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Abstract

Combinatorial creativity combines existing concepts in a novel way in
order to produce new concepts. For example, we can imagine jewelry that
measures blood pressure. For this, we would combine the concept of jew-
elry with the capabilities of medical devices. Combinatorial creativity can
be used to develop new business ideas, to find plots for books or movies,
or simply to disrupt conventional thinking. In this paper, we propose a
formal language for combinatorial creativity, based on description logics.
We show that our language can be used to model existing inventions and
(to a limited degree) to generate new concepts. This report complements
our paper at the ISWC 2016 conference [22].

Résumé

La créativité combinatoire assemble des concepts existants pour produire
de nouveaux concepts. Par exemple on pourrait imaginer des bijoux qui
mesureraient la pression sanguine. Pour ce faire, il s’agit de combiner le
concept des bijoux avec les capacités des appareils médicaux. La créativité
combinatoire peut être utilisée pour développer de nouvelles idées de busi-
ness, pour inspirer des livres ou des films, ou plus simplement pour rompre
la façon habituelle de penser. Dans le travail présent, nous proposons
un langage formel pour la créativité combinatoire, basé sur les logiques
de description. Nous montrons que notre langage peut être utilisé pour
décrire des inventions existantes, et - dans une certaine mesure - aussi pour
générer de nouveaux concepts. Ce rapport complémente notre publication
à la conférence ISWC 2016 [22].
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1 Introduction

What if cars had wings? What if tables could serve as beds? What if spoons
could talk? These questions may seem completely absurd. And yet, the follow-
ing questions are much less absurd: What if phones could go online? What if
cars could be used to sleep in them? What if tap water contained medicine?
Much of what may seem absurd today may become reality in the future. The
field that is concerned with combining components of existing concepts into new
concepts is called combinatorial creativity1. This field serves different purposes.
Most prominently, it serves to describe new inventions: a smartphone is a tele-
phone that is connected to the Internet; a Segway is a vehicle with two wheels
on the same axis; a Hyperloop is a train without wheels. But combinatorial cre-
ativity can also serve to develop new business ideas, to find plots for books or
movies, to understand human creativity, to disrupt conventional assumptions,
to find design alternatives, or to foster thinking outside the box.

A prominent current of research uses description logics (DLs) to model real-
world concepts [11, 2], so it is natural to try to use DLs to capture the types of
concept modification underlying combinatorial creativity. Suppose for example
that cars are defined using the following (simplified) DL axiom:

Car ≡ V ehicle u ∃hasPart.Wheel

Now suppose that we wish to consider the concept obtained by removing the
wheels from car. Any construction of the form Car u ¬∃hasPart.Wheel sim-
ply leads to a contradiction, i.e., the empty concept ⊥. Thus, standard DL
constructors do not provide any direct means of expressing modifications like
taking the concept Car and removing the property ∃hasPart.Wheel from it.

Much work has been done on conceptual blending [4, 7, 26, 11, 1, 20, 14, 6],
in which two concepts from different thematic areas are blended to create a new
concept. However, blending is concerned more with describing analogies and
metaphors than with describing modifications of concepts. Blending can, e.g.,
explain how a human understands an expression such as “sign forest”, but it
cannot express an atomic operation such as removing the wheels from a car.
Non-standard reasoning services for DLs, like semantic matchmaking, consider
the problem of modifying concepts to achieve certain objectives, but do not
provide a means of expressing explicit updates of concepts. What we would
want is a language that allows writing Remove the wheels from the car, or: Car
“minus” ∃hasPart.Wheel.

In this work, we propose a formal language for concept modifications that
can serve as a basis for combinatorial creativity. More precisely:

• We define a language that allows modeling the transition from one con-
cept to another one explicitly – by adding, removing, or modifying its
constituents.

• We explain the design rationale for our operators, discuss design alterna-
tives, and prove their formal properties.

1A more constrained subfield of computational creativity in general.

2



• We show that our language can be used to describe real-world inventions,
and (in a limited manner) to generate new concepts.

This report is structured as follows. We start with a discussion of related work
in Section 2 and present preliminary material in Section 3. The main part of our
paper, Section 4, describes our language. Section 5 shows concrete applications
of our language before Section 6 concludes.

