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LTCI, Télécom ParisTech, Université Paris-Saclay
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Résumé : Ce rapport est constitué de quatre articles soumis à des re-
vues internationales de mathématiques avec comité de lecture, sur un sujet
général commun, à savoir l’étude de la complexité de problèmes traitant de
l’unicité de la solution, pour des problèmes classiques en théorie de la com-
plexité, que ce soient des problèmes de satisfiabilité de formules booléennes,
ou des problèmes de graphes. Plus précisément :

le premier article traite des problèmes de satisfiabilité SAT, k-SAT, k ≥
2, et 1-3-SAT, ainsi que du problème de l’existence de colorations dans un
graphe donné (Sections 1–4 dans ce rapport) ;

le deuxième article traite de problèmes de recouvrement d’arêtes par
des sommets d’une part, et de problèmes d’ensembles dominants (ou codes
dominateurs) d’autre part, dans un graphe donné (Sections 5–8) ;

le troisième article traite de problèmes de codes identifiants, et de codes
localisateurs-dominateurs, dans un graphe donné (Sections 9–13) ;

le quatrième et dernier article traite de problèmes de cycles et de châınes
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hamiltoniens, dans un graphe donné, orienté ou non-orienté (Sections 14–
16).

Pour tous ces problèmes, nous essayons de trouver des localisations
précises à l’intérieur de l’ensemble des classes de complexité, et d’établir des
équivalences entre problèmes, principalement à l’aide de réductions polyno-
miales d’un problème à un autre.

Mots-clés : Théorie de la complexité : NP-complétude, NP-difficulté,
Unicité d’une solution (optimale), Réduction polynomiale ; Satisfiabilité
booléenne ; Théorie des graphes : Coloration de graphes, Domination,
Codes dominateurs, Recouvrements par des sommets, Codes localisateurs-
dominateurs, Codes identifiants, Graphes sans jumeaux, Cycles et châınes
hamiltoniens.
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in Graph Problems
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Abstract: This Report contains four articles submitted to international
journals of mathematics with reviewing process, all about the same general
topic, namely, the study of the complexity of problems dealing with the
uniqueness of a solution, for classical problems in complexity theory, either
Boolean satisfiability problems, or graph problems. More specifically:

the first article deals with the satisfiability problems SAT, k-SAT, k ≥ 2,
and 1-3-SAT, as well as the problem of the existence of colourings in a given
graph (Sections 1–4 in this Report);

the second article deals with the vertex cover problem and the dominat-
ing set (or code) problem in a given graph (Sections 5–8);

the third article deals with the locating-dominating and the identifying
problems, in a given graph (Sections 9–13);

the fourth and last article deals with the problem of finding Hamilto-
nian cycles or paths in a directed, oriented or undirected given graph (Sec-
tions 14–16).

We try to locate accurately these problems inside the classes of com-
plexity, and to establish equivalences between problems, in particular by
constructing polynomial reductions from one problem to another.

Key Words: Complexity Theory: NP-Completeness, NP-Hardness, Unique-
ness of an (Optimal) Solution, Polynomial Reduction; Boolean Satisfia-
bility Problems; Graph Theory: Graph Colouring, Domination, Dominat-
ing Codes, Vertex Covers, Locating-Dominating Codes, Identifying Codes,
Twin-Free Graphs, Hamiltonian Cycle and Path.
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Abstract

For some well-known NP-complete problems, linked to the satisfiability
of Boolean formulas and the colourability of a graph, we study the
variation which consists in asking about the uniqueness of a solution.
In particular, we show that five decision problems, Unique Satisfiability
(U-SAT), Unique k-Satisfiability (U-k-SAT), k ≥ 3, Unique One-in-
Three Satisfiability (U-1-3-SAT), Unique k-Colouring (U-k-COL), k ≥
3, and Unique Colouring (U-COL), have equivalent complexities, up to
polynomials —when dealing with colourings, we forbid permutations of
colours. As a consequence, all are NP-hard and belong to the class DP.
We also consider the problems U-2-SAT, U-2-COL and Unique Optimal
Colouring (U-OCOL).

Key Words: Complexity Theory, NP-hardness, Decision Problems, Poly-
nomial Reduction, Turing Reduction, Uniqueness of Solution, Boolean Sat-
isfiability, Graph Theory, Graph Colouring, Partition into Independent Sets
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1 Introduction

1.1 Goal, Outline and Results

In the theory of complexity, decision problems are stated with a question
that admits only the answer YES or NO; the question can be stated in
the very general following form: “Given an instance I and a property PR
on I, is PR true for I?” where PR can be expressed as: “Is there a set
satisfying a given characteristic?”. In our study, we add the small extra
word “unique” to the latter question: “Is there a unique set satisfying a
given characteristic?” Then we investigate the complexity of these newly
defined problems. The problems considered here are of two types: Boolean
satisfiability of formulas, and graph colouring (up to colour permutations).

In Section 1.2, we give some notation and definitions from graph the-
ory and then, in Section 1.3, the basic background for the theory of NP-
completeness; in Section 1.4, we present some well-known decision problems,
together with their complexities. In Sections 2 and 3, we study how these
complexities vary if we consider the question of the uniqueness of a solution,
for satisfiability and colouring problems. We prove that the problems called
below: U-SAT, U-1-3-SAT, U-k-SAT, U-k-COL and U-COL have equivalent
complexities; consequently, they all belong to the class DP and are NP-hard.
We also show that U-2-SAT is polynomial (as U-2-COL trivially is), and that
U-OCOL belongs to the class LNP . We present some concluding remarks in
Section 4.

In a forthcoming work, we similarly revisit some famous problems, from
the viewpoint of uniqueness of solution: Vertex Cover and Dominating
Set (as well as its generalization to domination within distance r) [35] (=
Sections 5–8 in this Report), r-Identifying Code together with r-Locating-
Dominating Code [36] (Sections 9–13), and Hamiltonian Cycle [37] (Sec-
tions 14–16).

1.2 Basic Notation and Definitions for Graphs

For graph theory, we refer to, e.g., [7] or [16] —and to [5] for directed graphs.
We shall denote by G = (V,E) a finite, simple, undirected graph with

vertex set V and edge set E, where an edge between x ∈ V and y ∈ V is
indifferently denoted by xy or yx. The order of the graph is its number of
vertices, |V |.

An independent set, or stable set, is a subset V ∗ ⊆ V such that for all
u ∈ V ∗, v ∈ V ∗, uv /∈ E. If k is an integer, k ≥ 1, a k-colouring of G is
a function f : V → {1, 2, . . . , k} such that f(u) 6= f(v) whenever uv ∈ E.
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Two vertices with the same value on the function f are said to have the same
colour. Obviously, a k-colouring of G exists if and only if one can partition V
into k independent sets, with a correspondence between an independent set
and a set of vertices with the same colour. When it exists, such a partition
of V will be called a k-IS-partition. Since fewer than k colours may be
needed, we might be led to use the word “partition” in a sense broader than
usual, with empty sets allowed. The smallest k such that there is a k-IS-
partition is called the chromatic number of G. A colouring with a number
of colours equal to the chromatic number is said to be optimal.

In Section 2.1, we shall need directed graphs. A directed graph (or simply

digraph)
−→
G = (V,A) has directed edges or arcs (x → y) ∈ A, x ∈ V , y ∈ V .

A strongly connected component (SCC) of
−→
G is a maximal set (for inclusion)

S ⊆ V such that for all x, y ∈ S, there is a directed path from x to y, and a
directed path from y to x. If S1 and S2 are two SCCs with an arc going from
a vertex in S1 to a vertex in S2 (for short, we say that there in an arc from S1

to S2), then S2 is a successor of S1, and S1 is a predecessor of S2; note that
in this case, there can be no arc from S2 to S1, by definition. Two digraphs
−→
G1 = (V,A1) and

−→
G2 = (V,A2) are isomorphic if there is a permutation p

on V such that (x → y) ∈ A1 if and only if (p(x) → p(y)) ∈ A2.

1.3 Necessary Notions in Complexity

We expound here, not too formally, the notions of complexity that will be
needed in the sequel. We refer the reader to, e.g., [6], [21], [38] or [45] for
more on this topic.

A decision problem is of the type “Given an instance I and a property PR
on I, is PR true for I?”, and has only two solutions, YES or NO. The
class P will denote the set of problems which can be solved by a polynomial
(time) algorithm, and the class NP the set of problems which can be solved
by a nondeterministic polynomial algorithm. A polynomial reduction from a
decision problem π1 to a decision problem π2 is a polynomial transformation
that maps any instance of π1 into an equivalent instance of π2, that is, an
instance of π2 admitting the same answer as the instance of π1; in this case,
we shall write π1 →p π2. Cook [14] proved that there is one problem in
NP, namely “Satisfiability” or simply SAT (see below in Section 1.4), to
which every other problem in NP can be polynomially reduced. Thus, in a
sense, SAT is the “hardest” problem inside NP. Other problems share this
property in NP and are called NP-complete problems; their class is denoted
by NP-C. The way to show that a decision problem π is NP-complete is,
once it is proved to be in NP, to choose some NP-complete problem π1
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and to polynomially reduce it to π. From a practical viewpoint, the NP-
completeness of a problem π implies that we do not know any polynomial
algorithm solving π, and that, under the assumption P 6=NP, which is widely
believed to be true, no such algorithm exists: the time required can grow
exponentially with the size of the instance (for example, when the instance
is a graph, its size is polynomially linked to the order of the graph).

The complement of a decision problem, “Given I and PR, is PR true
for I?”, is “Given I and PR, is PR false for I?”. The class co-NP (respec-
tively, co-NP-C) is the class of the problems which are the complement of a
problem in NP (respectively, NP-C).

For problems which are not necessarily decision problems, a Turing re-
duction from a problem π1 to a problem π2 is an algorithm A that solves π1
using a (hypothetical) subprogram S solving π2 such that, if S were a poly-
nomial algorithm for π2, then A would be a polynomial algorithm for π1; in
this case, we shall write π1 →T π2. Thus, in this sense, π2 is “at least as
hard” as π1. A problem π is NP-hard (respectively, co-NP-hard) if there is
a Turing reduction from some NP-complete (respectively, co-NP-complete)
problem to π [21, p. 113].

Remark 1 Note that with these definitions, NP-hard and co-NP-hard co-
incide [21, p. 114].

The notions of completeness and hardness can of course be extended to
classes other than NP or co-NP. NP-hardness is defined differently in [15]
and [27]: there, a problem π is NP-hard if there is a polynomial reduction
from some NP-complete problem to π; this may lead to confusion (see Sec-
tion 4).

We also introduce the classes PNP (also known as ∆2 in the hierarchy
of classes) and LNP (also denoted by PNP [O(logn)] or Θ2): they contain the
decision problems which can be solved by applying, with a number of calls
which is polynomial (respectively, logarithmic) with respect to (wrt) the size
of the instance, a subprogram able to solve an appropriate problem in NP
(usually, an NP-complete problem).

Finally, let us define DP [46] (or DIFP [8] or BH2 [38], [52], . . .) as
the class of languages (or problems) L such that there are two languages
L1 ∈NP and L2 ∈ co-NP satisfying L = L1 ∩ L2. This class is not to be
confused with NP∩ co-NP (see the warning in, e.g., [45, p. 412]); actually,
DP contains NP∪ co-NP and is contained in LNP (see Figure 1).

Membership to P, NP, co-NP, DP, LNP or PNP gives an upper bound
on the complexity of a problem (this problem is not more difficult than . . .),
whereas a hardness result gives a lower bound (this problem is at least
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Figure 1: Some classes of complexity.

as difficult as . . .). Still, such results are conditional in some sense; if for
example P=NP, they would lose their interest.

1.4 Satisfiability and Colouring Problems

We first introduce some problems related to Boolean Satisfiability, and
present what is known about their complexities.

We consider a set X of n Boolean variables xi and a set C of m clauses
(C is also called a Boolean formula); each clause cj contains κj literals,
a literal being a variable xi or its complement (or negated variable) xi.
Equivalently, C can read as a logical formula

C = ∧1≤j≤mcj , with cj = ∨1≤i≤κj
ℓi. (1)

This form is called a normal conjunctive form ; other forms can be used
when more convenient, see the proof of Proposition 12. A truth assignment
for X sets the variable xi to TRUE, also denoted by T, and its complement
to FALSE (or F), or vice-versa. A truth assignment is said to satisfy the
clause cj if cj contains at least one true literal, and to satisfy the set of
clauses C if every clause contains at least one true literal. The following
decision problems, for which the size of the instance is polynomially linked
to n+m, are classical problems in complexity.

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
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containing at least two different literals.
Question: Is there a truth assignment for X that satisfies C?

Remark 2 When useful, we can assume, without loss of generality (wlog),
that at least one clause contains only negated variables; indeed, if this is not
the case, i.e., no clause contains only negated variables, then obviously the
assignment giving TRUE to all the variables satisfies all the clauses, so that
this instance is trivial and can be discarded. We shall use this remark in
order to simplify the proof of Proposition 12.

The following problem is stated for any fixed integer k ≥ 2, the case k = 1
being trivial:

Problem k-SAT (k-Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing exactly k different literals.
Question: Is there a truth assignment for X that satisfies C?

Problem 1-3-SAT (One-in-Three Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing exactly three different literals, or two different literals and the
constant FALSE.
Question: Is there a truth assignment for X such that each clause of C
contains exactly one true literal?

We shall say that a clause (respectively, a set of clauses) is 1-3-satisfied by
an assignment if this clause (respectively, every clause in the set) contains
exactly one true literal.

Problem co-SAT (co-Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing at least two different literals.
Question: Is it true that no truth assignment for X satisfies C?

In the same way, we can define co-k-SAT for k ≥ 2.
The problems SAT and 3-SAT are two of the basic and most well-known

NP-complete problems [14], [21, p. 39, p. 46 and p. 259]. More generally,
k-SAT is NP-complete for k ≥ 3 and polynomial for k = 2. It follows that
the problems co-SAT and co-k-SAT, k ≥ 3, are co-NP-complete.

The problem 1-3-SAT, which is obvioulsy in NP, is also NP-complete [48,
Lemma 3.5], [21, p. 259]. Because we shall need it later on for Proposition 6,
we give one polynomial reduction from 3-SAT to 1-3-SAT:

Consider an instance of 3-SAT. For each clause ci = {ℓ1, ℓ2, ℓ3}, where
ℓ1, ℓ2, ℓ3 are literals stemming from X , one creates six variables ai, bi, di, ei, fi
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and gi, and five clauses ci,1 = {ℓ1, ai, ei}, ci,2 = {ℓ2, bi, ei}, ci,3 = {ai, bi, fi},
ci,4 = {di, ei, gi}, ci,5 = {ℓ3, di,FALSE}, for 1-3-SAT.

First, note that if ℓ1 = ℓ2 = ℓ3 =F, then there is no truth assignment (for
ai, bi, di, ei, fi and gi) 1-3-satisfying all the clauses ci,j , 1 ≤ j ≤ 5; indeed,
clause ci,5 implies that di =T, which implies by clause ci,4 that ei =F,
which in turn implies, by clauses ci,1 and ci,2, that ai = bi =T, and then ci,3
contains at least two true literals.

Then, from the Truth Table below, which shows under each clause ci,j
the only true literal that it contains, we can see that there is an assign-
ment satisfying ci if and only if there is an assignment 1-3-satisfying each
clause ci,j .

ℓ1 ℓ2 ℓ3 ai bi di ei fi gi ci,1 ci,2 ci,3 ci,4 ci,5

1 T T T F F F F T T ℓ1 ℓ2 fi gi ℓ3
2 T T F F F T F T F ℓ1 ℓ2 fi di di
3 T F T F T F F F T ℓ1 bi bi gi ℓ3
4 F T T T F F F F T ai ℓ2 ai gi ℓ3
5 T F F F T T F F F ℓ1 bi bi di di
6 F T F T F T F F F ai ℓ2 ai di di
7 F F T F F F T T F ei ei fi ei ℓ3

From this, we can conclude that there is a truth assignment for X satisfying
the collection C of m clauses we started from if and only if there is a truth
assignment for X ∗ = X ∪ {ai, bi, di, ei, fi, gi : 1 ≤ i ≤ m} such that each of
the 5m clauses ci,j , 1 ≤ i ≤ m, 1 ≤ j ≤ 5, is 1-3-satisfied. This is sufficient
to prove that 1-3-SAT is NP-complete.

Remark 3 Actually, one can get rid of FALSE in every clause ci,5, and
have clauses only of “real” size three: create three new variables α, β, γ,
which are added to X ∗, and three new clauses {α, β, γ}, {α, β, γ} and {α, β, γ},
which are added to the 5m clauses ci,j. It is then straightforward to check
that there is one, and only one, way of 1-3-satisfying the new clauses: one
must take α =F, β =T, γ =F. From this, we can deduce that each clause
ci,5 = {ℓ3, di,FALSE}, 1 ≤ i ≤ m, can be replaced by, e.g., {ℓ3, di, α}, in
order to obtain a set of clauses of size three which can be 1-3-satisfied if and
only if there is a truth assignment satisfying the clauses ci, 1 ≤ i ≤ m, from
which we started.

So from now on, we shall use 1-3-SAT exclusively in the following form.

Problem 1-3-SAT (One-in-Three Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
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containing exactly three different literals.
Question: Is there a truth assignment for X such that each clause of C
contains exactly one true literal?

We now turn to the colouring decision problem, stated in its two usual forms;
first, for a given integer k ≥ 1:

Problem k-COL (k-Colouring):
Instance: A graph G.
Question: Does G admit a k-colouring?

It is well known that this problem is trivial for k = 1, polynomial for k =
2 and NP-complete for k ≥ 3, see [22], [21, p. 191]. We can also state
the problem with k belonging to the instance, in which case it is also NP-
complete, since it still belongs to NP:

Problem COL (Colouring):
Instance: A graph G, an integer k.
Question: Does G admit a k-colouring?

Finally, we denote by U-SAT, U-k-SAT, U-1-3-SAT, U-k-COL and U-COL
the five problems obtained from the above five problems SAT, k-SAT, 1-3-
SAT, k-COL and COL by putting the word “unique” in the question, and
we add the following one, which would be meaningless without the word
“unique” in its question:

Problem U-OCOL (Unique Optimal Colouring):
Instance: A graph G.
Question: Does G admit a unique optimal colouring?

As already mentioned, the uniqueness of colourings must be considered up
to colour permutations, see the beginning of Section 3.

2 Uniqueness of Solutions: Satisfiability

2.1 Polynomiality of U-2-SAT

Theorem 4 The problem U-2-SAT is polynomial.

Proof. In [1], from an instance of 2-SAT with n variables xi and a set C

of m clauses cj , the following digraph
−→
G = (V,A), with 2n vertices xi, xi

and 2m arcs, is constructed: for each clause cj = {ℓ1, ℓ2}, one puts the arcs
(ℓ1 → ℓ2) and (ℓ2 → ℓ1) in A.
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This graph has the following duality property: it is isomorphic to the
graph obtained by reversing the arcs and negating the names of the ver-

tices. Therefore, every strongly connected component S of
−→
G has a dual

component S which is the subgraph induced by the negated vertices of S
—it may be that S = S. If S1 is a predecessor of S2, then S1 is a successor
of S2, and vice-versa.

It is then shown in [1] that the instance of 2-SAT can be satisfied if and

only if, for all i ∈ {1, . . . , n}, no SCC of
−→
G contains both xi and xi. The

latter can be checked in polynomial time [51] wrt the order of the graph
−→
G ,

which is itself polynomial wrt the size of the instance of 2-SAT; this proves
that 2-SAT is polynomial.

We shall use the very same construction for U-2-SAT, and check the

SCCs of
−→
G . If one SCC contains some pair xi, xi, then the answer to 2-

SAT, and a fortiori to U-2-SAT, is NO. So from now on, we assume that no
pair xi, xi belongs to the same SCC. This implies a YES answer for 2-SAT.
But what about U-2-SAT?

Assume first that there is a directed path from some xi to xi (if it is the
other way round, the argument is the same): (xi → ℓ1) ∈ A, (ℓ1 → ℓ2) ∈ A,
. . ., (ℓs → xi) ∈ A. This means that the clauses {xi, ℓ1}, {ℓ1, ℓ2}, . . ., {ℓs, xi}
all belong to C. Obviously, this leads to xi =F (no choice for xi). If this
is true for all i ∈ {1, . . . , n}, then the answer to U-2-SAT is YES: only one
assignment satisfies the set C of clauses. So from now on, we assume that
there is at least one pair xi, xi such that there is no directed path from xi
to xi, nor from xi to xi. This implies that no arc exists going from Sxi

to
Sxi

, nor from Sxi
to Sxi

.

Let σ(
−→
G) be the number of SCCs of

−→
G . A topological order (TO for

short) Φ of the SCCs of
−→
G , from 1 to σ(

−→
G), is such that if S1 is a predecessor

of S2, then Φ(S1) < Φ(S2); in general, there are many ways to choose
one TO, and there exists always at least one. This is used in [1] in order
to define an assignment of the variables: if Sxi

is the SCC containing xi
(and Sxi

= Sxi
is the SCC containing xi), set xi =F if and only if Φ(Sxi

) <
Φ(Sxi

); with the assumption that the answer to 2-SAT is YES, every TO
defines an assignment satisfying C. But for U-2-SAT, we have to go further.

Let Φ(Sxi
) = k and Φ(Sxi

) = ℓ, with, say, k < ℓ. This means that there
is an assignment satisfying C, with xi =F. If k + 1 = ℓ, take Φ∗ = Φ except
for Φ∗(Sxi

) = ℓ and Φ∗(Sxi
) = k: Φ∗ still is a TO, because we assumed

that there is no arc between Sxi
and Sxi

, and we have another assignment
satisfying C, this time with xi =T, i.e., a NO answer to U-2-SAT. So from
now on, we assume that k + 1 < ℓ.

13



S4

P1

P3

P2

S8 S11S

S7S6 S12

S5 S9

10

= S4

P1

P3

P2

10 S12S

S5S4

S7 S8

11

= S9

S9 S

6S

Figure 2: An example for the proof of Theorem 4, with k = 4 and ℓ = 12;
on the left, the Φ-order inside P1, P2 and P3, on the right, the Φ∗-order.

We set Sxi
= Sk, Sxi

= Sℓ, and, for j ∈ {k + 1, . . . , ℓ− 1}, Sj = Φ−1(j).
Because we use a TO, Sk has no predecessor among these SCCs, and Sℓ has
no successor. We shall partition these ℓ− k+1 SCCs into three sets, P1, P2

and P3, according to the following rules (note that P2 can be empty):
(i) in P1, we put Sk and every SCC of index j1 ∈ {k+1, . . . , ℓ− 1} such

that there is a path from Sk to Sj1 ;
(ii) in P2, we put every SCC of index j2 ∈ {k + 1, . . . , ℓ − 1} such that

there is no path from Sk to Sj2 , nor from Sj2 to Sℓ;
(iii) in P3, we put Sℓ and every SCC of index j3 ∈ {k+1, . . . , ℓ−1} such

that there is a path from Sj3 to Sℓ.
There is no path from P1 to P2, since a path from some Sj1 ∈ P1 to some

Sj2 ∈ P2 means that Sj2 should have been put in P1; similarly, there is no
path from P2 to P3. By assumption, there is no path from P1 to P3, since
this would lead to a path from xi to xi. Paths from P2 to P1, from P3 to P2,
and from P3 to P1 are possible.

Now we re-order the SCCs, starting from P3 and ending with P1; we
define Φ∗ as follows:

(0) Φ∗ = Φ outside {Sk, . . . , Sℓ};
(i) if Sq1 , Sq2 , . . ., Sq|P3|

(= Sℓ) belong to P3, with k < q1 < q2 < . . . <
q|P3| = ℓ, we set Φ∗(Sqj ) = (k − 1) + j, for j ∈ {1, . . . , |P3|};

(ii) if St1 , St2 , . . ., St|P2|
belong to P2, with k < t1 < t2 < . . . < t|P2| < ℓ,

we set Φ∗(Stj ) = (k − 1) + |P3|+ j, for j ∈ {1, . . . , |P2|};
(iii) if Sw1

(= Sk), Sw2
, . . ., Sw|P1|

belong to P1, with k = w1 < w2 <
. . . < w|P1| < ℓ, we set Φ∗(Swj

) = (k−1)+|P3|+|P2|+j, for j ∈ {1, . . . , |P1|}.
See Figure 2 for an example. Because of the forbidden paths afore-

mentioned and because Φ is a TO, Φ∗ is also a TO, and we have now
Φ∗(Sxi

) > Φ∗(Sxi
), which means that there is a second assignment satisfy-
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Figure 3: The polynomial reductions between satisfiability problems.

ing C, this time with xi =T, i.e., a NO answer to U-2-SAT.
Recapitulating,
(a) if at least one pair xi, xi is contained in the same SCC, then the

answer to U-2-SAT is NO (no assignment satisfying C exists); otherwise,
(b) if for all i ∈ {1, . . . , n}, there is a path from xi to xi or from xi

to xi, then the answer to U-2-SAT is YES (a unique assignment satisfying C
exists);

(c) if there is at least one pair xi, xi such that there is no directed path
from xi to xi, nor from xi to xi, then the answer to U-2-SAT is NO (at least
two assignments satisfying C exist).

All this can be checked in polynomial time. △

2.2 Equivalence of U-Satisfiability Problems

Consider the problem 1-3-SAT. The fact that an NP-complete problem, here
3-SAT, can be polynomially reduced to it, together with the fact that 1-3-
SAT belongs to NP, suffices to prove that the complexities of these two
problems are equivalent, up to polynomials: in this case, there is no need to
give a polynomial reduction from 1-3-SAT to 3-SAT. In other situations, such
as the problems that, in the sequel, we shall be interested in, it can be useful,
or even necessary, to establish “cyclic” reductions such as π1 →p π2 →p

π3 →p π1, in order to prove the equivalence of these three problems. This is
what we shall do in this Section for our satisfiability problems, establishing
the chain of polynomial reductions given by Figure 3. As a consequence, all
these problems are equivalent, up to polynomials, see Theorem 10.

Theorem 5 There exists a polynomial reduction from U-SAT to U-3-SAT:
U-SAT →p U-3-SAT.
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Proof. We consider an instance of U-SAT with n variables xi and m
clauses cj . We assume that there is no clause of size one. We also as-
sume that at least one clause does not have size three, otherwise we simply
keep all the variables and clauses, and we are done.

We keep all the variables xi, 1 ≤ i ≤ n.
We create three new variables α, β, γ and seven clauses {α, β, γ}, {α, β, γ},

{α, β, γ}, {α, β, γ}, {α, β, γ}, {α, β, γ}, and {α, β, γ}. Note that these clauses
can be simultaneously satisfied if and only if α = β = γ =T. Only α will be
used in the sequel, the other two variables only help to have clauses of size
three.

Let cj be any clause of the instance we start from, 1 ≤ j ≤ m; cj
has size κj , κj ≥ 2, but for simplicity we use κj = κ, and cj reads cj =
{ℓj,1, . . . , ℓj,κ}.

(a) If κ= 2, we create the clause {ℓj,1, ℓj,2, α};
(b) If κ= 3, we keep the clause {ℓj,1, ℓj,2, ℓj,3};
(c) If κ> 3, we create a new variable ycj ,1 and the clauses {ycj ,1, ℓj,3, . . . ,

ℓj,κ}, {ycj ,1, ℓj,1, α}, {ycj ,1, ℓj,2, α}, and {ycj ,1, ℓj,1, ℓj,2}. The first clause has
size κ−1, and we iterate the process until it has size three; at each step we
create one variable and four clauses, three of them (at least) with size three.
At the end, we keep only the clauses of size three. In this step, we have
created κ−3 new variables.

Example. κ= 5 and cj = {xj,1, xj,2, xj,3, xj,4, xj,5}. First, we create {ycj ,1,
xj,3, xj,4, xj,5}, which we will not keep, and {ycj ,1, xj,1, α}, {ycj ,1, xj,2, α},
{ycj ,1, xj,1, xj,2}. Then we create {ycj ,2, xj,4, xj,5}, {ycj ,2, ycj ,1, α}, {ycj ,2, xj,3,
α}, {ycj ,2, ycj ,1, xj,3}.

(1) Assume first that there is a unique way of satisfying all the clauses of
the instance of U-SAT. We keep the same truth assignment for the variables
xi, 1 ≤ i ≤ n, we set α = β = γ =T, and for all j ∈ {1, . . . ,m}, we set
ycj ,1 =T if and only if at least one of ℓj,1 and ℓj,2 is equal to TRUE, ycj ,2 =T
if and only if at least one of ycj ,1 and ℓj,3 is equal to TRUE, and so on. It is
quite straightforward to check that this new assignment satisfies the set of
clauses we have just constructed for U-3-SAT.

Is it the only way? Assume on the contrary that we have two assign-
ments, A1 and A2, satisfying the instance of U-3-SAT.

First, note that any assignment A that satisfies the instance of U-3-SAT
also satisifies, when restricted to the variables xi, the instance of U-SAT.
Indeed,

(a) Consider a clause of size two cj = {ℓj,1, ℓj,2}; because necessarily
A(α) =T, if {ℓj,1, ℓj,2, α} is satisfied by the values given to ℓj,1 and ℓj,2,
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then this is also true for cj ;
(b) The clauses of size three in U-SAT need no explanation;
(c) Assume on the contrary that for κ> 3, the clause cj = {ℓj,1, . . . , ℓj,κ}

in U-SAT is not satisfied. Then, because the clause {ycj ,1, ℓj,1, ℓj,2} in U-
3-SAT is satisfied, we have A(ycj ,1) =F, then similarly, because of the
clause {ycj ,2, ycj ,1, ℓj,3} in U-3-SAT, we have A(ycj ,2) =F, and so on un-
til the last new variable of type y, A(ycj ,κ−3) =F, but then the clause
{ycj ,κ−3, ℓj,κ−1, ℓj,κ} in U-3-SAT is not satisfied, a contradiction.

