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Superrésolution aveugle d’'images par la méthode des sous-espaces

Résumeé:

Les méthodes de sous-espaces sont un outil puissant d’identification aveugle des fil-
tres par I'étude de statistiques du second ordre de plusieurs sorties issues d’une méme
source (probléme dit SIMO). L'extension de ce probléme au cas de sources multiples
peut étre envisagée, et a été développée dans la littérature.

Dans ce rapport, nous montrons comment ces méthodes permettent de résoudre le prob-
Ieme de superrésolution aveugle. Nous présentons tout d’abord le probleme de superré-
solution comme un probléme & entrées multiples et a sorties multiples (MIMO). Nous
montrons que la méthode de sous-espace ne peut étre utilisée seule pour retrouver les
filtres affectant chaque image, et nous proposons deux solutions possibles utilisant les
propriétés statistiques des images pour résoudre le probleme. Nous présentons des
résultats expérimentaux qui valident notre approche.

Abstract :

Subspace methods are a powerful tool to recover unknown filters by looking at the sec-
ond order statistics of various signals originating from the same source (also called a
SIMO problem). An extension to the multiple source case is also possible and has been
investigated in the literature.

In this report we show how the blind superresolution problem can be solved by this
tool. We first present the problem of superresolution as a multiple input multiple out-
put (MIMO) one. We show that the subspace method can not be used, as is, to recover
the filters affecting each image, and we present two possible solutions, based on the
statistical characteristics of the images to solve this problem. Experiments are shown
which validate these ideas.






Contents

1 The subspace method 8
1.1 Problemstatement . ... ... ... ... ... 8
1.1.1 1Dsignals . . .. . . . . . . . 8
1.1.2 Images . . . . . o o e 9
1.2 The subspace method for SIMO systems . . . . ... ... ...... 10
2 Extension to subsampled signals 13
2.1 Problemstatement . . ... ... ... ... ... ... ... 13
211 1Dsignals . . . ... 13
212 Images . . . . . . . 16
2.2 Limits of the subspace method . . . . . .. ... ... ... ..... 18
2.3 Evaluation of the MixingMatrix . . . ... ... ... ........ 19
2.3.1 Imposing Regularity ofthe Filters . . . . . .. ... ... .. 19
2.3.2 Imposing Similarity of the Double-Filtered Images . . . . . . 20
3 Restoration 22
4 Applications 24
5 Conclusion 27



Introduction

The subspace method has been introduced by [7] and further investigate in a multitude
of papers [1, 5, 6, 8]. The idea of the method is to observe multiple outputs of various
unknown filters having all the same input (namely SIMO system). In this case, the
second order statistics of the received signals carry enough information to allow the
recovery of the filters and furthermore the recovery of the original signal.

The main application that authors had in mind was to conceive wireless protocols in
a varying environment, in which no training sequence have to be transmitted. Indeed,
in such an environment, the filters that affect the signal can change and have to be re-
learned very often. Being able to learn them without the use of a training signal would
be a great asset and could save an important amount of bandwidth.

Extensions to the case where a multitude of signals are transmitted through the same
channel (namely MIMO systems) have been investigated [1, 5]. In this late approach,
a crucial step is the use of a source separation technique.

We investigate the possibility of using the subspace method in the context of image
superresolution. More precisely, we observe a known number of images of the same
scene acquired through various filters and subsampled (the subsampling accounts for
the aliasing that occurs in every image acquisition process). We would like to recover
the original image and do so in two steps: the first step is to recover the filters using the
subspace technique, the second step is to apply a regularized inversion to the observed
images in order to recover the original scene.

This report is divided as follows:

Chapter 1 presents the subspace method for 1D signal and images, in order to provide
the reader with a self contained overview.

Chapter 2 states the problem of superresolution as a multiple input multiple output
(MIMO) one, in which the multiple inputs are the various subsampled versions of the
image (they differ by a translation). This presentation allows us to understand that:

e The separation of sources is impossible in the case of superresolution because the
sources are very correlated with each other and have exactly the same statistics
(Section 2.2).

e The subspace method provides us with a mixture of the actual filters. Therefore,
we have to implement a method to unmix and recover the actual filters. In the
same time, the subspace method allows us to restrain the search for the filters
to a relatively small affine space. In Section 2.3, we introduce our method to
disambiguate the results of the subspace method and recover the actual filters.

In Chapter 3, we provide the restoration step based on the minimization of a functional



including a data driven term and a regularization one.
Finally, Chapter 4 presents experimental results for both filters recovery and signal/image
restoration based on this recovery.