This report is an extended version of our full paper at the International
Semantic Web Conference (ISWC) 2016 [22]; it provides additional technical
details in Section 3.

2 Related Work

Cognitive Sciences. Combinatorial creativity has first been studied in the
cognitive sciences [5, 8, 24]. These analyses center on understanding human
cognition and have not led to a formal theory based in logic. The COINVENT
project [21] aims to develop a computationally feasible, cognitively-inspired,
formal model of concept invention. The project, however, has started only re-
cently, and the model is still in the process of development. Fictional ideation
generates new concepts for narratives [16]. In a larger sense, computational
creativity is concerned also with creative human-computer interaction, art, fig-
urative language, humor, music, argumentation, generating narratives or poetry,
and scientific discovery [25]. We concentrate here on works that come closest to
a formal language for describing modifications of concepts.

Conceptual Blending. One of the areas that cognitive science investigates
is amalgams and analogies [4]. An amalgam of two input concepts is any new
concept that combines constraints from abstractions of each of the input con-
cepts. In this way, “a red French sedan” and “a blue German minivan” can
be combined to “a red German sedan”. Analogies, on the other hand, find
commonalities between a combined concept (such as “sign forest”) and source
concepts (such as “forest”). The Structure Mapping Engine [7], likewise, is
concerned with analogies. Analogies and amalgams fall into the broader field
of conceptual blending [26, 11, 14]. Recent work in the area of linguistics [1]
also discusses conceptual blending, as does the Heuristic-Driven Theory Pro-
jection [20]. Closest to our work in conceptual blending is work on upward
refinement in the DL EL+ + [6]. All of these analyses are centered on describ-
ing the space between two concepts. However, they do not give us a language
with operators to explicitly modify a single input concept. For example, none
of the approaches can express the operation of taking a car, removing a plastic
part, and replacing it by an aluminium part.

Modifying DL Concepts. Given a DL description of a product on offer and
of a product in demand, semantic matchmaking is concerned with modifying
the product in demand so that it matches the product on offer [17]. Work on
identifying missing negative constraints also involves generation and manipu-
lation of concepts [9]. However, while concept modification is central to these
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(and other) works on non-standard reasoning in DLs, they do not provide any
means to explicitly express modifications of a concept, like Remove the wheels
from a car. To the best of our knowledge, the only work that proposes such an
operator is Teege [23]. We compare their subtraction operator with our own in
Section 4.2. Also loosely related is work on belief change in DLs, which aims
to modify a knowledge base to consistently incorporate new information, see
e.g. [18, 10].

3 Preliminaries

Description logics (DLs) are a family of logical formalisms that describe semantic
knowledge about a domain in terms of concepts (= classes, unary relations) and
roles (=properties, binary relations). For example, the first line in Figure 1 says
that the concept PlasticRoof is defined as the intersection of the concept Roof
and the concept of all those things that are made of plastic. We concentrate
here on one particular DL, EL [2]. We assume fixed sets NC and NR of concept
names and role names, respectively. A concept is anything of the form

> | A | C uD | ∃r.C

where C and D are concepts, A ranges over NC, and r ranges over NR ∪ {u},
where u is the universal role. The set of these concepts will be denoted by L.

A concept is basic if it is a named concept, >, or an existential concept. By
definition, every concept in L is a conjunction of one or more concepts. We will
therefore understand every concept C as a conjunction C = C1u ...uCn. If any
Ci is a conjunction, then Ci can be folded into the conjunction. In all of the
following, we will therefore assume that every concept is a conjunction of basic
concepts. To simplify notation, we will talk of “the conjunct Ci of C” to mean
that C = C1 u ... u Cn and 1 ≤ i ≤ n.

DL semantics relies on interpretations I = (∆I , ·I), where ∆I is a non-
empty domain, which can be understood as a set of real-world entities, and ·I
is an interpretation function which maps each A ∈ NC to a subset AI of ∆I ,
and each r ∈ NR to a subset rI of ∆I ×∆I . The universal role u is mapped to
∆I ×∆I . This interpretation is extended to all concepts as follows: >I = ∆I ,
(C1 uC2)I = CI1 ∩CI2 , and (∃r.C)I = {x | ∃(x, y) ∈ rI such that y ∈ CI}. We
say that a concept C is subsumed by (or implies) a concept D, written C v D,
if CI ⊆ DI in all interpretations I.