Therefore, the two assignments A1 and A2 give the same values to the
variables xi, 1 ≤ i ≤ n, for otherwise we would have two ways of satisfying
the instance of U-SAT, which would contradict our assumption on unique-
ness. Since the values of α, β, γ are forced, A1 and A2 can differ only on the
variables of type y.

Suppose first that they differ on ycj ,1 for some j, with, say, A1(ycj ,1) =

T and A2(ycj ,1) =F. Then the three clauses {ycj ,1, ℓj,1, α}, {ycj ,1, ℓj,2, α},
{ycj ,1, ℓj,1, ℓj,2}, together with the fact that we have A1(α) = A2(α) =T,
show that A2(ℓj,1) = A2(ℓj,2) =F, and A1(ℓj,1) =T or A1(ℓj,2) =T, i.e.,
A1 and A2 differ on ℓj,1 or ℓj,2, a contradiction. So A1(ycj ,1) = A2(ycj ,1).
Step by step, we can then show that A1(ycj ,2) = A2(ycj ,2), and so on until
A1(ycj ,κ−3) = A2(ycj ,κ−3), so that finally A1 = A2 and there is only one
solution for the instance of U-3-SAT.

(2) If the answer to the instance of U-SAT is NO, then either there
are at least two solutions, which give at least two solutions to U-3-SAT, as
previously seen, or there is no solution to U-SAT, in which case there is no
solution to U-3-SAT, for otherwise one solution to U-3-SAT would also give,
by restriction to the variables xi, one solution to U-SAT. Thus the answer
to the instance of U-3-SAT is also NO. △

Proposition 6 There exists a polynomial reduction from U-3-SAT to U-1-
3-SAT: U-3-SAT →p U-1-3-SAT.

Proof. The reduction is the one described in Section 1.4. Indeed, one can
observe that this construction is more than just a reduction from 3-SAT to
1-3-SAT: in the Truth Table, once ℓ1, ℓ2, ℓ3 are given, there is only one way
to give a truth assignment to the new six variables in such a way that the
new five clauses are 1-3-satisfied. First, note that di = ℓ3 and that, once
ai, bi, di and ei have been assigned a value, then fi and gi are forced. Let
us consider just one example, the other lines not being more difficult: if
ℓ1 = ℓ2 =F and ℓ3 =T (line 7 of the Table), then di =F and, assuming
that ai =F, the rest is forced: ei =T and bi =F; but if ai =T, then ei =F,
bi =T, and ci,3 contains at least two true literals.
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So, to any solution that 1-3-satisfies the five clauses ci,j we can associate
a solution that satisfies ci, and conversely; in other words, there are seven
solutions that 1-3-satisfy the five clauses ci,j and there are seven solutions
that satisfy ci.

The conservation of the number of solutions is still verified if we consider
the collections of clauses of the two instances, and the following has been
proved: the number of solutions for the instance of 3-SAT we started from
is equal to the number of solutions for the constructed instance of 1-3-SAT.
In particular, there is a unique solution to the instance of 3-SAT if and only
if there is a unique solution to the instance of 1-3-SAT, i.e., the answer to
the initial instance, now seen as an instance of U-3-SAT, is YES if and only
if the answer to the corresponding instance for U-1-3-SAT, is YES. △

Proposition 7 There exists a polynomial reduction from U-1-3-SAT to U-
3-SAT: U-1-3-SAT →p U-3-SAT.

Proof. We keep all the variables xi, 1 ≤ i ≤ n, of the instance of U-1-3-SAT.
We create three new variables α, β, γ and seven clauses {α, β, γ}, {α, β, γ},

{α, β, γ}, {α, β, γ}, {α, β, γ}, {α, β, γ}, and {α, β, γ}. As remarked previ-
ously, these clauses can be simultaneously satisfied if and only if α = β =
γ =T; only α will be used in the sequel.

Let cj be any clause of the instance we start from, 1 ≤ j ≤ m: cj =
{ℓ1, ℓ2, ℓ3}. We keep cj and add three new clauses, {ℓ1, ℓ2, α}, {ℓ1, ℓ3, α},
{ℓ2, ℓ3, α}.

Assume first that there is exactly one truth assignment, A1, 1-3-satisfying
the instance of U-1-3-SAT. Keeping the same assignment for the variables xi
and setting A1(α) = A1(β) = A1(γ) =T, we obviously satisfy all the clauses
for U-3-SAT. Is it possible to have a second assignment, A2, that satisfies
the instance of U-3-SAT? If yes, necessarily A2(α) = A2(β) = A2(γ) =T;
then, because of the clauses {ℓ1, ℓ2, α}, {ℓ1, ℓ3, α}, {ℓ2, ℓ3, α}, at most one
of the three literals ℓ1, ℓ2, ℓ3 can be set true by A2, but also at least one,
because of the clause {ℓ1, ℓ2, ℓ3}. So A2, when restricted to the variables xi,
also 1-3-satisfies the instance of U-1-3-SAT, and A2 6= A1 is impossible.

If there is no assignment 1-3-satisfying the instance of U-1-3-SAT, then
there is no assignment satisfying the instance of U-3-SAT, since this as-
signment, when restricted to the variables xi, would be an assignment 1-3-
satisfying the original instance, as we have already seen. If there is more
than one assignment 1-3-satisfying the instance of U-1-3-SAT, then obvi-
ously there is more than one assignment satisfying the instance of U-3-SAT.

So there is a YES answer for the instance of U-1-3-SAT if and only if
there is a YES answer for the corresponding instance of U-3-SAT. △
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Proposition 8 For every integer k ≥ 4, there exists a polynomial reduction
from U-(k − 1)-SAT to U-k-SAT: U-(k − 1)-SAT →p U-k-SAT.

Proof. We consider an instance of U-(k − 1)-SAT with n variables xi and
m clauses cj , of size k − 1.

We keep all the variables xi, 1 ≤ i ≤ n.
We introduce k new variables α1, . . . , αk and 2k − 1 clauses: these are

all the clauses of size k containing either α1 or α1, . . ., αk or αk, with
the exception of {α1, . . . , αk}; since k is fixed, the number of clauses is a
constant, so this is polynomial wrt the size of the instance we start from.
Note that these clauses can be simultaneously satisfied if and only if α1 =
. . . = αk =T. When building other clauses of size k, we shall use only α1;
the aim of the other variables α2, . . . , αk is simply to have clauses of the
right size.

The reduction is simple: besides the 2k − 1 aforementioned clauses, each
clause cj = {ℓ1, . . . , ℓk−1} in the instance of U-(k − 1)-SAT is transformed
into {ℓ1, . . . , ℓk−1, α1}. It is now easy to check that there is a YES answer
to the instance of U-(k− 1)-SAT if and only if there is a YES answer to the
resulting instance of U-k-SAT. △

The above reduction also works for k = 3, but U-2-SAT →p U-3-SAT gives
no useful information, since U-2-SAT is polynomial (Theorem 4).

Proposition 9 For every integer k ≥ 3, there exists a polynomial reduction
from U-k-SAT to U-SAT: U-k-SAT →p U-SAT.

Proof. Simply use the identity reduction. △

The above reduction also works for k = 2, but U-2-SAT →p U-SAT gives no
useful information, since U-2-SAT is polynomial.

We have now proved that all our satisfiability problems are equivalent:

Theorem 10 For every integer k ≥ 3, the problems U-SAT, U-k-SAT and
U-1-3-SAT are equivalent, up to polynomials.

Proof. Because the chain of polynomial reductions described at the begin-
ning of Section 2.2 has been proved, by Theorem 5 and Propositions 6–9.

△

2.3 Location of U-Satisfiability Problems

Now that we know that they are equivalent, we can use previous works to
show that the three problems U-SAT, U-k-SAT and U-1-3-SAT are NP-hard,
and that they belong to DP.
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Proposition 11 There exists a Turing reduction from 3-SAT to co-3-SAT:
3-SAT →T co-3-SAT.

Proof. Simply use the identity reduction; the answers YES and NO are
permuted. △

Proposition 12 [8] There exists a polynomial reduction from co-SAT to
U-SAT: co-SAT →p U-SAT.

Proof. We give a proof which is slightly simplified compared to [8].
We consider an instance of co-SAT with n variables xi and a set C of

m clauses cj , with at least one of them containing only negated variables
(cf. Remark 2). We write C in its normal conjunctive form like in (1):
C = ∧1≤j≤mcj , and, instead of constructing clauses for the instance of U-
SAT, we construct the logical formula

C∗ = C ∨ (∧1≤i≤nxi),

which could, through logical equivalences, be led back to its normal con-
junctive form as in (1); now the instance of U-SAT simply consists of C∗.

If the answer to the instance of co-SAT is YES, i.e., no assignment sat-
isfies C, then obviously the only way to satisfy C∗ is to set TRUE every xi,
so the answer to U-SAT is YES.

If the answer to co-SAT is NO, then there are at least two ways of
satisfying C∗:

(a) use an assignment that satisfies C;
(b) set xi = TRUE for all i ∈ {1, . . . , n}.

The assignment of the variables xi in (b) cannot be the same as in (a),
thanks to the assumption that at least one clause in C contains only negated
variables. So the answer to U-SAT is NO. △

Corollary 13 For every integer k ≥ 3, the decision problems U-SAT, U-k-
SAT and U-1-3-SAT are NP-hard (and co-NP-hard by Remark 1).

Proof. By Proposition 11, co-3-SAT is NP-hard, which implies that co-SAT
also is, as well as U-SAT, by Proposition 12; then both U-k-SAT, k ≥ 3,
and U-1-3-SAT are NP-hard, by Theorem 10. △

Proposition 14 For every integer k ≥ 3, the decision problems U-SAT,
U-k-SAT and U-1-3-SAT belong to the class DP.

Proof. The result for U-SAT is stated in [45, p. 415] and is easy to prove.
We have to exhibit two languages, L1 ∈ NP and L2 ∈ co-NP, such that
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the set of YES instances of U-SAT is L1 ∩ L2. Take L1 = {formulas (or
sets of clauses) such that there is at least one truth assignment satisfying
them} and L2 = {formulas (or sets of clauses) such that there is at most one
assignment satisfying them}. This proof can be applied mutatis mutandis
to the other two problems; alternatively, the equivalence between the three
problems can be used. △

Remark 15 In [45], it is also stated that “U-SAT is not believed to be DP-
complete”.

3 Uniqueness of Solutions: Colouring

If we define the problem of the existence of a unique k-colouring in a graph
by simply adding the word “unique” in the statements of the problems k-
COL or COL, it is quite obvious that the answer will always be NO for
k > 1, since any permutation on the values of a k-colouring f also is a
k-colouring. Now, rather than saying that we look for a unique colouring
up to permutations, it is more convenient to consider the problem stated in
terms of IS-partition. Also, if the graph is not connected and not trivial,
the answer will be NO. Thus, the problems that we shall study below (and
still abusively name U-k-COL and U-COL) will be the following:

Problem U-k-COL (Unique k-IS-Partition):
Instance: A connected graph G.
Question: Does G admit a unique k-IS-partition?

Problem U-COL (Unique IS-Partition):
Instance: A connected graph G, an integer k.
Question: Does G admit a unique k-IS-partition?

Note that, like 2-COL, U-2-COL is, quite obviously, polynomial. In Sec-
tion 3.3, we shall deal with U-OCOL.

3.1 Preliminary Results on 3-Colourings

The following lemma is somehow inspired by the proof of the NP-completeness
of 3-COL, see Theorem 2.1 and Figure 1 in [22]. Note that the proof from [22]
cannot convey uniqueness, even up to permutations of colours.

Lemma 16 Consider the graph G0 = (V0, E0) described by Figure 4.
(a) Any 3-IS-partition of {a, b, d} such that these three vertices belong to

the same independent set, cannot be extended to a 3-IS-partition in G0.
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Figure 4: The graph G0 of Lemma 16. Because of their particular roles, the
vertices v1, v2, w4, a, b and d are represented by black circles.

(b) Any 3-IS-partition of {a, b, d} such that these three vertices belong to
exactly two independent sets, can be uniquely extended to a 3-IS-partition
in G0.

Proof. Wlog, we assume that in any 3-IS-partition of V0 into S1, S2, S3, the
vertex v2 belongs to S3. Then a, b and d can belong only to S1 or S2.

(a) First, we assume that the vertices a, b and d belong to S1. Then,
because of the triangle a, w1, v2, we have w1 ∈ S2. Similarly, z2 ∈ S2,
z3 ∈ S2. Then z1 ∈ S3, and step by step, w2 ∈ S1, w3 ∈ S3, v1 ∈ S2,
w4 ∈ S1, y6 ∈ S2, y2 ∈ S3, y1 ∈ S2, y4 ∈ S1, and y5 ∈ S3. But now the
neighbours of y3 are y6 ∈ S2, y5 ∈ S3 and d ∈ S1, which makes it impossible
to have a 3-IS-partition. Obviously, the conclusion is the same if a, b and d
belong to S2, with the roles of S1 and S2 permuted.

(b) Assume first that a ∈ S1, b ∈ S1, d ∈ S2. Then {w1, z2} ⊂ S2,
z3 ∈ S1, z1 ∈ S3, w2 ∈ S1, v1 ∈ S2, w3 ∈ S3, w4 ∈ S1, y6 ∈ S2, y2 ∈ S3,
y1 ∈ S2, y4 ∈ S1, y5 ∈ S3 and y3 ∈ S1, which constitutes a 3-IS-partition,
obtained in a unique way. The same is true for a ∈ S2, b ∈ S2, d ∈ S1, with
the roles of S1 and S2 permuted.

When a ∈ S1, b ∈ S2, d ∈ S1, we simply give the three sets S1, S2

and S3, since it is straightforward to check that there is only one way to
obtain them: S1 = {a, d, z2, w3, w4, y5, y2}, S2 = {b, z1, z3, w1, v1, y6, y4},
S3 = {v2, w2, y3, y1}. The case when a ∈ S2, b ∈ S1, d ∈ S2 is the same,
with the roles of S1 and S2 permuted.

When a ∈ S2, b ∈ S1, d ∈ S1, the partition S1 = {b, d, w1, w3, z1, w4, y5,
y1}, S2 = {a, z2, z3, v1, y6, y4}, S3 = {v2, w2, y3, y2} is the only 3-IS-partition.
The case when a ∈ S1, b ∈ S2, d ∈ S2 is the same, with the roles of S1 and S2
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permuted. △

Remark 17 We can see from the previous proof that w4, which is linked to
v1 and v2, belongs to S1 as soon as two of the three vertices a, b, d belong
to S1 —and w4 ∈ S2 if two of a, b, d belong to S2. This implies that v1 ∈ S2

in the first case, v1 ∈ S1 in the latter case.

We are now ready to show that U-SAT and U-COL have equivalent com-
plexities (up to polynomials).

3.2 Equivalence of Uniqueness of Colouring and of Satisfia-

bility

We are going to prove the polynomial reductions
U-1-3-SAT →p U-3-COL (Theorem 18),

for k ≥ 3, U-3-COL →p U-k-COL →p U-COL (Proposition 19),
and U-COL →p U-SAT (Theorem 20).

Theorem 18 There exists a polynomial reduction from U-1-3-SAT to U-3-
COL: U-1-3-SAT →p U-3-COL.

Proof. A possible polynomial reduction is the following. If the instance of
U-1-3-SAT consists of a set C of m clauses over n variables xi (1 ≤ i ≤ n),
then the vertex set W of the graph G we are constructing is

W = {xi, xi : 1 ≤ i ≤ n} ∪ {v1, v2} ∪ {zi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ m} ∪

{wi,j : 1 ≤ i ≤ 4, 1 ≤ j ≤ m} ∪ {yi,j : 1 ≤ i ≤ 6, 1 ≤ j ≤ m}.

The order of G is 2n + 2 + 13m. For every j in {1, . . . ,m}, we denote by
V −
j and Vj the sets

V −
j = {zi,j : 1 ≤ i ≤ 3} ∪ {wi,j : 1 ≤ i ≤ 4} ∪ {yi,j : 1 ≤ i ≤ 6},

Vj = V −
j ∪ {v1,j , v2,j}.

For each clause cj = {aj , bj , dj} where aj , bj and dj belong to {xi, xi : 1 ≤ i ≤
n}, we take a copy Gj = (Vj ∪ {aj , bj , dj}, Ej) of the graph G0 = (V0, E0)
from the previous lemma, with aj = a, bj = b, dj = d, and complete
identification of the other vertices of V0 to the vertices of Vj . Then we
merge all the vertices v1,j , 1 ≤ j ≤ m, into one vertex v1, i.e., the new
vertex v1 replaces the v1,j ’s and is linked to all their neighbours; we proceed
similarly to create a new vertex v2. The vertices v1 and v2 are now common
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Figure 5: A small example for Theorem 18: c1 = {x1, x2, x3}, c2 =
{x1, x2, x4}. Not all vertices and edges are represented.

for all the clauses cj and subgraphs Gj —we still call these subgraphs Gj ,
with a slight notational abuse.

We add the edges xixi, xiv2 and xiv2, 1 ≤ i ≤ n, and we have our
graph G; see Figure 5 for a small example.

(a) Let us first assume that the answer to U-1-3-SAT is YES: there is
a unique truth assignment 1-3-satisfying the clauses of C. We construct a
valid 3-IS-partition W = S1 ∪S2 ∪S3 in the following way: we put v2 in S3,
we put in S2 the literals that have the assignment TRUE, and in S1 those
which are FALSE. Since each clause contains exactly one true literal, we are
in condition (b) of Lemma 16, and from now on, there is a unique way for
obtaining a 3-IS-partition of W , by proceeding in each graph Gj as in the
proof of the lemma for V0: note that we cannot proceed independently in
each graph Gj , which could lead to more than one partition, because of the
vertices v1 and v2 which are shared by all the graphs Gj .

Can we have another 3-IS-partition W = S∗
1 ∪ S∗

2 ∪ S∗
3? Still assuming,

wlog, that v2 ∈ S∗
3 , this 3-IS-partition, like every 3-IS-partition in G, in-

duces, because of the triangles xixiv2, a valid truth assignment A for the
variables xi, 1 ≤ i ≤ n, by setting A(xi) =T if xi ∈ S∗

2 and A(xi) =F if
xi ∈ S∗

1 . If we study, in a subgraph Gj0 , the vertices aj0 , bj0 and dj0 , we
know, by Lemma 16(a), that they cannot all belong to the same set, S∗

1

or S∗
2 . If two of them belong to S∗

1 , then, by Remark 17, w4,j0 ∈ S∗
1 and

v1 ∈ S∗
2 . This in turn implies that all the vertices w4,j , 1 ≤ j ≤ m, belong

to S∗
1 , and then that, for all j, two among the three vertices aj , bj and dj

belong to S∗
1 . Similarly, if two of aj0 , bj0 and dj0 belong to S∗

2 , then for
all j, two of aj , bj and dj belong to S∗

2 . Therefore, the assignment A is
such that (a) in all the clauses, two of the three vertices aj , bj , dj belong
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to S∗
1 , or (b) in all the clauses, two of the three vertices aj , bj , dj belong

to S∗
2 . This proves that the assignment A, or its complement, 1-3-satisfies

all the clauses. Since such an assignment was assumed to be unique, the
3-IS-partition W = S∗

1 ∪ S∗
2 ∪ S∗

3 is the same as W = S1 ∪ S2 ∪ S3.
Thus a YES answer to U-1-3-SAT implies a YES answer to U-3-COL.
(b) Assume next that the answer to U-1-3-SAT is NO: this may be either

because no truth assignment 1-3-satisfies the instance, or because at least
two assignments do; in the latter case however, this would lead to at least
two 3-IS-partitions, and a NO answer to U-3-COL. So we are left with the
case when the set of clauses C cannot be 1-3-satisfied. But if a 3-IS-partition
of W exists, then we have seen, with S∗

1 ∪ S∗
2 ∪ S∗

3 above, how to construct
an assignment which 1-3-satisfies all the clauses; therefore, no 3-IS-partition
can exist.

We have proved that, in all cases, the answer to U-3-COL is also NO. △

Proposition 19 For every integer k ≥ 3, there exists a polynomial reduc-
tion from U-3-COL to U-k-COL: U-3-COL →p U-k-COL, and from U-k-
COL to U-COL: U-k-COL →p U-COL.

Proof. To go from U-ℓ-COL to U-(ℓ + 1)-COL, the trick is standard: a
graph G admits a (unique) ℓ-IS-partition if and only if the graph obtained
from G by adding one vertex connected to all the vertices of G, admits a
(unique) (ℓ+ 1)-IS-partition. Starting from three, we can reach any k ≥ 3.

The problem U-COL, where k, the number of colours, is not fixed but is
part of the instance, is at least as hard as U-k-COL, for any fixed integer k:
to any instance G of U-k-COL, we can associate the instance consisting of G
and k for U-COL. △

Theorem 20 There exists a polynomial reduction from U-COL to U-SAT:
U-COL →p U-SAT.

Proof. We start from an instance of U-COL, a connected graph G = (V,E)
and an integer k, with V = {x1, . . . , x|V |}; we assume that k ≥ 3 and |V | ≥ 3.
We create the set of variables X = {xhi : 1 ≤ h ≤ |V |, 1 ≤ i ≤ k} and the
following clauses:

(0) {x11};
(i) for 1 ≤ h ≤ |V |, clauses of size k: {xh1 , x

h
2 , . . . , x

h
k};

(ii) for 1 ≤ h ≤ |V | and 1 ≤ i < j ≤ k, clauses of size two: {xhi , x
h
j };

(iii) for every edge xhxh
′
∈ E, k clauses of size two: {xh1 , x

h′

1 }, {xh2 , x
h′

2 },
. . ., {xhk−1, x

h′

k−1}, {x
h
k , x

h′

k };
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(iv) for 2 ≤ h ≤ |V | and 1 ≤ i ≤ k, clauses chi = {xhi , x
1
i , . . . , x

h−1
i , x1i−1,

. . . , xh−1
i−1 }.

We shall say that {xhi } is the first part of chi , {x
1
i , . . . , x

h−1
i } its second

part, and {x1i−1, . . . , x
h−1
i−1 } its third part. When i = 1, chi reduces to its first

and second parts. All these clauses form the instance of U-SAT.

Note that the number of variables and clauses is polynomial wrt the
order of G, in particular because we may take k ≤ |V |.

(1) We assume that there is a k-IS-partition of V into k sets S1, S2, . . . ,
Sk. If necessary, we redefine this partition, with renamed sets S∗

1 , S
∗
2 , . . . ,

S∗
k , in the following way: we put x1 in S∗

1 ; then if x2 was in the same set
as x1, we also put x2 in S∗

1 , otherwise we put it in S∗
2 ; . . .; if x

p was in the
same set as some xq, q < p, we put xp in the same set as xq, otherwise we
put it in S∗

t , where t is the smallest index that has not been used yet for a
set S∗; and so on, until we have processed all the vertices. In other words,
we re-order the sets S1, S2, . . . , Sk according to the order of the smallest
superscript of their elements. In particular, x1 belongs to the first set.

Example. k = 5, |V | = 14, S1 = {x5, x2, x8}, S2 = {x3, x14, x4}, S3 =
{x10, x1, x12}, S4 = {x7, x9, x11}, S5 = {x13, x6}. After re-ordering as
described above, we have S∗

1 = {x1, x10, x12}, S∗
2 = {x2, x5, x8}, S∗

3 =
{x3, x4, x14}, S∗

4 = {x6, x13}, S∗
5 = {x7, x9, x11}.

If we have a k-IS-partition S1, S2, . . . , Sk ordered as above, we can define
a truth assignment A1 by setting, for every variable xhi , A1(x

h
i ) =T if and

only if xh ∈ Si, and this assignment satisfies all the clauses; indeed:
(0) {x11} is satisfied thanks to the re-ordering;
(i) each clause {xh1 , x

h
2 , . . . , x

h
k} contains at least one true literal, the

contrary meaning that the vertex xh belongs to no set of the k-IS-partition;
(ii) each clause {xhi , x

h
j } contains at least one true literal, the contrary

meaning that the vertex xh belongs to two sets Si and Sj ;
(iii) each clause {xhi , x

h′

i } contains at least one true literal, the contrary
meaning that two neighbours in G belong to the same set Si;

(iv) let us consider chi for given h and i, 2 ≤ h ≤ |V |, 1 ≤ i ≤ k, and
assume that it is not satisfied byA1. The first part of c

h
i implies that xh ∈ Si,

the second part that {x1, . . . , xh−1} ∩ Si = ∅; if i = 1, this is impossible,
since x1 ∈ S1. So i > 1 and chi has a third part, which, when not satisfied,
implies that {x1, . . . , xh−1} ∩ Si−1 = ∅. But then xh should have been put
in Si−1 (or possibly even earlier) when re-ordering the k-IS-partition, and
we have a contradiction. Therefore, all the clauses chi are satisfied by A1.
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We can conclude that any k-IS-partition gives a truth assignment satisfying
all the clauses constructed for U-SAT.

Assume now that this k-IS-partition is unique, i.e., we have a YES an-
swer for U-COL. We claim that there is only one assignment satisfying the
instance of U-SAT. Assume on the contrary that another assignment, A2,
also satisfies it. Then, thanks to the clauses described in (i) and (ii), for ev-
ery h, at least one literal xhi is set TRUE by A2, and for every pair i, j, i 6= j,
at least one of xhi , x

h
j is set TRUE, which means that at most one xhi is set

TRUE: so for every h, exactly one xhi is TRUE. Using this, let us construct
a partition S+

1 , . . . , S
+
k using the rule: xh ∈ S+

i if and only if A2(x
h
i ) =T.

Now because of the clauses {xhi , x
h′

i } corresponding to neighbours xh

and xh
′
in G, at least one of xhi , x

h′

i is set FALSE by A2: this means that
two neighbours cannot be in the same set and guarantees that the partition
S+
1 , . . . , S

+
k is a k-IS-partition of V , and, by assumption, it must coincide

with S1, S2, . . . , Sk, up to permutations of the subscripts. This is where
the clauses introduced in Step (iv) intervene: without them, a single k-IS-
partition could give more than one assignment, differing only according to
the permutations on the subscripts of the sets of the k-IS-partition.

We are going to prove that S1 = S+
1 , S2 = S+

2 , . . ., Sk = S+
k . Because of

the clause {x11}, we have A2(x
1
1) =T, implying that x1 ∈ S+

1 and S1 = S+
1 .

Now assume that there are two sets S+
p and S+

q such that 1 < p, q = p+ 1,
and the element with smallest superscript in S+

p , x
p1 , has superscript greater

than the element with smallest superscript in S+
q , x

q1 : p1 > q1. Consider
the clause

cq1q = cq1p+1 = {xq1p+1, x
1
p+1, . . . , x

q1−1
p+1 , x1p, . . . , x

q1−1
p }.

Now A2(x
q1
p+1) =T, and none of the vertices x1, . . . , xq1−1, which all have

superscripts smaller than q1 and p1, can belong to S+
q = S+

p+1 nor to S+
p .

This implies that cq1q cannot be satisfied by A2, a contradiction. It follows
that the k-IS-partition S+

1 , . . . , S
+
k is ordered according to the smallest su-

perscript of the elements in its sets, i.e., it has the same set order as the
k-IS-partition S1, . . . , Sk, which was our claim, and consequently A1 = A2,
i.e., we have also a YES answer to U-SAT.

Example. Let G be a triangle: k = 3, G = (V,E) with V = {x1, x2, x3}, E =
{x1x2, x1x3, x2x3}. The clauses are: (0) {x11}; (i) {x11, x

1
2, x

1
3}, {x

2
1, x

2
2, x

2
3},

and {x31, x
3
2, x

3
3}; (ii) {x

1
1, x

1
2}, {x

1
1, x

1
3}, {x

1
2, x

1
3}, {x

2
1, x

2
2}, {x

2
1, x

2
3}, {x

2
2, x

2
3},

{x31, x
3
2}, {x

3
1, x

3
3}, and {x32, x

3
3}; (iii) {x11, x

2
1}, {x

1
2, x

2
2}, {x

1
3, x

2
3}, {x

1
1, x

3
1},

{x12, x
3
2}, {x

1
3, x

3
3}, {x

2
1, x

3
1}, {x

2
2, x

3
2}, and {x23, x

3
3}. If we stop here, two as-

signments A1,A2 are possible, one corresponding to x1 ∈ S1, x
2 ∈ S2, x

3 ∈
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S3 : A1(x
1
1) = A1(x

2
2) = A1(x

3
3) =T, A1(x

1
2) = A1(x

1
3) = A1(x

2
1) =

A1(x
2
3) = A1(x

3
1) = A1(x

3
2) =F, the other corresponding to x1 ∈ S1, x

2 ∈
S3, x

3 ∈ S2 : A2(x
1
1) = A2(x

2
3) = A2(x

3
2) =T, A2(x

1
2) = A2(x

1
3) = A2(x

2
1) =

A2(x
2
2) = A2(x

3
1) = A2(x

3
3) =F. However, only A1 satisfies the clauses (iv),

which are: c21 = {x21, x
1
1}, c

3
1 = {x31, x

1
1, x

2
1}, c

2
2 = {x22, x

1
2, x

1
1}, c

3
2 = {x32, x

1
2, x

2
2,

x11, x
2
1}, c

2
3 = {x23, x

1
3, x

1
2}, and c33 = {x33, x

1
3, x

2
3, x

1
2, x

2
2}. Indeed, c

2
3 is not sat-

isfied by A2.

