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Superrésolution aveugle d’images par la méthode des sous-espaces

Résumé:
Les méthodes de sous-espaces sont un outil puissant d’identification aveugle des fil-
tres par l’étude de statistiques du second ordre de plusieurs sorties issues d’une même
source (problème dit SIMO). L’extension de ce problème au cas de sources multiples
peut être envisagée, et a été développée dans la littérature.

Dans ce rapport, nous montrons comment ces méthodes permettent de résoudre le prob-
lème de superrésolution aveugle. Nous présentons tout d’abord le problème de superré-
solution comme un problème à entrées multiples et à sorties multiples (MIMO). Nous
montrons que la méthode de sous-espace ne peut être utilisée seule pour retrouver les
filtres affectant chaque image, et nous proposons deux solutions possibles utilisant les
propriétés statistiques des images pour résoudre le problème. Nous présentons des
résultats expérimentaux qui valident notre approche.

Abstract :

Subspace methods are a powerful tool to recover unknown filters by looking at the sec-
ond order statistics of various signals originating from the same source (also called a
SIMO problem). An extension to the multiple source case is also possible and has been
investigated in the literature.

In this report we show how the blind superresolution problem can be solved by this
tool. We first present the problem of superresolution as a multiple input multiple out-
put (MIMO) one. We show that the subspace method can not be used, as is, to recover
the filters affecting each image, and we present two possible solutions, based on the
statistical characteristics of the images to solve this problem. Experiments are shown
which validate these ideas.
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Introduction

The subspace method has been introduced by [7] and further investigate in a multitude
of papers [1, 5, 6, 8]. The idea of the method is to observe multiple outputs of various
unknown filters having all the same input (namely SIMO system). In this case, the
second order statistics of the received signals carry enough information to allow the
recovery of the filters and furthermore the recovery of the original signal.
The main application that authors had in mind was to conceive wireless protocols in
a varying environment, in which no training sequence have to be transmitted. Indeed,
in such an environment, the filters that affect the signal can change and have to be re-
learned very often. Being able to learn them without the use of a training signal would
be a great asset and could save an important amount of bandwidth.
Extensions to the case where a multitude of signals are transmitted through the same
channel (namely MIMO systems) have been investigated [1, 5]. In this late approach,
a crucial step is the use of a source separation technique.

We investigate the possibility of using the subspace method in the context of image
superresolution. More precisely, we observe a known number of images of the same
scene acquired through various filters and subsampled (the subsampling accounts for
the aliasing that occurs in every image acquisition process). We would like to recover
the original image and do so in two steps: the first step is to recover the filters using the
subspace technique, the second step is to apply a regularized inversion to the observed
images in order to recover the original scene.

This report is divided as follows:
Chapter 1 presents the subspace method for 1D signal and images, in order to provide
the reader with a self contained overview.
Chapter 2 states the problem of superresolution as a multiple input multiple output
(MIMO) one, in which the multiple inputs are the various subsampled versions of the
image (they differ by a translation). This presentation allows us to understand that:

• The separation of sources is impossible in the case of superresolution because the
sources are very correlated with each other and have exactly the same statistics
(Section 2.2).

• The subspace method provides us with a mixture of the actual filters. Therefore,
we have to implement a method to unmix and recover the actual filters. In the
same time, the subspace method allows us to restrain the search for the filters
to a relatively small affine space. In Section 2.3, we introduce our method to
disambiguate the results of the subspace method and recover the actual filters.

In Chapter 3, we provide the restoration step based on the minimization of a functional
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including a data driven term and a regularization one.
Finally, Chapter 4 presents experimental results for both filters recovery and signal/image
restoration based on this recovery.
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Chapter 1

The subspace method

In this chapter, we present the subspace method such as developed by [6] for 1D sig-
nals. This method, first introduced by [7], considers multi output systems. This allows
the use of second order statistics of the outputs, instead of higher order statistics, to
identify blindly the filters. This method, under some mild assumptions, estimates the
noise and signal subspaces from the eigenvalue decomposition of the autocorrelation
matrix of the outputs, and exploits the orthogonality between this subspaces to identify
the filter coefficients.
First, we state the problem for 1D signals and extend the formulation to images, then,
we develop the subspace method for images. We refer the reader to [6] for a presenta-
tion of the subspace method for 1D signals.

1.1 Problem statement

1.1.1 1D signals

Let us considerL signalsX l as noisy outputs of an unknown system driven by an
unknown inputD. We aimed to identify the system functionH blindly, i.e. using only
the outputs of the system.
The outputs are described by a convolution model:

X l(.) = H l(.) ∗D(.) + B(.) (1.1)

where∗ denotes the convolution, andB is a white zero-mean noise.

Using a matrix formulation, we can write :

X = HD + B (1.2)

where

• X stacks theL output signals of size(N, 1) :

X =

X1

...
XL

 =
(
x1

0 . . . x1
N−1 . . . xL

0 . . . xL
N−1

)T
(1.3)
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• H stacks theL Toeplitz matricesHl :

H =

H1

...
HL

 (LN, N + M − 1) (1.4)

whereHl, for l = 1 to L, is the filtering matrix associated to the filterH l of size
(M, 1) :

H l = [hl
0 . . . hl

M−1]
T (1.5)

i.e. :

Hl =

 hl
0 . . . hl

M−1 0
...