Subsumption. Subsumption between EL concepts can be decided in polyno-
mial time [3] and adding the universal role does not increase the complexity.

PlasticRoof ≡ Roof u ∃madeOf.P lastic
Car ≡ V ehicle u ∃hasPart.P lasticRoof

u ∃hasPart.Wheel u ∃usedFor.Travel

Figure 1: An example terminology T .
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Indeed, to test for subsumption between two concepts (C v D), we can employ
a polynomial algorithm based upon a syntactic characterization of subsumption,
given by the following three properties (see [13] for a similar characterization):

Property 1 (Atomicity): For a concept name A ∈ NC and a basic concept C
with C 6= >, A v C iff A = C.
Proof: If A = C, then A v C follows trivially. Conversely, if A 6= C and C 6= >,
then it is easy to construct an interpretation I in which AI = {a} and a 6∈ CI .
�

Property 2 (Existential Atomicity): For an existential concept ∃r.C and a basic
concept D with D 6= >, the subsumption ∃r.C v D holds iff either D = ∃r.C ′
or D = ∃u.C ′, with C v C ′ in both cases.
Proof: The “if” direction is easy to see: If C v C ′, then ∃r.C v ∃r.C ′ and
∃r.C v ∃u.C ′ follow trivially. For the “only if” direction, we have different
cases depending on the form of D:
(1) Assume that D ∈ NC. Then we can construct an interpretation I such that
a ∈ (∃r.C)I and a 6∈ DI . This shows that ∃r.C 6v D.
(2) Assume that D is an existential concept of the form ∃r′.C ′, with r′ 6= r, r′ 6=
u. To witness ∃r.C 6v ∃r′.C ′, we can build an interpretation I where a ∈ (∃r.C)I

but (a, c) 6∈ r′I for every c ∈ ∆I , hence a 6∈ (∃r′.C ′)I .
(3) Assume thatD is of the form ∃r.C ′, and C 6v C ′. From the latter, there exists
an interpretation J and element c with c ∈ CJ and c 6∈ C ′J . It then suffices to
let I be the interpretation obtained by extending J by adding a new domain
element a and including the tuple (a, c) in rI . This yields a ∈ (∃r.C)I \(∃r.C ′)I ,
as required.
The only remaining possibilities are thus that D = ∃r.C ′ or D = ∃u.C ′. �

Property 3 (Distribution): If C v D, then for every conjunct Dj of D there
must exist a conjunct Ci of C such that Ci v Dj .
Proof: Suppose C = C1 u . . . u Cn and D = D1 u . . . u Dm. It is immediate
from the semantics that if for every Dj , there is some Ci with Ci v Dj , then
we must have C1 u . . . u Cn v D1 u . . . uDm.

For the other direction, let us assume that for some 1 ≤ j ≤ m, there is
no 1 ≤ i ≤ n for which Ci v Dj . Then for every 1 ≤ i ≤ n, we can find an

interpretation Ii with a ∈ CIii \ D
Ii
j . We assume w.l.o.g. that for every pair

1 ≤ i, k ≤ n, we have ∆Ii ∩∆Ik = {a}, i.e. these interpretations only share the
element a. Then we can define J as the union of the interpretations Ii (1 ≤
i ≤ n). More precisely: ∆J =

⋃n
i=1 ∆Ii , AJ =

⋃n
i=1A

Ii , and rJ =
⋃n

i=1 r
Ii .

It can be verified that J is such that a ∈ CJi for every 1 ≤ i ≤ n, but a 6∈ DJj ,
and hence that C 6v D. �

The two atomicity properties plus the distribution property yield a simple recur-
sive algorithm to check subsumption. Indeed, by Property 3, to decide whether
C1 u . . . Cn v D1 u . . .uDm, it suffices to perform pairwise subsumption checks
between the basic concepts Ci and Dj , which can be done by exploiting the char-
acterization of subsumption between basic concepts given by Properties 1 and 2.
Correctness, completeness, and polynomial running time are straightforward to
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show by induction (cf. analogous properties of the structural subsumption algo-
rithm [2, Section 2.3.1] for the FL0 language).