(2) Assume now that the answer to U-COL is negative. If it is negative
because there are at least two k-IS-partitions of V , then we have at least
two assignments satisfying the instance of U-SAT: we have seen above how
to construct a suitable assignment from a k-IS-partition, and different par-
titions lead to different assignments. If there is no k-IS-partition, then there
is no assignment satisfying U-SAT, because such an assignment would give
a k-IS-partition, as we have seen above in the proof with A2. So in both
cases, a NO answer to U-COL implies a NO answer to U-SAT. △

Theorem 21 For every integer k ≥ 3, the problems U-SAT, U-1-3-SAT,
U-k-SAT, U-k-COL and U-COL have equivalent complexities, up to polyno-
mials. All are NP-hard and belong to the class DP. △

Note that, using the same argument as in the proof of Proposition 14, it
could have been shown directly that U-k-COL and U-COL belong to DP.

3.3 Location of U-OCOL

Obvioulsy, U-OCOL is NP-hard. We provide an algorithm which answers
YES or NO to U-OCOL, thus giving an upper bound on its complexity, and
allowing to locate it, still in a fuzzy way, in the class hierarchy.

Proposition 22 The problem U-OCOL belongs to the class LNP .

Proof. Using a standard dichotomous process, with a logarithmic number
of calls to an algorithm solving k-COL, which is in NP, we can build an
algorithm outputting the chromatic number of G, for any graph G.

Once we have computed the chromatic number, we question the in-
stance G of U-k-COL, with k equal to the chromatic number, and we get
the answer to U-OCOL.

Since U-k-COL belongs to DP and DP⊆LNP , all in all we obtain an al-
gorithm solving U-OCOL with a logarithmic number of calls to an algorithm
solving a problem in NP. △
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Note that using an algorithm for U-k-COL without knowing the chromatic
number leads nowhere, because a NO answer cannot be interpreted: either
k is smaller than the chromatic number, and there is no colouring, or k is
greater than or equal to the chromatic number, but there is more than one
colouring.

4 Conclusion

Theorem 21 states that the five problems, U-SAT, U-1-3-SAT, U-k-SAT,
U-k-COL and U-COL, are equivalent and lie somewhere in the vertically
hatched area of Figure 6, but probably not in DP-C, cf. Remark 15.

As for the problem U-OCOL, we have a poorer result (Proposition 22):
it lies within the areas that are hatched horizontally or vertically.

Finally, U-2-SAT (Theorem 4) and U-2-COL (trivially) are polynomial.

In [8], the authors wonder whether
• (A) U-SAT is NP-hard, but here what they mean is: does there exist a
polynomial reduction from an NP-complete problem to U-SAT? i.e., they
use the second definition of NP-hardness.

They show that (A) is true if and only if
• (B) U-SAT is DP-complete.

So, if one is careless and considers that U-SAT is NP-hard without check-
ing according to which definition, one might easily jump too hastily to the
conclusion that U-SAT is DP-complete, which, to our knowledge, is not
known to be true or not.

As for U-3-SAT, we do not know where to locate it more precisely either;
in [10] the problems U-k-SAT and, more particularly, U-3-SAT are studied,
but it appears that they are versions where the given set of clauses has zero
or one solution, which makes quite a difference with our problem.

Open problem(s). Give a better location for U-SAT, U-k-SAT, U-1-3-
SAT, U-k-COL, U-COL and U-OCOL, in the classes of complexity.

29



NP
−hardL

−hardDP
L

N
P

P
N

P

NP
−hardP

co−NP NP

DP−C

co−NP−C

P

U−2−SAT and U−2−COL

NP−hard = −hardco−NP

NP−C

D
P

Figure 6: Some classes of complexity: Figure 1 revisited.

30



Complexity of Unique (Optimal) Solutions

in Graphs: Vertex Cover and Domination

Olivier Hudry
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Abstract

We study the complexity of four decision problems dealing with the
uniqueness of a solution in a graph: “Uniqueness of a Vertex Cover
with bounded size”(U-VC) and “Uniqueness of an Optimal Vertex
Cover”(U-OVC), and for any fixed integer r ≥ 1, “Uniqueness of an
r-Dominating Code with bounded size” (U-DCr) and “Uniqueness of
an Optimal r-Dominating Code” (U-ODCr). In particular, we give
a polynomial reduction from “Unique Satisfiability of a Boolean for-
mula” (U-SAT) to U-OVC, and from U-SAT to U-ODCr. We prove
that U-VC and U-DCr have complexity equivalent to that of U-SAT
(up to polynomials); consequently, these problems are all NP-hard,
and U-VC and U-DCr belong to the class DP.

Key Words: Graph Theory, Complexity Theory, NP-Hardness, Decision
Problems, Polynomial Reduction, Uniqueness of (Optimal) Solution, Dom-
ination, Dominating Codes, Vertex Covers, Boolean Satisfiability Problems

31



5 Introduction

5.1 The Vertex Cover and Domination Problems

For the vast topic of 1-domination in graphs, see [25].
We shall denote by G = (V,E) a finite, simple, undirected graph with

vertex set V and edge set E, where an edge between x ∈ V and y ∈ V is
indifferently denoted by xy or yx. The order of the graph is its number of
vertices, |V |. In a connected graph G, we can define the distance between
any two vertices x and y, denoted by dG(x, y), as the length of any shortest
path between x and y. This definition can be extended to disconnected
graphs, using the convention that dG(x, y) = +∞ if no path exists between
x and y. The subscript G can be dropped when there is no ambiguity.

Given a graph G = (V,E), an independent set, or stable set, is a subset
V ∗ ⊆ V such that for all u ∈ V ∗, v ∈ V ∗, we have uv /∈ E. A clique, or
complete graph, is any subgraph (V − ⊆ V,E− ⊆ E) such that for all u ∈ V −,
v ∈ V −, u 6= v, we have uv ∈ E−. For an integer r ≥ 1, the r-th power of G
is the graph Gr = (V,Er), with Er = {uv : u ∈ V, v ∈ V, dG(u, v) ≤ r}.

A vertex cover of G (VC for short) is a subset of vertices V ∗ ⊆ V such
that for every edge e = uv ∈ E, V ∗ ∩ {u, v} 6= ∅. We denote by φ(G) the
smallest cardinality of a VC of G, and call it the vertex cover number of G;
any VC V ∗ with |V ∗| = φ(G) is said to be optimal.

For any vertex v ∈ V , the open neighbourhood N(v) of v consists of the
set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈ E}; the closed
neighbourhood of v is B1(v) = N [v] = N(v) ∪ {v}. This notation can be
generalized to any integer r ≥ 0 by setting

Br(v) = {x ∈ V : d(x, v) ≤ r}.

ForX ⊆ V , we denote by Br(X) the set of vertices within distance r fromX:

Br(X) = ∪x∈XBr(x).

Whenever two vertices x and y are such that x ∈ Br(y) (which is equivalent
to y ∈ Br(x)), we say that x and y r-dominate each other; note that every
vertex r-dominates itself. A set W is said to r-dominate a set Z if every
vertex in Z is r-dominated by at least one vertex of W , or equivalently:
Z ⊆ Br(W ).

A code C is simply a subset of V , and its elements are called codewords.
We say that C is an r-dominating code in G if all the sets Br(v) ∩ C,

v ∈ V , are nonempty; in other words, every vertex is r-dominated by C, or
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V = Br(C). We denote by γr(G) the smallest cardinality of an r-dominating
code in G, and call it the r-domination number of G; any r-dominating
code C with |C| = γr(G) is said to be optimal. The following result needs
no proof.

Lemma 23 For all r ≥ 1, the code C is r-dominating in G if and only if it
is 1-dominating in the r-th power of G. △

The following two problems are well known in graph theory as well as in
complexity theory, specially when r = 1 for the second problem, stated here
for any fixed integer r ≥ 1.

Problem VC (Vertex Cover with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit a vertex cover of size at most k?

Problem DCr (r-Dominating Code with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit an r-dominating code of size at most k?

As we shall see, these problems areNP-complete (Propositions 29 from [39], [21]
and 39 from [21], [33]). In this paper, we wish to locate, in the hierarchy of
complexity classes, the following four problems, dealing with the uniqueness
of solutions, optimal or not.

Problem U-VC (Unique Vertex Cover with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit a unique vertex cover of size at most k?

Problem U-OVC (Unique Optimal Vertex Cover):
Instance: A graph G.
Question: Does G admit a unique optimal vertex cover?

Problem U-DCr (Unique r-Dominating Code with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit a unique r-dominating code of size at most k?

Problem U-ODCr (Unique Optimal r-Dominating Code):
Instance: A graph G.
Question: Does G admit a unique optimal r-dominating code?

In Sections 6 and 7, we establish our results on vertex covers and dominating
codes, respectively; we prove in particular that there is a polynomial reduc-
tion from “Unique Satisfiability of a Boolean formula” (U-SAT) to U-OVC,
and from U-SAT to U-ODCr; and that U-VC and U-DCr are equivalent to
U-SAT (up to polynomials). This implies that:
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– U-VC, U-OVC, UDCr and U-ODCr (r ≥ 1) are NP-hard;
– U-VC and UDCr (r ≥ 1) belong to the class DP.

We also show that U-OVC and U-ODCr (r ≥ 1) belong to the class LNP .

In forthcoming papers, we likewise investigate the issue of the uniqueness
of solutions for (a) Boolean satisfiability and graph colouring [34] (= Sec-
tions 1–4 in this Report), of which we shall use some of the results in the
present paper; (b) r-Identifying Code and r-Locating-Dominating Code [36]
(Sections 9–13); (c) Hamiltonian Cycle [37] (Sections 14–16).

In [33], we already investigated the complexity of the existence of, and of
the search for, optimal r-dominating codes, as well as optimal r-dominating
codes containing a given subset of vertices; some results will be re-used here,
see, e.g., Lemma 38.

For other works in this area, see [26] for vertex covers, and [20], [31], [42]
and [43] for some problems related to domination in the binary hypercube.

In the sequel, we shall also need the following tools, which constitute clas-
sical definitions and decision problems, related to Boolean satisfiability. We
consider a set X of n Boolean variables xi and a set C of m clauses (C is
also called a Boolean formula); each clause cj contains κj literals, a literal
being a variable xi or its complement xi. A truth assignment for X sets
the variable xi to TRUE, also denoted by T, and its complement to FALSE
(or F), or vice-versa. A truth assignment is said to satisfy the clause cj if cj
contains at least one true literal, and to satisfy the set of clauses C if every
clause contains at least one true literal. The following decision problems, for
which the size of the instance is polynomially linked to n+m, are classical
problems in complexity.

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing at least two different literals.
Question: Is there a truth assignment for X that satisfies C?

The following problem is stated for any fixed integer k ≥ 2.

Problem k-SAT (k-Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing exactly k different literals.
Question: Is there a truth assignment for X that satisfies C?

Problem 1-3-SAT (One-in-Three Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing exactly three different literals.
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Question: Is there a truth assignment for X such that each clause of C
contains exactly one true literal?

We shall say that a clause (respectively, a set of clauses) is 1-3-satisfied by
an assignment if this clause (respectively, every clause in the set) contains
exactly one true literal. We shall also consider the following variants of the
above problems:

U-SAT (Unique Satisfiability),
U-k-SAT (Unique k-Satisfiability),
U-1-3-SAT (Unique One-in-Three Satisfiability).

They have the same instances as SAT, k-SAT and 1-3-SAT respectively, but
now the question is “Is there a unique truth assignment. . .?”.

We shall give in Proposition 25 and Corollary 26 what we need to know
about the complexities of these problems. We now provide the necessary
definitions and notation for complexity.

5.2 Necessary Notions in Complexity

We expound here, not too formally, the notions of complexity that will be
needed in the sequel. We refer the reader to, e.g., [6], [21], [38] or [45] for
more on this topic.

A decision problem is of the type “Given an instance I and a property PR
on I, is PR true for I?”, and has only two solutions, “yes” or “no”. The
class P will denote the set of problems which can be solved by a polynomial
(time) algorithm, and the class NP the set of problems which can be solved
by a nondeterministic polynomial algorithm. A polynomial reduction from a
decision problem π1 to a decision problem π2 is a polynomial transformation
that maps any instance of π1 into an “equivalent” instance of π2, that is,
an instance of π2 admitting the same answer as the instance of π1; in this
case, we shall write π1 →p π2. Cook [14] proved that there is one problem in
NP, namely SAT, to which every other problem in NP can be polynomially
reduced. Thus, in a sense, SAT is the “hardest” problem inside NP. Other
problems share this property in NP and are called NP-complete problems;
their class is denoted by NP-C. The way to show that a decision problem
π is NP-complete is, once it is proved to be in NP, to choose some NP-
complete problem π1 and to polynomially reduce it to π. From a practical
viewpoint, the NP-completeness of a problem π implies that we do not
know any polynomial algorithm solving π, and that, under the assumption
P 6=NP, which is widely believed to be true, no such algorithm exists: the
time required can grow exponentially with the size of the instance (when
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the instance is a graph, its size is polynomially linked to the order of the
graph).

The complement of a decision problem, “Given I and PR, is PR true
for I?”, is “Given I and PR, is PR false for I?”. The class co-NP (respec-
tively, co-NP-C) is the class of the problems which are the complement of a
problem in NP (respectively, NP-C).

For problems which are not necessarily decision problems, a Turing re-
duction from a problem π1 to a problem π2 is an algorithm A that solves π1
using a (hypothetical) subprogram S solving π2 such that, if S were a poly-
nomial algorithm for π2, then A would be a polynomial algorithm for π1.
Thus, in this sense, π2 is “at least as hard” as π1. A problem π is NP-
hard (respectively, co-NP-hard) if there is a Turing reduction from some
NP-complete (respectively, co-NP-complete) problem to π [21, p. 113].

Remark 24 Note that with these definitions, NP-hard and co-NP-hard co-
incide [21, p. 114].

The notions of completeness and hardness can of course be extended to
classes other than NP or co-NP. NP-hardness is defined differently in [15]
and [27]: there, a problem π is NP-hard if there is a polynomial reduction
from some NP-complete problem to π; this may lead to confusion (see Sec-
tion 8).

We also introduce the classes PNP (also known as ∆2 in the class hi-
erarchy) and LNP (also denoted by PNP [O(logn)] or Θ2), which contain the
decision problems which can be solved by applying, with a number of calls
which is polynomial (respectively, logarithmic) with respect to the size of the
instance, a subprogram able to solve an appropriate problem in NP (usually,
an NP-complete problem); and the class DP [46] (or DIFP [8] or BH2 [38],
[52], . . .) as the class of languages (or problems) L such that there are two
languages L1 ∈NP and L2 ∈ co-NP satisfying L = L1 ∩ L2. This class is
not to be confused with NP∩ co-NP (see the warning in, e.g., [45, p. 412]);
actually, DP contains NP∪ co-NP and is contained in LNP . See Figure 7.

Membership to P, NP, co-NP, DP, LNP or PNP gives an upper bound
on the complexity of a problem (this problem is not more difficult than . . .),
whereas a hardness result gives a lower bound (this problem is at least
as difficult as . . .). Still, such results are conditional in some sense; if for
example P=NP, they would lose their interest. But we do not know whether
or where the classes of complexity collapse.

We now consider the satisfiability problems defined in Section 5.1.
The problems SAT and 3-SAT are two of the basic and most well-known

NP-complete problems [14], [21, p. 39, p. 46 and p. 259]. More generally,
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Figure 7: Some classes of complexity.

k-SAT is NP-complete for k ≥ 3 and polynomial for k = 2. The problem
1-3-SAT, which is obvioulsy in NP, is also NP-complete [48, Lemma 3.5],
[21, p. 259], and Remark 3 in this Report.

In [34] we proved the following (= Theorem 10 in this Report).

Proposition 25 For every integer k ≥ 3, the problems U-SAT, U-k-SAT
and U-1-3-SAT are equivalent, up to polynomials. △

Using results from [8] and [45, p. 415], it is then rather simple to obtain the
following result.

Corollary 26 For every integer k ≥ 3,
(a) the decision problems U-SAT, U-k-SAT and U-1-3-SAT are NP-hard

(and co-NP-hard by Remark 24);
(b) the decision problems U-SAT, U-k-SAT and U-1-3-SAT belong to the

class DP. △

Remark 27 It is not known whether these problems are DP-complete. In [45,
p. 415], it is said that “U-SAT is not believed to be DP-complete”.

We are now ready to investigate the problems of Vertex Cover and Domi-
nation.
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6 Vertex Covers

In this section, we are going to describe three polynomial reductions:
U-1-3-SAT →p U-VC and U-1-3-SAT →p U-OVC (Theorem 30),

U-VC →p U-SAT (Theorem 33).
The consequence of these reductions is that U-SAT and U-VC have equiv-
alent complexity, that U-VC and U-OVC are NP-hard, and that U-VC be-
longs to DP. We shall also show that U-OVC belongs to the class LNP .

6.1 Preliminary Results

The following result characterizes the vertices belonging to at least one op-
timal VC, through the comparison of two vertex cover numbers, and will be
used in the (constructive) proof of Proposition 35.

Lemma 28 Let G = (V,E) be a graph. For a given vertex α ∈ V , we
consider the following graph: Gα = (Vα, Eα), with

Vα = V ∪ {β1, β2}, Eα = E ∪ {αβ1, αβ2},

where, for 1 ≤ i ≤ 2, βi /∈ V . Then α belongs to at least one optimal vertex
cover in G if and only if φ(G) = φ(Gα).

Proof. (a) Let α be a vertex belonging to at least one optimal vertex cover
C in G; then C is a VC in Gα as well, and φ(Gα) ≤ |C| = φ(G).

On the other hand, let C∗ be an optimal VC in Gα. Then obviously
α ∈ C∗ and none of the βi’s belongs to C∗. Consequently, C∗ ⊆ V , C∗ is a
VC in G, and φ(G) ≤ |C∗| = φ(Gα).

Therefore, with this assumption on α, we have: φ(G) = φ(Gα).
(b) Conversely, assume that φ(G) = φ(Gα) for a vertex α ∈ V . Let C∗

be an optimal VC in Gα; again, α ∈ C∗, and none of the βi’s belongs to C∗.
Then C∗ is a VC in G, it has size φ(Gα) = φ(G), and it contains α. △

Proposition 29 [39], [21, p. 46 and p. 190] The decision problem VC is
NP-complete. △

Actually, we shall only use the fact that the problem VC belongs to NP, in
the proofs of Propositions 35 and 36.

6.2 Uniqueness of Vertex Cover

6.2.1 From U-1-3-SAT to U-VC and U-OVC

Theorem 30 There exists a polynomial reduction from U-1-3-SAT to U-VC
and to U-OVC: U-1-3-SAT →p U-VC and U-1-3-SAT →p U-OVC.
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Figure 8: Illustration of the graph constructed for the reduction from U-
1-3-SAT to U-OVC, with four variables and two clauses, c1 = {x1, x2, x3},
c2 = {x2, x3, x4}. The sixteen black vertices form the (not unique) optimal
vertex cover V ∗ corresponding to the (not unique) truth assignment x1 =
T, x2 =F, x3 =F, x4 =F 1-3-satisfying the clauses. As soon as we set
V ∗∩(V1∪V2∪V3∪V4) = {x1, x2, x3, x4}, the other vertices in V ∗ are forced.

Proof. Going deeper into the proof of the NP-completeness of the problem
Vertex Cover (see [39], [21, pp. 54–56]), which uses a polynomial reduction
from 3-SAT and obviously does not convey the uniqueness of the solution,
we describe a polynomial reduction from the problem U-1-3-SAT to U-VC
and U-OVC, see Figure 8. If the instance of U-1-3-SAT consists of a set C
of m clauses over n variables, we construct

– one vertex denoted by X;
– for each clause cj , a triangle Tj = {aj , bj , dj};
– for each variable xi, a component Gi = (Vi = {xi, xi}, Ei = {xixi})

and an auxiliary triangle T ∗
i = {a∗i , b

∗
i , d

∗
i } whose vertices are linked to xi, xi

and X by the three edges xia
∗
i , xid

∗
i and b∗iX, called “auxiliary membership

edges”.
Then we link the components Gi on the one hand, and the triangles Tj on

the other hand, according to which literals appear in which clauses (“mem-
bership edges”). For each clause cj = {ℓ1, ℓ2, ℓ3}, we also add the triangular
set of edges E′

j = {ℓ1ℓ2, ℓ1ℓ3, ℓ2ℓ3}.
The graph G thus constructed constitutes the instance of U-OVC, and,

together with the integer k = 2m + 3n, the instance of U-VC. The order
of G is 1 + 3m+ 5n.

Note that if V ∗ is a VC, then each triangle Tj and each auxiliary trian-
gle T ∗

i contain at least two vertices, each component Gi at least one vertex,
and |V ∗| ≥ 2(m + n) + n = 2m + 3n = k; if |V ∗| = k, then V ∗ is optimal,
and each triangle contains exactly two vertices, each component Gi exactly
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one vertex. We can also observe that, because of the edge sets E′
j , at least

two vertices among ℓ1, ℓ2, ℓ3 belong to any VC.
(a) Let us first assume that the answer to U-1-3-SAT is YES: there is

a unique truth assignment 1-3-satisfying the clauses of C. Then, by taking,
in each Gi, the vertex corresponding to the literal which is TRUE, in every
triangle Tj , the two vertices which are linked to the two false literals of cj ,
and in every auxiliary triangle the vertex linked to X and the one linked to
the false literal, we obtain a VC V ∗ whose size is equal to k = 2m + 3n,
which is optimal. Note that X /∈ V ∗; in fact, once we have put the n vertices
corresponding to the true literals in the VC V ∗ in construction, we have no
choice for the optimal (up to k) completion of V ∗: when we take two vertices
in Tj , wemust take the two vertices which cover the membership edges linked
to the two false literals (in Figure 8, the vertices b1, d1 and b2, d2); similarly,
we have no choice either for the auxiliary triangles. So, if another optimal
VC V + (of size k) exists, it must have a different distribution of its vertices
over the components Gi, still with exactly one vertex in each Gi; this in
turn defines a valid truth assignment, by setting xi =T if xi ∈ V +, xi =F
if xi ∈ V +. Now this assignment 1-3-satisfies C, thanks in particular to
our observation on the covering of the edges in E′

j . So we have two truth
assignments 1-3-satisfying C, contradicting the YES answer to U-1-3-SAT;
therefore, V ∗ is the only optimal VC (with size k). So we have a YES answer
to both U-VC and U-OVC.

(b) Assume next that the answer to U-1-3-SAT is NO: this may be either
because no truth assignment 1-3-satisfies the instance, or because at least
two assignments do; in the latter case, this would lead, using the same
argument as in the previous paragraph, to at least two optimal VC (of size
k = 2m+ 3n), and a NO answer to both U-VC and U-OVC. So we are left
with the case when the set of clauses C cannot be 1-3-satisfied. As seen
previously when discussing V +, this implies that no VC of size k exists; this
is sufficient to show that the answer is also NO for U-VC.

Assume then that V ∗ is an optimal VC, of unknown size |V ∗| > 2m+3n.
Then (i) at least one triangle contains three vertices of V ∗, or (ii) at least one
component Gi contains two vertices of V

∗, or (iii) X ∈ V ∗. Assume first that
one triangle Tj or one auxiliary triangle T ∗

i contains three vertices belonging
to V ∗; this can happen only if the three membership edges, auxiliary or not,
starting from this triangle are not covered by their other ends (otherwise, we
could save one vertex in the triangle). But then, exchanging in V ∗ one vertex
of this triangle with the other end of its membership edge gives another
optimal VC, and a NO answer to U-OVC. So we may assume from now on
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that all the triangles have exactly two vertices in V ∗. Assume next that a
component Gi has two vertices belonging to V ∗; then inside its auxiliary
triangle T ∗

i , we have at least two possibilities for choosing the two vertices
belonging to V ∗, and, once again, a NO answer to U-OVC. So we are left
with the case when X ∈ V ∗, but again, using the same type of argument,
there is choice inside the auxiliary triangles. So in all cases, we have a NO
answer to U-OVC. △

Corollary 31 The decision problems UVC and U-OVC are NP-hard.

Proof. Use Theorem 30 and Corollary 26(a). △

6.2.2 An Upper Bound for the Complexity of U-VC

Remark 32 The method carried out in the proof of the following theorem
is quite general and can be used with other types of problems, e.g., those
involving the existence of a vertex set with bounded size in a graph: roughly
speaking, the clauses constructed below in (a) “describe” the problem, those
in (b) deal with the size of the set, and finally the clauses in (c) rule out
multiple solutions obtained by permutations, symmetries, . . ., and guaran-
tee the uniqueness. See also the proof of Theorem 46 below, as well as of
Theorem 68.

Theorem 33 There exists a polynomial reduction from U-VC to U-SAT:
U-VC →p U-SAT.

Proof. We start from an instance of U-VC, a graph G = (V,E) and an
integer k, with V = {x1, . . . , x|V |}; we assume that |V | ≥ 3. We create the
set of variables X = {xhi : 1 ≤ h ≤ |V |, 1 ≤ i ≤ k} and the following clauses:

(a) for each edge xhxℓ ∈ E, clauses of size 2k: {xh1 , x
h
2 , . . . , x

h
k , x

ℓ
1, . . . , x

ℓ
k};

(b1) for 1 ≤ i ≤ k and 1 ≤ h < ℓ ≤ |V |, clauses of size two: {xhi , x
ℓ
i};

(b2) for 1 ≤ i < j ≤ k and 1 ≤ h ≤ |V |, clauses of size two: {xhi , x
h
j };

(c) for 1 ≤ i < k and 1 < ℓ ≤ |V |, for 1 ≤ h < ℓ and i < j ≤ k, clauses
of size two: {xℓi , x

h
j }.

Note that the number of variables and clauses is polynomial with respect to
the order of G, since we may assume that k ≤ |V |.

Assume that we have a unique VC of size k in G, V ∗ = {xp1 , xp2 ,
. . . , xpk}, with p1 < p2 < . . . < pk. Observe that V ∗ is optimal (oth-
erwise, any optimal VC destroys the uniqueness assumption). Define the
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assignment A1 by A1(x
pq
q ) =T for 1 ≤ q ≤ k, and all the other variables are

set FALSE by A1. This assignment satisfies all the clauses; indeed:
(a) at least one of xh, xℓ belongs to V ∗; if, say, xh = xpq ∈ V ∗, then by

definition xhq is set TRUE by A1, and satisfies the clause;

(b1) if {xhi , x
ℓ
i} is not satisfied for some h, i, ℓ, then A1(x

h
i ) = A1(x

ℓ
i) =T,

which would mean that two different vertices are the i-th element in V ∗;
(b2) if {xhi , x

h
j } is not satisfied, this means that xh appears more than

once in V ∗;
(c) if {xℓi , x

h
j } is not satisfied for some i, ℓ, with h < ℓ and i < j, then

A1(x
ℓ
i) = A1(x

h
j ) =T. This means that xℓ = xpi and xh = xpj ; so ℓ = pi,

h = pj . Now h < ℓ implies that pj < pi, but i < j implies that pi < pj , a
contradiction.

Is A1 unique? Assume on the contrary that another assignment, A2, also
satisfies the constructed instance of U-SAT. By (a), at least one variable xhi
or xℓj is set TRUE by A2, for every h, ℓ corresponding to an edge xhxℓ, and

for some i or j; so if V + is a vertex set which contains the vertex xh as soon
as some variable xhi is set TRUE by A2, then V + is a vertex cover. By (b1),
for each i ∈ {1, . . . , k} there is at most one variable with subscript i set
TRUE by A2; this tells us that we have constructed a VC with (at most)
k elements. Since such a VC is unique by assumption, we can see that A1

and A2 have “selected” the same k vertices, i.e., for each pq ∈ {p1, . . . , pk},
there is exactly one variable, x

pq
q , set TRUE by A1, and, thanks to (b2),

exactly one variable, say x
pq
s , set TRUE by A2. All the other variables with

superscript pq are FALSE by A1 or A2. Then, using (c), we can see that
necessarily q = s for every pq, and that A1 and A2 must coincide: indeed,
assume on the contrary that for some q ∈ {1, . . . , k}, we have q 6= s; we
treat the case 1 ≤ q < s ≤ k, the case 1 ≤ s < q ≤ k being similar. Then
if we consider the subscripts smaller than s, there must be one, say v, such
that there is a superscript pu > pq verifying A2(x

pu
v ) =T. Now the clause

from (c) {xpuv , x
pq
s } is not satisfied by A2, a contradiction.

So a YES answer for U-VC leads to a YES answer for U-SAT. Assume
now that the answer to U-VC is negative. If it is negative because there
are at least two VC of size k, then we have at least two assignments satisfy-
ing the instance of U-SAT: we have seen above how to construct a suitable
assignment from a VC, and different VC obviously lead to different assign-
ments. If there is no VC of size k, then there is no assignment satisfying
U-SAT, because such an assignment would give a VC of size k, as we have
seen above with A2. So in both cases, a NO answer to U-VC implies a NO
answer to U-SAT. △
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Theorem 34 For every integer k ≥ 3, the problems U-SAT, U-1-3-SAT,
U-k-SAT and U-VC have equivalent complexity, up to polynomials.

As a consequence, U-VC belongs to the class DP.

Proof. Simply gather Proposition 25, Theorems 30 and 33, and Corol-
lary 26(b). △

Note that it could have been shown directly that U-VC belongs to DP.

6.2.3 Two Upper Bounds for the Complexity of U-OVC

We give a first upper bound on the complexity of U-OVC, because the proof
is interesting in itself, because it uses a constructive argument (if there is
a unique optimal vertex cover, the algorithm can output it), and because
for some problems it is sometimes the only available method and result.
In the case of Vertex Cover however, we can improve on Proposition 35,
and instead of calling a polynomial number of times an algorithm solving a
problem in NP, we need to call it only a logarithmic number of times, see
Proposition 36.

Proposition 35 The decision problem U-OVC belongs to the class PNP .
In case of a YES answer, one can give the only optimal vertex cover within
the same complexity.

Proof. Let A1 be an algorithm solving the problem VC, which is in NP,
cf. Proposition 29; using a standard dichotomous process, we obtain an
algorithm A2 outputting φ(G) for any graph G, with a logarithmic number
of calls to A1.