...
0 hl

0 . . . hl
M−1

 (N,N + M − 1) (1.6)

• D is the unknown original signal of size(N + M − 1, 1),

• and B is a white zero-mean noise, assumed to be uncorrelated withD.

1.1.2 Images

Let us considerL blurred images acquired by multiple cameras, or by a single camera
through different conditions (focus changes, camera motion...). TheL observed images
are modeled as noisy outputs of a FIR systemH driven by an input original imageD :

X = HD + B (1.7)

where :

• X stacks theL observed imagesX l, for l = 1 to L, more precisely, a vectorized
formulation of a processing windowed area, of size(Ny , Nx), extracted from
the observed images :

X l = [xl(Ny − 1, Nx − 1) xl(Ny − 2, Nx − 1) · · · xl(0, 0)]T (1.8)

• D is a vectorized formulation of the related windowed area of the original image
of size(Ny + My − 1, Nx −Mx − 1),

D = [d(Ny + My − 2, Nx + Mx − 2) · · · d(0, 0)]T (1.9)

• H stacks theL block-Toeplitz filtering matricesHl associated with each filters
H l of size(My,Mx)

H l =

 hl(0, 0) . . . hl(0,Mx − 1)
...

...
hl(My − 1, 0) . . . hl(My − 1,Mx − 1)

 (1.10)

i.e. :

Hl =

 Hl
0 · · · Hl

Mx−1 0
...

...
0 Hl

0 · · · Hl
Mx−1

 (1.11)
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whereHl
j is a Toeplitz matrix of size(Ny , Ny + My − 1) associated to thejth

column ofH l :

Hl
j =

hl(0, j) . . . hl(My − 1, j) 0
...

...
0 hl(0, j) . . . hl(My − 1, j)

 (1.12)

Hl containsNx rows of blocks andNx + Mx − 1 columns of blocks of size
(Ny , Ny +My − 1). H is of size(LNyNx , (Ny + My − 1)(Nx + Mx − 1)),

• andB is a white zero-mean noise, assumed to be uncorrelated withD.

1.2 The subspace method for SIMO systems

Let RX denotes the autocorrelation matrix of the outputsX:

RX = E(XXT ) (1.13)

whereE denotes the expectation operator.RX is of size(LNxNy , LNxNy).

From equation (1.2) we deduce that:

RX = HRDHT + RB (1.14)

whereRD andRB denote respectively the autocorrelation matrices of the inputD and
the noiseB. We recall that the noise is assumed to be uncorrelated with the input.

From now on, we make two assumptions:

1. H is full column rank, a necessary condition is :

LNyNx > (Nx + Mx − 1)(Ny + My − 1) (1.15)

2. andRD is full rank.

We deduce from eq. (1.14) and thanks to these assumptions, that the signal part of the
autocorrelation matrixRX , i.e.HRDHT , has rank

dH = (Nx + Mx − 1)(Ny + My − 1) (1.16)

Through an eigenvalue decomposition ofRX , we obtain a subspace decomposition
between the signal and noise subspaces:

• The signal subspace is spanned by the eigenvectors associated with thedH largest
eigenvalues ofRX

• The noise subspace, its orthogonal complement, is spanned by the eigenvectors
associated with theLNxNy − dH smallest eigenvalues ofRX .

The signal subspace is also the subspace spanned by the columns of the filtering matrix
H.
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By orthogonality between signal and noise subspaces, we deduce that each vector of
the noise subspace is orthogonal to each column of the filtering matrix.
Let Gi denotes an eigenvector associated with one of theLNxNy − dH smallest
eigenvalues of the matrixRX . The orthogonality condition can be formulated, for
i = 0 : LNxNy − dH − 1, as:

GT
i H = 0(1,dH)

(1, LNyNx)(LNyNx, dH) (1.17)

where0(1,dH) is a null vector of size(1, dH).

Since we have only an estimate of the autocorrelation matrix, the orthogonality con-
dition is solved using a least square method. This leads to the minimization of the
quadratic form:

q(H) =
LNxNy−dH−1∑

i=0

|GT
i H|2 (1.18)

Thanks to the following structural lemma, we provide an expression of the quadratic
form in terms of the filter coefficients instead of the filtering matrix :

Lemma 1:

GT
i H = HTGi (1.19)

You can find a proof of this lemma in [6].

In this expression, the matrixGi, for i = 0 : LNxNy − dH − 1, denotes a matrix of
size(LMyMx , dH). This matrix is constructed as follows:

• Each eigenvectorGi, for i = 0 toLNxNy − dH − 1 is partitioned intoL vectors
Gl

i of size(NyNx , 1).

• Each partGl
i can be considered as a vectorized formulation of the matrix:

Gl
i =

 gl
i(0, 0) . . . gl

i(0, Nx − 1)
...

...
gl

i(Ny − 1, 0) . . . gl
i(Ny − 1, Nx − 1)

 (1.20)

Note that we use the same notation for both the matrix form or the vectorized
form of Gl

i, as the reader can easily differentiate them by looking at the size of
Gl

i in the given expression.