Chapter 1

The subspace method

In this chapter, we present the subspace method such as developed by [6] for 1D sig-
nals. This method, first introduced by [7], considers multi output systems. This allows
the use of second order statistics of the outputs, instead of higher order statistics, to
identify blindly the filters. This method, under some mild assumptions, estimates the
noise and signal subspaces from the eigenvalue decomposition of the autocorrelation
matrix of the outputs, and exploits the orthogonality between this subspaces to identify
the filter coefficients.

First, we state the problem for 1D signals and extend the formulation to images, then,
we develop the subspace method for images. We refer the reader to [6] for a presenta-
tion of the subspace method for 1D signals.

1.1 Problem statement

1.1.1 1D signals

Let us consided. signalsX' as noisy outputs of an unknown system driven by an
unknown inputD. We aimed to identify the system functidh blindly, i.e. using only
the outputs of the system.

The outputs are described by a convolution model:

XY()=H'()*D()+B() (1.1)
wherex denotes the convolution, arfglis a white zero-mean noise.
Using a matrix formulation, we can write :
X=HD+B (1.2)
where
e X stacks the. output signals of sizéN, 1) :

Xl

] T
X = : :(3:(1) cee TN ok a:]LV_l) (1.3)



o 7 stacks thel. Toeplitz matrices' :

Hl
H=| : (LN,N + M —1) (1.4)
HL
whereH!, for [ = 1to L, is the filtering matrix associated to the filt#¢ of size
(M,1):
H' = [nh...hh, " (1.5)
ie.:
T T 0
H = (N,N+M-1) (1.6)
0 hhy ... By,

e D is the unknown original signal of siZév + M — 1,1),

e and B is a white zero-mean noise, assumed to be uncorrelatedwith

1.1.2 Images

Let us consideL blurred images acquired by multiple cameras, or by a single camera

through different conditions (focus changes, camera motion...) Lldisserved images
are modeled as noisy outputs of a FIR sysférdriven by an input original imag® :

X=HD+B .7
where :

e X stacks the. observed image&’!, for{ = 1 to L, more precisely, a vectorized
formulation of a processing windowed area, of 5j2§, , N, ), extracted from
the observed images :

X! =[N, —1,N, — 1) 2" (N, =2, N, — 1) --- 2%(0,0)]" (1.8)

e D is avectorized formulation of the related windowed area of the original image

of size(N, + M, — 1, N, — M, — 1),
D = [d(Ny + M, —2,N, + M, —2)--- d(0,0)]" (1.9

e H stacks thel block-Toeplitz filtering matrice$t! associated with each filters
H' of size(M,,, M)

(0, 0) RY(0, M, — 1)
Il — : : (1.10)
RY(M, —1,0) ... hY(M,—1,M,—1)
ie.:
My o Hy,o 0
H = (1.11)
0 Hy o My



whereH, is a Toeplitz matrix of sizéN, , N, + M, — 1) associated to th¢"
column of H' :

WOG) . KO -1j) 0
Hy=1| (1.12)
0 R(0,5) W' (M, — 1,5)

H! containsN, rows of blocks andV, + M, — 1 columns of blocks of size
(N, , N, + M, —1). His of size(LN,N, , (N, + M, — 1)(N, + M, — 1)),

e andB is a white zero-mean noise, assumed to be uncorrelatedWith

1.2 The subspace method for SIMO systems
Let Rx denotes the autocorrelation matrix of the outpkits

Rx = E(XXT) (1.13)
whereE denotes the expectation operafR¥ is of size(LN, N, , LN, N,).

From equation (1.2) we deduce that:
Rx = HRpHT + Rp (1.14)

whereR  andR g denote respectively the autocorrelation matrices of the ihpahd
the noiseB. We recall that the noise is assumed to be uncorrelated with the input.

From now on, we make two assumptions:

1. H is full column rank, a necessary condition is :

LN,N, > (N, + M, — 1)(N, + M, — 1) (1.15)

2. andRp is full rank.

We deduce from eq. (1.14) and thanks to these assumptions, that the signal part of the
autocorrelation matriR x, i.e. HRpHT, has rank

dg = (Ny + M, — 1)(N, + M, — 1) (1.16)

Through an eigenvalue decomposition®f;, we obtain a subspace decomposition
between the signal and noise subspaces:

e The signal subspace is spanned by the eigenvectors associated withliéngest
eigenvalues oR x

e The noise subspace, its orthogonal complement, is spanned by the eigenvectors
associated with thé N, N, — di smallest eigenvalues &x .

The signal subspace is also the subspace spanned by the columns of the filtering matrix
H.
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By orthogonality between signal and noise subspaces, we deduce that each vector of
the noise subspace is orthogonal to each column of the filtering matrix.

Let G; denotes an eigenvector associated with one ofihg N, — dy smallest
eigenvalues of the matriRx. The orthogonality condition can be formulated, for
t=0:LN,N, —dpg—1,as:

GZ—‘H - 0(1,dH)

(1, LN,N,)(LN,N,,dx) (1.17)

where0(; 4,,) is a null vector of siz¢1, d).