Normal form. Concepts can contain redundant conjuncts, as in ∃r.A u ∃r.>.
We now show how remove such redundancies.

Definition 1 (Reduction): A conjunction C has a reduction C ′, if (1) C ′ v C,
(2) every conjunct of C ′ appears in C, and (3) C ′ has fewer conjuncts than C.

Property 4 (Reduction Maintains Equality): A concept C is equivalent to any
of its reductions.
Proof: Assume that C ′ is a reduction of C. Then the fact that every conjunct
of C ′ appears in C implies C v C ′. Together with C ′ v C, we obtain C ≡ C ′.
�

Definition 2 (Full reduction): A concept is fully reduced if it cannot be reduced
any further.

Property 5 (Unique Full Reduction): Each concept C has a unique full reduction
red(C), if none of its conjuncts are equivalent.
Proof: Given a concept C = C1u...uCn, we want to compute its full reduction.
Our algorithm successively removes an “implied concept” Cj , if there is an
“active concept” Ci with Ci v Cj . First observe that by the Distribution
property (Property 3), if C can be reduced to C ′, then it is possible to do so by
successive removal of implied concepts.

We now show the result of the rewriting is unique, no matter in which order
the concepts are removed. Our algorithm defines a term rewriting system, where
C →i,j D if concept C can be rewritten to concept D because Ci v Cj . This
system is terminating, because the empty concept > cannot be rewritten. Now
assume that C →i,j D and C →i′,j′ D

′, with j 6= j′. Assume that i′ = j, i.e.,
the first step removes the active concept of the second step. Then Ci v Cj = Ci′

and Ci′ v Cj′ implies Ci v Cj′ . Hence, D →i,j′ D
′′. At the same time, Ci and

Cj are both conjuncts of D′. Hence D′ →i,j D
′′. The case where the second step

removes the active element of the first step (i = j′) is analogous. The case where
each step removes the active element of the other step (i′ = j ∧ i = j′) cannot
appear because the conjuncts of C are not equivalent. Now consider the case
where no step removes the active element of the other step (i 6= j′∧i′ 6= j). Then
each step can be applied to the result of the other step. Hence, D →i′,j′ D

′′ and
D′ →i,j D

′′. It follows that → is locally confluent. Together with termination,
this implies that → is globally confluent. Hence, our algorithm converges to a
unique concept. �

Definition 3 (Normal Form): The normal form, norm(C), of a concept C is
defined as follows:

• norm(A) = A, if A is a named concept or >

• norm(∃r.C) = ∃r.norm(C)

• norm(C1 u ... u Cn) = red(norm(C1) u ... u norm(Cn))
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Property 6 (Unique Normal Form): The normal form can be computed in poly-
nomial time, and any two equivalent concepts have the same normal form, up
to re-ordering of conjunctions.
Proof: We proceed by structural induction. For named concepts and >, the
claim follows from Property 1. For an existential concept, the claim follows
from the induction hypothesis and Property 2. Now consider the case of a
conjunction C = C1 u ... u Cn. Property 5 tells us that the conjunction
norm(C1) u ... u norm(Cn) has a unique reduction if none of its conjuncts are
equivalent. The induction hypothesis tells us that if Ci ≡ Cj for some i, j, then
norm(Ci) = norm(Cj). By construction, such conjuncts have been removed.
Hence, red(C) is well-defined and unique. Property 4 tells us that the result
is equivalent to C. The polynomial runtime follows likewise by structural in-
duction, using the fact that subsumption and equivalence can be decided in
polynomial time. �

Ordering. We assume that the set of concept names NC is ordered by a com-
plete order ≺NC

, and the set of relation names NR is ordered by a complete order
≺NR

. Based on these, it is easy to define a complete order ≺ on concepts, as
follows.

Definition 4 (Order): Given a complete order ≺NC
on concept names NC ∪ {>}

and a complete order ≺NC
on relation names R∪ {u}, the complete order ≺ on

minimal concepts L is defined as follows:
• A ≺ B iff A ≺NC

B, for A,B ∈ NC

• A ≺ C, for A ∈ NC and C 6∈ NC

• ∃r.C ≺ D for conjunctions D

• ∃r.C ≺ ∃s.D iff r ≺NR
s

• ∃r.C ≺ ∃r.D iff C ≺ D

• C ≺ D for conjunctions C,D is given by the lexicographical extension of
≺.