• Let us define the block-Toeplitz matrixGl
i as the “filtering” matrix associated to

Gl
i. The term “filtering” points out that we obtainGl

i from Gl
i in the same way

we obtainHl from H l (see eq. (1.11) and (1.12)).

Gl
i =

 Gl
i,0 · · · Gl

i,Nx−1 0
...

...
0 Gl

i,0 · · · Gl
i,Nx−1

 (1.21)
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whereGl
i,j is a Toeplitz matrix of size(My , My + Ny − 1) associated to the

jth column ofGl
i in the matrix form (see eq. (1.20)):

Gl
i,j =

gl
i(0, j) . . . gl

i(Ny − 1, j) 0
...

...
0 gl

i(0, j) . . . gl
i(Ny − 1, j)

 (1.22)

Gl
i containsMx rows of blocks andMx + Nx − 1 columns of blocks of size

(My , My + Ny − 1).

• Finally,Gi stacks theL matricesGl
i and is of size(LMyMx, dH).

The quadratic form is now expressed in terms of the filter coefficients:

q(H) = HT QH where Q =
LNxNy−dH−1∑

i=0

GiGT
i (1.23)

The filter coefficients are identified, up to a constant, by the minimal eigenvector ofQ.
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Chapter 2

Extension to subsampled signals

We now extend the subspace-based method to the case of subsampled observed im-
ages. The subsampling accounts for the aliasing that occurs in every image acquisition
process. The purpose is to estimate, from the low-resolution observed images, a de-
convolved image at a higher resolution: this problem is called superresolution. To this
end, we assume that the original image is filtered byL high-resolution filters, and the
L output images are then subsampled by a factorP . The estimation is blind, i.e. we do
not know the filters.
In this chapter, we first state the problem of superresolution as a MIMO one, for 1D
signals and for images (section 2.1). Then, in section 2.2, we focus on the limits of
the subspace method for MIMO systems. For MIMO systems, the subspace method
provide only a mixture of the filters, and no more the actual filters, such as in the SIMO
case. Source separation methods have been used to unmix the result of the subspace
method and retrieve the actual filters, but these methods assume that the input signal
are not correlated. In our case, the inputs are strongly correlated as they are the vari-
ous subsampled version of the same image. We present in section 2.3 our method to
disambiguate the mixture, and provide the actual filter, for subsampled input signals.

2.1 Problem statement

2.1.1 1D signals

Each observed signalX l is modeled as a noisy output of a FIR system driven by an
inputD (see eq. (1.2) page 8) :

X l = Hl D + Bl

(N, 1) (N,N + M − 1) (N + M − 1, 1) (N, 1) (2.1)

whereHl is the filtering matrix associated to the filterH l, for l = 1 to L.

After the convolution step, the output signals are subsampled by a factorP . These
subsampled signals, denotedX l

LR, can be deduced fromD following :

X l
LR = Hl

LR D + Bl
LR

(n, 1) (n, P (n + m− 1)) (P (n + m− 1), 1) (n, 1) (2.2)
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where n = N
P , m = M

P andD is the original signal cut by itsP −1 last samples. Note
that we assume thatN andM are multiples ofP .

We obtain the filtering matrixHl
LR by extracting one row everyP from the filtering

matrixHl. If Hl is written by :

Hl =


hl

0 . . . hl
M−1 0 . . . . . . 0

0 hl
0 . . . hl

M−1 0 . . . 0
...

...
...

...
0 . . . 0 hl

0 . . . hl
M−1 0

0 . . . . . . 0 hl
0 . . . hl

M−1

 (N,M + N − 1)(2.3)

the filtering matrixHl
LR is written by :

Hl
LR =



hl
0 . . . hl

M−1 0 . . . . . . 0
0 . . . 0︸ ︷︷ ︸
P zeros

hl
0 . . . hl

M−1 0 . . . 0

...
...

...
...

0 . . . 0 hl
0 . . . hl

M−1 0 . . . 0︸ ︷︷ ︸
P zeros

0 . . . . . . 0 hl
0 . . . hl

M−1


(n, P (m + n− 1))(2.4)

Let us denoteH l
p the subsampled component of the filterH l, we also name it a

polyphase component ofH l :

H l
p =

[
hp hp+P . . . hp+(m−1)P

]
(2.5)

The filtering matrix associated toH l
p is denoted byHl

p and is of the form :

Hl
p =

 hl
p hl

p+P . . . hl
p+(m−1)P 0

...
...

0 hl
p hl

p+P . . . hl
p+(m−1)P

 (n, n + m− 1)(2.6)

By switching on purpose the columns ofHl
LR, we obtain an expression ofHl

LR in
terms of the filtering matrices associated to the polyphase components of the filterH l :

Hl
LR =

0BBBBBB@
hl
0 hl

P . . . hl
(m−1)P

0

. . .
. . .

0 hl
0 hl

P . . . hl
(m−1)P| {z }

Hl
0

. . .

hl
P−1 hl

2P−1 . . . hl
mP−1 0

. . .
. . .