Since we have only an estimate of the autocorrelation matrix, the orthogonality con-
dition is solved using a least square method. This leads to the minimization of the
guadratic form;

LN,Ny—dp—1
gH)= > |GIHP (1.18)

=0

Thanks to the following structural lemma, we provide an expression of the quadratic
form in terms of the filter coefficients instead of the filtering matrix :

Lemma 1
GTH=HTg; (1.19)

You can find a proof of this lemma in [6].

In this expression, the matrg;, for i =0: LN, N, —dy — 1, denotes a matrix of
size(LMyM, , dm). This matrix is constructed as follows:

e Each eigenvectadt;, fori = 0to LN, N, — di — 1is partitioned intal vectors
G! of size(N, N, , 1).

e Each parG! can be considered as a vectorized formulation of the matrix:

9:(0,0) ... gi{(0,N; —1)
Gl = : ; (1.20)
gi(N, —1,0) ... g{N,—1,N,—1)
Note that we use the same notation for both the matrix form or the vectorized
form of G, as the reader can easily differentiate them by looking at the size of
G in the given expression.

e Let us define the block-Toeplitz matri¥ as the “filtering” matrix associated to
G!. The term “filtering” points out that we obtai@ from G' in the same way
we obtainH! from H'! (see eq. (1.11) and (1.12)).

Gio  Ginr O
Gi=1| - (1.22)
0 gé,o T gf,mﬂ

11



whereg; ; is a Toeplitz matrix of sizé, , M, + N, — 1) associated to the
4 column of G in the matrix form (see eq. (1.20)):

gi0,5) ... gl —1.j) 0
Gij= (1.22)
0 4i0,4) g (Ny —1,5)

G! containsM,, rows of blocks and\Z,, + N, — 1 columns of blocks of size
(My , My+ Ny —1).

e Finally, G; stacks thel. matricesg! and is of siz& LM, M, dx).
The quadratic form is now expressed in terms of the filter coefficients:

LN.Ny—du—1

q(H)= HTQH whereQ = > a6l (1.23)

=0

The filter coefficients are identified, up to a constant, by the minimal eigenvedfr of
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Chapter 2

Extension to subsampled signals

We now extend the subspace-based method to the case of subsampled observed im-
ages. The subsampling accounts for the aliasing that occurs in every image acquisition
process. The purpose is to estimate, from the low-resolution observed images, a de-
convolved image at a higher resolution: this problem is called superresolution. To this
end, we assume that the original image is filtered lyigh-resolution filters, and the

L output images are then subsampled by a faBtofrhe estimation is blind, i.e. we do

not know the filters.

In this chapter, we first state the problem of superresolution as a MIMO one, for 1D
signals and for images (section 2.1). Then, in section 2.2, we focus on the limits of
the subspace method for MIMO systems. For MIMO systems, the subspace method
provide only a mixture of the filters, and no more the actual filters, such as in the SIMO
case. Source separation methods have been used to unmix the result of the subspace
method and retrieve the actual filters, but these methods assume that the input signal
are not correlated. In our case, the inputs are strongly correlated as they are the vari-
ous subsampled version of the same image. We present in section 2.3 our method to
disambiguate the mixture, and provide the actual filter, for subsampled input signals.

2.1 Problem statement

2.1.1 1D signals

Each observed signal’ is modeled as a noisy output of a FIR system driven by an
input D (see eq. (1.2) page 8) :

Xt = H! D + B @2.1)
(N, 1) (NN N+M-—1) (N+M-1,1) (N, 1) '
whereH! is the filtering matrix associated to the filt&, for | = 1 to L.

After the convolution step, the output signals are subsampled by a f&ctdrhese
subsampled signals, denot&d ,,, can be deduced from following :

Xip = Hhg D + Big

(n,1) (n, Pn+m—1))  (P(n+m—1),1) 1) @2

13



wheren = %, m= % andD is the original signal cut by it® — 1 last samples. Note

that we assume th&f and M are multiples ofP.