This order is purely syntactic; it does not relate to concept subsumption. If
the conjuncts of a conjunction C1 u ... u Cn are written in increasing order
C1 ≺ ... ≺ Cn, we will talk of an ordered conjunction. In all of the following,
we will assume conjunctions to be ordered. For example, from Figure 1, we
will understand that V ehicle ≺ ∃hasPart.P lasticRoof ≺ ∃hasPart.Wheel ≺
∃usedFor.Travel, because the concepts are written in that order. Ordered
conjunctions have an important property, which follows from the properties of
the normal form:

Property 7 (Ordered conjunctions in normal form): Two ordered conjunctions
in normal form are equivalent iff they are identical.

Terminologies. A concept definition takes the form A ≡ C, where A ∈ NC and
C ∈ L. A terminology T is a set of concept definitions, in which no concept name
occurs more than once on the left-hand side of a concept definition. Figure 1
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shows an example terminology. We will see the terminology as a function T :
NC → L, which, given a named concept, replaces it by the right-hand-side of
its definition in T . We consider only acyclic terminologies, i.e., there are no
cyclic dependencies between the concept definitions. This allows us to define
the complete recursive unfolding T ∗(·), with T ∗(A) = A for concept names that
do not have a definition in T , T ∗(A) = T ∗(T (A)) for concept names that have a
definition, T ∗(∃r.C) = ∃r.T ∗(C) and T ∗(C1 u ...uCn) = T ∗(C1)u ...uT ∗(Cn).
We say that a concept name A is a declared child of a concept name B if B
appears as a conjunct of the definition of A.

4 Operators for Concept Modification

We will now define the operators of our language for combinatorial creativity.
Our operators will work directly on DL concepts. The background terminology
T will play no role in defining the operators, but will serve instead to provide
the DL concepts upon which we will apply the operators. This may seem uncon-
ventional at first, but perhaps this is only fitting for a paper that treats matters
of creativity.

4.1 Addition

Definition 5 (Addition): For two concepts C and D, we define addition as
C +D := norm(C uD).

Example 2 (Addition): In our example from Figure 1, the
expression T (Car) + (∃hasPart.Wing u ∃usedFor.F ly) de-
notes a car with wings that is used for flying. This yields
V ehicleu∃hasPart.Wheelu∃hasPart.P lasticRoofu∃usedFor.Travelu
∃hasPart.Wing u ∃usedFor.F ly.

Addition has the following properties, which follow directly from the properties
of u and the normalization.

Property 8 (Inclusion): If C v D for two concepts C and D, then C +D = C.

Property 9 (Commutative Monoid): For any three concepts C,D,E, the follow-
ing hold: Addition is closed, C + D ∈ L. Addition is monotone, C + D v C.
Addition is commutative, C+D = D+C. Addition is associative, C+(D+E) =
(C +D) + E. > is its neutral element. (+,>) forms a commutative monoid.

4.2 Subtraction

Definition 6 (Subtraction): For a basic concept A, and a concept C that has
an ordered normal form norm(C) = C1 u ... u Cn, we define subtraction as
C−A := norm(C1u...uCj−1uCj+1u...uCn), where j = argmin i{Ci : Ci v A}.
If there is no such j, then C − A = C. Subtraction is left-associative. For
a conjunction D with norm(D) = D1 u ... u Dm, subtraction is defined as
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C −D = C −D1 − ...−Dm.

In other words, the subtraction C − A removes the first conjunct of the
ordered conjunction C that implies A. If the subtrahent is a conjunction, sub-
traction removes each conjunct of the subtrahent.

Example 3 (Subtraction): In our example from Figure 1, the ex-
pression T (Car) − (∃hasPart.> u ∃usedFor.Travel) removes the first
hasPart association and the usedFor association. This yields V ehicle u
∃hasPart.Wheel.