0 hl
P−1 hl

2P−1 . . . hl
mP−1| {z }

Hl
P−1

1CCCCCCA (2.7)

By switching at the same time the relating rows ofD, we obtain an expression ofD in
terms of its subsampled component :

D =

 D0

...
DP−1

 (2.8)

whereDp, for p = 0 to P − 1, denotes a subsampled component ofD :

Dp = [dp dp+P . . . dp+(n+m−2)P ]T (n + m− 1, 1) (2.9)
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Equation (2.2) can be written as :

X l
LR =

(
Hl

0 . . . Hl
P−1

)  D0

...
DP−1

 + Bl
LR

(n, 1) (n, P (n + m− 1)) (P (n + m− 1), 1) (n, 1)

(2.10)

Let us illustrate this step by an example :

D = [d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10]T denotes a signal of sizeM + N − 1 = 11,
filtered byH l = [h0 h1 h2 h3 h4 h5] of sizeM = 6, and noisy.
The resulting observed signal, denoted byX l = [x0 x1 x2 x3 x4 x5], is of sizeN = 6.
The output signalX l is related toD following :


x0

x1

x2

x3

x4

x5

 =


h0 h1 h2 h3 h4

0 h0 h1 h2 h3

0 0 h0 h1 h2

0 0 0 h0 h1

0 0 0 0 h0

0 0 0 0 0

h5 0 0 0 0 0
h4 h5 0 0 0 0
h3 h4 h5 0 0 0
h2 h3 h4 h5 0 0
h1 h2 h3 h4 h5 0
h0 h1 h2 h3 h4 h5





d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10


+ Bl (2.11)

Then the output signal is subsampled by a factorP = 3 and the subsampled output
signalX l

LR is expressed by :

(
x0

x3

)
=
(

h0 h1 h2 h3 h4 h5 0 0 0
0 0 0 h0 h1 h2 h3 h4 h5

)


d0

d1

d2

d3

d4

d5

d6

d7

d8


+ BLR

l (2.12)

By switching the columns of the filtering matrix, and at the same time the rows of the
original signal, we obtain :

(
x0

x3

)
=
(

h0 h3 0 h1 h4 0 h2 h5 0
0 h0 h3 0 h1 h4 0 h2 h5

)


d0

d3

d6

d1

d4

d7

d2

d5

d8


+ BLR

l (2.13)
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The filtering matrix can be partitioned into three sub-matrices :

Hl
0 =

(
h0 h3 0
0 h0 h3

)
Hl

1 =
(

h1 h4 0
0 h1 h4

)
Hl

2 =
(

h2 h5 0
0 h2 h5

)
(2.14)

which can be seen as the filtering matrices of the polyphase componentsH l
0 = [h0 h3]T ,

H l
1 = [h1 h4]T , andH l

2 = [h2 h5]T .
Let us denotesD0 = [d0 d3 d6], D1 = [d1 d4 d7] andD2 = [d2 d5 d8]. Dp, for p = 0
to P − 1, is a subsampled components of the original signal.

Subsampled output signalX l
LR can be expressed in terms of the subsampled compo-

nents of the original signal D :

XLR
l =

(
Hl

0 Hl
1 Hl

2

)D0

D1

D2

+ BLR (2.15)

Through this example, and in a more general case, we show that the superresolution
problem can be stated as a multiple input multiple output (MIMO) system, more pre-
cisely aP input andL output system, where the inputs are the subsampled components
of the original signal.X1

LR
...

XL
LR

 =

H1
0 . . . H1

P−1
...

...
HL

0 . . . HL
P−1


 D0

...
DP−1

 + BLR

(Ln, 1) (Ln, P (n + m− 1)) (P (n + m− 1), 1) (Ln, 1)

(2.16)

2.1.2 Images

Each observed imageX l, l = 1 : L, is modeled as a noisy output of a FIR systemHl

driven by an input imageD (see section 1.1.2):

X l = HlD + Bl (2.17)

Then, the outputs are subsampled by a factorP :

X l
LR = Hl

LRD + Bl
LR (2.18)

In this expression :

• X l
LR is a subsampled component ofX l, of size(nxny, 1),

wherenx = Nx

P andny = Ny

P ,

• D is the same as in equation (2.17), apart from the lastP − 1 rows and columns
which are truncated,

• Hl
LR is defined by extracting one row everyP from the matrixHl

and is of size(nxny, dh), as we discard all the null columns,
wheredh = P 2(nx + mx − 1)(ny + my − 1), mx = Mx

P andmy = My

P .
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By switching on purpose the columns ofHl
LR (and at the same time the rows ofD)

in equation (2.18), the subsampled output images can be related to the subsampled
components of the original image:

X l
LR =

(
Hl

0,0 Hl
0,1 . . . Hl

P−1,P−1

)


D0,0

D0,1

...
DP−1,P−1

+ Bl
LR (2.19)

where :

• Dp1,p2 is a vectorized subsampled component of the input imageD, i.e., if

D =

 d0,0 . . . d0,Sx−1

...
...

dSy−1,0 . . . dSy−1,Sx−1

 (2.20)

whereSy = Ny + My − 1 andSx = Nx + Mx − 1,
thus, for allp1, p2 = 0 : P − 1, thenDp1,p2 is a vectorized form of

Dp1,p2 =

 dp1,p2 dp1,p2+P . . . dp1,p2+P (sx−1)

...
...