We obtain the filtering matrit’ . by extracting one row every from the filtering
matrix H!. If 7! is written by :

Ry ... By, 0O .. L. 0
0 A Rhyy 0 ... 0
H =] : (N,M + N —1)(2.3)
0 0 hl, - hh, 4 lo
0 I O Y

the filtering matrixt!, ,, is written by :

hi, U 1 | R 0
0...0 h, ... Ry, O ... 0
P zeros
Hip=| : (n, P(m+n —1))(2.4)
l l
0 ... 0 Ry ... Rh,, 0...0
P zeros
0o ... ... 0 hy ... Rh, 4

Let us denoteHZl, the subsampled component of the filtd¢, we also name it a
polyphase component f' :

H) = [hy hprp ... Bypym-1yp (2.5)
The filtering matrix associated IHZZ, is denoted b)Hé and is of the form :
l l l
hy  hprp oo hpimenp 0
l _ . .
H), = . . (n,n+m —1)(2.6)

1 1 !
0 hy  hpip Rt (m-1)pP

By switching on purpose the columns &f; ,, we obtain an expression 6{. . in
terms of the filtering matrices associated to the polyphase components of thH filter

l l l l l l
h‘O hP h(mfl)P 0 hP—l h’2P71 T hmpfl 0

M = - - @7
LR 0 h%) hlP U hl(mfl)P 0 hlel hl2P71 o h%mPfl

l
Hf) Hp_1

By switching at the same time the relating rows/afwe obtain an expression &f in
terms of its subsampled component :

Dy
p=| : (2.8)
Dp_y

whereD,, for p = 0 to P — 1, denotes a subsampled componenbaf

D:D = [dp dp+P s dp+(n+m—2)P]T (n +m—1, 1) (29)

14



Equation (2.2) can be written as :

Dy
Xip = (Mo .. Hp_y) : + Big
Dp_, (2.10)
(n,1) (n,P(n+m-—1)) (Pln+m—1),1) (n,1)

Let us illustrate this step by an example :

D = [dy dy do d3 dy ds dg d7 dg dg dy1p]” denotes a signal of sizef + N — 1 = 11,
filtered by H' = [ho hy ha h3 hy hs) of size M = 6, and noisy.

The resulting observed signal, denotedby= [z 71 z2 23 74 5], is of sizeN = 6.
The output signak! is related taD following :

do

dy
To h0h1h2h3h4h500000§2
T 0h0h1h2h3h4h50000d3
T2 o 0 0 h() hl h2 h3 h4 h5 0 0 0 4 l
I3 o 0 0 0 ho hl h2 h3 h4 h5 0 0 25 +B (211)
Xq 0 0 0 0 h() hl h2 h3 h4 h5 0 dG
T 0 0 0 0 O hg hy hy hs hsg hs d7

8

dyg

dio

Then the output signal is subsampled by a fadtor= 3 and the subsampled output
signal X!  is expressed by :

do
di
do

20\ _(ho hi ha hsy hs hsy 0 O O .
<x3><0 0 0 ho hi ha hy hy hs) dy | + By (2.12)

By switching the columns of the filtering matrix, and at the same time the rows of the
original signal, we obtain :

do

dy
To\ ho h3 0 hy hgy O hy hs O .
<I3> B <O ho hy 0 hy hgy 0 ho h5) dy | + B (2.13)

15



The filtering matrix can be partitioned into three sub-matrices :
1 (ho hs O 1 (h1 hs O 1 (ha hs O
HO o (0 ho hg Hl o 0 hl h4 H2 o 0 hg h5 (214)

which can be seen as the filtering matrices of the polyphase compdifgatshg hs]”,
H{ = [hl h4]T, andHé = [h,g h5}T.

Let us denote@o = [do ds dﬁ}, Dy, = [dl dy d7] andD; = [dg ds ds} Dp, forp =0
to P — 1, is a subsampled components of the original signal.

Subsampled output signal! . can be expressed in terms of the subsampled compo-
nents of the original signal D :

Dq
XM =My HY HY) | Dy | + B (2.15)
D,

Through this example, and in a more general case, we show that the superresolution
problem can be stated as a multiple input multiple output (MIMO) system, more pre-
cisely aP input andL output system, where the inputs are the subsampled components
of the original signal.

Xin HS ... Hb_, Dy
= | : 5 +  Bir
Xk, Hy ... HE Dp_; (2.16)
(Ln,1) (Ln,P(n+m—-1)) (P(n+m—1),1) (Ln,1)
2.1.2 Images

Each observed imag&', I = 1 : L, is modeled as a noisy output of a FIR syst&fh
driven by an input imag® (see section 1.1.2):

X'=H'D+ B! (2.17)
Then, the outputs are subsampled by a faétor

Xip=H\ zrD+ By (2.18)
In this expression :

e X! . is asubsampled component®t, of size(n,n,, 1),
wheren, = &= andn, = %,

e Disthe same as in equation (2.17), apart from thefast 1 rows and columns
which are truncated,

e H' , is defined by extracting one row eveR/from the matrixH'
and is of siz€n,n,, d5), as we discard all the null columns,
M,

whered, = P2?(n, + m, — 1)(ny, + m, — 1), m, = 2= andm,, = 2.