The definition of subtraction offers several design choices. We could, e.g., define
subtraction simply as the set difference of the conjuncts, without considering
subsumption of concepts. However, the proposed definition has the advantage
that we can remove a part of a car even if we do not fully specify it, as in
T (Car)−∃hasPart.>. Another design alternative for a subtraction C−A would
be to remove not just the first conjunct from C that implies A, but all conjuncts
in C that imply A. However, we can easily express this design alternative in
terms of the proposed definition by subtracting A several times, whereas it is not
possible to express the subtraction of just one conjunct with an operator that
subtracts all implied conjuncts simultaneously. We could define subtraction
to remove not the first matching conjunct, but an arbitrary conjunct. This,
however, would result in non-determinism. We could also define subtraction so
as to return the set of all possible ways of subtracting the subtrahent. However,
the result of this operation would be a set, not a concept. Thus, it would not
be possible to use this result with the other operators.

Finally, the subtraction of a conjunction (C−D) offers a design alternative.
Instead of subtracting each conjunct of D separately, we could remove from
C all those conjuncts that are subsumed by the complete concept term D.
This, however, would violate the usual set semantics: subtracting a conjunction
with more conjuncts would have less effect than subtracting a conjunction with
only one conjunct. We could also make subtraction distributive, by defining
C − (A uB) = (C −A) u (C −B). This, however, would entail that (A uB)−
(A uB) = (A uB), which would defeat the purpose of subtraction.

The subtraction operator from Definition 6 has the following properties,
which follow from the definition and the normalization.

Property 10 (Monotonicity): For any two concepts C and D, the following holds:
Subtraction is closed, C −D ∈ L. Subtraction is monotone, C v C −D.

Property 11 (Destruction): If C v D for a basic concept C and a concept D,
then C −D = >. In particular, C −> = >.

Property 12 (Self-Destruction): For any concept C, C − C = >.
Proof: Follows from the properties of the normal form. �

Property 13 (Reversibility): If, for two conjunctions in normal form C and D,
every conjunct of D appears in C, then (C −D) +D = C.
Proof: If C and D are in normal form, and every conjunct of D appears in C,
then C−D is obtained by removing every conjunct of D from C (the subsequent
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normalization will have no effect). Adding back these conjuncts leads to C. �

Definition 7 (Generalized Subtraction): For a concept C, a basic concept A, and
a natural number i, we define

C −1 A := C −A C −i A := ((C −A)−i−1 A) + (C − (C −A))

Property 14 (Generalized Subtraction): The generalized subtraction C −i A
removes the ith conjunct of the normalized ordered conjunction of C that im-
plies A. If no such conjunct exists, then C −i A = C.
Proof: Assume that C has been transformed into an ordered conjunction in
normal form. We proceed by induction. For i = 1, the claim follows from
Definition 6. Now assume that C −i−1 A removes the (i − 1)th conjunct of C
that implies A. We observe that C −A removes the first such conjunct. Hence,
the expression ((C − A) −i−1 A) removes the first such conjunct and the ith

such conjunct. The expression (C − (C − A)) yields the first such conjunct.
Hence, ((C − A) −i−1 A) + (C − (C − A)) is C without the ith such conjunct.
If the ith such conjunct does not exist, then ((C −A)−i−1 A) = C −A. Then,
C −i A = (C −A) + (C − (C −A)) = C. �

Example 4 (Generalized Subtraction): With generalized subtraction,
we can remove, e.g., the second part of our example car from Fig-
ure 1, by saying T (Car) −2 ∃hasPart.>. This yields V ehicle u
∃hasPart.P lasticRoof u ∃usedFor.Travel.

Comparison to Related Work. Teege [23, Definition 2.1] defines subtraction
as C − D := maxw{E ∈ L : D u E ≡ C}. We first note that this operator is
undefined if C 6v D, while our operator is always defined. Let us now assume
that C v D and that C and D are conjunctions in normal form. If every
conjunct of D appears in C, then Property 13 tells us that our operator is
equivalent to Teege’s. In general, however, the operators are different. Our
definition allows removing a conjunct that “matches” the subtrahent, as in
(Au∃r.B)−∃r.T = A. Teege’s operator has a different behavior: (Au∃r.B)−
∃r.T = (Au ∃r.B). This allows our operator to remove the first, second, or nth

matching conjunct, while Teege’s operator does not offer this functionality. We
will show in Section 5 how this functionality can be used in practice.