...
dp1+P (sy−1),0 dp1+P (sy−1),P . . . dp1+P (sy−1),p2+P (sx−1)


(2.21)

wheresy = ny + my − 1 andsx = nx + mx − 1,
note that we use the same notation for the vectorized and the matrix forms of
Dp1,p2 ,

• andHl
p1,p2

is the block-Toeplitz matrix of size(nynx, sysx) associated to the
filter

H l
p1,p2

=


hl

p1,p2
. . . hl

p1,p2+(mx−1)P

hl
p1+P,p2

. . . hl
p1+P,p2+(mx−1)P

...
...

hl
p1+(my−1)P,p2

. . . hl
p1+(my−1)P,p2+(mx−1)P

 (2.22)

one of theP 2 polyphase components of the high resolution filterH l (see eq. (1.10)).

By stacking all vectors and matrices coming from equation (2.19) for alll = 1 : L, we
obtain the following model:X1

LR
...

XL
LR

 =

H
1
0,0 . . . H1

P−1,P−1
...

...
HL

0,0 . . . HL
P−1,P−1


 D0,0

...
DP−1,P−1

+ BLR (2.23)

The superresolution problem is now expressed like a multiple input multiple output
problem. In multiple input systems, the inputs usually come from different sources,
and are considered as independent from each other [5]. In our case, the inputs are the
different subsampled components of the same source image and are therefore strongly
correlated.
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2.2 Limits of the subspace method

In this section, we show that, for subsampled images, the subspace method is not suf-
ficient to determine the filters, but provide an identification up to a(P 2, P 2) mixing
matrix.

Let us callRLR
X the autocorrelation matrix of theL subsampled imagesX l

LR.
If we apply the subspace method, we find that the eigenvectors, denotedGi, associated
to thedh = P 2(ny +my−1)(nx +mx−1) greater eigenvalues ofRLR

X span the signal
subspace, and that the eigenvectors associated to theLnynx − dh smaller eigenvalues
of RLR

X span the noise subspace.

The orthogonality condition between noise and signal subspaces is expressed by:

GT
i Hp1,p2 = 0(1,sysx)

(1, Lnynx) (Lnynx, sysx) (1, sysx) (2.24)

wherei = 0 : Lnynx − dh − 1, 0(1,sysx) is a null vector of size(1, sysx),
andHp1,p2 a block column of the filtering matrix in equation (2.23).

Hp1,p2 =

H
1
p1,p2
...

HL
p1,p2

 (2.25)

The structural lemma (see eq. (1.19)) provide an expression of the orthogonality con-
dition in terms of the polyphase components of the filters instead of the columns of the
filtering matrix:

HT
p1,p2

Gi = 0(1,sysx) where Hp1,p2 =

H1
p1,p2
...

HL
p1,p2

 (2.26)

whereGi is a (Lmymx, sysx) filtering matrix defined from the eigenvectorsGi, and
Hp1,p2 , for p1, p2 = 0 : P − 1 is of size(Lmymx, 1).

By stacking the contributions of all the polyphase components of the filters, we obtain:

HTGi = 0(P 2,sysx) where H =
(
H0,0 . . . HP−1,P−1

)
(2.27)

The minimization of the quadratic form associated to the orthogonality condition pro-
vide a set ofP 2 vectors, denotedV. We can not distinguish these eigenvectors using
only the orthogonality condition. Indeed, each column ofV is in the null space of the
quadratic form, thereforeH is a combination of theP 2 columns ofV. We can identify
the filtersH only up to a reversible(P 2, P 2) mixing matrix denotedMX , such as:

H = VMX (2.28)

Source separation methods have been used to estimate such a matrix [1, 5], but these
methods usually state the assumption that the input signals are uncorrelated. This is
not our case, as the inputs are the different subsampled components of the same source
image.
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2.3 Evaluation of the Mixing Matrix

The determination of the matrixMX is, as we showed theoretically, impossible in the
case where the mixed sources (here the polyphase components of an image) have the
same distribution.
Despite this fact, we try to estimate the mixing matrix by introducing some prior knowl-
edge on the statistics of the image or the filters. Indeed, natural images have a spectrum
which is far from constant (as in the case of a white noise or a compressed signal). On
the other hand, filters that are encountered in image processing are often very smooth
with a single local (and global) maximum at the origin, whereas a multi-reflection filter,
that affects wireless communications, can be irregular and display a multitude of local
maxima. The subspace method was designed to deal with such irregular filters, with
the counterpart that the sources are of different statistical nature, allowing an efficient
separation of sources.

In this section we will use a continous notation, and the Fourier transform of a sampled
signal at rate 1 will live in[−1/2, 1/2] whereas the Fourier transform of a subsampled
version at rate P, will live in[−1/2P, 1/2P ]. TheH̃ l will refer to the estimated filters
we are trying to define.

2.3.1 Imposing Regularity of the Filters

First, let us see what happens when some regularity is imposed to the filters. We do so
by minimizing a certain regularity measure of the filters under the constraint that the
integral of each filter is one1.