16



By switching on purpose the columns bfLR (and at the same time the rows bf)
in equation (2.18), the subsampled output images can be related to the subsampled
components of the original image:

Dy
! 1 ! ! Do.1 !
Xip=(Hbo Ho1 - Hp_1p_1) : + Brg (2.19)
Dp_1,p—1
where :

e D, p, is avectorized subsampled component of the input infagee., if

d0,0 e d075m_1
D= : : (2.20)
ds,~10 --- ds,~1,5,-1
whereS, = N, + M, —1andS, = N, + M, — 1,
thus, for allp;,po = 0: P — 1, thenD,, ,, is a vectorized form of
dm,pz dpl,pz+P s dp17p2+P(smfl)
Dy, p, = : : :
dp1+P(Sy71)a0 dp1+P(sy71),P s dpl+P(5y71):p2+P(5:z71)
(2.21)

wheres, = n, +m, — 1 ands, = n, +my — 1,
note that we use the same notation for the vectorized and the matrix forms of

DP17P2'
° andHi,hp2 is the block-Toeplitz matrix of sizén,n, s,s,) associated to the
filter
l l
P1,P2 T hpl,pQJr(mzfl)P
he by A b T me—1)P
1 o p1 P2 p1 P2 (Mg —
Hy . : . (2.22)
h! . R
pi+(my—1)Ppz " pi4(my—1)Ppat(mz—1)P

one of theP? polyphase components of the high resolution fiér(see eq. (1.10)).

By stacking all vectors and matrices coming from equation (2.19) fdr=all : L, we
obtain the following model:

= : + BLr (2.23)

L L L
XIr Hoo -+ Hp_ip-1) \Dr-1,p-1

1 1 1
Xir Hoo -+ Hp_ip- Dy o

The superresolution problem is now expressed like a multiple input multiple output
problem. In multiple input systems, the inputs usually come from different sources,
and are considered as independent from each other [5]. In our case, the inputs are the
different subsampled components of the same source image and are therefore strongly
correlated.

17



2.2 Limits of the subspace method

In this section, we show that, for subsampled images, the subspace method is not suf-
ficient to determine the filters, but provide an identification up t@a, P?) mixing
matrix.

Let us callR%E the autocorrelation matrix of the subsampled images. ..

If we apply the subspace method, we find that the eigenvectors, defgtadsociated
to thedy, = P?(n, +m, —1)(n, +m, — 1) greater eigenvalues &% span the signal
subspace, and that the eigenvectors associated foife, — d;, smaller eigenvalues
of RLE span the noise subspace.

The orthogonality condition between noise and signal subspaces is expressed by:

GIT le,Pz = 0(1757/339)
(1, Lnyng)  (Lnyng, sys.) (1, 5,50) (2.24)
wherei =0 : Lnyn, —dn, — 1,01, 4,) is a null vector of sizé1, s, s, ),
andH,, ,, a block column of the filtering matrix in equation (2.23).
M1 s
Hppo = : (2.25)
HL

P1,pP2

The structural lemma (see eq. (1.19)) provide an expression of the orthogonality con-
dition in terms of the polyphase components of the filters instead of the columns of the
filtering matrix:
1
Hl)hm
HY ,,Gi=004s,s,) Where H, ,, =| (2.26)
L
leap2
whereg; is a(Lm,mg, sys,) filtering matrix defined from the eigenvecto®, and
Hp, po, fOrpi,ps = 0: P — 1is of size(Lmymyg, 1).

By stacking the contributions of all the polyphase components of the filters, we obtain:
H"G; =0(p25,5,) Where H= (Hoo ... Hp_1p_1) (2.27)

The minimization of the quadratic form associated to the orthogonality condition pro-
vide a set ofP? vectors, denote®. We can not distinguish these eigenvectors using
only the orthogonality condition. Indeed, each columi/ak in the null space of the
quadratic form, therefor#l is a combination of thé®? columns ofV. We can identify

the filtersH only up to a reversibl¢P?, P?) mixing matrix denoted x, such as:

H = VMy (2.28)

Source separation methods have been used to estimate such a matrix [1, 5], but these
methods usually state the assumption that the input signals are uncorrelated. This is
not our case, as the inputs are the different subsampled components of the same source
image.

18



2.3 Evaluation of the Mixing Matrix

The determination of the matriXl x is, as we showed theoretically, impossible in the
case where the mixed sources (here the polyphase components of an image) have the
same distribution.

Despite this fact, we try to estimate the mixing matrix by introducing some prior knowl-
edge on the statistics of the image or the filters. Indeed, natural images have a spectrum
which is far from constant (as in the case of a white noise or a compressed signal). On
the other hand, filters that are encountered in image processing are often very smooth
with a single local (and global) maximum at the origin, whereas a multi-reflection filter,
that affects wireless communications, can be irregular and display a multitude of local
maxima. The subspace method was designed to deal with such irregular filters, with
the counterpart that the sources are of different statistical nature, allowing an efficient
separation of sources.