LetG = (V,E) be any instance of U-OVC, with n vertices. RunA2 forG,
then, for each vertex v ∈ V , run A2 for Gv, the graph defined in Lemma 28.
By the same lemma, we know, by comparing φ(G) and φ(Gv), whether v
belongs to at least one optimal VC in G or not. Let Y = {v1, . . . , vℓ} be the
set of vertices with a positive answer; then necessarily ℓ ∈ {φ(G), φ(G) +
1, . . . , n}. Now if ℓ > φ(G), there is more than one optimal VC in G, whereas
if ℓ = φ(G), there is only one, namely, Y .

This shows that we can obtain the answer to U-OVC with n + 1 calls
to A2, which leads to a polynomial number of calls to an algorithm solving
the problem VC, together with negligible operations such as constructingGv.
Moreover, we can construct the optimal VC when there is one. △

Proposition 36 The decision problem U-OVC belongs to the class LNP .
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Proof. We use the same algorithm A2 as in the proof of the previous
proposition, for any graph G. Then, once we have φ(G), we run an algorithm
solving U-VC, for the instance consisting of G and φ(G). The answer is YES
if and only if there is a unique optimal VC in G. Since the problem VC is
in NP and U-VC is in DP (but actually, membership to LNP would suffice),
this amounts to a logarithmic number of calls to an algorithm solving a
problem in NP, plus one call for a problem in DP. Because DP ⊆LNP , we
are done. △

Note that using an algorithm for U-VC without knowing φ(G) would lead
nowhere, because a NO answer cannot be interpreted: either k < φ(G) and
there is no VC, or k ≥ φ(G), but there is more than one VC.

6.3 Related Results: Cliques and Independent Sets

Let G = (V,E) be a graph, and Gc = (V,Ec) be its complement: Ec =
{uv : u ∈ V, v ∈ V, u 6= v, uv /∈ E}. Then the following three statements
are equivalent: (a) V ∗ is a vertex cover in G; (b) V \ V ∗ is an independent
set in G; (c) V \ V ∗ induces a clique in Gc. These relationships are simple
enough to make it trivial to polynomially transform the problem VC to any
one of the following two problems, and vice-versa:

Instance: A graph G and an integer k.
Question: Does G admit

(1) an independent set of size at least k? (2) a clique of size at least k?

It follows that
– these two problems have the same complexity as the problem VC;
– the problems of a unique clique (with bounded size or optimal) and

of a unique independent set (with bounded size or optimal) have the same
complexity as U-VC and U-OVC, respectively.

7 Dominating Codes

The approach for dominating codes is quite similar to the one for vertex
covers, but slightly more complicated because we shall have to study suc-
cessively 1-domination, then r-domination for general r.

After some necessary preliminary results, we are going to prove, for r ≥ 1,
the polynomial reductions

U-3-SAT →p U-DC1 and U-3-SAT →p U-ODC1 (Theorem 40),
U-DC1 →p U-DCr and U-ODC1 →p U-ODCr (Theorem 42),

U-DCr →p U-DC1 and U-ODCr →p U-ODC1 (Proposition 44),
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U-DC1 →p U-SAT (Theorem 46).
The consequence of these reductions is that U-DCr and U-ODCr are NP-
hard. Also, U-SAT and U-DCr have equivalent complexity; as a result,
U-DCr belongs to DP. We shall also show that U-ODCr belongs to the
class LNP .

7.1 Preliminary Results

The following lemma will be used in the proof of Theorem 42.

Lemma 37 Let r ≥ 1 be any integer and let G∗
uv = (V ∗

uv, E
∗
uv) be the graph

defined as follows:

V ∗
uv = {u, v} ∪ {αi : 1 ≤ i ≤ r − 1} ∪ {βi,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ 3r},

E∗
uv = {uα1, α1α2, . . . , αr−1v} ∪

∪{αiβi,1, βi,1βi,2, . . . , βi,rβi,r+1, . . . , βi,2r−1βi,2r : 1 ≤ i ≤ r − 1} ∪

∪{βi,rβi,2r+1, βi,2r+1βi,2r+2, . . . , βi,3r−1βi,3r : 1 ≤ i ≤ r − 1},

see Figure 10 further down. Then γr(G
∗
uv) = r, C1 = {u} ∪ {βi,r : 1 ≤ i ≤

r − 1} and C2 = {v} ∪ {βi,r : 1 ≤ i ≤ r − 1} are two optimal r-dominating
codes in G∗

uv, and any optimal r-dominating codes in G∗
uv contains W =

{βi,r : 1 ≤ i ≤ r − 1}.

Proof. Because the r− 1 vertices βi,2r must be r-dominated by some code-
word, at least r − 1 codewords are necessary. But no vertex can simultane-
ously r-dominate βi,2r and u or v, so at least one more codeword is required,
and γr(G

∗
uv) ≥ r. On the other hand, it is quite straightforward to check that

C1 and C2 are r-dominating codes, of size r, so that they are optimal, and
γr(G

∗
uv) = r. Finally, for a given i ∈ {1, . . . , r− 1}, only βi,r can r-dominate

both βi,2r and βi,3r, and so βi,r belongs to any optimal r-dominating code.
△

Also note that, for any given i with 1 ≤ i ≤ r−1, the vertex βi,r r-dominates
exactly αi and βi,j , for 1 ≤ j ≤ 3r.

The following lemma, which characterizes the vertices belonging to at
least one optimal r-dominating code, through the comparison of two r-
domination numbers, is very similar to Lemma 28 for vertex covers; it will
be used for Proposition 48. It is a simplified version of [33, Cor. 2].
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Figure 9: The graph G constructed in the proof of Theorem 40.

Lemma 38 Let G = (V,E) be a graph, and let r ≥ 1 be any integer. For a
given vertex α ∈ V , we consider the following graph: Gα = (Vα, Eα), with

Vα = V ∪ {βi : 1 ≤ i ≤ r}, Eα = E ∪ {αβ1} ∪ {βiβi+1 : 1 ≤ i ≤ r − 1},

where for i ∈ {1, . . . , r}, βi /∈ V . Then α belongs to at least one optimal
r-dominating code in G if and only if γr(G) = γr(Gα). △

Proposition 39 [21, p. 75 and p. 190, for r = 1], [33, Prop. 9] Let r ≥ 1
be any integer. The decision problem DCr is NP-complete. △

Actually, we shall only use the fact that DCr belongs to NP, for Proposi-
tions 48 and 49. Note that the proofs of Proposition 39 do not deal with
the problem of the uniqueness of a solution.

7.2 Uniqueness of Dominating Code

7.2.1 From U-3-SAT to U-DC1 and U-ODC1

Theorem 40 There exists a polynomial reduction from U-3-SAT to U-DC1

and to U-ODC1: U-3-SAT →p U-DC1 and U-3-SAT →p U-ODC1.

Proof. The construction of a graph is common to the two reductions, then
we add an integer k for U-DC1. We start from an instance of U-3-SAT,
a collection C of m clauses over a set X of n variables. For each variable
xi ∈ X , 1 ≤ i ≤ n, we construct the graph Gi = (Vi, Ei) as follows (see
Figure 9):

Vi = {xi, xi, ai, bi} ∪ {αi,ℓ : 1 ≤ ℓ ≤ 3},

Ei = {xiai, xiai, aibi} ∪ {xiαi,ℓ, xiαi,ℓ : 1 ≤ ℓ ≤ 3}.

Then for each clause cj , 1 ≤ j ≤ m, containing three literals, we create one
vertex, Aj , and link it to the three vertices corresponding, in the graphs Gi,
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to the literals of cj . This is our graph G; its order is 7n+m. Additionally,
we set k = 2n for U-DC1.

Note already that, because of the vertices bi and αi,ℓ, any optimal 1-
dominating code in G contains xi or xi, and ai or bi, for all i ∈ {1, . . . , n}.
Consequently, γ1(G) ≥ 2n = k.

We claim that there is a unique solution to 3-SAT if and only if there
is a unique optimal 1-dominating code, and if and only if there is a unique
1-dominating code of size (at most) k, in G.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi has
been set TRUE, the vertex xi if the literal xi is FALSE, and we add ai. Then
C is a 1-dominating code; in particular, every vertex Aj is 1-dominated by
at least one codeword since every clause contains at least one true literal.
The code C has size k = 2n and is optimal. Moreover, once xi or xi is a
codeword, the only way to complete the code with not more than n addi-
tional codewords is to take ai, so that xi or xi is 1-dominated by C, since
no Aj is a codeword. The code C is unique: suppose on the contrary that
C∗ is another 1-dominating code of size 2n in G. Then |C∗ ∩ Vi| = 2 for all
i ∈ {1, . . . , n}, no Aj is a codeword, and exactly one of xi and xi is in C∗.
This defines a valid truth assignment for X , by setting xi =T if xi ∈ C∗,
xi =F if xi ∈ C∗. Since C 6= C∗, this assignment is different from the assign-
ment used to build C. But the fact that C∗ 1-dominates Aj for all j shows
that there is a codeword xi or xi 1-dominating Aj , which means that the
clause cj is satisfied. Therefore, we have a second assignment satisfying the
instance of 3-SAT, a contradiction. We can conclude that both problems,
U-DC1 and U-ODC1, also have a YES answer.

(2) Assume next that the answer to U-3-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two optimal 1-dominating codes of size k = 2n, and
a NO answer to U-DC1 and to U-ODC1. So we are left with the case when
the set of clauses C cannot be satisfied. This implies that no 1-dominating
code of size k = 2n exists, as seen with C∗; this is sufficient to end the proof
for U-DC1, but we have to go on for U-ODC1: assume then that C is an
optimal 1-dominating code of unknown size |C| > 2n. We know that each Vi

contains at least two codewords. Where can the extra codeword(s) be?
Suppose that a vertex Aj0 is a codeword. If the three vertices in {xi, xi :

1 ≤ i ≤ n} to which Aj0 is linked are codewords, then Aj0 could have
been saved. So there is at least one neighbour of Aj0 , say xi0 , which does
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not belong to C. Now xi0 ∈ C, xi0 is 1-dominated by Aj0 ∈ C, and either
C∩Vi0 = {xi0 , ai0} or C∩Vi0 = {xi0 , bi0} may be part of an optimal solution,
i.e., we have a NO answer for U-ODC1.

So we can assume from now on that no Aj is a codeword, and that there
is at least one set Vi0 containing at least three codewords. If it is more than
three, then codewords can be spared. If it is exactly three, then xi0 and
xi0 are codewords, so that some vertices Aj linked to them are 1-dominated
by C thanks to xi0 and xi0 : otherwise, two codewords inside Vi0 would have
been sufficient. Now we have a choice for the third codeword in Vi0 : it can
be either ai0 or bi0 .

In all cases, we have proved that there can be several optimal 1-dominating
codes, i.e., we have a NO answer for G, the constructed instance of U-ODC1.

△

Remark 41 The fact that all the clauses have degree three has no impor-
tance whatsoever, and the proof could also work using any problem U-k-SAT,
k ≥ 3, or U-SAT. Only the degrees of the vertices Aj would be affected.

7.2.2 Extension to r ≥ 2

Theorem 42 Let r ≥ 2 be any integer. There is a polynomial reduction
from U-ODC1 to U-ODCr and from U-DC1 to U-DCr: U-ODC1 →p U-
ODCr and U-DC1 →p U-DCr.

Proof. This proof is inspired by the proof of Proposition 9 in [33]. We start
from a graph G = (V,E) and an integer k for U-DC1, and the same graph G
for U-ODC1.

The graph G∗ = (V ∗, E∗) is common to the reduction to U-DCr and to
U-ODCr (see Figure 10), and is defined by setting, for each edge e = uv ∈ E,

V ∗
e = {αe,i : 1 ≤ i ≤ r − 1} ∪ {βe,i,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ 3r},

E∗
e = {uαe,1, αe,1αe,2, . . . , αe,r−2αe,r−1, αe,r−1v} ∪

∪{αe,iβe,i,1, βe,i,1βe,i,2, . . . , βe,i,rβe,i,r+1, . . . , βe,i,2r−1βe,i,2r : 1 ≤ i ≤ r − 1} ∪
∪{βe,i,rβe,i,2r+1, βe,i,2r+1βe,i,2r+2, . . . , βe,i,3r−1βe,i,3r : 1 ≤ i ≤ r − 1}.

Then we set

V ∗ = V ∪ (∪e∈EV
∗
e ), E

∗ = ∪e∈EE
∗
e .

Finally, for U-DCr, we put k∗ = k + (r − 1)|E|. The order of G∗ is |E|(r −
1)(3r + 1).
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Figure 10: How the edge e = uv ∈ E gives V ∗
e and E∗

e . The black vertices
on the branches are the vertices βe,i,r.

(1) We claim that an instance of U-ODC1 is positive if and only if the
corresponding instance of U-ODCr is.

(a) First, we assume that there is a YES answer in G for U-ODC1: there
is a unique optimal 1-dominating code C in G. LetW be the set consisting of
the (r− 1)|E| vertices βe,i,r, e ∈ E, 1 ≤ i ≤ r− 1. Note that W r-dominates
exactly V ∗ \ V , and that, by Lemma 37, any optimal r-dominating code
in G∗ contains W . Because C is 1-dominating in G, clearly C∗ = C ∪ W
is r-dominating in G∗. Note in particular that two vertices u and v at
distance 1 in G are at distance r in G∗.

Because moreover C is optimal, the code C∗ is also optimal: assume on
the contrary that C+ is an optimal r-dominating code in G∗, with |C+| <
|C∗|. We proceed as in the proof of Proposition 9 in [33]: the subcode C+\W
must r-dominate all the vertices in V , and if a codeword in V ∗ \V performs
part of this task, it can be replaced by a vertex in V . After such replacements
have possibly been made, we have a code C× such that C×∩V r-dominates,
in G∗, all the vertices in V ; this implies that in G, C× ∩ V 1-dominates all
the vertices. But |C× ∩ V | ≤ |C+ \ W | < |C∗ \ W | = |C| = γ1(G), i.e.,
|C× ∩ V | < γ1(G), which is impossible.

Finally, because we assumed that C was the only optimal 1-dominating
code in G, the code C∗ = C ∪ W is the only optimal r-dominating code
in G∗. Suppose on the contrary that C+ is another optimal code in G∗:
|C+| = |C∗| = |C|+ |W |.

(i) C+∩V = C+ \W , or, equivalently, (V ∗ \V )∩C+ = W . Then, as we
have already seen, C+∩V is 1-dominating in G, and either C+∩V = C∗∩V ,
which leads to C+ = C∗, or C+ ∩ V 6= C∗ ∩ V , in which case we have two
optimal 1-dominating codes in G, C+ \W and C∗ \W = C. In both cases,
we have a contradiction.

(ii) C+ ∩ V 6= C+ \ W . Then there is at least one codeword z ∈ C+
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belonging to some V ∗
e \ {βe,i,r : 1 ≤ i ≤ r − 1}, with e = uv ∈ E. Then z

must r-dominate u or v or both; otherwise, z is useless and can be saved.
For the same reason, u /∈ C+ and v /∈ C+; but then (C+ \ {z}) ∪ {u} and
(C+ \{z})∪{v} are also both r-dominating in G∗. By similarly replacing all
the t codewords in (V ∗ \W )\V , t ≥ 1, by codewords in V , we have 2t codes
included in V ∪W which are all r-dominating in G∗, which implies that their
intersections with V all are 1-dominating in G; moreover, these intersections
have size (at most) |C+| − |W | = |C|, i.e., are optimal. Finally, there are
at least two of them, so at least one is different from C, contradicting its
uniqueness.

This shows that a YES answer to U-ODC1 leads to a YES answer to
U-ODCr.

(b) And a NO answer to U-ODC1 leads to a NO answer to U-ODCr,
since two optimal 1-dominating codes in G, C1 and C2, give two optimal
r-dominating codes in G∗, C1 ∪W and C2 ∪W .

This ends the part for U-ODCr.

(2) We claim that an instance of U-DC1 is positive if and only if the corre-
sponding instance of U-DCr is.

(a) First, we assume that there is a YES answer for U-DC1: there is
a unique 1-dominating code C with size at most k in G. Obviously, C is
optimal, otherwise any optimal 1-dominating code in G would contradict the
uniqueness of C. Consider the code C∗ = C∪W in G∗, of size k+(r−1)|E| =
k∗. Exactly as in Step (1) of this proof, C∗ is r-dominating, is optimal, and
is the only r-dominating code of size at most k∗ in G∗. So the answer to
U-DCr is also positive.

(b) Next, we assume that the answer to U-DC1 is NO: either there is
no 1-dominating code with size at most k in G, or there is more than one.
In the latter case, we have more than one r-dominating code with size at
most k∗ in G∗: simply add the set W to the codes in G. So we assume that
we are in the first case. This implies in particular that γ1(G) > k; using the
same argument as in Step (1), we can see that γr(G

∗) > k+(r−1)|E| = k∗,
and there is no r-dominating code with size at most k∗ in G∗. In all cases,
the answer to U-DCr is NO. △

Corollary 43 Let r ≥ 1 be any integer. The decision problems U-DCr and
U-ODCr are NP-hard. △

Proposition 44 Let r ≥ 2 be any integer. There is a polynomial reduction
from U-DCr to U-DC1 and from U-ODCr to U-ODC1: U-DCr →p U-DC1

and U-ODCr →p U-ODC1.
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Proof. Let (G, k) be an instance of U-DCr and G be an instance of U-
ODCr, for r ≥ 2. The instance for U-DC1 is simply (Gr, k), and Gr for
U-ODC1, where Gr is the r-th power of G: obviously, by Lemma 23, there
is a unique 1-dominating code of size k in Gr if and only if there is a unique
r-dominating code of size k in G, and there is a unique optimal 1-dominating
code in Gr if and only if there is a unique optimal r-dominating code in G.

△

Corollary 45 Let r1 ≥ 1 and r2 ≥ 1 be any integers.
(a) The decision problems U-DCr1 and U-DCr2 are equivalent, up to

polynomials.
(b) The decision problems U-ODCr1 and U-ODCr2 are equivalent, up to

polynomials. △

7.2.3 An Upper Bound for the Complexity of U-DCr

Theorem 46 There exists a polynomial reduction from U-DC1 to U-SAT:
U-DC1 →p U-SAT.

Proof. We fully use Remark 32: we start from an instance of U-DC1, a
graph G = (V,E) and an integer k, with V = {x1, . . . , x|V |}; we assume that
|V | ≥ 3. We create the set of variables X = {xhi : 1 ≤ h ≤ |V |, 1 ≤ i ≤ k}
and the following clauses:

(a) for each vertex xh ∈ V with neighbours xh1 , . . . , xhs , clauses of
size (s+ 1)k: {xh1 , x

h
2 , . . . , x

h
k , x

h1

1 , . . . , xh1

k , . . . , xhs

1 , . . . , xhs

k };
(b1) for 1 ≤ i ≤ k and 1 ≤ h < ℓ ≤ |V |, clauses of size two: {xhi , x

ℓ
i};

(b2) for 1 ≤ i < j ≤ k and 1 ≤ h ≤ |V |, clauses of size two: {xhi , x
h
j };

(c) for 1 ≤ i < k and 1 < ℓ ≤ |V |, for 1 ≤ h < ℓ and i < j ≤ k, clauses
of size two: {xℓi , x

h
j }.

Compared to the proof of Theorem 33, only the clauses in (a) are different:
they convey the fact that among the vertices xh, xh1 , . . . , xhs , at least one
must be put in a 1-dominating code. The proof then goes exactly as for
Theorem 33. △

By Proposition 44 or its corollary, this immediately implies that there is a
polynomial reduction from U-DCr to U-SAT.

Theorem 47 Let r ≥ 1 and k ≥ 3 be any integers. The problem U-DCr

has complexity equivalent to that of U-SAT, U-k-SAT and U-1-3-SAT.
As a consequence, U-DCr belongs to the class DP. △

Note that it could have been shown directly that U-DCr belongs to DP.
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7.2.4 Two Upper Bounds for the Complexity of U-ODCr

The (constructive) membership of U-ODCr to the class PNP and the mem-
bership to LNP can be proved in exactly the same way as in Section 6.2.3 for
U-OVC. This time, it is the characterizing Lemma 38 which must be used,
together with Proposition 39.

Proposition 48 For r ≥ 1, the decision problem U-ODCr belongs to the
class PNP . In case of a YES answer, one can give the only optimal r-
dominating code within the same complexity. △

Proposition 49 For r ≥ 1, the decision problem U-ODCr belongs to LNP .
△

8 Conclusion

Corollary 26 states that the three problems, U-SAT, U-1-3-SAT and U-k-
SAT (k ≥ 3), are equivalent and lie somewhere in the vertically hatched
area of Figure 11, but probably not in DP-C, cf. Remark 27.

Theorems 34 and 47 state that U-VC and U-DCr, r ≥ 1, have the same
complexity as the above three problems, and consequently are located in the
same hatched area.

We have also established that the decision problems U-OVC and U-
ODCr, r ≥ 1, belong to the class LNP , see Propositions 36 and 49, and
that they are NP-hard, see Corollaries 31 and 43. This means that they lie
within the areas that are hatched horizontally or vertically. Moreover, all the
problems U-ODCr are equivalent between each other, by Corollary 45(b).

We have the same conclusions for Cliques and Independent Sets (see
Section 6.3).

In [8], the authors wonder whether
(A) U-SAT is NP-hard, but here we believe that what they mean is:

does there exist a polynomial reduction from an NP-complete problem to
U-SAT? i.e., they use the second definition of NP-hardness;

finally, they show that (A) is true if and only if
(B) U-SAT is DP-complete.

So, if one is careless and considers that U-SAT is NP-hard without checking
according to which definition, one might easily jump too hastily to the con-
clusion that U-SAT is DP-complete, which, to our knowledge, is not known
to be true or not. As for U-3-SAT, we do not know where to locate it more
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Figure 11: Some classes of complexity: Figure 7 re-visited.

precisely either; in [10] the problems U-k-SAT and more particularly U-3-
SAT are studied, but it appears that they are versions where the given set
of clauses has zero or one solution, which makes quite a difference with our
problem.

Open problem 1 (general). For k ≥ 3 and r ≥ 1, improve the location of
U-SAT, U-k-SAT, U-1-3-SAT, U-VC, U-OVC, U-DCr and U-ODCr, within
the classes of complexity.

Open problem 2. It is easy to establish that U-OVC →p U-ODC1 (and
U-OVC →p U-ODCr, r ≥ 2). What more can be said about the relationship
between U-OVC and U-ODC1 (and U-ODCr)?

Open problem 3 (conjecture). Under the assumption P 6=NP, U-OVC is
not equivalent to U-VC, and U-ODCr is not equivalent to U-DCr, r ≥ 1.

Finally, in [17] (respectively, [24]), characterizations of the trees (respec-
tively, the block graphs, which are a class of graphs including the trees)
admitting a unique optimal 1-dominating code are given. This result, to-
gether with a linear algorithm determining optimal 1-dominating codes in
block graphs, then allows to show that the sub-problem of U-ODC1 where
the instance is any block graph is linear.

Open problem 4. Is it possible to extend this kind of result to any integer
r ≥ 1? to other classes of graphs?
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Abstract

We investigate the complexity of four decision problems dealing with
the uniqueness of a solution in a graph: “Uniqueness of an r-Locating-
Dominating Code with bounded size” (U-LDCr), “Uniqueness of an
Optimal r-Locating-Dominating Code” (U-OLDCr), “Uniqueness of
an r-Identifying Code with bounded size (U-IdCr), “Uniqueness of an
Optimal r-Identifying Code” (U-OIdCr), for any fixed integer r ≥ 1.

In particular, we describe a polynomial reduction from “Unique
Satisfiability of a Boolean formula” (U-SAT) to U-OLDCr, and from
U-SAT to U-OIdCr; for U-LDCr and U-IdCr, we can do even better
and prove that their complexity is the same as that of U-SAT, up
to polynomials. Consequently, all these problems are NP-hard, and
U-LDCr and U-IdCr belong to the class DP.

Key Words: Graph Theory, Complexity, Complexity Classes, Polynomial
Hierarchy, NP-Completeness, Hardness, PNP , Uniqueness of (Optimal) So-
lution, Locating-Dominating Codes, Identifying Codes, Twin-Free Graphs,
Boolean Satisfiability Problems
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9 Introduction

We intend to locate in the classes of complexity some problems dealing with
the existence of a unique identifying or locating-dominating code in a given
graph.

9.1 Identifying and Locating-Dominating Codes

For graph theory, we refer to, e.g., [7] or [16].
For identification in graphs, see the seminal paper [40]; for locating-

dominating codes, see the first papers [13] and [49]. For both, see also the
large bibliography at [41].

We shall denote by G = (V,E) a finite, simple, undirected graph with
vertex set V and edge set E, where an edge between x ∈ V and y ∈ V is
indifferently denoted by xy or yx. The order of the graph is its number of
vertices, |V |.

A path Pk = x1x2 . . . xk is a sequence of k distinct vertices xi, 1 ≤ i ≤ k,
such that xixi+1 is an edge for i ∈ {1, 2, . . . , k − 1}. The length of Pk is its
number of edges, k − 1. A cycle Ck = x1x2 . . . xk is a sequence of k distinct
vertices xi, 1 ≤ i ≤ k, where xixi+1 is an edge for i ∈ {1, 2, . . . , k − 1}, and
xkx1 is also an edge; its length is k.

In a connected graph G, we can define the distance between any two
vertices x and y, denoted by dG(x, y), as the length of any shortest path
between x and y. This definition can be extended to disconnected graphs,
using the convention that dG(x, y) = +∞ if no path exists between x and y.
The subscript G can be dropped when there is no ambiguity.

For an integer k ≥ 2, the k-th transitive closure, or k-th power of G =
(V,E) is the graph Gk = (V,Ek) defined by Ek = {uv : u ∈ V, v ∈
V, dG(u, v) ≤ k}.

For any vertex v ∈ V , the open neighbourhood N(v) of v consists of the
set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈ E}; the closed
neighbourhood of v is B1(v) = N(v)∪{v}. This notation can be generalized
to any integer r ≥ 0 by setting

Br(v) = {x ∈ V : d(x, v) ≤ r}.

For X ⊆ V ,we denote by Br(X) the set of vertices within distance r from X:

Br(X) = ∪x∈XBr(x).

Two vertices x and y such that Br(x) = Br(y), x 6= y, are called r-twins.
If G has no r-twins, we say that G is r-twin-free. Whenever two vertices
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x and y are such that x ∈ Br(y) (which is equivalent to y ∈ Br(x)), we
say that x and y r-cover or r-dominate each other; note that every vertex
r-dominates itself. A set W is said to r-dominate a set Z if every vertex in Z
is r-dominated by at least one vertex of W , or equivalently: Z ⊆ Br(W ).
When three vertices x, y, z are such that x ∈ Br(z) and y /∈ Br(z), we say
that z r-separates x and y in G (note that z = x is possible). A set of
vertices is said to r-separate x and y if it contains at least one vertex which
does.

A code C is simply a subset of V , and its elements are called codewords.
We say that C is an r-identifying code [40] if all the sets Br(v)∩C, v ∈ V ,

are nonempty and distinct: in other words, every vertex is r-covered by C,
and every pair of vertices is r-separated by C. It is quite easy to observe that
a graph G admits an r-identifying code if and only if G is r-twin-free; this is
why r-twin-free graphs are also called r-identifiable. When G is r-twin-free,
we denote by ir(G) the smallest cardinality of an r-identifying code in G,
and call it the r-identification number of G; any r-identifying code C such
that |C| = ir(G) is said to be optimal.

We say that C is an r-locating-dominating code (r-LD code for short)
[49], [13] if all the sets Br(v) ∩C, v ∈ V \C, are nonempty and distinct: in
other words, every vertex is r-dominated by C (since a codeword dominates
itself), and every pair of non-codewords is r-separated by C. We denote by
LDr(G) the smallest cardinality of an r-locating-dominating code in G, and
call it the r-location-domination number of G; any r-LD code C such that
|C| = LDr(G) is said to be optimal.

For the needs of Theorems 68 and 83, we give the following obvious
characterization: a code C is r-identifying (respectively, r-LD) if and only if
(a) for every vertex x ∈ V , Br(x)∩C 6= ∅, and (b) for every pair of distinct
vertices xi ∈ V , xj ∈ V (respectively, xi ∈ V \ C, xj ∈ V \ C), we have

(

Br(x
i)∆Br(x

j)
)

∩ C 6= ∅, (2)

where ∆ stands for the symmetric difference.
Note that, when dealing with locating-dominating codes, we shall rather

use the word “dominate”, whereas for identifying codes, we shall prefer
“cover”.

It is known that the following two decision problems, stated for any
integer r ≥ 1, are NP-complete (see below Propositions 62 from [13], [11],
and 78 from [12], [11]):

Problem LDCr (r-Locating-Dominating Code with bounded size):
Instance: A graph G and an integer k.
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Question: Does G admit an r-locating-dominating code of size at most k?

Problem IdCr (r-Identifying Code with bounded size):
Instance: An r-twin-free graph G and an integer k.
Question: Does G admit an r-identifying code of size at most k?

In this paper, we are interested in the following four problems, which deal
with the uniqueness of a solution, and we are going to locate them in the
classes of complexity.

ProblemU-LDCr (Unique r-Locating-Dominating Code with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit a unique r-locating-dominating code of size at
most k?

Problem U-OLDCr (Unique Optimal r-Locating-Dominating Code):
Instance: A graph G.
Question: Does G admit a unique optimal r-locating-dominating code?

Problem U-IdCr (Unique r-Identifying Code with bounded size):
Instance: An r-twin-free graph G and an integer k.
Question: Does G admit a unique r-identifying code of size at most k?

Problem U-OIdCr (Unique Optimal r-Identifying Code):
Instance: An r-twin-free graph G.
Question: Does G admit a unique optimal r-identifying code?

