such that m = 3, L = 4, K = 3.
Using a 1.25 GHz Powerbook G4, the computation times for this particular dataset are: (M1
- 5.6s), (M2 - 1.7s), (M3 - 4.3s). The three methods succeed in minimizing the criterion.
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Fig. 5.2. Evolution of criterion Cjbdr for a random set A such that m = 4, L = 6, K = 3.
Using a 1.25 GHz Powerbook G4, the computation times for this particular dataset are: (M1
- 186s), (M2 - 10.2s), (M3 - 16.1s). Only (M3) succeeds in minimizing the criterion.

between the well-known joint diagonalization problem and the similar task of joint
block-diagonalization.

The main algorithmic conclusion of this report is: Jacobi algorithms for joint
block-diagonalizaton bring up convergence problems that do not occur in joint di-
agonalization and that still need to be properly addressed. However we proposed a
strategy (method (M3)) which consideraby reduces the failure rates of the straight-
forward approach (M1). The fact that lower failure rates are obtained with (M2) and
(M3), which are initialized with joint-diagonalization, tend to corroborate the conjec-
ture that JBD diagonalization could be achieved up to an arbitrary permutation of
columns via JD [1, 8], but it still does not explain why this permutation cannot be
solved by minimization of Cjbdr.

Acknowledgments. The authors thank Harold Gutch for the careful proof-
reading of the manuscript.

Appendix A. Expression of the polynomial coefficients. Below are the
coefficients of the fourth-order polynomial that needs to be rooted at each iteration of
the proposed method for joint block-diagonalization of a set of real matrices having
a common real orthonormal basis. The particular block-diagonalization case of only



24 C. FÉVOTTE AND F. J. THEIS

one matrix simply corresponds to K = 1.

q40 =

K
∑

k=1







a2
kpp + a2

kqq +
∑

j∈Ii(p),j 6=p

a2
kpj + a2

kjp +
∑

j∈Ii(q),j 6=q

a2
kqj + a2

kjq







q04 =
K
∑

k=1







a2
kpp + a2

kqq +
∑

j∈Ii(p),j 6=p

a2
kqj + a2

kjq +
∑

j∈Ii(q),j 6=q

a2
kpj + a2

kjp







q31 =2

K
∑

k=1

{(akpp − akqq) (akpq + akqp)

+
∑

j∈Ii(p),j 6=p

akpj akqj + akjp akjq −
∑

j∈Ii(q),j 6=q

akpj akqj + akjp akjq}

q13 =2
K
∑

k=1

{(akqq − akpp) (akpq + akqp)

+
∑

j∈Ii(p),j 6=p

akpj akqj + akjp akjq −
∑

j∈Ii(q),j 6=q

akpj akqj + akjp akjq}

q22 =

K
∑

k=1

{2 (akpq + akqp)
2 + 4 akpp akqq

+
∑

j∈Ii(p),j 6=p

(a2
kpj + a2

kqj) + (a2
kjp + a2

kjq)

+
∑

j∈Ii(q),j 6=q

(a2
kpj + a2

kqj) + (a2
kjp + a2

kjq)}
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Sweden, 1998, Springer Verlag, Berlin, pp. 675–680.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dépôt légal : 2007 – 2èmer trimestre 
Imprimé à l’Ecole Nationale Supérieure des Télécommunications – Paris 

ISSN 0751-1345 ENST D (Paris) (France 1983-9999) 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ecole Nationale Supérieure des Télécommunications 

Groupe des Ecoles des Télécommunications - membre de ParisTech 

46, rue Barrault - 75634 Paris Cedex 13  -  Tél. + 33 (0)1 45 81 77 77  -  www.enst.fr 

Département TSI 
 

©
  G

ET
-T

él
éc

om
 P

ar
is

 2
00

7 