In this section we will use a continous notation, and the Fourier transform of a sampled
signal at rate 1 will live if—1/2,1/2] whereas the Fourier transform of a subsampled
version at rate P, will live if—1/2P,1/2P]. The H! will refer to the estimated filters

we are trying to define.

2.3.1 Imposing Regularity of the Filters

First, let us see what happens when some regularity is imposed to the filters. We do so
by minimizing a certain regularity measure of the filters under the constraint that the
integral of each filter is orte

Two principal choices have been proposed for the measure of filters regularity. The first
one (which presents the advantage of a low computational cost) is the integral of the
squared norm of the gradient (tf& norm [10]). The other one is the integral of the
gradient (the total variation norm [9]). The first choice may lead to smooth solutions
and disadvantages the non continuous filters (such as motion blur). Nevertheless, we
use thidH; criterion, for two reasons:

e We search for the best solution in a small-dimensional affine space (hamely the
vector space in whicM x lives intersected with the affine space represented by
the constraint| H'(z)dz = 1). In such a case, the smoothing effect of Hig
norm compared to th&€'V norm could be ignored.

e The computational cost of such a minimization is much smaller thaii'thene
(see for example [2] for the numerical intricacy of TV minimization, although
recent advances have been made [3] but are not, as is, applicable to our problem).

Ji(HY, ..., HE) :Z/Hvﬁle. (2.29)
l

1This is a physical requirement for imaging filters. It may not be true if different images have been
acquired under different illumination conditions. In this case, the mean of each image gives a very accurate
estimation of the integral of the filter that generated it.
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2.3.2 Imposing Similarity of the Double-Filtered Images

In the following we take advantage of the fact that we have multiple views of the same
original scene to recover the filters (which implies the estimatidvigf). Let's assume

that we have two versions of the same imdgand I, formed after being filtered by

F, and F;, and that we have two candidatEs and F»: we can check easily if these
candidates are reasonable or not. Indeed filtefingsing F; should yield the same
result as filtering/; using F.

Based on this simple observation, we define a functional which should be minimized
by our computed filters:

k,=L
~ ~ ‘ ~ ~ 2
Jo(H' o HY) = HHZ*X’uH’C*XlH . (2.30)
2
k=1

whereX* are the observed images afAd are the estimated filters.

Note that we don’t have access to a fully sampled version oftfigthus we interpret

the convolutions that occur in (2.30) as the product of the low frequencies of the filter
H with the Fourier transform of, squaring the result and summing over the low-
frequency domain.

We definé

ﬁl(u)x“k(u) - ﬁk(u))?l(u) du (2.31)

1
2 2P
2 —

1
2P

Hﬁl « X* _ Hk ok X!

This last functional could be the perfect criterion if no subsampling were present. In-
deed, J, is null in a noise-free, well-sampled setting only if the filters are the real
filters (after checking thafs is a positive definite quadratic form). Unfortunatly the
subsampling that affects our images is expressed by :

() X o) — HF () X ()|
~ Pl n. n ~ pl n., -~ n ’
= |H'(u) Y XO(u+ F)H’“(u +5) = H*(u) > XO(u+ F)Hl(u +5)
n=0 n=0
P—-1 2
> X0(u+ %) (H* @) Hl(u+ %) — H ) HE (u + 7)) (2.32)

foru e [—55, 551,

where theH* are the actual filters an&© is the original image.

Criterion J> being not null when applied to the actual filters prevents us from conclud-
ing that its minimum is obtained for those filters. Nevertheless, images have a strong
low-frequency component. This means that the minimizing filters/fomust reduce

as much as possible the terms of the faf (u) X°(u) — H'(u)X°(u)[?, because
these terms dominate the others (see [11] for a review of proposed statistical models
of images). As the experiments will show it, the error introduced by the aliasing is

2We use a one dimensional notation to simplify the equations, we consider an infinite-size discrete signal
subsampled at rate. The hat denotes the time-discrete Fourier transform of a signal
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neglictable and does not lead to a noticeable error in the recovery of the filters.

One can also say that the high frequency components of the filters are not taken into
account. Although this point is correct, the filters, thanks to the subspace method,
are constrained to live in a small-dimensional affine space, thus controlling the low
frequency part of them is sufficient to yield a positive definite quadratic form on the
subspace the filters live in.