Our results are the following: we give polynomial reductions from “Unique
Satisfiability of a Boolean formula” (U-SAT) to U-OLDCr, as well as from
U-SAT to U-OIdCr; we prove that U-LDCr and U-IdCr have the same com-
plexity as U-SAT, up to polynomials. As a consequence, all these problems
are NP-hard, and U-LDCr and U-IdCr belong to the class DP. The problems
U-OLDCr and U-OIdCr belong “only” to the class LNP , which contains DP.

In a previous work [32], we have investigated the complexity of the existence
of, and of the search for, optimal r-identifying codes, as well as optimal r-
identifying codes containing a given subset of vertices; see also [11], [12,
Sec. 5]. In a forthcoming work, we extend the present study on uniqueness
issues to Boolean satisfiability and graph colouring [34] (Sections 1–4 in
this Report), Vertex Cover and Dominating Set (as well as its generaliza-
tion to domination within distance r) [35] (Sections 5–8), and Hamiltonian
Cycle [37] (Sections 14–16). At the other end, there has been research on
how many optimal r-identifying codes can exist in a graph [28], and on the
structure of the ensemble of optimal r-locating-dominating codes [29] and
of optimal r-identifying codes [30].
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For other works in the area of complexity, see, e.g., [2], [3], [4], [18]
and [47], which establish, in particular, polynomiality or NP-completeness
results for the identification problem when restricted to some subclasses of
graphs, such as trees, planar graphs, bipartite graphs, interval graphs or
line graphs. See also [19], [23] and [50] for approximation issues for both
identifying and locating-dominating codes.

In the sequel, we shall also need the following tools, which constitute classical
definitions related to Boolean satisfiability.

We consider a set X of n Boolean variables xi and a set C of m clauses,
each clause cj containing κj literals, a literal being a variable xi or its com-
plement xi. A truth assignment for X sets the variable xi to TRUE, also
denoted by T, and its complement to FALSE (or F), or vice-versa. A truth
assignment is said to satisfy the clause cj if cj contains at least one true
literal, and to satisfy the set of clauses C if every clause contains at least
one true literal. The following decision problem, for which the size of the
instance is polynomially linked to n+m, is a classical problem in complexity.

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing at least two different literals.
Question: Is there a truth assignment for X that satisfies C?

We shall also need the variant U-SAT of SAT, which has the same instance
as SAT but the question now is: “Is there a unique truth assignment. . .?”.

We shall give in Proposition 51 what we need to know about the complex-
ity of this problem. We now provide the necessary definitions and notation
for complexity.

9.2 Necessary Notions in Complexity

We expound here, not too formally, the notions of complexity that will be
needed in the sequel. We refer the reader to, e.g., [6], [21], [38] or [45] for
more on this topic.

A decision problem is of the type “Given an instance I and a property PR
on I, is PR true for I?”, and has only two solutions, “yes” or “no”. The
class P will denote the set of problems which can be solved by a polynomial
(time) algorithm, and the class NP the set of problems which can be solved
by a nondeterministic polynomial algorithm. A polynomial reduction from a
decision problem π1 to a decision problem π2 is a polynomial transformation
that maps any instance of π1 into an “equivalent” instance of π2, that is,
an instance of π2 admitting the same answer as the instance of π1; in this
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case, we shall write π1 →p π2. Cook [14] proved that there is one problem
in NP, namely SAT, to which every other problem in NP can be polynomially
reduced. Thus, in a sense, SAT is the “hardest” problem inside NP. Other
problems share this property in NP and are called NP-complete problems;
their class is denoted by NP-C. The way to show that a decision problem
π is NP-complete is, once it is proved to be in NP, to choose some NP-
complete problem π1 and to polynomially reduce it to π. From a practical
viewpoint, the NP-completeness of a problem π implies that we do not
know any polynomial algorithm solving π, and that, under the assumption
P 6=NP, which is widely believed to be true, no such algorithm exists: the
time required can grow exponentially with the size of the instance (when
the instance is a graph, the size is polynomially linked to its order).

The complement of a decision problem, “Given I and PR, is PR true
for I?”, is “Given I and PR, is PR false for I?”. The class co-NP (respec-
tively, co-NP-C) is the class of the problems which are the complement of a
problem in NP (respectively, in NP-C).

For problems which are not necessarily decision problems, a Turing re-
duction from a problem π1 to a problem π2 is an algorithm A that solves π1
using a (hypothetical) subprogram S solving π2 such that, if S were a poly-
nomial algorithm for π2, then A would be a polynomial algorithm for π1.
Thus, in this sense, π2 is “at least as hard” as π1. A problem π is NP-
hard (respectively, co-NP-hard) if there is a Turing reduction from some
NP-complete (respectively, co-NP-complete) problem to π [21, p. 113].

Remark 50 Note that with these definitions, NP-hard and co-NP-hard co-
incide [21, p. 114].

The notions of completeness and hardness can of course be extended to
classes other than NP or co-NP. NP-hardness is defined differently in [15]
and [27]: there, a problem π is NP-hard if there is a polynomial reduction
from some NP-complete problem to π; this may lead to confusion (see Sec-
tion 13).

Finally we introduce the classes PNP (also known as ∆2 in the hierarchy
of classes) and LNP (also denoted by PNP [O(logn)] or Θ2), which contain
the decision problems which can be solved by applying, with a number of
calls which is polynomial (respectively, logarithmic) with respect to the size
of the instance, a subprogram able to solve an appropriate problem in NP
(usually, an NP-complete problem); and the class DP [46] (or DIFP [8] or
BH2 [38], [52], . . .) as the class of languages (or problems) L such that there
are two languages L1 ∈NP and L2 ∈ co-NP satisfying L = L1 ∩ L2. This
class is not to be confused with NP∩ co-NP (see the warning in, e.g., [45,
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p. 412]); actually, DP contains NP∪ co-NP and is contained in LNP . See
Figure 12.

Membership to P, NP, co-NP, DP, LNP or PNP gives an upper bound
on the complexity of a problem (this problem is not more difficult than . . .),
whereas a hardness result gives a lower bound (this problem is at least
as difficult as . . .). Still, such results are conditional in some sense; if for
example P=NP, they would lose their interest. But it is not known whether
or where the classes of complexity collapse.

The problem SAT is one of the most well-known NP-complete prob-
lems [14], [21, p. 39, p. 46 and p. 259]. The following result is easy.

Proposition 51 The problem U-SAT is NP-hard (and co-NP-hard by Re-
mark 50), and belongs to the class DP. △

Remark 52 It is not known whether U-SAT is DP-complete: in [45, p. 415],
it is said that “U-SAT is not believed to be DP-complete”.

We are now ready to investigate the problems of the uniqueness of identifying
and LD codes.

10 Some Easy Preliminary Results

These results are as old as the definitions of identifying and LD codes.
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Lemma 53 (a) For any graph G = (V,E) of order n and any integer r ≥ 1,
we have

LDr(G) ≥ ⌈log2(n− LDr(G) + 1)⌉. (3)

(b) For any integer r ≥ 1 and any r-twin-free graph G = (V,E) of order n,
we have

ir(G) ≥ ⌈log2(n+ 1)⌉. (4)

Proof. (a) Let C be any r-LD code in G. All the n − |C| non-codewords
v ∈ V \C must be given nonempty and distinct sets Br(v) ∩C constructed
with the |C| codewords, so 2|C| − 1 ≥ n− |C|, from which (3) follows when
C is optimal; (b) the argument is the same, but we have to consider all the
n vertices v ∈ V , so 2|C| − 1 ≥ n. △

Lemma 54 Let r ≥ 2 be any integer and G = (V,E) be a graph.
(a) A code C is 1-locating-dominating in Gr, the r-th power of G, if and

only if it is r-locating-dominating in G.
(b) A code C is 1-identifying in Gr if and only if it is r-identifying in G.

Proof. (a) For every vertex v ∈ V , we have:

{c ∈ C : dG(v, c) ≤ r} = {c ∈ C : dGr(v, c) ≤ 1},

so if for all v ∈ V \ C, the sets on the left-hand side of the equality are
nonempty and distinct, then the sets on the right-side also are, and vice-
versa; (b) same proof, for all v ∈ V . △

The following obvious lemma is often used implicitly; we give it without
proof.

Lemma 55 Let r ≥ 1 be any integer and G = (V,E) be a graph.
(a) If C is r-locating-dominating in G, so is any set S ⊃ C.
(b) If C is r-identifying in G, so is any set S ⊃ C. △

11 Locating-Dominating Codes

After some necessary preliminary results, we are going to prove, for r ≥ 2
and q ≥ 1, the following polynomial reductions:
U-SAT →p U-LDC1 and U-SAT →p U-OLDC1 (Theorem 63),

U-SAT →p U-LDCr and U-SAT →p U-OLDCr (Theorem 64),
U-LDCqr →p U-LDCq and U-OLDCqr →p U-OLDCq (Proposition 67),

U-LDC1 →p U-SAT (Theorem 68).
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The consequence of these reductions is that, for r ≥ 1, U-LDCr and U-
OLDCr are NP-hard, and that U-SAT and U-LDCr have equivalent com-
plexities; as a result, U-LDCr belongs to DP. We shall also show that U-
OLDCr belongs to the class LNP (Proposition 71).

We do not have that U-OLDCr belongs to DP for lack of a polynomial
reduction from U-OLDC1 to U-SAT; we conjecture that such a reduction
does not exist and that U-OLDCr /∈ DP (see also Conclusion).

Also note that the polynomial reduction U-SAT →p U-LDC1 is a conse-
quence of the chain of reductions U-SAT →p U-LDCr →p U-LDC1; we still
give Theorem 63 and its proof, because it constitutes a preliminary step for
the proof of Theorem 64.

11.1 Preliminary Results

Lemma 56 Let h ≥ 1 and r ≥ 1 be integers; let G be a graph of order
2h − 1 + h with LDr(G) = h. Then:

(a) no vertex r-dominating 2h−1, or fewer, vertices can belong to an
optimal r-locating-dominating code in G;

(b) no vertex r-dominating 2h−1 + h+1, or more, vertices can belong to
an optimal r-locating-dominating code in G.

Proof. Let C be any optimal r-LD code in G: |C| = LDr(G) = h. Because
there are 2h−1 non-codewords, all the nonempty subsets of C coincide with
all the nonempty, distinct sets Br(v)∩C, v ∈ V \C. Then every codeword c
appears exactly 2h−1 times in these subsets, which means that c r-dominates
exactly 2h−1 non-codewords; since it r-dominates between one (itself) and h
codewords, all in all it r-dominates between 2h−1 +1 and 2h−1 + h vertices,
and (a) and (b) follow. △

The following lemma is easy, and we prove only its last assertion.

Lemma 57 (a) The path P5 = x1x2x3x4x5 admits only one optimal 1-
locating-dominating code, C = {x2, x4}.

(b) If we construct the graph GA = (VA, EA) by adding to P5 a vertex
denoted by A together with the edge x2A, then A is 1-dominated by x2, but
x1 and A are not 1-separated by C.

(c) If GA is plunged in a larger graph G+ with only A linked to the
outside, then every optimal 1-locating-dominating code C+ in G+ contains
x2 and x4. At most one additional codeword, x1 or A, may be necessary
in VA ∩ C+.
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Figure 13: The graph Gi defined in Lemma 58. The black vertices form one
of the two optimal 1-LD codes in Gi.

Proof. (c) Let C+ be any optimal 1-LD code in G+. (i) If A is a codeword,
obviously C+ contains x2 and x4, and no other codeword in P5. (ii) The
same is true if A is not a codeword, but is 1-dominated by at least one outside
codeword. (iii) Otherwise, C+ contains x2, to 1-dominate A, it contains x1,
otherwise x1 and A are not 1-separated by C+, and it contains x4, which is
the only vertex which 1-dominates x5 and 1-separates A and x3 at the same
time. △

The statements of the following lemma have been given, although in a dif-
ferent way, in [11, proof of Lemma 3.1]; for completeness, we give here the
(easy) proof.

Lemma 58 Let Gi = (Vi, Ei) be the following graph: Vi = {xi, xi, ai, bi, di, fi,
gi} and Ei = {aibi, bixi, bixi, xidi, xidi, difi, xigi, xigi}, and Ci be a 1-locating-
dominating code in Gi, see Figure 13. Then:

(a) at least one of xi and xi belong to Ci;
(b) at least two more codewords necessarily belong to Ci, so that we have

LD1(Gi) ≥ 3;
(c) we have LD1(Gi) = 3, and {xi, bi, di} and {xi, bi, di} are the only

optimal 1-locating-dominating codes in Gi;
(d) if Gi is plunged in a larger graph G+, with only xi and xi linked to

the outside, then every 1-locating-dominating code in G+ contains at least
three codewords inside Vi.

Proof. (a) Because xi and xi have the same neighbours in Gi. (b) Because
ai and fi must be 1-dominated by Ci, we have |Ci ∩ {ai, bi}| ≥ 1 and |Ci ∩
{di, fi}| ≥ 1. Alternatively, use (3) in Lemma 53. (c) Assume that it is xi
that belongs to Ci. Then taking ai and fi would not 1-dominate xi, and
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taking ai and di, or bi and fi, would not 1-separate xi and fi, or xi and ai,
respectively; on the other hand, {xi, bi, di} is 1-LD. (d) Only xi and xi can
be 1-dominated by the outside, and ai, fi and gi have to be 1-dominated by
the code, so anyway at least three codewords are necessary inside Vi. △

The previous two lemmas will be used in the proof of Theorem 63. In partic-
ular, Lemma 57(a) gives the example of a graph, P5, with a unique optimal
1-LD code. We want to have the same for any r > 1 (see Proposition 59(a)),
in view of Theorem 64. We shall proceed as follows (see Figure 14):

We set h = 2r + 1, even if everything that follows also holds for any
h ≥ 2r + 1. Let G×

p = (V ×
p , E×

p ) be the cycle Ch of length h, with V ×
p =

{pi : 1 ≤ i ≤ h}. Then we construct G×
q = (V ×

q , E×
q ), with V ×

q = {qi,j : 1 ≤
i ≤ h, 1 ≤ j ≤ r − 1} and E×

q = ∪1≤i≤h{qi,jqi,j+1 : 1 ≤ j ≤ r − 2}. The
set of edges between G×

p and G×
q is E×

p,q = {piqi,1 : 1 ≤ i ≤ h}. Next, we

construct G×
s = (V ×

s , E×
s ) with V ×

s = {si : 1 ≤ i ≤ 2h − 1 − (r − 1)h} and
E×

s = {si1si2 : 1 ≤ i1 < i2 ≤ |V ×
s |}, i.e., G×

s is a clique.
We set V × = V ×

p ∪ V ×
q ∪ V ×

s .
In order to define the set E×

q,s of edges between {qi,r−1 : 1 ≤ i ≤ h}
and V ×

s , we introduce, for every vertex v ∈ V ×
q ∪ V ×

s , the signature of v as
the set Br(v) ∩ V ×

p of the elements of the cycle that r-dominate v, and we
wish to have nonempty and distinct signatures. Since

(a) the h vertices in V ×
p can provide 2h − 1 such signatures,

(b) |V ×
q ∪ V ×

s | = |V ×
q |+ |V ×

s | = 2h − 1,
(c) the vertices in V ×

q have nonempty and different signatures (in particular,
thanks to the fact that h ≥ 2r, all the vertices qi,1 have signatures of size 2r−
1),
(d) a vertex in V ×

s which is linked (respectively, not linked) to qi,r−1 is at
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distance equal to (respectively, greater than) r from pi,

we can see that it is possible to construct E×
q,s in such a way that the vertices

in V ×
s have nonempty signatures which are different inside V ×

s , and different
from those for V ×

q . In particular, in V ×
s there is a vertex which has signature

equal to V ×
p ; we denote this vertex by α. Note also that we could not have

more vertices with this signature property.
We set E× = E×

p ∪ E×
p,q ∪ E×

q ∪ E×
q,s ∪ E×

s and G× = (V ×, E×). The

order of G× is n× = 2h − 1 + h.
We claim that, for a fixed r ≥ 2 and h = 2r + 1, C = V ×

p is the unique
optimal r-LD code in G×; we shall prove it by going through the following
three easy facts.

Fact 1 For any r ≥ 2 and h = 2r + 1, the code C = V ×
p is an optimal

r-locating-dominating code in G×.

Proof. When C = V ×
p , the signatures are the sets Br(v)∩C, for v ∈ V ×\C.

By construction, they are all nonempty and distinct, hence C is r-LD. The
optimality comes from (3) in Lemma 53. △

Fact 2 For any r ≥ 2 and h = 2r + 1, the graph G× meets the conditions
of Lemma 56.

Proof. Because LDr(G
×) = |V ×

p | = h and G× has order 2h − 1 + h. △

Fact 3 For any r ≥ 2 and h = 2r + 1, no vertex in V ×
q ∪ V ×

s can belong to
any optimal r-locating-dominating code C in G×.

Proof. Because V ×
s is a clique, every vertex qi,j , 1 ≤ i ≤ h, 1 ≤ j ≤ r−1, is

within distance r from every vertex in V ×
s ; so every qi,j r-dominates at least

|V ×
s | = 2h − 1− (r− 1)h vertices. This number is greater than 2h−1 + h+1

for r ≥ 2 and h = 2r + 1. The same is true for the vertices in V ×
s . We can

conclude using Lemma 56(b). △

We are now ready to prove the following proposition.

Proposition 59 Let r ≥ 2 and h = 2r + 1. Then:
(a) the only optimal r-locating-dominating code in G× is C = V ×

p ;
(b) if G× is plunged in a larger graph G+ = (V +, E+), with only α

linked to the outside, then every optimal r-locating-dominating code in G+

contains V ×
p .
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Proof. (a) Now that Fact 3 has ruled out the vertices in V ×
q ∪V ×

s , the only
possibility left is to take all the h codewords in V ×

p .
(b) Let C be an optimal r-LD code in G+, and let |C ∩ (V ×

s \ {α})| = X
and |C ∩V ×

p | = Y . If Y = |V ×
p |, we are done, so we assume that Y ≤ h− 1.

How does C r-separate the 2h−(r−1)h−2−X vertices in V ×
s \{α} that need

to be r-separated? Depending on its distance to α, a vertex outside V × r-
dominates either α alone, or all the vertices in V ×

s plus all the vertices qi,j ,
1 ≤ i ≤ h, for some j ≥ 1. This means that no outside codeword can
r-separate the vertices in V ×

s \ {α}: this must be an inside-V × job. But
the vertices in V ×

q ∪ V ×
s cannot do it either, because every such vertex r-

dominates all the vertices in V ×
s \ {α}; so the Y codewords in V ×

p must do
it, and, according to whether the vertices in V ×

s \ {α} are r-dominated by
other codewords or not, we must have 2Y − ε ≥ 2h − (r− 1)h− 2−X, with
ε = 0 or 1; since Y ≤ h− 1, this implies

2h−1 ≤ (r − 1)h+ 2 +X − ε. (5)

For r ≥ 2 and h = 2r+1, the study of (5) shows that necessarily X ≥ h+2.
What is the role of these (at least) h+2 codewords belonging to V ×

s \ {α}?
(a) They contribute to r-dominate and r-separate some vertices in V + \

V ×. From this perspective, all the vertices in V ×
s \ {α} have an equivalent

role towards V + \ V ×. So one codeword in V ×
s \ {α} is sufficient for this

task.
(b) They contribute to r-dominate and r-separate some vertices in V ×,

and they themselves need not be r-separated from other vertices by the code;
but we have already seen (Fact 1) that if we take the h vertices in V ×

p as
codewords, then we can take care of all the vertices in V ×.

(c) They contribute to r-separate some vertices in V + \ V × from some
vertices in V ×. But the h vertices in V ×

p r-dominate all the vertices in-
side V × and no vertex outside V ×.

Therefore, if we take h codewords in V ×
p and one codeword in V ×

s \ {α},
we can do, with respect to the whole graph G+, at least as well as with
X + Y ≥ X ≥ h+ 2 codewords, contradicting the optimality of C. △

The following lemma and its obvious corollary will be used for Proposi-
tion 70. They characterize the vertices belonging to at least one optimal
r-LD code, through the comparison of two 1-location-domination numbers.

Lemma 60 Let G = (V,E) be a graph. For a given vertex α ∈ V , we
consider the following graph: Gα = (Vα, Eα), with

Vα = V ∪ {βi : 1 ≤ i ≤ 6},
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Eα = E ∪ {αβi : i ∈ {1, 4}} ∪ {βiβi+1 : i ∈ {1, 2, 4, 5}},

where for i ∈ {1, . . . , 6}, βi /∈ V . Then α belongs to at least one optimal
1-locating-dominating code in G if and only if LD1(G) = LD1(Gα)− 2.

Proof. Let Bα = {βi : 1 ≤ i ≤ 6}, and B∗
α = {βi : i ∈ {2, 3, 5, 6}}.

First, we prove that α belongs to every optimal 1-LD code Cα in Gα:
assume on the contrary that α /∈ Cα; then obviously |Cα ∩Bα| ≥ 2+ 2, and
(Cα \ (Cα ∩ Bα)) ∪ {α, β2, β5} is a 1-LD code in Gα, with fewer elements
than Cα, a contradiction. So α ∈ (Cα ∩ V ).

(a) Assume that α belongs to at least one optimal 1-LD code C in G.
Then Cα = C ∪ {β2, β5} is obviously 1-LD in Gα, and LD1(Gα) ≤ |Cα| =
LD1(G) + 2.

Consider now an optimal 1-LD code Cα in Gα. Obviously, we have
|Cα∩B

∗
α| ≥ 1+1, and so, if we set C = Cα∩V , we have: |C| ≤ LD1(Gα)−2.

We have already established that α ∈ Cα, and thus α ∈ C; now, we can see
that it is sufficient, for any optimal 1-LD code in Gα, to have two codewords
in Bα, namely β2 and β5, and therefore |C| ≥ LD1(Gα) − 2. Now, no
codeword in Cα \ C 1-dominates any vertex in V , and necessarily C is a
1-LD code in G, which proves that LD1(G) ≤ |C| = LD1(Gα)− 2.

So we can conclude that if α belongs to at least one optimal 1-LD code
in G, then LD1(G) = LD1(Gα)− 2.

(b) Assume now that LD1(G) = LD1(Gα) − 2. Consider an optimal
1-LD code Cα in Gα, and let C = Cα ∩ V . Then α ∈ Cα and, exactly as
before in (a), α ∈ C, Cα = C ∪ {β2, β5}, C is a 1-LD code in G and its size
is LD1(Gα)− 2 = LD1(G), i.e., it is optimal (and contains α). △

Corollary 61 Let r ≥ 1 be any integer, G be a graph containing a vertex α,
and Gr be the r-th power of G. We construct the graph (Gr)α in the same
way as in the previous lemma for G. Then α belongs to at least one optimal
r-locating-dominating code in G if and only if LD1(G

r) = LD1((G
r)α)− 2.

Proof. Use Lemmas 54(a) and 60. △

In the following proposition, we shall only use the fact that LDC1 belongs
to NP, for Propositions 70 and 71.

Proposition 62 [13, for r = 1], [11] Let r ≥ 1 be any integer. The decision
problem LDCr is NP-complete. △

The proofs of Proposition 62 do not treat however the problem of the unique-
ness of a solution.
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Figure 15: For r = 1, the graph G+, constructed from a set of clauses.

11.2 Uniqueness of Locating-Dominating Code

11.2.1 From U-SAT to U-LDC1 and U-OLDC1

Theorem 63 There exists a polynomial reduction from U-SAT to U-LDC1

and to U-OLDC1: U-SAT →p U-LDC1 and U-SAT →p U-OLDC1.

Proof. We give a polynomial reduction starting from an instance of U-SAT,
that is, a collection C of m clauses over a set X of n variables.

For each variable xi ∈ X , 1 ≤ i ≤ n, we take the graph Gi = (Vi, Ei)
defined in Lemma 58, identifying the literals xi, xi to the vertices xi, xi. For
each clause cj , containing εj literals, εj ≥ 2, we create two vertices, Aj

and Bj , and we link them to the εj vertices corresponding, in the graphs Gi,
to the literals of cj . We also take a copy of P5, P5(Aj) = Aj,1Aj,2Aj,3Aj,4Aj,5,
and link Aj to Aj,2. We do the same for Bj and a second copy of P5,
P5(Bj) = Bj,1Bj,2Bj,3Bj,4Bj,5.

We call this graph G+, see Figure 15. The order of G+ is 7n + 12m.
Because the extremities of the copies of P5 must be 1-dominated by a code-
word, and thanks to Lemma 58(d), we have: LD1(G

+) ≥ 4m+ 3n. We set
k = 4m+ 3n.

We claim that there is a unique solution to SAT if and only if there is a
unique optimal 1-LD code in G+, and if and only if there is a unique 1-LD
code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi
has been set TRUE, the vertex xi if the literal xi is FALSE, and we add bi
and di, as well as the second and fourth vertices in each of the copies of P5.
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Then C is a 1-LD code in G+: thanks to our preliminary observations
(Lemmas 57 and 58), the only thing that remains to be checked is that for
all j ∈ {1, . . . ,m}, the code C 1-separates Aj and Aj,1, Bj and Bj,1, and
this is so because there is at least one true literal in the clause cj , which
means that Aj and Bj are 1-dominated by at least one codeword of type xi
or xi.

Moreover, |C| = 3n + 4m = k, which proves that it is optimal, and no
vertex Aj nor Bj is a codeword. This implies that, once we have decided
between xi and xi, we have no choice left inside Gi if we want a code of size k
(optimal): we must take bi and di, because neither xi nor xi is 1-dominated
by any outside codeword; the same is true for the copies of P5, which must
each contain their second and fourth vertices as only codewords.

Why is C unique? Suppose on the contrary that C∗ is another 1-LD code
of size k = 3n + 4m in G+. Then |C∗ ∩ Vi| = 3 for all i ∈ {1, . . . , n}, and
at most one of xi and xi is in C∗. Also, no vertex Aj or Bj is a codeword,
and each copy of P5 contains exactly two codewords, which are necessarily
the second and the fourth ones. As another consequence, at least one of
xi and xi is a codeword, because no codeword 1-separates them, and so
exactly one of them belongs to C∗. This defines a valid truth assignment
for X , by setting xi =T if xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this
assignment is different from the assignment used to build C. But the fact
that, for all j, C∗ 1-separates Aj and Aj,1, Bj and Bj,1, shows that there is a
codeword xi or xi 1-dominating Aj and Bj , which means that the clause cj
is satisfied. Therefore, we have a second assignment satisfying the instance
of SAT, a contradiction. We can conclude that both problems, U-LDC1 and
U-OLDC1, also receive the answer YES.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two (optimal) 1-LD codes (of size k), and a NO
answer to both U-LDC1 and U-OLDC1. So we are left with the case when the
set of clauses C cannot be satisfied. This implies that no 1-LD code of size k
exists, for the same reason as in the previous paragraph with C∗; this suffices
to prove that we have also a NO answer to U-LD1, but we have to go further
for U-OLD1. Assume then that C is an optimal 1-LD code of unknown size
|C| > 4m + 3n. For 1 ≤ j ≤ m, let Aj = C ∩ {Aj , Aj,i : 1 ≤ i ≤ 5} and
Bj = C ∩ {Bj , Bj,i : 1 ≤ i ≤ 5}.

Suppose first that there is a j0 such that Aj0 and Bj0 are not 1-dominated
by any codeword xi nor any codeword xi. Then |Aj0 | > 2, and actually this
set has size exactly three; the same is true for Bj0 . Now we have several
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optimal codes, because C ∩ (Aj0 ∪ Bj0) can be equal to
{Aj0 , Aj0,2, Aj0,4, Bj0 , Bj0,2, Bj0,4}, or
{Aj0,1, Aj0,2, Aj0,4, Bj0 , Bj0,2, Bj0,4}, or
{Aj0 , Aj0,2, Aj0,4, Bj0,1, Bj0,2, Bj0,4},

—but in general, not {Aj0,1, Aj0,2, Aj0,4, Bj0,1, Bj0,2, Bj0,4}, for this might
affect the vertices xi, xi to which Aj0 and Bj0 are linked.

So from now on, we assume that all vertices Aj , Bj are 1-dominated by
at least one codeword xi or xi. Because the set of clauses cannot be satisfied,
it is impossible that for all i, exactly one of xi and xi is a codeword, for this
would lead to a valid truth assignment which would satisfy all the clauses.
So there is a subscript i0 such that either both xi0 and xi0 are codewords,
or none is a codeword. If both are codewords, then C ∩ Vi0 contains xi0 ,
xi0 and can contain any combination with exactly one codeword among
ai0 , bi0 and exactly one among di0 and fi0 , yielding at least four optimal
solutions. If none of xi0 , xi0 is a codeword, then they are 1-separated by some
codeword(s) Aj , Bj ; moreover, gi0 , which must belong to C, 1-dominates
both xi0 , xi0 . Then again, we can have any of the four combinations with
one codeword among ai0 , bi0 and one among di0 and fi0 .

So in all cases, we do not have a unique optimal 1-LD code. △

11.2.2 Extension to r ≥ 2

It seems difficult to go directly from r = 1 to the general case r ≥ 2, and
we start again from U-SAT, which does not change the final result; see [11,
Rem. 5] about this possible difficulty.

Theorem 64 Let r ≥ 2 be any integer. There exists a polynomial reduction
from U-SAT to U-LDCr and to U-OLDCr: U-SAT →p U-LDCr and U-SAT
→p U-OLDCr.

Proof. We give a polynomial reduction starting from an instance of U-SAT,
i.e., a collection C of m clauses over a set X of n variables.