Two principal choices have been proposed for the measure of filters regularity. The first
one (which presents the advantage of a low computational cost) is the integral of the
squared norm of the gradient (theH1 norm [10]). The other one is the integral of the
gradient (the total variation norm [9]). The first choice may lead to smooth solutions
and disadvantages the non continuous filters (such as motion blur). Nevertheless, we
use thisH1 criterion, for two reasons:

• We search for the best solution in a small-dimensional affine space (namely the
vector space in whichMX lives intersected with the affine space represented by
the constraint

∫
H l(x)dx = 1). In such a case, the smoothing effect of theH1

norm compared to theTV norm could be ignored.

• The computational cost of such a minimization is much smaller than theTV one
(see for example [2] for the numerical intricacy of TV minimization, although
recent advances have been made [3] but are not, as is, applicable to our problem).

J1(H̃1, ..., H̃L) =
∑

l

∫ ∥∥∥∇H̃ l
∥∥∥2

2
. (2.29)

1This is a physical requirement for imaging filters. It may not be true if different images have been
acquired under different illumination conditions. In this case, the mean of each image gives a very accurate
estimation of the integral of the filter that generated it.
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2.3.2 Imposing Similarity of the Double-Filtered Images

In the following we take advantage of the fact that we have multiple views of the same
original scene to recover the filters (which implies the estimation ofMX ). Let’s assume
that we have two versions of the same imageI1 andI2 formed after being filtered by
F1 andF2, and that we have two candidatesF̃1 andF̃2: we can check easily if these
candidates are reasonable or not. Indeed filteringI2 using F̃1 should yield the same
result as filteringI1 usingF̃2.

Based on this simple observation, we define a functional which should be minimized
by our computed filters:

J2(H̃1, ..., H̃L) =
k,l=L∑
k,l=1

∥∥∥H̃ l ∗Xk − H̃k ∗X l
∥∥∥2

2
. (2.30)

whereXk are the observed images andH̃k are the estimated filters.
Note that we don’t have access to a fully sampled version of theXk, thus we interpret
the convolutions that occur in (2.30) as the product of the low frequencies of the filter
H̃ with the Fourier transform ofX, squaring the result and summing over the low-
frequency domain.

We define2‚‚‚H̃l ∗Xk − H̃k ∗Xl
‚‚‚2

2
=

Z 1
2P

− 1
2P

˛̨̨̨
ˆ̃

Hl(u)X̂k(u)−
ˆ̃

Hk(u)X̂l(u)

˛̨̨̨2
du (2.31)

This last functional could be the perfect criterion if no subsampling were present. In-
deed,J2 is null in a noise-free, well-sampled setting only if the filters are the real
filters (after checking thatJ2 is a positive definite quadratic form). Unfortunatly the
subsampling that affects our images is expressed by :∣∣∣Ĥ l(u)X̂k(u)− Ĥk(u)X̂ l(u)

∣∣∣2
=

∣∣∣∣∣Ĥ l(u)
P−1∑
n=0

X̂0(u +
n

P
)Ĥk(u +

n

P
)− Ĥk(u)

P−1∑
n=0

X̂0(u +
n

P
)Ĥ l(u +

n

P
)

∣∣∣∣∣
2

=

∣∣∣∣∣
P−1∑
n=1

X̂0(u +
n

P
)
(
Ĥk(u)Ĥ l(u +

n

P
)− Ĥ l(u)Ĥk(u +

n

P
)
)∣∣∣∣∣

2

(2.32)

for u ∈ [− 1
2P , 1

2P ],
where theHk are the actual filters andX0 is the original image.

CriterionJ2 being not null when applied to the actual filters prevents us from conclud-
ing that its minimum is obtained for those filters. Nevertheless, images have a strong
low-frequency component. This means that the minimizing filters forJ2 must reduce

as much as possible the terms of the form| ˆ̃Hk(u)X̂0(u) − ˆ̃H l(u)X̂0(u)|2, because
these terms dominate the others (see [11] for a review of proposed statistical models
of images). As the experiments will show it, the error introduced by the aliasing is

2We use a one dimensional notation to simplify the equations, we consider an infinite-size discrete signal
subsampled at rateP . The hat denotes the time-discrete Fourier transform of a signal
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neglictable and does not lead to a noticeable error in the recovery of the filters.
One can also say that the high frequency components of the filters are not taken into
account. Although this point is correct, the filters, thanks to the subspace method,
are constrained to live in a small-dimensional affine space, thus controlling the low
frequency part of them is sufficient to yield a positive definite quadratic form on the
subspace the filters live in.
In the next section we see how these two ideas can be applied to the disambiguation of
the mixing matrixMX .
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Chapter 3

Restoration

Once the filters are estimated, the recovery of the original image can take place. The
recovered imageDopt must satisfy some straightforward conditions, namely :

• The image filtered by the estimated filtersH l and subsampled must be close to
the observed images, which yields the first data-driven functional:

A(Dopt) =
L∑

l=1

∥∥SP (H l ∗Dopt)−X l
∥∥2

2
, (3.1)

SP being the subsampling operator at rateP .

• Since the observed images are affected by noise and, most importantly, the filters
we computed are estimates of the actual ones, a regularization functional must
also be minimized:

R(Dopt) =
∫

‖∇Dopt‖2
2 (3.2)

These two criteria sum up to the minimization of a single functional given by:

J3(Dopt) = A(Dopt) + λR(Dopt), (3.3)

Let us denoteAl the operator including the convolution by the filterH l followed by
the subsampling operator at rateP :

Al(D) = SP (H l ∗D), (3.4)

for l = 1 to L.