4.3 Succession

Definition 8 (Succession): For an existential concept ∃r.E and a concept C, we
define succession as C → ∃r.E := E′, where ∃r′.E′ is the first conjunct of the
ordered normal form norm(C) with ∃r′.E′ v ∃r.E. If there is no such conjunct,
succession is undefined. For a conjunction D with norm(D) = D1 u ... u Dm,
succession is defined as C → D = norm(ui(C → Di)).

Succession finds the first existential conjunct in C that implies ∃r.E, and
returns the inner concept in that existential conjunct. If succession is used with
a conjunction, the operator joins all the target concepts in a conjunction.
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Example 5 (Succession): For our example from Figure 1, the expression
T ∗(Car)→ ∃hasPart.(∃madeOf.P lastic) asks for a plastic part of a car.
This yields the plastic roof, Roof u ∃madeOf.P lastic.

The definition of succession allows several design choices. The current definition
picks the first target concept. We could equally well use the operator to pick one
of them at random. This, however, would result in non-determinism. Another
design alternative is to return not the first matching conjunct, but the set of all
matching conjuncts. Then, however, the result would no longer be a concept,
and could no longer be used with the other operators.

We could also combine all target concepts of all matching conjuncts into a
conjunction. Then, however, the target concepts could no longer be manipulated
individually. If we want to compute such a conjunction nonetheless, we can do
so with the current definition of succession. It suffices to extract one concept
after the other through generalized succession (see below), and join them by
addition.

Succession has the following properties, which follow from Definition 8.

Property 15 (Closedness): For any concepts C and D, C → D is either undefined
or a concept.

Property 16 (Inclusion): If C v D, then ∃r.C → ∃r.D = C, for any concepts
C,D and role r.

Like for subtraction, we can define a succession for the ith matching conjunct.

Definition 9 (Generalized Succession): For concepts C, an existential concept
∃r.E, and a natural number i, we define

(C →1 ∃r.E) := C → ∃r.E
(C →i ∃r.E) := (C − ∃r.E)→i−1 ∃r.E

Property 17 (Generalized Succession): The generalized subtraction C →i A re-
turns the inner concept of the ith existential conjunct of the normalized ordered
conjunction of C that implies A.
Proof: Assume that C has been transformed into an ordered conjunction in
normal form. We proceed by induction. For i = 1, the claim follows from Defi-
nition 8. Now assume that C →i−1 A returns the (i− 1)th existential conjunct
of C that implies A. We observe that (C −A) removes the first such conjunct.
Hence, (C −A)→i−1 A returns the ith such conjunct. �

Example 6 (Generalized Succession): In our example from Figure 1, the
expression T (Car) →2 ∃hasPart.> retrieves the second part of a car.
This yields Wheel.

Comparison to Related Work. To the best of our knowledge, the succession
operator has no analog in the formalisms of previous work [17, 6, 7, 23].
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4.4 Selection and Replacement

We can define a selection operator by using multiple applications of subtraction:

Definition 10 (Selection): For a concept C, a basic concept A, and a natural
number i, we define

C ↑i A = (C u χ)− (C u χ−i A)

where χ is a fresh concept name that comes last in the order ≺N .

Property 18 (Selection): The selection C ↑i A returns the ith conjunct of the
ordered normal form of C that implies A, or else >.
Proof: Assume that C has been transformed into an ordered conjunction in
normal form. If there is no ith conjunct of C that implies A, then (Cuχ−iA) =
C u χ, and hence C ↑i A = >. Otherwise, (C u χ −i A) will remove that ith

conjunct, and (C u χ) − (C u χ −i A) will deliver that conjunct. This holds
in particular for the case where i = 1, A = > and C is basic. In this case,
C ↑1 > = (C u χ) − (C u χ − >) = (C u χ) − χ = C. Note that without the
addition of χ, we would obtain C ↑1 > = C − (C −>) = C −> = >. �

Example 7 (Selection): In our example from Figure 1, we can select the
second hasPart-conjunct of a car by saying T (Car) ↑2 ∃hasPart.>. This
yields ∃hasPart.Wheel.