We take the graph G+ constructed in the proof of Theorem 63 (cf. Fig-
ure 15), and rename it GI = (VI , EI), for Intermediate graph. Then, for
each edge e = uv ∈ EI , we “paste” r−1 copies of the graph G× constructed
for Proposition 59 (cf. Figure 14), by deleting the edge e = uv and creating
the edges uα1, α1α2, . . ., αr−1v, where the αi’s are copies of the vertex α
in G×, see Figure 16: we shall say that the edge e is dilated. We denote
by G+ the graph thus constructed. Since r, hence h = 2r + 1, is fixed, the
fact that G× has order 2h + h − 1 does not affect the polynomiality of our
construction with respect to n+m. We set k = 3n+ 4m+ (r − 1)h|EI |.
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Figure 16: How the edge e = uv ∈ EI is dilated in the proof of Theorem 64.

The use of copies of G× can be seen as a way of putting at distance r,
in the graph G+, the vertices which are at distance one in GI , so that the
vertices in VI will behave with respect to each other in a way very similar
to the case r = 1. It is still true that, in addition to at least h codewords
taken in each copy of G×, at least three codewords are necessary in order to
deal with the vertices in each Vi, and that at least two are necessary to cope
with every copy of {x1, . . . , x5}, the set of vertices in P5. Consequently, any
optimal r-LD code in G+ has size at least k = 3n+ 4m+ (r − 1)h|EI |, the
three terms corresponding respectively to (a) the sets Vi, 1 ≤ i ≤ n, (b) the
2m copies of P5 (which are now dilated copies), and (c) the (r − 1) copies
of the graph G× on each edge of the intermediate graph GI .

One role of the codewords is to deal with the vertices in VI , that is, if
these are not codewords themselves, to r-dominate them, and to r-separate
between them —the domination and separation inside the copies of G×

and the separation between vertices in VI and vertices in the copies of G×

are already performed by the copies of the cycle Ch, which are necessarily
included in any optimal r-LD code in G+, as already observed.

We can also make the following useful remark.

Remark 65 Let C be any optimal r-locating-dominating code in G+, e =
uv be any edge in EI ,and G× be one of the copies pasted on e. If z is a
codeword belonging to G× and not to its cycle Ch, then (C \ {z}) ∪ {u} or
(C \ {z}) ∪ {v} is also an optimal r-locating-dominating code in G+.

Indeed, if (a) z r-dominates neither u nor v, then it can be spared and C
is not optimal; if (b) z r-dominates u, not v, i.e., it r-separates u and v (and
z cannot r-dominate any other vertex in VI), then, when u or v becomes a
codeword, u and v need not be r-separated anymore; if (c) z r-dominates
both u and v, these two vertices will remain r-dominated by a common code-

72



word, u or v. In all cases, the fact that other vertices in VI can now be
r-dominated by the substitute codeword (u or v) does not change anything
(cf. Lemma 55(a)).

We claim that there is a unique solution to SAT if and only if there is a
unique optimal r-LD code in G+, and if and only if there is a unique r-LD
code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi
has been set TRUE, the vertex xi if the literal xi is FALSE, and we add
bi and di, as well as the second and fourth vertices in each of the (dilated)
copies of P5. We add the cycle Ch in each copy of G×. Then C is an r-LD
code in G+: thanks to our preliminary observations, the only thing that
remains to be checked is that for all j ∈ {1, . . . ,m}, the code C r-separates
Aj and Aj,1, Bj and Bj,1, and this is so because there is at least one true
literal in the clause cj , which means that Aj and Bj are r-dominated by at
least one codeword of type xi or xi: everything develops exactly as in the
case r = 1.

Moreover, |C| = k, which proves that it is optimal, and no vertex Aj

nor Bj is a codeword. This implies that, once we have decided between xi
and xi, we have no choice left inside Gi: we must take bi and di, because
neither xi nor xi is r-dominated by any outside codeword. We have no choice
in the copies of P5 either: no pair of vertices in copies of G× can r-dominate
the first and last vertices, and r-separate the first, third and last, at the
same time: only the second and fourth vertices can perform this.

Why is C unique? Suppose on the contrary that C∗ is another (optimal)
r-LD code (of size k) in G+. Then each copy of G× intersects C∗ on exactly
h vertices which are the vertices of the cycle Ch; also, |C

∗ ∩ Vi| = 3 for all
i ∈ {1, . . . , n}, and at most one of xi and xi is in C∗. Moreover, no vertex
Aj nor Bj is a codeword. As a consequence, at least one of xi and xi is
a codeword, because no codeword r-separates them, and so exactly one of
them belongs to C∗. This defines a valid truth assignment for X , by setting
xi =T if xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this assignment is
different from the assignment used to build C. But the fact that, for all j,
C∗ r-separates Aj and Aj,1, Bj and Bj,1, shows that there is a codeword
xi or xi r-dominating Aj and Bj , which means that the clause is satisfied.
Therefore, we have a second assignment satisfying the instance of SAT, a
contradiction.

(2) Assume next that the answer to U-SAT is NO: this may be either
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because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two optimal r-LD codes (of size k), and a NO
answer to U-LDCr and U-OLDCr. So we are left with the case when the
set of clauses C cannot be satisfied. This implies that no r-LD code of size k
exists; this ends the case of U-LDCr but we have to go on with U-OLDCr:
assume that C is an optimal r-LD code of unknown size |C| > k, with at
least three codewords to deal with each Vi, at least two codewords to deal
with each copy of P5, at least h codewords in each copy of G×, and possibly
vertices of type Aj , Bj . By Remark 65, if there is a codeword belonging to a
copy of G× and not to its cycle Ch, then we have at least two optimal r-LD
codes, and we are done. So from now on we assume that no copy of G×

contains codewords outside the cycle Ch. Then C contains at least three
codewords in each Vi, at least two codewords in each copy of P5, exactly h
codewords in each copy of G×, and possibly vertices of type Aj and Bj . Now
the argument of the case r = 1 (Theorem 64) can be repeated almost word
for word: first, we can exclude that there is a vertex Aj0 not r-dominated
by any codeword xi or xi; then we deal with the cases when both xi and xi
are codewords, and when none of them is. In all cases, we have more than
one optimal r-LD code in G+. △

Corollary 66 Let r ≥ 1 be any integer. The decision problems U-LDCr

and U-OLDCr are NP-hard.

Proof. Because U-SAT is NP-hard (Proposition 51). △

Proposition 67 Let r ≥ 2 and q ≥ 1 be any integers. There is a polynomial
reduction from U-LDCqr to U-LDCq and from U-OLDCqr to U-OLDCq: U-
LDCqr →p U-LDCq and U-OLDCqr →p U-OLDCq.

As a particular case, we have U-LDCr →p U-LDC1 and U-OLDCr →p

U-OLDC1.

Proof. Let (G, k) be an instance of U-LDCqr and G be an instance of U-
OLDCqr, for r ≥ 2 and q ≥ 1. The instance for U-LDCq is simply (Gr, k),
and Gr for U-OLDCq, where Gr is the r-th power of G: obviously, by
Lemma 54(a), there is a unique q-LD code of size k in Gr if and only if there
is a unique qr-LD code of size k in G, and there is a unique optimal q-LD
code in Gr if and only if there is a unique optimal qr-LD code in G. △

11.2.3 An Upper Bound for the Complexity of U-LDCr

Theorem 68 There exists a polynomial reduction from U-LDC1 to U-SAT:
U-LDC1 →p U-SAT.
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Proof. In Remark 32 of this Report, we developed a general argument
for this kind of reduction, with three types of clauses, one type for the
description of the specific problem, here the fact that we want the code to
be 1-LD, one type for the fact that we want a code of size at most k, and
one type to break the multiple solutions. The same method will be applied
for Theorem 83, with 1-identifying codes.

We start from an instance of U-LDC1: a graph G = (V,E) and an
integer k, with V = {x1, . . . , x|V |}; we assume that |V | ≥ 3. We create the
set of k|V | variables X = {xim : 1 ≤ i ≤ |V |, 1 ≤ m ≤ k} and the following
clauses:

(a1) for each vertex xi ∈ V with neighbours xn1 , . . . , xns (where s = s(xi)
is the degree of xi), we take the clause of size k(s+ 1):

cxi = {xi1, x
i
2, . . . , x

i
k, x

n1

1 , xn1

2 , . . . , xn1

k , xn2

1 , . . . , xn2

k , . . . , xns

1 , . . . , xns

k };

(a2) for each pair of vertices xi ∈ V , xj ∈ V , we consider the set B1(x
i)∆

B1(x
j) = {xh1 , xh2 , . . . , xhℓ} (where ℓ depends on xi and xj) and we con-

struct the clause cxixj :

{xi1, x
i
2, . . . , x

i
k, x

j
1, . . . , x

j
k, x

h1

1 , xh1

2 , . . . , xh1

k , xh2

1 , . . . , xh2

k , . . . , xhℓ

1 , . . . , xhℓ

k };

we shall say that {xi1, x
i
2, . . . , x

i
k, x

j
1, . . . , x

j
k} is the first part of cxixj and

{xh1

1 , xh1

2 , . . . , xh1

k , xh2

1 , . . . , xh2

k , . . . , xhℓ

1 , . . . , xhℓ

k } its second part, which ex-
ists only when ℓ > 0 and may contain variables also appearing in the first
part, which is unimportant;

(b1) for 1 ≤ m ≤ k and 1 ≤ h < ℓ ≤ |V |, we construct clauses of size
two: {xhm, xℓm};

(b2) for 1 ≤ m < s ≤ k and 1 ≤ h ≤ |V |, we construct clauses of size
two: {xhm, xhs};

(c) for 1 ≤ m < k and 1 < ℓ ≤ |V |, for 1 ≤ h < ℓ and m < s ≤ k, we
construct clauses of size two: {xℓm, xhs}.

All these clauses constitute the instance of U-SAT. Note that the number
of variables and clauses is polynomial with respect to the order of G, since
we may assume that k ≤ |V |.

Assume that we have a unique 1-LD code of size k in G, C = {xp1 , xp2 ,
. . . , xpk}, with p1 < p2 < . . . < pk. We can see that C is optimal (otherwise,
any optimal 1-LD code contradicts our uniqueness assumption). Define the
assignment A1 by A1(x

pq
q ) =T for 1 ≤ q ≤ k, and all the other variables are

set FALSE by A1. We claim that this assignment satisfies all the clauses;
indeed:
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(a1) at least one among xi and its neighbours is a codeword, so the clause
cxi is satisfied by A1.

(a2) (i) If at least one of xi or xj belongs to C, say xi = xpq ∈ C, then
the variable x

pq
q = xiq has been set True by A1 and the first part of the clause

cxixj , hence the whole clause, is satisfied. (ii) If neither xi nor xj belongs
to C, then, using the characterization given by (2), we can see that at least
one xhm belongs to C, which guarantees that the second part of cxixj is
satisfied.

(b1) If a clause {xhm, xℓm} is not satisfied for some m,h, ℓ, this means
that A1(x

h
m) = A1(x

ℓ
m) =T, i.e., two different vertices are the m-th element

in C.
(b2) If {xhm, xhs} is not satisfied, then xh appears at least twice in C.
(c) If {xℓm, xhs} is not satisfied for some m, ℓ, with h < ℓ and m < s, then

A1(x
ℓ
m) = A1(x

h
s ) =T. This means that xℓ = xpm and xh = xps ; so ℓ = pm,

h = ps. Now h < ℓ implies that ps < pm, but m < s implies that pm < ps,
a contradiction.

Is A1 unique? Assume on the contrary that another assignment, A2, also
satisfies the constructed instance of U-SAT. We construct a new code C+

by putting in C+ the vertex xh as soon as some variable xhm is set TRUE
by A2.

Now the satisfaction, by A2, of the clause cxi in (a1) proves that every
vertex in V is 1-dominated by C+; the satisfaction of cxixj from (a2) means
that at least one vertex among xi, xj , xh1 , . . . , xhℓ belongs to C+. So for
every pair of vertices xi, xj , either one of them is in the code, or an element in
B1(x

i)∆B1(x
j) is in the code. So every pair of non-codewords is 1-separated

by C+.
Therefore, we have just proved that C+ is a 1-LD-code.
Using (b1) for A2, we can see that for each m ∈ {1, . . . , k} there is at

most one variable with subscript m that is set TRUE by A2; this means that
we have constructed a 1-LD code with (at most) k elements. Since such a
code is unique by assumption, we can see that A1 and A2 “selected” the
same k codewords: for each pq ∈ {p1, . . . , pk}, we already know that there
is exactly one variable, x

pq
q , set TRUE by A1, and, using (b2) after (b1)

for A2, exactly one variable, say x
pq
t , set TRUE by A2. It is now time to

use (c) in order to prove that q = t for every pq, so that A1 and A2 actually
coincide: indeed, assume on the contrary that for some q ∈ {1, . . . , k}, we
have q 6= t; we treat the case 1 ≤ q < t ≤ k, the case 1 ≤ t < q ≤ k being
analogous. If we consider the subscripts smaller than t, there must be one,
say v, such that there is a superscript pu > pq verifying A2(x

pu
v ) =T. Now
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the clause {xpuv , x
pq
t } from (c) is not satisfied by A2, a contradiction.

So a YES answer to U-LDC1 leads to a YES answer to U-SAT. Assume
now that the answer to U-LDC1 is negative. If it is negative because there
are at least two 1-LD codes of size k, then we have at least two assignments
satisfying the instance of U-SAT: we have seen above how to construct a
suitable assignment from a 1-LD code, and different 1-LD codes obviously
lead to different assignments. On the other hand, if there is no 1-LD code of
size k, then there can be no assignment satisfying U-SAT, because such an
assignment would give a 1-LD code of size k, as we have seen above when
dealing with A2. So in both cases, a NO answer to U-LDC1 implies a NO
answer to U-SAT. △

By Proposition 67 or its corollary, this immediately implies that there is a
polynomial reduction from U-LDCr to U-SAT.

Theorem 69 Let r ≥ 1 be any integer. The problem U-LDCr has complex-
ity equivalent to that of U-SAT.

As a consequence, U-LDCr belongs to the class DP. △

Note that it could have been shown directly that U-LDCr belongs to DP.

11.2.4 Two Upper Bounds for the Complexity of U-OLDCr

In [35] (see Sections 6.2.3 and 7.2.4 in this Report), we give, for two problems
structurally similar to U-OLDCr, two upper bounds, the first one being
weaker but constructive. We do not give the proofs of the following two
results but refer to [35] instead. These proofs use Lemma 60, Corollary 61
and Proposition 62.

Proposition 70 For r ≥ 1, the decision problem U-OLDCr belongs to the
class PNP . In case of a YES answer, one can give the only optimal r-
locating-dominating code within the same complexity. △

Proposition 71 For r ≥ 1, the decision problem U-OLDCr belongs to LNP .
△

12 Identifying Codes

The structure of this Section and its results are the same as Section 11 for
LD-codes, although the preliminary graphs and arguments are quite different
technically.
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Figure 17: (a) The graph G× of Lemma 72. Black vertices belong to any
1-identifying code in G×. (b) The graph Gi of Lemma 73, with an optimal
1-identifying code (black vertices).

12.1 Preliminary Results

Lemma 72 will be used in the proof of Theorem 79, and Lemma 73 in the
proofs of Theorems 79 and 80.

Lemma 72 Let G× = (V ×, E×) be the following graph:

V × = {α, β1, β2, β3, β4, β5, β6, ω, δ, σ, τ, λ, µ},

E× = {αβ1, β1β2, β1δ, β1ω, β2δ, β2ω, β1β3, β3β4, β3σ, β3τ, β4σ, β4τ} ∪

∪{αβ5, β5β6, β5λ, β5µ, β6λ, β6µ},

see Figure 17(a). Then i1(G
×) = 8, any 1-identifying code in G× contains

the set of vertices C = {α, β1, ω, δ, σ, τ, λ, µ}, and C is the only optimal
1-identifying code in G×.

If G× is plunged in a larger graph G+, with only α linked to the outside,
then every 1-identifying code in G+ contains C; the outside neighbours of α
are 1-covered, not 1-separated, by α, and they are 1-separated from V × by C.

Proof. Straightforward: α is the only vertex 1-separating β5 and β6; the
same is true about β1, for β3, β4; about ω, for β2, δ; about δ, for β2, ω;
about σ, for β4, τ ; about τ , for β4, σ; about λ, for β6, µ; and about µ,
for β6, λ. So these eight vertices belong to any 1-identifying code, and
since they obvioulsy constitute a 1-identifying code, this is the only optimal
1-identifying code.

When we consider G+, all the above arguments still work. △

The statements of the following lemma have been given, although in a differ-
ent way, in [12, proof of Th. 5.1]; for completeness, we give here the (easy)
proof.
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Lemma 73 Let Gi = (Vi, Ei) be the following graph: Vi = {xi, xi, ai, bi, di, fi}
and Ei = {aibi, bixi, bixi, xidi, xidi, difi}, and Ci be a 1-identifying code
in Gi, see Figure 17(b). Then

(a) At least one of xi and xi belong to Ci.
(b) At least two more codewords are necessary in Ci, so that i1(Gi) ≥ 3.
(c) We have i1(Gi) = 3, and {xi, bi, di} and {xi, bi, di} are the only

optimal 1-identifying codes in Gi.
(d) If Gi is plunged in a larger graph G+, with only xi and xi linked

to the outside, then every 1-identifying code in G+ contains at least three
codewords in Vi, and one of them is xi or xi.

Proof. (a) Because ai and bi, or di and fi, must be 1-separated by Ci.
(b) Because ai and fi must be 1-covered by Ci. Alternatively, use (4) in
Lemma 53. (c) Assume that it is xi that belongs to Ci. Then taking ai
and fi would not 1-cover xi, and taking ai and di, or bi and fi, would not
1-separate xi and di, or xi and bi, respectively; on the other hand, {xi, bi, di}
is 1-identifying. (d) Only xi and xi can be 1-covered by the outside, and ai
and fi still have to be 1-covered, ai and bi, and di and fi still must be pairwise
1-separated by a codeword, requiring at least three inside codewords, one of
them being xi or xi. △

The diapason and shortened diapason, introduced in the following lemma
and its corollary, will be used in the proof of Theorem 80.

Lemma 74 [11, Lemma 2.1, Cor. 2.1] Let r ≥ 2 be any integer. Let T =
{t1, t2, . . . , tr}, Y = {y1, y2, . . . , y2r+1}, and Z = {z1, z2, . . . , z2r+1}. Let
∆ be the graph in Figure 18, with vertex set T ∪ Y ∪ Z and edge set

{titi+1 : i = 1, 2, . . . , r − 1} ∪ {try1, trz1} ∪ {yiyi+1, zizi+1 : i = 1, 2, . . . , 2r}.

(a) The smallest r-identifying code in ∆, C0, has size 2r + 2 and is
unique: it consists of the vertices y1, y2, . . . , yr, y2r+1, z1, z2, . . . , zr, and
z2r+1.

(b) Any r-identifying code in ∆ contains at least 2r+2 elements in Y ∪Z;
among them, the 2r vertices y1, y2, . . . , yr and z1, z2, . . . , zr must belong
to any r-identifying code.

(c) Consider r − 1 copies, ∆1, ∆2, . . . , ∆r−1, of the graph ∆, and in
each copy rename the “first” vertex t1 by t1,1, t2,1, . . . , tr−1,1, and the other
vertices accordingly. Build the graph Ω (cf. Figure 19) by taking these
r− 1 copies and adding the edges t1,1t2,1, t2,1t3,1, . . . , tr−2,1tr−1,1. Then the
smallest r-identifying code in Ω, C1, has size (r − 1)(2r + 2), is unique and
consists of r − 1 copies of the code C0, one copy of C0 in each copy of ∆.
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(d) If Ω is plunged in a larger graph G+, with only t1,1 and tr−1,1 linked
to the outside, then every r-identifying code in G+ contains C1; no outside
vertex is r-covered by C1. △

We call the graph ∆ a diapason. The sets Y and Z are the branches, the
set T the stem, the vertex t1 the foot of the diapason.

Corollary 75 If we modify the previous lemma by considering a set T−

with one vertex less: T− = {t1, t2, . . . , tr−1} and tr−1 linked to y1 and z1,
and if we denote by ∆− the graph thus obtained, then the statements (a) and
(b) of Lemma 74 remain true when we replace ∆ by ∆−.

If ∆− is plunged in a larger graph G+, with only t1 linked to the outside,
then every r-identifying code in G+ contains C0; the outside neighbours of t1
are the only outside vertices r-covered by C0, they are not r-separated from
one another by C0, and they are r-separated by C0 from all the vertices
in ∆−. △

We call the graph ∆− a shortened diapason.
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Lemma 76 below, and its corollary, are similar to Lemma 60 and Corollary 61
on r-LD codes: they characterize the vertices belonging to at least one
optimal r-identifying code, through the comparison of two 1-identification
numbers. They will be used for Proposition 85. They are simplified versions
of [32, Lemma 3] and [32, Cor. 4], respectively.

Lemma 76 Let G = (V,E) be a 1-twin-free graph. For a given vertex
α ∈ V , we construct the following graph Gα = (Vα, Eα):

Vα = V ∪ {β1, β2, δ, λ}, Eα = E ∪ {αβ1, β1β2, β1δ, β1λ, β2δ, β2λ},

where none of the vertices β1, β2, δ, λ belongs to V . Then α belongs to at
least one optimal 1-identifying code in G if and only if i1(G) = i1(Gα)− 2.

△

Corollary 77 Let r ≥ 1 be any integer, G be an r-twin-free graph contain-
ing a vertex α, and Gr be the r-th power of G. We construct the graph (Gr)α
in the same way as in the previous lemma for G. Then α belongs to at least
one optimal r-identifying code in G if and only if i1(G

r) = i1((G
r)α)−2. △

In the following proposition, we shall only use the fact that IdC1 belongs to
NP (see Propositions 85 and 86).

Proposition 78 [12, for r = 1], [11] Let r ≥ 1 be any integer. The decision
problem IdCr is NP-complete. △

But the proofs for Proposition 78 do not deal with the problem of the unique-
ness of a solution.

12.2 Uniqueness of Identifying Code

12.2.1 From U-SAT to U-IdC1 and U-OIdC1

Theorem 79 There exists a polynomial reduction from U-SAT to U-IdC1

and to U-OIdC1: U-SAT →p U-IdC1 and U-SAT →p U-OIdC1.

Proof. This proof is inspired by that of the NP-completeness of IdC1 in [12].
We give a polynomial reduction starting from an instance of U-SAT, that

is, a collection C of m clauses over a set X of n variables.
For each variable xi ∈ X , 1 ≤ i ≤ n, we take the graph Gi = (Vi, Ei)

defined in Lemma 73. For each clause cj , containing εj literals, εj ≥ 2, we
create two vertices, Aj and Bj , and we link Aj to the εj vertices correspond-
ing, in the graphs Gi, to the literals of cj . Finally we link the vertices Aj
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Figure 20: For r = 1, the graph G+, constructed from a set of clauses.

and Bj to one copy of the graph G× defined in Lemma 72, one different copy
for each couple (Aj , Bj), by creating the edges Ajα and Bjα (or rather: we
use the j-th copy of α); we call this graph G+, see Figure 20. The order
of G+ is 6n + 15m. Note that each pair of vertices Aj , Bj , 1 ≤ j ≤ m, is
1-covered by a copy of α (which belongs necessarily to any 1-identifying code
in G+, see Lemma 72). By Lemmas 72 and 73, we have i1(G

+) ≥ 8m+ 3n.
We set k = 8m+ 3n.

We claim that there is a unique solution to SAT if and only if there is a
unique optimal 1-identifiying code in G+, and if and only if there is a unique
1-identifying code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi
has been set TRUE, the vertex xi if the literal xi is FALSE, and we add bi
and di. We add all the copies of the vertices α, β1, ω, δ, σ, τ , λ and µ. Then
C is a 1-identifying code in G+: thanks to all our preliminary observations
(Lemmas 72 and 73), the only thing that remains to be checked is that for
all j ∈ {1, . . . ,m}, the vertices Aj and Bj are 1-separated by C. And this
is so because there is at least one true literal in the clause cj . Moreover,
|C| = k, which proves that it is optimal. We can also see that, once we have
decided between xi and xi, we have no choice left inside Gi: we must take bi
and di, because neither xi nor xi is 1-covered by outside codewords, due to
the fact that no vertex Aj can be a codeword, by an argument of cardinality.

Why is C unique? Suppose on the contrary that C∗ is another 1-
identifying code of size k in G+. Then |C∗ ∩ Vi| = 3 for all i ∈ {1, . . . , n},
and exactly one of xi and xi is in C∗. This defines a valid truth assignment
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for X , by setting xi =T if xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this
assignment is different from the assignment used to build C. But the fact
that C∗ 1-separates Aj and Bj for all j shows that there is a codeword xi
or xi 1-covering Aj , which means that the clause is satisfied. Therefore, we
have a second assignment satisfying the instance of SAT, a contradiction.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two optimal 1-identifying codes (of size k), and
a NO answer to U-IdC1 and U-OIdC1. So we are left with the case when
the set of clauses C cannot be satisfied. This implies that no 1-identifying
code of size k exists; the case U-IdC1 is closed, and, to go on with the
problem U-OIdC1, we assume that C is an optimal 1-identifying code of
unknown size |C| > 8m + 3n. We know that each copy of G× contains
at least eight codewords, and each Gi at least three codewords. Where
can the extra codeword(s) be? Any additional codeword in a copy of G×

is useless with respect to 1-identification and can be saved. If there are
five or six codewords in a Gi, at least one can be saved; assume next that
there are four of them: (a) if both xi and xi are codewords, then, e.g.,
C ∩ Vi = {xi, xi, bi, di} or C ∩ Vi = {xi, xi, bi, fi} can be part of an optimal
solution; (b) if only one of xi and xi, say xi, is a codeword, then there are
also several possibilities for C ∩ Vi, such as {xi, bi, di, ai} and {xi, bi, di, fi}.
So we can conclude that there are eight codewords in each copy of G×,
three codewords in each Gi and the extra codewords are among the vertices
Aj , Bj . If for some j, Bj ∈ C and Aj /∈ C, then Bj serves as a codeword only
to 1-separate itself from Aj , but this can be done by Aj , so (C \{Bj})∪{Aj}
would be another optimal 1-identifying code. So we are left with the case
Aj ∈ C. Then Aj 1-covers one vertex xi or xi, say xi, and then both
C ∩ Vi = {xi, bi, di} and C ∩ Vi = {xi, ai, fi} are possible. In all cases, we
have proved that there are several optimal 1-identifying codes in G+, i.e.,
we have a NO answer to the constructed instance of U-OIdC1. △

12.2.2 Extension to r ≥ 2

As for LD codes, we do not go directly from r = 1 to r ≥ 2, but start again
from U-SAT, which does not change the final result; see [11, Rem. 2] about
this difficulty.

Theorem 80 Let r ≥ 2 be any integer. There exists a polynomial reduction
from U-SAT to U-IdCr and to U-OIdCr: U-SAT →p U-IdCr and U-SAT →p

U-OIdCr.
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Figure 21: How the edge e ∈ EI is transformed in the proof of Theorem 80.
If e is a membership edge or an edge in Gi, we use a copy of Ω; if e = AjBj ,
we use a copy of ∆−.

Proof. This proof is inspired by that of the NP-completeness of IdCr in [11].
We give a polynomial reduction starting from an instance of U-SAT, i.e.,

a collection C of m clauses over a set X of n variables.
In a first step, for each variable xi ∈ X , 1 ≤ i ≤ n, we take the graph

Gi = (Vi, Ei) defined in Lemma 73. For each clause cj , containing εj literals,
εj ≥ 2, we create two vertices, Aj and Bj , and the edge AjBj , and we link
Aj to the εj vertices corresponding, in the graphs Gi, to the literals of cj ;
we call these edges “membership edges”. So far, we have constructed an
intermediate graph, GI = (VI , EI).

In a second step (see Figure 21), for each membership edge and for
each edge in the graphs Gi, we “paste” one copy of the graph Ω defined in
Lemma 74, which is equivalent to pasting r − 1 copies of the diapason ∆;
and for each edge AjBj , 1 ≤ j ≤ m, we paste one copy of the shortened
diapason ∆− defined in Corollary 75. We denote by G+ the graph thus
constructed, and set k = 3n + (r − 1)(2r + 2)(|EI | −m) +m(2r + 2). The
order of G+ is (6n + 2m) + (|EI | − m)(r − 1)(5r + 2) + m(5r + 1): the
transformation is polynomial indeed.

The diapasons can be seen as a way of putting at distance r, in the
graph G+, the vertices in Vi, 1 ≤ i ≤ n, and {Aj : 1 ≤ j ≤ m} which are at
distance one from one another in GI . And so these vertices will behave with
respect to each other in a way very similar to the case r = 1. In particular,
it is still true that, in addition to codewords taken in the branches of the
diapasons, at least three codewords are necessary to deal with the vertices
in each Vi. Consequently, by Lemma 74(b), any optimal r-identifying code
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in G+ has size at least 3n+ (r − 1)(2r + 2)(|EI | −m) +m(2r + 2) = k, the
three terms corresponding respectively to (a) the sets Vi, 1 ≤ i ≤ n, (b) the
r − 1 copies of the diapason on each edge which is not AjBj , and (c) the
copy of the shortened diapason on each edge AjBj , 1 ≤ j ≤ m.

The role of the copies of the shortened diapason is to r-cover Aj and
Bj without r-separating them, and to r-separate Aj and Bj from the other
vertices belonging to VI .

After these introductory observations, we can conclude that, in any r-
identifying code in G+, the role of the codewords which do not belong to
the branches of the diapasons, is (a) to r-separate Aj from Bj , for all j ∈
{1, . . . ,m}; (b) to r-cover all the vertices in Vi, and to r-separate them, for
all i ∈ {1, . . . , n}.