In the next section we see how these two ideas can be applied to the disambiguation of
the mixing matrixM x .
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Chapter 3

Restoration

Once the filters are estimated, the recovery of the original image can take place. The
recovered imagé,,; must satisfy some straightforward conditions, namely :

e The image filtered by the estimated filtefi and subsampled must be close to
the observed images, which yields the first data-driven functional:

L
ADop) = " ||Sp(H' % Do) — X1, (3.1)
=1

Sp being the subsampling operator at réte

¢ Since the observed images are affected by noise and, most importantly, the filters
we computed are estimates of the actual ones, a regularization functional must
also be minimized:

R(Do) = [ IV Dop (3.2
These two criteria sum up to the minimization of a single functional given by:
J3(Dopt) = A(Dopt) + )\R(Dopt)a (33)

Let us denoted; the operator including the convolution by the filtéf followed by
the subsampling operator at rate

A(D) = Sp(Hl x D), (3.4)
forl=1to L.

The minimumD,,; is obtained by solving the following system:

L L
<Z Al Aj+ 207 c) Dopt = » Al X! (3.5)
=1

=1

whereC denotes the gradient operator.
The system is solved in the frequency domain, as the operations of convolution and
subsampling benefit from an easy and fast implementation.
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First let us study the operatet;: this operator provides the convolution of the input
signal D with the filter ' and subsamples the result at a r&te In the frequency
domain, this operation is equivalent to multiply the Discrete Fourier Transform (DFT)
of the input signal, denotef), by the DFT of the filter’, denotedH!, and then to
take into account the aliasing resulting from the subsampling :

—

AD(w) = D(w)H'(w)+ D(w+ N) H{(w+ N) +
+ D(w+(P—1) H(w+ (P - 1)N) (3.6)
where the DFT of each low resolution signal are computedvoaniformly-spaced

samples.

Now we focus on the operatot! : this operator provides the upsampling of the input
signal at a rateP, followed by the convolution of the result by the filtek'), the
conjugate transpose &f'.

Al(D) = (H)" « Sp(D) 3.7)

In the frequency domain, this operation is equivalent to duplifdtienes the spectrum
of D, weighted by, then to mutiply the result by ")

_ATD(w) H (w)
AT D(w + N) 1 H (w+ N) ~
! : =5 5 D(w) (3.8)
ATD(w + (P — 1)N) H' (w+ (P —1)N)

wherew =1: N and}?*(w) is the conjugate Of/{\l(w).

We deduce the formulation of the equation (3.5) in the fourier domain :

(}i(<ﬁ>H<w>ﬁ<w>)+Aéz<w>> ;Z () (w) XF2(w) (3.9)
=0

where
Hi(w) = [I/{\l(w)f{\l(w—kN) o Hl(w+ (P — l)N)] (3.10)
Dops(w) = [f)opt(w) Dopt(w + N) -+ Dope(w + (P — 1)N)] (3.11)
Ca(w) = [|C)P |Cw+ N -+ |C(w+ (P~ )N)?] (312)
andw =1:N.
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Chapter 4

Applications

We want to estimate a deconvolved image, at a resolution increased by affastar
from a set ofL = 6 low-resolution images of the same scene, filtered ljfferent
unknown filters. This can be expressed asi@put 6 output system.

To evaluate the results with an objective criterion, the psnr (see eq. (4.1)), we have to
simulate this case: we filter a known original imafewith 6 known filters H, and
then subsample the outputs by a fadkbe= 2 in each directions.

(max(D) — min(D))?
MSE(D, Ds:)

PSNR(D7Dest) =10 loglo (41)

whereM SE is the mean squared error between the imdgesdD..;.

The original imageD is (576, 720), and the windowed area of study0, 10). The
filters are(6,6) 2D-Gaussian centered at a random point with standard deviations:
0.7,0.9,1,1.1,1.3,1.5.

To recover the filters, we use a weighted sum of the two criteria on the filters, defined
in eq. (2.29) and eq. (2.30) page 18J1 + (1 — a))J2. Note thatJ; and J, are
normalized so their minimal eigenvalue is 1.

We obtain a psnr of2.12 dB for o = 1, and a psnr 021.46 dB for o = 0. The results

are better when the two criteria are mixed, in our casenfee 0.04, the filters are
recovered with a psnr &f6.17 dB.

We present experimental results obtained with the observed output subsampled images
and the filters estimated below.

Figure 4.1 shows of the 6 output images, from the less blurred on the left, to the the
more blurred on the right.

Figure 4.2 shows the restored imager(r = 26.78 dB with A\ = 1073 in eq. (3.3))

versus the original image.