The minimumDopt is obtained by solving the following system:(
L∑

l=1

AT
l Al + λ CT C

)
Dopt =

L∑
l=1

AT
l X l (3.5)

whereC denotes the gradient operator.
The system is solved in the frequency domain, as the operations of convolution and
subsampling benefit from an easy and fast implementation.
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First let us study the operatorAl: this operator provides the convolution of the input
signalD with the filter H l and subsamples the result at a rateP . In the frequency
domain, this operation is equivalent to multiply the Discrete Fourier Transform (DFT)
of the input signal, denoted̂D, by the DFT of the filterH l, denotedĤ l, and then to
take into account the aliasing resulting from the subsampling :

ÂlD(w) = D̂(w) Ĥ l(w) + D̂(w + N) Ĥ l(w + N) + · · ·

+ D̂(w + (P − 1)) Ĥ l(w + (P − 1)N) (3.6)

where the DFT of each low resolution signal are computed onN uniformly-spaced
samples.

Now we focus on the operatorAT
l : this operator provides the upsampling of the input

signal at a rateP , followed by the convolution of the result by the filter(H l)H , the
conjugate transpose ofH l.

AT
l (D) = (H l)T ∗ SP (D) (3.7)

In the frequency domain, this operation is equivalent to duplicateP times the spectrum
of D, weighted by1

P , then to mutiply the result by(Ĥ l)H :
ÂT

l D(w)

ÂT
l D(w + N)

...

ÂT
l D(w + (P − 1)N)

 =
1
P


Ĥ l

∗
(w)

Ĥ l
∗
(w + N)

...

Ĥ l
∗
(w + (P − 1)N)

 D̂(w) (3.8)

wherew = 1 : N andĤ l
∗
(w) is the conjugate of̂H l(w).

We deduce the formulation of the equation (3.5) in the fourier domain :(
1
P

L−1∑
l=0

(
(Ĥl)H(w) Ĥl(w)

)
+ λ Ĉ2(w)

)
D̂opt(w) =

1
P

L−1∑
l=0

(Ĥl)H(w) X̂LR
l (w)(3.9)

where

Ĥl(w) =
[
Ĥ l(w) Ĥ l(w + N) · · · Ĥ l(w + (P − 1)N)

]
(3.10)

D̂opt(w) =
[
D̂opt(w) D̂opt(w + N) · · · D̂opt(w + (P − 1)N)

]
(3.11)

Ĉ2(w) =
[
|Ĉ(w)|2 |Ĉ(w + N)|2 · · · |Ĉ(w + (P − 1)N)|2

]
(3.12)

andw = 1 : N .
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Chapter 4

Applications

We want to estimate a deconvolved image, at a resolution increased by a factorP = 2,
from a set ofL = 6 low-resolution images of the same scene, filtered by6 different
unknown filters. This can be expressed as a4 input6 output system.

To evaluate the results with an objective criterion, the psnr (see eq. (4.1)), we have to
simulate this case: we filter a known original imageD with 6 known filtersH, and
then subsample the outputs by a factorP = 2 in each directions.

PSNR(D,Dest) = 10 log10

(max(D)−min(D))2

MSE(D,Dest)
(4.1)

whereMSE is the mean squared error between the imagesD andDest.

The original imageD is (576, 720), and the windowed area of study(10, 10). The
filters are(6, 6) 2D-Gaussian centered at a random point with standard deviations:
0.7, 0.9, 1, 1.1, 1.3, 1.5.
To recover the filters, we use a weighted sum of the two criteria on the filters, defined
in eq. (2.29) and eq. (2.30) page 19:αJ1 + (1 − α)J2. Note thatJ1 andJ2 are
normalized so their minimal eigenvalue is 1.
We obtain a psnr of22.12 dB for α = 1, and a psnr of21.46 dB for α = 0. The results
are better when the two criteria are mixed, in our case forα = 0.04, the filters are
recovered with a psnr of26.17 dB.

We present experimental results obtained with the observed output subsampled images
and the filters estimated below.
Figure 4.1 shows3 of the6 output images, from the less blurred on the left, to the the
more blurred on the right.
Figure 4.2 shows the restored image (psnr = 26.78 dB with λ = 10−3 in eq. (3.3) )
versus the original image.
To better display the results, we focus on a window area of the less blurred output
image, and the related window area in the superresolved image, and display them at
their exact size (figure 4.3). For comparison purposes, a bilinear interpolation of the
output image area and the related window in the original image are also given.
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Figure 4.1:3 of the6 output images: frame 1,3 and 6

Figure 4.2: upper : the original image, down : the restored image
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Figure 4.3: upper left : the 1st observed image; upper right : the restored image; down
left : the bilinear interpolation; down right : the original image
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Chapter 5