We claim that there is a unique solution to SAT if and only if there is a
unique optimal r-identifiying code in G+, and if and only if there is a unique
r-identifying code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi has
been set TRUE, the vertex xi if the literal xi is FALSE, we add bi and di,
and we also take the unique optimal r-identifying codes in all the copies of Ω
and ∆−. Then, as in the case r = 1, we can check that C is an r-identifying
code in G+; in particular, for all j ∈ {1, . . . ,m}, the vertices Aj and Bj are
r-separated by C, because there is at least one true literal in the clause cj .
Also, the code C has the right size and is optimal. We can also see that,
once we know that, say, xi ∈ C, we have no choice left for the completion of
the code, because ai, fi and xi must be r-covered (the latter because no Aj

is a codeword), and xi, bi and di must be r-separated by the code. So bi and
di necessarily are the remaining two codewords in Vi, for all i ∈ {1, . . . , n}.

Why is C unique? Suppose on the contrary that C∗ is another r-
identifying code, with |C∗| = |C|. Then for all i ∈ {1, . . . , n}, exactly
three codewords take care of Vi, and C∗ contains bi, di and exactly one of
xi and xi. This defines a valid truth assignment for X , by setting xi =T if
xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this assignment is different from
the assignment used to build C. But the fact that C∗ r-separates Aj and
Bj for all j shows that there is one codeword xi or xi r-covering Aj , which
means that the clause is satisfied. Therefore, we have a second assignment
satisfying the instance of SAT, a contradiction.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
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as previously, to at least two optimal r-identifying codes (of size k), and a
NO answer to U-IdCr and U-OIdCr. So we are left with the case when the
set of clauses C cannot be satisfied. This implies that no r-identifying code
of size k exists: we have ended the case U-IdCr; next, we assume that C is
an optimal r-identifying code of unknown size |C| > k. We know that each
copy of Ω or of ∆− contains at least (r − 1)(2r + 2) or 2r + 2 codewords,
respectively, and that each Vi requires at least three codewords. Now, where
can the extra codeword(s) be?

Note that, unfortunately, Remark 65 cannot be adapted to the present
construction with pasted diapasons for r-identifying codes, because in the
case (b) of the Remark, when the codeword z belonging to a diapason r-
separates u and v and is replaced by u or v, then u and v are not r-separated
anymore. This did not matter with LD-codes, but it does for identifying
codes.

Any vertex Bj is a useless codeword, because, even in the case r = 2, it
r-covers both Aj and itself. This is also true for all the codewords that would
be on the branches of any diapason (apart from the codewords y1, y2, . . . yr,
y2r+1 and z1, z2, . . . , zr, z2r+1), as well as for codewords on the stem of a
shortened diapason (for they all r-cover both Aj and Bj).

Let us now consider the case of a codeword on the stem of a diapason
pasted on an edge e = uv: this edge is either a membership edge or an edge
in some Gi; the (only) role of this codeword is either to r-cover exactly one
of u an v, and consequently to r-separate u from v, or to r-cover both u
and v, and consequently to r-separate them from other vertices in VI . We
distinguish between three cases. In each case, our goal is to show that one
codeword can be spared (contradiction with the optimality of C) or that
several optimal codes are possible.

(i) r = 2. The two vertices on the stem of the unique diapason pasted
on e both 2-cover u and v, so at most one of them is necessary in the code,
and they are interchangeable.

(ii) r ≥ 4. (a) All the feet of the r − 1 diapasons r-cover u and v, so
at most one of them is necessary in the code, and they are interchange-
able. (b) If, say, u is linked to t1,1 and v to tr−1,1, then dG+(t1,r, u) = r,
dG+(t1,r−1, u) = r− 1, dG+(t1,r, v) = 2r− 2, and dG+(t1,r−1, v) = 2r− 3 > r,
so there are at least two vertices on the first stem which r-cover u, not v,
at most one of them is necessary in the code, and they are interchangeable.
The same is true by symmetry for tr−1,r and tr−1,r−1.

(iii) r = 3. (a) The feet of the two diapasons 3-cover u and v, and
the conclusion is the same as previously. (b) Without loss of generality, we
assume that we are in the following case: the codeword is t1,3; it is the only
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vertex in Ω which 3-covers u, not v, so it 3-separates these two vertices.
If u = Aj for some j ∈ {1, 2, . . . ,m}, then it is 3-covered and 3-separated
from v by the shortened diapason, and t1,3 can be spared. So u is one of
the six vertices in Vi for some i ∈ {1, 2, . . . , n}. If u ∈ {xi, xi, bi, di}, that
is, if u has degree at least two in GI , then we can replace t1,3 by another
vertex suitably chosen in a diapason pasted on another edge incident to u
in GI . So we are left with the case when, say, u = ai, and so v = bi. But bi
is 3-covered by at least one codeword. (b1) This codeword also 3-covers ai.
Then t1,3 can be replaced in C by a vertex 3-covering bi, not ai: this choice
also allows to have ai and bi 3-covered and 3-separated by C. (b2) The
codeword 3-covering bi does not 3-cover ai. Then t1,3 can be replaced in C
by, e.g., t1,2, because ai and bi are already 3-separated by C.

So in all cases, we have at least two possible optimal codes, and we can
assume from now on that each copy of Ω contains exactly (r − 1)(2r + 2)
codewords, and each copy of ∆− exactly 2r + 2 codewords.

The case when there are four (or more) codewords in a component Gi

can be treated exactly like the case r = 1, as if the copies of Ω did not
exist. This is also true if each Gi has exactly three codewords, and one
extra codeword is on some Aj , because then Aj r-covers some xi or xi. In
all cases, there is more than one possibility for Vi ∩ C.

In conclusion, whenever there are more than k codewords in an optimal
code, there are several possible optimal codes, and the answer to U-OIdCr

is NO. △

Corollary 81 Let r ≥ 1 be any integer. The decision problems U-IdCr and
U-OIdCr are NP-hard. △

Proposition 82 Let r ≥ 2 and q ≥ 1 be any integers. There is a polynomial
reduction from U-IdCqr to U-IdCq and from U-OIdCqr to U-OIdCq: U-IdCqr

→p U-IdCq and U-OIdCqr →p U-OIdCq.
As a particular case, we have U-IdCr →p U-IdC1 and U-OIdCr →p U-

OIdC1.

Proof. See the proof of Proposition 67 and Lemma 54(b). △

12.2.3 An Upper Bound for the Complexity of U-IdCr

Theorem 83 There exists a polynomial reduction from U-IdC1 to U-SAT:
U-IdC1 →p U-SAT.
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Proof. We refer to the proof of Theorem 68, and we give here only the
clauses that describe the identification problem. These clauses are con-
structed in the following way:

(a1) for each vertex xi ∈ V with neighbours xn1 , . . . , xns , we take the
clause of size k(s+ 1):

{xi1, x
i
2, . . . , x

i
k, x

n1

1 , xn1

2 , . . . , xn1

k , xn2

1 , . . . , xn2

k , . . . , xns

1 , . . . , xns

k };

(a2) for each pair of vertices xi ∈ V , xj ∈ V , we consider the set B1(x
i)

∆B1(x
j) = {xh1 , xh2 , . . . , xhℓ}; by the assumption that G is 1-twin-free, we

have ℓ > 0. Then we simply take the clause

{xh1

1 , xh1

2 , . . . , xh1

k , xh2

1 , . . . , xh2

k , . . . , xhℓ

1 , . . . , xhℓ

k },

which is the second part of the clause cxixj in the aforementioned proof.
Then the argument goes exactly like for Theorem 68, in particular thanks
to the characterization given by (2). △

By Proposition 82 or its corollary, this immediately implies that there is a
polynomial reduction from U-IdCr to U-SAT.

Theorem 84 Let r ≥ 1 be any integer. The problem U-IdCr has complexity
equivalent to that of U-SAT.

As a consequence, U-IdCr belongs to the class DP. △

12.2.4 Two Upper Bounds for the Complexity of U-OIdCr

Exactly as in Section 11.2.4, we give, without proof, two results on U-OIdCr;
this time, Lemma 76, Corollary 77 and Proposition 78 are used.

Proposition 85 For r ≥ 1, the decision problem U-OIdCr belongs to the
class PNP . In case of a YES answer, one can give the only optimal r-
identifying code within the same complexity. △

Proposition 86 For r ≥ 1, the decision problem U-OIdCr belongs to LNP .
△

13 Conclusion

We have established that the four decision problems U-LDCr, U-IdCr, U-
OLDCr and U-OIdCr are, for any fixed r ≥ 1, NP-hard, and that the two
problems U-OLDCr and U-OIdCr belong to the class L

NP . For U-LDCr and
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U-IdCr, we could go further and prove that they are equivalent to U-SAT
and therefore belong to the class DP.

Conjecture Neither U-OLDCr nor U-OIdCr belong to DP.

Open Problem Give a better location, in the classes of complexity, for the
problems U-LDCr, U-IdCr, U-OLDCr and U-OIdCr.

We can see in Figure 22 that U-SAT, U-LDCr and U-IdCr are in the ver-
tically hatched region, but probably not in DP-C, whereas U-OLDCr and
U-OIdCr are somewhere in the region that is hatched horizontally or verti-
cally.

In [9], a characterization of the trees which admit a unique optimal 1-LD
code is given.

Open Problems Extend this study to other classes of graphs; to any integer
r ≥ 1; to identifying codes. What is the complexity of the sub-problem of
U-OLDC1 when the instance is any tree.

In [8], the authors wonder whether
(A) U-SAT is NP-hard, but here we believe that what they mean is:

does there exist a polynomial reduction from an NP-complete problem to
U-SAT? i.e., they use the second definition of NP-hardness;

finally, they show that (A) is true if and only if
(B) U-SAT is DP-complete.
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So, if one is careless and considers that U-SAT is NP-hard without check-
ing according to which definition, one might easily jump too hastily to the
conclusion that U-SAT is DP-complete.
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Abstract

The decision problems of the existence of a Hamiltonian cycle or of
a Hamiltonian path in a given graph, and of the existence of a truth
assignment satisfying a given Boolean formula C, are well-known NP-
complete problems. Here we study the problems of the uniqueness of a
Hamiltonian cycle or path in an undirected, directed or oriented graph,
and show that they have the same complexity, up to polynomials, as
the problem U-SAT of the uniqueness of an assignment satisfying C. As
a consequence, these Hamiltonian problems are NP-hard and belong
to the class DP, like U-SAT.
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14 Introduction

14.1 The Hamiltonian Cycle and Path Problems

We shall denote by G = (V,E) a finite, simple, undirected graph with vertex
set V and edge set E, where an edge between x ∈ V and y ∈ V is indifferently
denoted by xy or yx. The order of the graph is its number of vertices, |V |.

If V = {v1, v2, . . . , vn}, a Hamiltonian path HP =< vi1vi2 . . . vin > is an
ordering of all the vertices in V , such that vijvij+1

∈ E for all j, 1 ≤ j ≤ n−1.
The vertices vi1 and vin are called the ends of HP. A Hamiltonian cycle is
an ordering HC =< vi1vi2 . . . vin(vi1) > of all the vertices in V , such that
vinvi1 ∈ E and vijvij+1

∈ E for all j, 1 ≤ j ≤ n − 1. Note that the same
Hamiltonian cycle admits 2n representations, e.g., < vi2vi3 . . . vinvi1(vi2) >
or < vinvin−1

. . . vi2vi1(vin) >.
A directed graph H = (X,A) is defined by its set X of vertices and its

set A of directed edges, also called arcs, an arc being an ordered pair (x, y)
of vertices; with this respect, (x, y) and (y, x) are two different arcs and
may coexist. A directed graph is said to be oriented if it is antisymmetric,
i.e., if we have, for any pair {x, y} of vertices, at most one of the two arcs
(x, y) or (y, x); if (x, y) ∈ A, we say that y is the out-neighbour of x, and
x is the in-neighbour of y, and we define the in-degree and out-degree of a
vertex accordingly. The notions of directed Hamiltonian cycle and of directed
Hamiltonian path are extended to a directed graph by considering the arcs
(vin , vi1) ∈ A and (vij , vij+1

) ∈ A in the above definitions. When there is no
ambiguity, we shall often drop the words “directed” and “Hamiltonian”.

The following six problems (stated as one) are well known, in graph
theory as well as in complexity theory:

Problem HAMC / HAMP (Hamiltonian Cycle / Hamiltonian Path):
Instance: An undirected, directed or oriented graph.
Question: Does the graph admit a Hamiltonian cycle / Hamiltonian path?

As we shall see (Proposition 88), they have been known to be NP-complete
for a long time. In this paper, we shall be interested in the following prob-
lems, and shall locate them in the complexity classes:

Problem U-HAMC[U] (Unique Hamiltonian Cycle in an Undirected graph):
Instance: An undirected graph G = (V,E).
Question: Does G admit a unique Hamiltonian cycle?

Problem: U-HAMP[U] (Unique Hamiltonian Path in an Undirected graph):
Instance: An undirected graph G = (V,E).
Question: Does G admit a unique Hamiltonian path?
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Problem: U-HAMC[D] (Unique directed Hamiltonian Cycle in a Directed
graph):
Instance: A directed graph H = (X,A).
Question: Does H admit a unique directed Hamiltonian cycle?

Problem: U-HAMP[D] (Unique directed Hamiltonian Path in a Directed
graph):
Instance: A directed graph H = (X,A).
Question: Does H admit a unique directed Hamiltonian path?

Problem: U-HAMC[O] (Unique directed Hamiltonian Cycle in an Oriented
graph):
Instance: An oriented graph H = (X,A).
Question: Does H admit a unique directed Hamiltonian cycle?

Problem: U-HAMP[O] (Unique directed Hamiltonian Path in an Oriented
graph):
Instance: An oriented graph H = (X,A).
Question: Does H admit a unique directed Hamiltonian path?

We shall prove in Section 15 that these problems have the same complexity,
up to polynomials, as the problem of the uniqueness of a truth assignment
satisfying a Boolean formula (U-SAT). As a consequence, all are NP-hard
and belong to the class DP. The closely related problem Unique Optimal
Travelling Salesman has been investigated in [44], see Remark 94.

In a forthcoming work, we similarly reexamine some famous problems,
from the viewpoint of uniqueness of solution: Boolean Satisfiability and
Graph Colouring [34] (Sections 1–4 in this Report), Vertex Cover and Dom-
inating Set (as well as its generalization to domination within distance r) [35]
(Sections 5–8), and r-Identifying Code together with r-Locating-Dominating
Code [36] (Sections 9–13). We shall re-use here results from [34], and modify
a construction from [35].

In the sequel, we shall need the following tools, which constitute classical
definitions related to graph theory or to Boolean satisfiability. A vertex
cover in an undirected graph G is a subset of vertices V ∗ ⊆ V such that for
every edge e = uv ∈ E, V ∗ ∩ {u, v} 6= ∅. We denote by φ(G) the smallest
cardinality of a vertex cover of G; any vertex cover V ∗ with |V ∗| = φ(G) is
said to be optimal.

Next we consider a set X of n Boolean variables xi and a set C of m
clauses (C is also called a Boolean formula); each clause cj contains κj literals,
a literal being a variable xi or its complement xi. A truth assignment for X
sets the variable xi to TRUE, also denoted by T, and its complement to
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FALSE (or F), or vice-versa. A truth assignment is said to satisfy the
clause cj if cj contains at least one true literal, and to satisfy the set of
clauses C if every clause contains at least one true literal. The following
decision problems are classical problems in complexity.

Problem VC (Vertex Cover with bounded size):
Instance: An undirected graph G and an integer k.
Question: Does G admit a vertex cover of size at most k?

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing at least two different literals.
Question: Is there a truth assignment for X that satisfies C?

The following problem is stated for any fixed integer k ≥ 2.

Problem k-SAT (k-Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing exactly k different literals.
Question: Is there a truth assignment for X that satisfies C?

Problem 1-3-SAT (One-in-Three Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing exactly three different literals.
Question: Is there a truth assignment for X such that each clause of C
contains exactly one true literal?

We shall say that a clause (respectively, a set of clauses) is 1-3-satisfied by
an assignment if this clause (respectively, every clause in the set) contains
exactly one true literal. We shall also consider the following variants of the
above problems:

U-VC (Unique Vertex Cover with bounded size),
U-SAT (Unique Satisfiability),
U-k-SAT (Unique k-Satisfiability),
U-1-3-SAT (Unique One-in-Three Satisfiability).

They have the same instances as VC, SAT, k-SAT and 1-3-SAT respec-
tively, but now the question is “Is there a unique vertex cover / truth
assignment. . .?”.

We shall give in Propositions 89–93 what we need to know about the
complexities of these problems.
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14.2 Some Classes of Complexity

We refer the reader to, e.g., [6], [21], [38] or [45] for more on this topic. A
decision problem is of the type “Given an instance I and a property PR
on I, is PR true for I?”, and has only two solutions, “yes” or “no”. The
class P will denote the set of problems which can be solved by a polynomial
(time) algorithm, and the class NP the set of problems which can be solved
by a nondeterministic polynomial algorithm. A polynomial reduction from a
decision problem π1 to a decision problem π2 is a polynomial transformation
that maps any instance of π1 into an equivalent instance of π2, that is, an
instance of π2 admitting the same answer as the instance of π1; in this case,
we shall write π1 →p π2. Cook [14] proved that there is one problem in
NP, namely SAT, to which every other problem in NP can be polynomially
reduced. Thus, in a sense, SAT is the “hardest” problem inside NP. Other
problems share this property in NP and are called NP-complete problems;
their class is denoted by NP-C. The way to show that a decision problem
π is NP-complete is, once it is proved to be in NP, to choose some NP-
complete problem π1 and to polynomially reduce it to π. From a practical
viewpoint, the NP-completeness of a problem π implies that we do not
know any polynomial algorithm solving π, and that, under the assumption
P 6=NP, which is widely believed to be true, no such algorithm exists: the
time required can grow exponentially with the size of the instance (when the
instance is a graph, its size is polynomially linked to its order; for a Boolean
formula, the size is polynomially linked to, e.g., the number of variables plus
the number of clauses).

The complement of a decision problem, “Given I and PR, is PR true
for I?”, is “Given I and PR, is PR false for I?”. The class co-NP (respec-
tively, co-NP-C) is the class of the problems which are the complement of a
problem in NP (respectively, NP-C).

For problems which are not necessarily decision problems, a Turing re-
duction from a problem π1 to a problem π2 is an algorithm A that solves π1
using a (hypothetical) subprogram S solving π2 such that, if S were a poly-
nomial algorithm for π2, then A would be a polynomial algorithm for π1.
Thus, in this sense, π2 is “at least as hard” as π1. A problem π is NP-
hard (respectively, co-NP-hard) if there is a Turing reduction from some
NP-complete (respectively, co-NP-complete) problem to π [21, p. 113].

Remark 87 Note that with these definitions, NP-hard and co-NP-hard co-
incide [21, p. 114].

The notions of completeness and hardness can of course be extended to
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Figure 23: Some classes of complexity.

classes other than NP or co-NP. NP-hardness is defined differently in [15]
and [27]: there, a problem π is NP-hard if there is a polynomial reduction
from some NP-complete problem to π; this may lead to confusion (see Sec-
tion 16).

We also introduce the classes PNP (also known as ∆2 in the hierarchy
of classes) and LNP (also denoted by PNP [O(logn)] or Θ2), which contain
the decision problems which can be solved by applying, with a number of
calls which is polynomial (respectively, logarithmic) with respect to the size
of the instance, a subprogram able to solve an appropriate problem in NP
(usually, an NP-complete problem); and the class DP [46] (or DIFP [8] or
BH2 [38], [52], . . .) as the class of languages (or problems) L such that there
are two languages L1 ∈NP and L2 ∈ co-NP satisfying L = L1 ∩ L2. This
class is not to be confused with NP∩ co-NP (see the warning in, e.g., [45,
p. 412]); actually, DP contains NP∪ co-NP and is contained in LNP . See
Figure 23.

Membership to P, NP, co-NP, DP, LNP or PNP gives an upper bound
on the complexity of a problem (this problem is not more difficult than . . .),
whereas a hardness result gives a lower bound (this problem is at least as
difficult as . . .). Still, such results are conditional in the sense that we do
not know whether or where the classes of complexity collapse.

We now consider some of the problems from Section 14.1.

Proposition 88 [39], [21, pp. 56–60 and pp. 199-200] The decision prob-
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lems HAMC and HAMP, in an undirected, directed or oriented graph, are
NP-complete. △

The problems VC, SAT and 3-SAT are also three of the basic and most
well-known NP-complete problems [14], [21, p. 39, p. 46, p. 190 and p. 259].
More generally, k-SAT is NP-complete for k ≥ 3 and polynomial for k = 2.
The problem 1-3-SAT, which is obvioulsy in NP, is also NP-complete [48,
Lemma 3.5], [21, p. 259], and Remark 3 in this Report.

The following results will be used in the sequel.

Proposition 89 [34] (= Theorem 10 in this Report) For every integer k ≥
3, the decision problems U-SAT, U-k-SAT and U-1-3-SAT have equivalent
complexity, up to polynomials. △

Using the previous proposition and results from [8] and [45, p. 415], it is
rather simple to obtain the following two results.

Proposition 90 For every integer k ≥ 3, the decision problems U-SAT,
U-k-SAT and U-1-3-SAT are NP-hard (and co-NP-hard by Remark 87). △

Proposition 91 For every integer k ≥ 3, the decision problems U-SAT,
U-k-SAT and U-1-3-SAT belong to the class DP. △

Remark 92 It is not known whether these problems are DP-complete. In [45,
p. 415], it is said that “U-SAT is not believed to be DP-complete”.

Proposition 93 [35] (see Theorems 30 and 34 in this Report) The decision
problems U-SAT and U-VC have equivalent complexity, up to polynomials.
In particular, there exists a polynomial reduction from U-1-3-SAT to U-VC:
U-1-3-SAT →p U-VC. △

After the following remark is made, we shall be ready to investigate the
problems of uniqueness of Hamiltonian cycle or path.

Remark 94 In [44], it is shown that the following problem is PNP -complete
(or ∆2-complete).

Problem U-OTS (Unique Optimal Travelling Salesman):
Instance: A set of n vertices, a n× n symmetric matrix [cij ] of (nonnega-
tive) integers giving the distance between any two vertices i and j.
Question: Is there a unique optimal tour, that is, a unique way of visiting
every vertex exactly once and coming back, with the smallest distance sum?
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Figure 24: The chain of polynomial reductions.

At best, a polynomial reduction from any instance G = (V,E) of U-HAMC[U]
to U-OTS would show that U-HAMC[U] belongs to PNP , but we have a bet-
ter result in Theorem 103(b), with U-HAMC[U] belonging to DP; no useful
information for our Hamiltonian problems can be induced from this result
on U-OTS.

15 Locating the Problems of Uniqueness

We prove that our six Hamiltonian problems have the same complexity as
any of the three problems U-SAT, U-k-SAT (k ≥ 3) and U-1-3-SAT by
proving the chain of polynomial reductions given by Figure 24.

Theorem 95 There exists a polynomial reduction from U-1-3-SAT to U-
HAMP[O]: U-1-3-SAT →p U-HAMP[O].

Proof. We describe a polynomial reduction from the problem U-1-3-SAT
to U-HAMP[O], via U-VC: to do this, we use a polynomial reduction from
U-1-3-SAT to U-VC, which is simpler than the one given in the proof of
Theorem 30 in this Report, and mentioned in Proposition 93 of this paper;
that proof had the advantage to cope with U-VC and U-OVC (Unique Op-
timal Vertex Cover) at the same time, but would give here a much more
complicated proof for U-HAMP[O].

From an arbitrary instance of U-1-3-SAT with m clauses and n variables,
we mimick the reduction from 3-SAT to VC in [39], [21, pp. 54–56], and we
construct the instance GV C = (VV C , EV C) of U-VC as follows (see Figure 25
for an example): we construct for each clause cj a triangle Tj = {aj , bj , dj},
and for each variable xi a component Gi = (Vi = {xi, xi}, Ei = {xixi}).
Then we link the components Gi on the one hand, and the triangles Tj on
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Figure 25: Illustration of the undirected graph constructed for the re-
duction from U-1-3-SAT to U-VC, with four variables and two clauses,
c1 = {x1, x2, x3}, c2 = {x2, x3, x4}. Here, k = 8, and the black vertices
form the (not unique) vertex cover V ∗ of size eight corresponding to the
(not unique) truth assignment x1 =T, x2 =F, x3 =F, x4 =F 1-3-satisfying
the clauses. As soon as we set V ∗∩ (V1∪V2∪V3∪V4) = {x1, x2, x3, x4}, the
other vertices in V ∗ are forced.

the other hand, according to which literals appear in which clauses (“mem-
bership edges”). For each clause cj = {ℓ1, ℓ2, ℓ3}, we also add the triangular
set of edges E′

j = {ℓ1ℓ2, ℓ1ℓ3, ℓ2ℓ3}. Finally, we set k = n+ 2m.
The order of GV C is 3m+2n and its number of edges is at most n+9m

(the edge sets E′
j are not necessarily disjoint).

Note already that if V ∗ is a vertex cover, then each triangle Tj contains
at least two vertices, each component Gi at least one vertex, and |V ∗| ≥
2m + n = k; if |V ∗| = 2m + n, then each triangle contains exactly two
vertices, and each component Gi exactly one vertex. We can also observe
that, because of the edge sets E′

j , at least two vertices among ℓ1, ℓ2, ℓ3 belong
to any vertex cover.

(a) Let us first assume that the answer to U-1-3-SAT is YES: there is
a unique truth assignment 1-3-satisfying the clauses of C. Then, by taking,
in each Gi, the vertex corresponding to the literal which is TRUE, and in
every triangle Tj , the two vertices which are linked to the two false literals
of cj , we obtain a vertex cover V ∗ whose size is equal to k. Moreover, once
we have put the n vertices corresponding to the true literals in the vertex
cover V ∗ in construction, we have no choice for the completion of V ∗ with
k−n = 2m vertices: when we take two vertices in Tj , we must take the two
vertices which cover the membership edges linked to the two false literals
(in the example of Figure 25, the vertices b1, d1 and b2, d2). So, if another
vertex cover V + of size k exists, it must have a different distribution of its
vertices over the components Gi, still with exactly one vertex in each Gi;
this in turn defines a valid truth assignment, by setting xi =T if xi ∈ V +,
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xi =F if xi ∈ V +. Now this assignment 1-3-satisfies C, thanks in particular
to our observation on the covering of the edges in E′

j . So we have two truth
assignments 1-3-satisfying C, contradicting the YES answer to U-1-3-SAT;
therefore, V ∗ is the only vertex cover of size k.

(b) Assume next that the answer to U-1-3-SAT is NO: this may be either
because no truth assignment 1-3-satisfies the instance, or because at least
two assignments do; in the latter case, this would lead, using the same
argument as in the previous paragraph, to at least two vertex covers of
size k, and a NO answer to U-VC. So we are left with the case when the
set of clauses C cannot be 1-3-satisfied. But again, we have already seen
that this would imply that no vertex cover of size (at most) k exists, since
such a hypothetical vertex cover V + would imply the existence of a suitable
assignment.

We are now ready to construct an instance of U-HAMP[O]. In the sequel,
we shall say “path” for “directed Hamiltonian path”.

We look deeper into the proof of the NP-completeness of the problem Hamil-
tonian Cycle (see [21, pp. 56–60]), which uses a polynomial reduction from
VC to HAMC[U] that, due to the so-called “selector vertices”, cannot cope
with the problem of uniqueness; step by step, we construct an oriented graph
H = (X,A) for which we will prove that:

(i) if there is a YES answer for the instance of U-1-3-SAT (which implies
that there is a unique vertex cover V ∗ in GV C , with cardinality at most k),
then there is a unique path in H;

(ii) if there are at least two assignments 1-3-satisfying all the clauses (i.e.,
there are at least two vertex covers in GV C , with cardinality at most k), then
there are at least two paths in H;

(iii) if there is no assignment 1-3-satisfying the clauses (and no vertex
cover in GV C with cardinality at most k), then there is no path in H.

Step 1. For each edge e = uv ∈ EV C , we build one component He =
(Xe, Ae) with 12 vertices and 14 arcs: Xe = {(u, e, i), (v, e, i) : 1 ≤ i ≤
6}, Ae = {((u, e, i), (u, e, i + 1)), ((v, e, i), (v, e, i + 1)) : 1 ≤ i ≤ 5} ∪
{((v, e, 3), (u, e, 1)), ((u, e, 3), (v, e, 1))}∪{((v, e, 6), (u, e, 4)), ((u, e, 6), (v, e, 4))};
see Figure 26, which is the oriented copy of Figure 3.4 in [21, p. 57].

In the completed construction, the only vertices from this component
that will be involved in any additional arcs are the vertices (u, e, 1), (u, e, 6),
(v, e, 1), and (v, e, 6). This, together with the fact that there will be two
particular vertices, α1 and δ, which will necessarily be the ends of any path,
will imply that any path in the final graph H will have to meet the vertices
in Xe in exactly one of the three configurations shown in Figure 27, which
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Figure 26: Two possible representations of the same component He for the
edge e = uv ∈ EV C (Step 1).

(u,e,6) (u,e,6) (v,e,6)

(v,e,1)

(v,e,6)

(a) (b) (c)

(u,e,1) (u,e,1) (v,e,1)

Figure 27: The three ways of going through the component He (Step 1).
The arrows inside He are not represented.

is the oriented copy of Figure 3.5, in [21, p. 58]. Thus, when the path meets
the component He at (u, e, 1), it will have to leave at (u, e, 6) and go through
either (a) all 12 vertices in the component, in which case we shall say that
the component is completely visited from the u-side, or (b) only the 6 vertices
(u, e, i), 1 ≤ i ≤ 6, in which case we shall say that the component is visited
in parallel and needs two visits, i.e., another section of the path will re-visit
the component, meeting the 6 vertices (v, e, i), 1 ≤ i ≤ 6.

Step 2. We create n vertices αi, 1 ≤ i ≤ n, and 2n arcs (αi, (xi, xixi, 1)),
(αi, (xi, xixi, 1)), that is, we link αi to the “first” vertices of the compo-
nent He whenever e = xixi. The vertices αi can be seen as literal selectors
that will choose between xi and xi. The vertex α1 will have no other neigh-
bours; this means in particular that it will have no in-neighbours, thus it
will necessarily be the starting vertex of any Hamiltonian path, if such a
path exists.