To better display the results, we focus on a window area of the less blurred output
image, and the related window area in the superresolved image, and display them at
their exact size (figure 4.3). For comparison purposes, a bilinear interpolation of the
output image area and the related window in the original image are also given.
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Figure 4.1:3 of the6 output images: frame 1,3 and 6

Figure 4.2: upper : the original image, down : the restored image
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Figure 4.3: upper left : the 1st observed image; upper right : the restored image; down
left : the bilinear interpolation; down right : the original image
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Chapter 5

Conclusion

In this work we showed how the subspace method may be applied to image superres-
olution. We showed that this method is intrinsically ambiguous when presented with
multiple sources which are, in fact, subsamples of the one same image. We showed how
statistical properties of images can be used to disambiguate the problem and achieve a
satisfactory recovery of the filters and of the original image. The advantage of using
this method is that it can be applied to a wide range of filters without further assumption
than their smoothness. In future work, one may want to apply other types of regular-
ization to the image or the filters. The most promising lead is the TV regularization [3]
which would be available as a usable technology very soon. The other possibility of
improvement is the extension to the case where the made algebraic assumptions fail to
be true, in such cases subspace method happens to be very unstable. We may apply the
ideas presented here to stabilize the problem.
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Notations

Signals or images :

o X
— signal : stacks thé& output signals of siz&" and is of siz§ LN, 1) :
Xl
X=| : | wherex!= (), ... 24 )" (1)
XL
— image : stacks thé observed imageX', for [ = 1 to L, more precisely, a
vectorized formulation of a processing windowed area, of &g, N,),
extracted from the observed images :
X' =[N, - 1,N, — 1) (N, =2, N, — 1) --- 21(0,0)]" (2)
o D:

— signal : is the unknown original signal of siz& + M — 1,1)

— image : is a vectorized formulation of the related windowed area of the
original image of siz¢ N, + M, — 1, N, — M, — 1),

D = [d(N, + M, —2,N, + M, —2)--- d(0,0)]" (3)

Subsampled signal or images :

e D, : (signal) forp = 0 to P — 1, denotes a subsampled componenbof
Dy =[dydpsp - dpr(nim—2yp)”  (m+m—1,1) (4)
e D, », : (images) is a vectorized form of

dpupz dpl,p2+P s dp17p2+P(3:z_1)
D . . .

P1,p2

Api+P(sy—1),0  py+P(sy—1),P -+ dp,4P(sy—1),p2+P(sa—1)

forall pi,ps =0: P — 1, wheres, = n, +my — 1 ands, = n, + m, — 1.
Note that we use the same notation for the vectorized and the matrix forms of
Dpl’pz

29



Filters:
e H : the filters coefficients

Hl
L
o H':

— 1D : is afilter of sizg(M, 1) :

H' =[nl...n5, 4]
— 2D :is afilter of sizg(M,,, M)

Rr'(0,0) hL(0, M, — 1)
Hl = . .
hY(M, —1,0) ... RY(M,—1,M, —1)

e H] : (1D) one of theP subsampled components of the filgt
Hy =[Py hpip - hpi(m-1p ]

e H! _ :(2D) one of theP? polyphase components of the filtEi

P1,P2
l l
lhpl,m T lhpl,pQ—O—(mm—l)P
H . hp1+P,pz T hp1+P,pz+(mm71)P
P1,P2 . .
h! Rt

P1+(my_1)PvP2 p1+(my—1)P,p2+(mm—1)P

e H: (2D) a formulation ofH in terms of its polyphase components

H= (Hoo ... Hp_1p_1)
where .
HPI;PQ
Hm,pz =
L
le,PQ

Filtering matrices:
o H:
— signal : stacks thé Toeplitz matriceg+' :
Hl
H=| : (LN,N+M —1)
HL

30

(6)

(7

8

©)

(10)

11)

12)

(13)



whereH!, for | = 1 to L, is the filtering matrix associated to the filtEY :
L L 0
H = (N,N+M-1) (14)
0 Y
— image : stacks thé& block-Toeplitz filtering matriceg(' associated with
each filtersH' :
Hlo H]Mrl 0
H =1 -. (15)
0 H(l) e Hé\lel
where! is a Toeplitz matrix of sizé N, , N, + M, — 1) associated to
the j** column of H' :
hl(07]) hl(Myilaj) 0
I _ . .
H; = 3 3 (16)
0 h0,7) hH (M, —1,7)
H! containsN,, rows of blocks andV, + M, — 1 columns of blocks of size
(Ny, Ny+M,—1). Hisof size(LNyN, , (N, + M, —1)(N, + M, — 1))

° Hi, : (signal) the filtering matrix associated@

hl, h§7+P h;+(m71)P 0
L _ . .
H, = . . (n,n+m—1) (17)
0 hy  hpip e Mt m-1)p
. Héhpz : (image) is the block-Toeplitz matrix of size,n,, s, s,) associated to
the filter H., .

e Hp g : the filtering matrix of the MIMO system

— signal :
HS ... Hb_,
: : (18)
HE ... HE
— image :
Hé,o H11D71,P71
: : (29)
H(ﬁo H1]11,1L1
o H,, p, - (image) a block column of the filtering matrix ., r
Hill71~,}72
Hpipo = | (20)
H1€17P2
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