Conclusion

In this work we showed how the subspace method may be applied to image superres-
olution. We showed that this method is intrinsically ambiguous when presented with
multiple sources which are, in fact, subsamples of the one same image. We showed how
statistical properties of images can be used to disambiguate the problem and achieve a
satisfactory recovery of the filters and of the original image. The advantage of using
this method is that it can be applied to a wide range of filters without further assumption
than their smoothness. In future work, one may want to apply other types of regular-
ization to the image or the filters. The most promising lead is the TV regularization [3]
which would be available as a usable technology very soon. The other possibility of
improvement is the extension to the case where the made algebraic assumptions fail to
be true, in such cases subspace method happens to be very unstable. We may apply the
ideas presented here to stabilize the problem.
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Notations

Signals or images :

• X :

– signal : stacks theL output signals of sizeN and is of size(LN, 1) :

X =

X1

...
XL

 whereX l =
(
xl

0 . . . xl
N−1

)T
(1)

– image : stacks theL observed imagesX l, for l = 1 to L, more precisely, a
vectorized formulation of a processing windowed area, of size(Ny , Nx),
extracted from the observed images :

X l = [xl(Ny − 1, Nx − 1) xl(Ny − 2, Nx − 1) · · · xl(0, 0)]T (2)

• D :

– signal : is the unknown original signal of size(N + M − 1, 1)

– image : is a vectorized formulation of the related windowed area of the
original image of size(Ny + My − 1, Nx −Mx − 1),

D = [d(Ny + My − 2, Nx + Mx − 2) · · · d(0, 0)]T (3)

Subsampled signal or images :

• Dp : (signal) forp = 0 to P − 1, denotes a subsampled component ofD

Dp = [dp dp+P . . . dp+(n+m−2)P ]T (n + m− 1, 1) (4)

• Dp1,p2 : (images) is a vectorized form of

Dp1,p2 =

 dp1,p2 dp1,p2+P . . . dp1,p2+P (sx−1)

...
...

...
dp1+P (sy−1),0 dp1+P (sy−1),P . . . dp1+P (sy−1),p2+P (sx−1)


(5)

for all p1, p2 = 0 : P − 1, wheresy = ny + my − 1 andsx = nx + mx − 1.
Note that we use the same notation for the vectorized and the matrix forms of
Dp1,p2
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Filters:

• H : the filters coefficients

H =

H1

...
HL

 (6)

• H l :

– 1D : is a filter of size(M, 1) :

H l = [hl
0 . . . hl

M−1]
T (7)

– 2D : is a filter of size(My,Mx)

H l =

 hl(0, 0) . . . hl(0,Mx − 1)
...

...
hl(My − 1, 0) . . . hl(My − 1,Mx − 1)

 (8)

• H l
p : (1D) one of theP subsampled components of the filterH l

H l
p =

[
hp hp+P . . . hp+(m−1)P

]
(9)

• H l
p1,p2

: (2D) one of theP 2 polyphase components of the filterH l

H l
p1,p2

=


hl

p1,p2
. . . hl

p1,p2+(mx−1)P

hl
p1+P,p2

. . . hl
p1+P,p2+(mx−1)P

...
...

hl
p1+(my−1)P,p2

. . . hl
p1+(my−1)P,p2+(mx−1)P

 (10)

• H : (2D) a formulation ofH in terms of its polyphase components

H =
(
H0,0 . . . HP−1,P−1

)
(11)

where

Hp1,p2 =

H1
p1,p2
...

HL
p1,p2

 (12)

Filtering matrices:

• H :

– signal : stacks theL Toeplitz matricesHl :

H =

H1

...
HL

 (LN, N + M − 1) (13)
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whereHl, for l = 1 to L, is the filtering matrix associated to the filterH l :

Hl =

 hl
0 . . . hl

M−1 0
...

...
0 hl

0 . . . hl
M−1

 (N,N + M − 1) (14)

– image : stacks theL block-Toeplitz filtering matricesHl associated with
each filtersH l :

Hl =

 Hl
0 · · · Hl

Mx−1 0
...

...
0 Hl

0 · · · Hl
Mx−1

 (15)

whereHl
j is a Toeplitz matrix of size(Ny , Ny + My − 1) associated to

thejth column ofH l :

Hl
j =

hl(0, j) . . . hl(My − 1, j) 0
...

...
0 hl(0, j) . . . hl(My − 1, j)

 (16)

Hl containsNx rows of blocks andNx +Mx−1 columns of blocks of size
(Ny , Ny+My−1). H is of size(LNyNx , (Ny + My − 1)(Nx + Mx − 1))

• Hl
p : (signal) the filtering matrix associated toH l

p

Hl
p =

 hl
p hl

p+P . . . hl
p+(m−1)P 0

...
...

0 hl
p hl

p+P . . . hl
p+(m−1)P

 (n, n + m− 1) (17)

• Hl
p1,p2

: (image) is the block-Toeplitz matrix of size(nynx, sysx) associated to
the filterH l

p1,p2

• HLR : the filtering matrix of the MIMO system

– signal : H1
0 . . . H1

P−1
...

...
HL

0 . . . HL
P−1

 (18)

– image : H
1
0,0 . . . H1

P−1,P−1
...

...
HL

0,0 . . . HL
P−1,P−1

 (19)

• Hp1,p2 : (image) a block column of the filtering matrixHLR

Hp1,p2 =

H
1
p1,p2
...

HL
p1,p2

 (20)
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