We choose an arbitrary order on the 3m vertices of the triangles Tj in
the graph GV C , say OT =< a1, b1, d1, a2, . . . , dm > and an arbitrary order
on the literals xi, xi, say Oℓ =< x1, x2, . . . , xn, x1, . . . , xn >. For each literal
ℓi equal to xi or xi, we do the following (see Figure 28 for an example):
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Figure 28: The example of the literals x1 and x1 from Figure 25 (Step 2);
here, Rule (a) applies with q(x1) = 1, q(x1) = 0, Rule (b) with s(x1) = 2.
The arrows inside He are not represented.

Rule (a): If ℓi appears q = q(ℓi) ≥ 0 times in the clauses and is linked
in GV C to t1, . . . , tq where the t’s belong to the triangles Tj and follow the or-
derOT , then we create the arcs ((ℓi, ℓiℓi, 6), (ℓi, ℓit1, 1)), ((ℓi, ℓit1, 6), (ℓi, ℓit2, 1)),
. . ., ((ℓi, ℓitq−1, 6), (ℓi, ℓitq, 1)).

Rule (b): We consider the triangular sets of edges E′
j described in the

construction of GV C .
• If ℓi does not belong to any such edge, we create the arc ((ℓi, ℓitq, 6), αi+1)

—or ((ℓi, ℓiℓi, 6), αi+1) if ℓi does not apppear in any clause— unless i = n, in
which case we create ((ℓi, ℓitq, 6), β1) or ((ℓi, ℓiℓi, 6), β1), where β1 is a new
vertex that will be spoken of at the beginning of Step 3.

• If ℓi belongs to s = s(ℓi) > 0 edges from E′
j , which link ℓi to s liter-

als ℓi1 , . . . , ℓis that follow the order Oℓ, then we build the arc ((ℓi, ℓitq, 6), (ℓi,
ℓiℓi1 , 1)) —or the arc ((ℓi, ℓiℓi, 6), (ℓi, ℓiℓi1 , 1)) if q = 0; next, the arcs ((ℓi, ℓiℓi1 ,
6), (ℓi, ℓiℓi2 , 1)), . . ., ((ℓi, ℓiℓis−1

, 6), (ℓi, ℓiℓis , 1)) and ((ℓi, ℓiℓis , 6), αi+1), un-
less i = n, in which case we create ((ℓi, ℓiℓis , 6), β1).

Remark 96 In the example of Figure 28, one can see that if a path takes,
e.g., the arc (α1, (x1, x1x1, 1)), then it visits the vertices (x1, x1x1, 6), (x1,
x1a1, 1), (x1, x1a1, 6), and α2. If on the other hand, we use the arc (α1,
(x1, x1x1, 1)), we also go to α2. The same is true between α2 and α3, . . .,
between αn−1 and αn, between αn and β1.

We can see that so far, α1 has (out-)degree 2, α2, . . ., αn have degree 4 (in-
and out-degrees equal to 2), and β1 has (in-)degree 2.

Step 3. We consider the m clauses and the m corresponding triangles Tj .
We create 2m vertices βj , β

′
j , 1 ≤ j ≤ m. As we have seen in the

previous step, β1 has already two in-neighbours, which can be (ℓn, ℓntq, 6),
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Figure 29: The treatment of the triangle T1 from Figure 25 (Step 3). The
arrows inside He are not represented.

or (ℓn, ℓnℓn, 6), or (ℓn, ℓnℓns , 6). We also create one more vertex δ, which
will have only in-neighbours, so that α1 and δ will necessarily be the ends
of any directed Hamiltonian path, if such a path exists.

Now for the triangle Tj = {aj , bj , dj}, 1 ≤ j ≤ m, associated to the clause
cj = {ℓj1 , ℓj2 , ℓj3} in the graph GV C , we consider the six corresponding
components Hajbj , Hajdj , Hbjdj , Hajℓj1

, Hbjℓj2
and Hdjℓj3

. The vertices
βj and β′

j can be seen as triangle selectors, intended to choose two vertices
among three. With this in mind, we create the following arcs (see Figure 29),
for j ∈ {1, 2, . . . ,m}:

Rule (a): (βj , (aj , ajbj , 1)), ((aj , ajbj , 6), (aj , ajdj , 1)), ((aj , ajdj , 6), (aj ,
ajℓj1 , 1)), ((aj , ajℓj1 , 6), β

′
j).

Rule (b): (βj , (bj , ajbj , 1)), (β′
j , (bj , ajbj , 1)), ((bj , ajbj , 6), (bj , bjdj , 1)),

((bj , bjdj , 6), (bj , bjℓj2 , 1)), ((bj , bjℓj2 , 6), β
′
j), plus the arc ((bj , bjℓj2 , 6), βj+1),

unless j = m, in which case it is ((bj , bjℓj2 , 6), δ).
Rule (c): (β′

j , (dj , ajdj , 1)), ((dj , ajdj , 6), (dj , bjdj , 1)), ((dj , bjdj , 6), (dj ,
djℓj3 , 1)), ((dj , djℓj3 , 6), βj+1), unless j = m, in which case it is ((dj , djℓj3 , 6), δ).

Remark 97 On the example of Figure 29, there are three ways for going
from β1 to β2 through the components Ha1b1, Ha1d1 and Hd1b1.
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• If a path starts by taking the arc (β1, (a1, a1b1, 1)), then there are two
possibilities, according to how we visit Ha1b1:

◦ The first possibility corresponds to taking a1 and d1, not b1, in a ver-
tex cover: the path completely visits the component Ha1b1 from the a1-side,
then the component Ha1d1 in parallel, then the component Ha1x1

in a so far
unspecified way, then β′

1.
Next, it takes the arc (β′

1, (d1, d1a1, 1)), re-visits Hd1a1 in parallel, com-
pletely visits Hd1b1 from the d1-side, then Hd1x3

, and ends this path section
at β2. One can see that the three components corresponding to edges inci-
dent to b1 must all be completely visited from the side opposite b1, including
the x2-side.

◦ The second possibility corresponds to taking a1 and b1, not d1, in a ver-
tex cover: the path follows the arc (β1, (a1, a1b1, 1)), visits Ha1b1 in parallel,
visits completely Ha1d1 from the a1-side, then Ha1x1

, and β′
1.

Next, it takes the arc (β′
1, (b1, b1a1, 1)), goes through Hb1a1 in parallel,

goes completely through Hb1d1 from the b1-side, then Hb1x2
, and ends this

path section at β2. The component Hd1x3
is not yet visited.

• Alternatively, a path can start by taking the arc (β1, (b1, a1b1, 1)); this
corresponds to taking b1 and d1, not a1, in a vertex cover and constitutes
the third way for going from β1 to β2. The path then completely visits Hb1a1

from the b1-side, Hb1d1 in parallel, Hb1x2
, and β′

1.
Next, it completely visits Hd1a1 from the d1-side, Hd1b1 in parallel, Hd1x3

,
and this path section ends at β2. The component Ha1x1

is not yet visited.

It is easy to see that these are the only three ways for going from β1 to β2
through the components Ha1b1, Ha1d1 and Hd1b1, not taking into account the
ways of going through the components Ha1x1

, Hb1x2
and Hd1x3

(this issue
will be treated later on, in the general case): indeed, the only possibility left
would be to follow the arc (β1, (b1, a1b1, 1)) and visit Hb1a1 in parallel, but
then the a1-side of Hb1a1 cannot be reached.

The same will be true for the components Hajbj , Hajdj and Hdjbj and the
corresponding triangles Tj, 1 ≤ j ≤ m, between βj and βj+1 (or between βm
and δ).

The description of the oriented graph H is complete. Now β1 has increased
its degree to 4, and β2, . . ., βm and β′

1, . . ., β
′
m have degree 4. Actually, all

the selectors but α1 have in-degree 2 and out-degree 2 in H. These n selectors
αi, 1 ≤ i ≤ n, and 2m selectors βj , β

′
j , 1 ≤ j ≤ m, translate the choices we

have to make when constructing a vertex cover with size 2m + n: we have
one choice among the n variables (take xi or xi); as for the m triangles Tj

104



associated to the clauses, Remark 97 has shown how the selectors βj , β
′
j ,

1 ≤ j ≤ m, can be used to choose two vertices among three. The number
of selectors is one reason why there is no directed Hamiltonian path in H
when the vertex covers in GV C have size at least 2m+ n+ 1.

The order of H is 12|EV C |+ n+2m+1, which is at most 12(n+9m) +
n+ 2m+ 1, so that the transformation is polynomial indeed.

We are now going to prove our claims about the existence or non-existence,
uniqueness or non-uniqueness, of a directed Hamiltonian path in H.

Assume first that there is an assignment satisfying the instance of U-1-3-
SAT, and therefore that there is a vertex cover V ∗ in GV C with size 2m+n.
We construct a path in H in a straightforward way: every component Huv

(uv ∈ EV C) with {u, v} ⊂ V ∗ is visited in parallel, whereasHuv is completely
visited from the u-side whenever u ∈ V ∗, v /∈ V ∗. Let us have a closer look
on how this works:

We start at α1, and visit completely the component Hx1x1
from the x1-

side if x1 =T, from the x1-side if x1 =F (or, equivalently, if x1 ∈ V ∗ or
x1 ∈ V ∗, respectively). If, say, x1 =F, we then completely go through all
the components corresponding to triangles Tj and involving x1, all from
the x1-side; note that all the components just completely visited involve x1
and a vertex not in V ∗, by the very construction of the vertex cover V ∗,
which is possible because it stems from an assignment 1-3-satisfying all the
clauses. Then we go through the components constructed from the edge
sets E′

j and involving x1; those involving a second vertex in V ∗ (i.e., a true
literal) are visited in parallel, whereas those involving a vertex not in V ∗

are completely visited from the x1-side; then the path arrives at α2. The
components involving x1, apart from Hx1x1

, remain completely unvisited for
the time being, and the components that have been visited in parallel will
have to be re-visited.

We act similarly between α2 and α3, . . ., αn and β1; cf. Remark 96.
When doing this, we re-visit all the components that had been visited only
in parallel, and completely visit the components involving a literal not in V ∗

and corresponding to edges in E′
j . The only components not visited yet

between α1 and β1 are those corresponding to edges between a false literal
(not in V ∗) and its neighbours in the triangles Tj .

Next, starting from β1, we use Remark 97 according to the three pos-
sible cases: (a) {a1, d1} ⊂ V ∗, b1 /∈ V ∗, (b) {a1, b1} ⊂ V ∗, d1 /∈ V ∗,
(c) {b1, d1} ⊂ V ∗, a1 /∈ V ∗. We give in detail only the third case, for
the clause c1 = {ℓ1, ℓ2, ℓ3}: we use the arc (β1, (b1, a1b1, 1)) and completely
visit the component Ha1b1 from the b1-side, then the component Hb1d1 in
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parallel, then the complete component Hb1ℓ2 from the b1-side (because if
b1 ∈ V ∗, then ℓ2 /∈ V ∗ and this component had not yet been visited) and
end at β′

1. Next, we take the arc (β
′
1, (d1, d1a1, 1)), we completely visit Hd1a1

from the d1-side, re-visit Hd1b1 in parallel, completely visit Hd1ℓ3 from the
d1-side, and this path section ends at β2. Note that (a) the three compo-
nents involving a1 between β1 and β2 have been completely visited, from
the b1-, d1- or ℓ1-sides (because a1 /∈ V ∗ implies that ℓ1 ∈ V ∗); (b) any so
far unvisited component involving a false literal (here, these are ℓ2 and ℓ3)
and one of the vertices of the triangle T1 (here b1 and d1) has now been
completely visited from the triangle sides (here from the b1- and d1-sides).

We act similarly between β2 and β3, . . ., βm and δ; cf. the end of
Remark 97. The ultimate section takes us between βm and δ, the final
vertex, and we have indeed built a directed Hamiltonian path, from α1 to δ,
in the oriented graph H.

Obviously, two different assignments 1-3-satisfying all the clauses lead, fol-
lowing the above process, to two different paths in H. We still want to prove
that 1) if no assignment 1-3-satisfying all the clauses exists, then no path
exists, and 2) a unique assignment 1-3-satisfying all the clauses leads to a
unique path.

1) We assume that there is a directed Hamiltonian path HP in H, and
exhibit an assignment 1-3-satisfying all the clauses.

Let us consider the vertex α1; its two out-neighbours inH are (x1, x1x1, 1)
and (x1, x1x1, 1). So exactly one of the arcs (α1, (x1, x1x1, 1)), (α1, (x1, x1x1, 1))
is part of HP. The same is true for αi, 1 < i ≤ n. As a consequence, we can
define a valid assignment of the variables xi, 1 ≤ i ≤ n, by setting xi =T if
and only if the arc (αi, (xi, xixi, 1)) belongs to HP.

Next, we address the vertices βj , 1 ≤ j ≤ m. The construction in Steps 2
and 3 is such that each vertex βj , 1 ≤ j ≤ m, has two out-neighbours,
(aj , ajbj , 1) and (bj , ajbj , 1).

This implies that the assignment defined above is such that there is at
least one true literal in each clause. Indeed, if we assume that the clause
cj = {ℓj1 , ℓj2 , ℓj3} does not contain any true literal, then the component
Hajℓj1

is completely visited by HP from the aj-side, because ℓj1 =F im-

plies that the arc (αj , (ℓj1 , ℓj1ℓj1 , 1)) is not part of HP and does not give
access to the ℓj1-side. Similarly, the components Hbjℓj2

and Hdjℓj3
are com-

pletely visited by HP from the bj- and dj-sides, respectively. This in turn
implies that in HP we have the arcs ((aj , ajℓj1 , 6), β

′
j), (βj , (aj , ajbj , 1)),

((dj , djℓj3 , 6), βj+1) and (β′
j , (dj , djaj , 1)) —replace βj+1 by δ if j = m. Now

how does HP go through (bj , bjℓj2 , 6)? It cannot be with the help of the ℓj2-

106



side of Hbjℓj2
, so there are only two possibilities left: but if it is with the arc

((bj , bjℓj2 , 6), β
′
j), then β′

j has three neighbours in HP, which is impossible;
and if it is with the arc ((bj , bjℓj2 , 6), βj+1), then in HP, the vertex βj+1 has
two in-neighbours, which is impossible —including when j = m and βj+1 is
replaced by δ. From this we can conclude that the clause cj = {ℓj1 , ℓj2 , ℓj3}
contains at least one true literal.

Assume next that one clause has at least two true literals: without loss
of generality, cj = {ℓj1 , ℓj2 , ℓj3} is such that ℓj1 = ℓj2 =T. Then HP has
no access to the ℓj1- and ℓj2- sides of the components involving ℓj1 or ℓj2 ,
but, since there is the edge ℓj1ℓj2 in GV C , this means that HP has no way
of visiting the component Hℓj1ℓj2

. Therefore, we have just established that

the assignment derived from the path HP 1-3-satisfies all the clauses. This,
together with the fact that two assignments 1-3-satisfying the clauses lead
to two paths, shows that a NO answer to the instance of U-1-3-SAT implies
a NO answer for the constructed instance H of U-HAMP[O].

2) We want to show that a unique assignment A 1-3-satisfying all the
clauses leads to a unique path in H. This assignment leads to a unique
vertex cover V ∗, of size n + 2m, in GV C , and to a path in H, as already
seen. Now assume that we have a second path, so that these two paths,
which we call HP1 and HP2, both lead, with the above description in 1),
to the same A and the same V ∗.

The two paths must behave in the same way over the components Hxixi
,

1 ≤ i ≤ n: otherwise, from them we could define two different valid assign-
ments, which would both, as seen previously, 1-3-satisfy the clauses.

Next, consider the clause cj = {ℓj1 , ℓj2 , ℓj3} and assume without loss of
generality that A(ℓj1) =T, A(ℓj2) = A(ℓj3) =F; this implies, for both HP1

and HP2, that the components Hℓj1ℓj1
, Hℓj2ℓj2

and Hℓj3ℓj3
are completely

visited from the ℓj1-, ℓj2- and ℓj3-sides, respectively, so that both paths have
no access to the ℓj2- nor ℓj3-sides. As a consequence, between βj and βj+1

(or βm and δ), the components Hbjℓj2
and Hdjℓj3

are completely visited from
the bj- and dj-sides, respectively. Then necessarily the following arcs belong
to HP1 and HP2, going along the dj-side:
((dj , djℓj3 , 6), βj+1) —or ((dj , djℓj3 , 6), δ)—, ((dj , djbj , 6), (dj , djℓj3 , 1)), ((dj ,
djaj , 6), (dj , djbj , 1)), (β

′
j , (dj , djaj , 1));

and going along the bj-side:
((bj , bjℓj2 , 6), β

′
j) (because βj+1 —or δ— cannot have two in-neighbours),

and ((bj , bjdj , 6), (bj , bjℓj2 , 1)), ((bj , bjaj , 6), (bj , bjdj , 1)).
The componentHbjdj must be visited in parallel, and it is (βj , (bj , bjaj , 1))

that belongs to the two paths.
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We can see that all the components containing aj , in particular Hajℓj1
,

must be completely visited from the sides opposite aj . So far, we have proved
that the two paths HP1 and HP2 behave identically between βj and βj+1

(or βm and δ), including on the components corresponding to membership
edges (between literals and triangles).

Consider now what happens between αi and αi+1 (or αn and β1). As-
sume without loss of generality that, say, A(xi) =T, so that (αi, (xi, xixi, 1))
is part of the two paths. Consider the components involving xi in H: there
are first those involving vertices of type a, b or d, which translate the mem-
bership of xi to a certain number of clauses, and which we called t1, . . . , tq
in Step 2(a); we have already seen in the previous paragraph that these
components must be completely visited from the xi-side.

Then we consider the components created from the edges in E′
j , cf.

Step 2(b); here, some edges in GV C can have both ends in V ∗, but, us-
ing similar arguments as before, we can see that the two paths will visit all
these components in the same way: consider the clause cj = {ℓj1 , ℓj2 , ℓj3}
and the corresponding set E′

j , and assume without loss of generality that
xi = ℓj1 , so that A(ℓj1) =T, which implies that A(ℓj2) = A(ℓj3) =F; then
Hℓj1ℓj2

and Hℓj1ℓj3
must be completely visited from the ℓj2- and ℓj3-sides,

respectively, and Hℓj2ℓj3
in parallel, i.e., the two paths have no choice but to

behave identically on all three components. As for the components with xi,
they must be completely visited from the side which is not the side of xi.

So we have just proved that the two paths are identical between α1 and
α2, . . ., αn and β1.

Therefore, the two paths (between α1 and δ) are one and the same. △

Proposition 98 There exists a polynomial reduction from U-HAMP[O] to
U-HAMC[O]: U-HAMP[O] →p U-HAMC[O].

Proof. We start from an oriented graph H = (X,A) which is an instance
of U-HAMP[O] and build a graph which is an instance of U-HAMC[O] by
adding two extra vertices y, z, together with the arc (y, z) and all the arcs
(x, y) and (z, x), x ∈ X. This transformation is polynomial and clearly
preserves the number of solutions, in particular the uniqueness. △

Proposition 99 There is a polynomial reduction from U-HAMP[O] to U-
HAMP[D] and from U-HAMC[O] to U-HAMC[D]:

U-HAMP[O] →p U-HAMP[D] and U-HAMC[O] →p U-HAMC[D].

Proof. It suffices to consider the identity as the polynomial reduction. △
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Theorem 100 There is a polynomial reduction from U-HAMP[D] to U-
HAMP[U] and from U-HAMC[D] to U-HAMC[U]:

U-HAMP[D] →p U-HAMP[U] and U-HAMC[D] →p U-HAMC[U].

Proof. The method is borrowed from [39].
Consider any instance of U-HAMP[D] or U-HAMC[D], i.e., a directed

graph H = (X,A) on n vertices. We build the undirected graph G = (V,E),
the instance of U-HAMP[U] or U-HAMC[U], as follows: every vertex x ∈ X
is triplicated into three vertices x− ∈ V (a minus-type vertex), x∗ ∈ V (a
star-type vertex) and x+ ∈ V , linked by the edges x−x∗ ∈ E and x∗x+ ∈ E;
for every arc (x, y) ∈ A is created the edge x+y− in E. The graph G thus
constructed has order 3n.

We claim that there is a unique Hamiltonian cycle (respectively, path)
in G if and only if there is a unique directed Hamiltonian cycle (respectively,
path) in H.

(1) Assume first that H admits a directed Hamiltonian cycle < x1x2 . . .
xn(x1) >. Then

< x−1 x
∗
1x

+
1 x

−
2 x

∗
2x

+
2 . . . x+n−1x

−
n x

∗
nx

+
n (x

−
1 ) >

is a Hamiltonian cycle in G. Moreover, two different directed Hamiltonian
cycles in H provide two different Hamiltonian cycles in G.

Conversely, assume that G admits a Hamiltonian cycle HC. This cycle
must go through all the star-type vertices x∗, so it necessarily goes through
all the edges x−x∗ and x∗x+. Without loss of generality, HC reads:

HC =< x−1 x
∗
1x

+
1 x

−
2 x

∗
2x

+
2 . . . x+n−1x

−
n x

∗
nx

+
n (x

−
1 ) > ; (6)

indeed, we may assume that we “start” with the edge x−1 x
∗
1, then x∗1x

+
1 ;

now, because the edges which have no star-type vertex as one of their ex-
tremities are necessarily of the type x+y−, the other neighbour of x+1 is a
minus-type vertex, say x−2 ; step by step, we see that HC has necessarily the
previous form (6). Now we claim that < x1x2 . . . xn−1xn(x1) > is a directed
Hamiltonian cycle in H.

Indeed, for every i ∈ {1, . . . , n − 1}, the edge x+i x
−
i+1 in G implies the

existence of the arc (xi, xi+1) in H; the same is true for the arc (xn, x1) in H,
thanks to the edge x+n x

−
1 in G. Furthermore, observe that two different

Hamiltonian cycles in G provide two different directed Hamiltonian cycles
in H.

So, G admits a unique Hamiltonian cycle if and only ifH admits a unique
directed Hamiltonian cycle.
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(2) Exactly the same argument works with paths, apart from the fact
that we need not consider the arc (xn, x1) in H, nor the edge x+n x

−
1 in G. △

Proposition 101 There exists a polynomial reduction from U-HAMP[U] to
U-HAMC[U]: U-HAMP[U] →p U-HAMC[U].

Proof. We start from an undirected graph G = (V,E) which is an instance
of U-HAMP[U] and build a graph which is an instance of U-HAMC[U] by
adding the extra vertex y, together with all the edges xy, x ∈ V . This
transformation is polynomial and clearly preserves the number of solutions,
in particular the uniqueness. △

Theorem 102 There exists a polynomial reduction from U-HAMC[U] to
U-SAT: U-HAMC[U] →p U-SAT.

Proof. We start from an instance of U-HAMC[U], an undirected graph
G = (V,E) with V = {x1, . . . , x|V |}; we assume that |V | ≥ 3. We create
the set of variables X = {xij : 1 ≤ j ≤ |V |, 1 ≤ i ≤ |V |} and the following
clauses:

(a1) for 1 ≤ i ≤ |V |, clauses of size |V |: {xi1, x
i
2, . . . , x

i
|V |};

(a2) for 1 ≤ i ≤ |V |, 1 ≤ j < j′ ≤ |V |, clauses of size two: {xij , x
i
j′};

(b1) for 1 ≤ j ≤ |V |, clauses of size |V |: {x1j , x
2
j , . . . , x

|V |
j };

(b2) for 1 ≤ i < i′ ≤ |V |, 1 ≤ j ≤ |V |, clauses of size two: {xij , x
i′

j };

(c) for 1 ≤ i < i′ ≤ |V | such that xixi
′
/∈ E, for 1 ≤ j ≤ |V |, clauses of

size two: {xij , x
i′

j+1} and {xij , x
i′

j−1}, with computations carried modulo |V |;

(d1) {x
1
1};

(d2) for 2 ≤ j < j′ ≤ |V |, clauses of size two: {x2j′ , x
3
j}.

Assume that we have a unique Hamiltonian cycle inG,HC1 =< xp1xp2xp3 . . .
xp|V |−1xp|V |(xp1) >. Note that for the time being, we could also write
HC1 =< xp1xp|V |xp|V |−1 . . . xp3xp2(xp1) >, or “start” on a vertex other than
xp1 , cf. Introduction. This is why, without loss of generality, we set p1 = 1,
i.e., we “fix” the first vertex, and we also choose the “direction” of the cycle,
by deciding, e.g., that x2 appears “before” x3 in the cycle —cf. (d1)-(d2).
Define the assignment A1 by A1(x

pq
q ) =T for 1 ≤ q ≤ |V |, and all the other

variables are set FALSE by A1. We claim that A1 satisfies all the clauses.
(a1) for 1 ≤ i ≤ |V |, if the vertex xi has position j in the cycle, then

the variable xij satisfies the clause; (a2) if {x
i
j , x

i
j′} is not satisfied by A1 for

some i, j, j′, then A1(x
i
j) = A1(x

i
j′) =T, which means that the vertex xi

appears at least twice in the cycle;
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(b1) for 1 ≤ j ≤ |V |, if the position j is occupied by the vertex xi, then
the variable xij satisfies the clause; (b2) if {x

i
j , x

i′

j } is not satisfied by A1 for
some i, i′, j, then two different vertices are the j-th vertex in the cycle.

(c) If one of the two clauses is not satisfied, say the first one, then the
positions j and j+1 in the cycle are occupied by two vertices not linked by
any edge in G.

(d1) {x
1
1} is satisfied by A1 thanks to the assumption on the first vertex

of the cycle; (d2) if for some j < j′, the clause {x2j′ , x
3
j} is not satisfied, then

the vertex x3 occupies a position j smaller than the position j′ of x2, which
contradicts our assumption on x2 and x3.

Is A1 unique? Assume on the contrary that another assignment, A2,
also satisfies the constructed instance of U-SAT. Then by (a1) and (a2),
for every i ∈ {1, . . . , |V |}, there is at least, then at most, one j = j(i)
such that A2(x

i
j) =T; by (b1) and (b2), for every j ∈ {1, . . . , |V |}, there is

at least, then at most, one i = i(j) such that A2(x
i
j) =T; so we have “a

place for everything and everything in its place”, with exactly |V | variables
which are TRUE by A2 and an ordering of the vertices according to the
one-to-one correspondence given by A2: the vertex xi is on position j if and
only if A2(x

i
j) =T. Next, thanks to the clauses (c), two vertices following

each other in this ordering, including the last and first ones, are necessarily
neighbours, so that this ordering is a Hamiltonian cycle, HC2. Since we have
assumed the uniqueness of the Hamiltonain cycle HC1 in G, the two cycles
can differ only by their starting points or their “directions”. However these
differences are ruled out by the clauses (d1) and (d2), so that the two cycles
coincide vertex to vertex, and A1 = A2. So a YES answer for U-HAMC[U]
leads to a YES answer for U-SAT.

Assume now that the answer to U-HAMC[U] is negative. If it is negative
because there are at least two Hamiltonian cycles, then we have at least two
assignments satisfying the instance of U-SAT: we have seen above how to
construct a suitable assignment from a cycle, and different cycles obviously
lead to different assignments. If there is no Hamiltonian cycle, then there
is no assignment satisfying U-SAT, because such an assignment would give
a cycle, as we have seen above with A2. So in both cases, a NO answer to
U-HAMC[U] implies a NO answer to U-SAT. △

Gathering all our previous results, we obtain the following theorem.

Theorem 103 For every integer k ≥ 3, the decision problems U-SAT,
U-k-SAT and U-1-3-SAT have the same complexity as U-HAMP[U], U-
HAMC[U], U-HAMP[O], U-HAMC[O], U-HAMP[D], and U-HAMC[D], up
to polynomials. Therefore,

111



NP
−hardL

−hardDP
L

N
P

P
N

P

co−NP NP

NP−C

P

DP−C
NP−hard = −hardco−NP

co−NP−C

D
P

Unique  Optimal  Travelling  SalesmanNPP −hard

Figure 30: Some classes of complexity: Figure 23 re-visited.

(a) U-HAMP[U], U-HAMC[U], U-HAMP[O], U-HAMC[O], U-HAMP[D],
and U-HAMC[D] are NP-hard (and co-NP-hard by Remark 87);

(b) U-HAMP[U], U-HAMC[U], U-HAMP[O], U-HAMC[O], U-HAMP[D],
and U-HAMC[D] belong to the class DP. △

Note that the membership to DP could have been proved directly.

16 Conclusion

By Theorem 103, for every integer k ≥ 3, the three decision problems U-
SAT, U-k-SAT, U-1-3-SAT have the same complexity, up to polynomials, as
the problem of the uniqueness of a path or of a cycle in a graph, undirected,
directed, or oriented; all are NP-hard (and co-NP-hard by Remark 87) and
belong to the class DP, and it is thought that they are not DP-complete.
Anyway, they can be found somewhere in the hatched area of Figure 30.

Open problem. Find a better location for any of these problems inside
the hierarchy of complexity classes.

In [8], the authors wonder whether
(A) U-SAT is NP-hard, but here we believe that what they mean is:

does there exist a polynomial reduction from an NP-complete problem to
U-SAT? i.e., they use the second definition of NP-hardness;

finally, they show that (A) is true if and only if
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(B) U-SAT is DP-complete.

So, if one is careless and considers that U-SAT is NP-hard without checking
according to which definition, one might easily jump too hastily to the con-
clusion that U-SAT is DP-complete, which, to our knowledge, is not known
to be true or not. As for U-3-SAT, we do not know where to locate it more
precisely either; in [10] the problems U-k-SAT and more particularly U-3-
SAT are studied, but it appears that they are versions where the given set
of clauses has zero or one solution, which makes quite a difference with our
problem.
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