We can also combine addition and subtraction to define an operator that replaces
a certain conjunct, as follows:

Definition 11 (Replacement): For concepts C,P,D with P taking the form
∃r1.∃r2. . . .∃rn.A (with n ≥ 0, all ri 6= u, and A a concept name), we define

C.replace(P,D) := (C − P ) +D for P a named concept
C.replace(∃r.P,D) := (C − ∃r.P ) + ∃r.((C → ∃r.P ).replace(P,D))

Example 8 (Replacement): In our example from Figure 1, we can replace
the material of the roof of the car by aluminium by stating
T ∗(Car).replace(∃hasPart.(∃madeOf.P lastic), Aluminium)

This expression first unfolds Car completely w.r.t. T . Then, the replace-
ment operator descends into the hasPart conjunct and into the madeOf
conjunct, where Plastic is replaced by Aluminium. This yields:

V ehicle u ∃hasPart.(Roof u ∃madeOf.Aluminium)
u∃hasPart.Wheel u ∃usedFor.Travel

Property 19 (Replacement): The replacement C.replace(∃r1.∃r2....∃rn.A,D)
descends inside the first existential conjunct of norm(C) that implies
∃r1.∃r2. . . .∃rn.A by ‘entering’ ∃r1, then enters ∃r2 for the first conjunct that
implies ∃r2. . . .∃rn.A, continues in this manner until entering ∃rn, and finally
replaces the first occurrence of A in the resulting concept by D.
Proof: Let P = ∃r1.∃r2. . . .∃rn.A, and assume that C has been transformed into
an ordered conjunction in normal form. We proceed by induction. For n = 0, we
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have C.replace(A,D). The first case of Definition 11 will then remove the first
conjunct A in C, and then add D. Next assume that the claim holds when the
chain of existentials has length at most n− 1. The second case of Definition 11
will first remove from C the first conjunct that implies P . Suppose this conjunct
is ∃r1.F . Then we will add back the concept ∃r1.(F.replace(P,D)). As F has a
chain of n− 1 existentials, we can apply the induction hypothesis to infer that
F.replace(P,D) is obtained by following the chain ∃r2 . . . ∃rn to reach a concept
containing A (always choosing the first ∃ri conjunct that entails ∃ri . . . ∃rn.A)
and replacing there the first occurrence of A by D. By adding the prefix ∃r1 to
the resulting concept, we obtain a concept with the stated property. �

We define C.replacei(P,D) as the i-fold application of the operator.

4.5 Tractability and Generality

All of the above operations are defined on concepts without the use of a back-
ground theory (TBox). Subtraction, e.g., removes a conjunct that is subsumed
by a given concept, but this subsumption is purely syntactic and independent
of a terminology (v instead of vT ). If we want a terminology T to come into
play, we have to explicitly unfold a concept by the operator T ∗(·). The rea-
son for this design choice is that for the goal of modifying concepts, it can be
counter-intuitive if concepts are automatically expanded. Consider again our
example from Figure 1, and assume that we are looking for the first conjunct in
the definition of Car: T (Car) ↑1 > = V ehicle. If concepts were automatically
expanded, then adding a definition of V ehicle to T would change this result.
Moreover, a full recursive concept expansion would be of exponential complexity
[2, Section 2.2.4.2]. Our framework avoids this complexity.

All of our operations are defined for normal forms. This means that, before
applying an operator, its arguments have to be reduced to their normal forms.
This guarantees that, for any operator ⊗, (C ⊗ D) ≡ (C ′ ⊗ D) if C ≡ C ′.
Consider for example the (redundant) concept C = (> u A). The term C − >
yields A. Now consider the equivalent concept C ′ = A. Now, C ′ −> yields >.
To avoid such artifacts, all concepts have to be brought to their normal form
before applying the operators. Since two equivalent concepts have the same
normal form, we can guarantee that (C ⊗D) ≡ (C ′ ⊗D), if C ≡ C ′. Bringing
a concept to its normal form can be done by a simple polynomial algorithm
(Section 3).

All of our operators are polynomial-time operations. For addition, this is
easy to see: it suffices to join the arguments in a conjunction, and to apply the
normalization algorithm. For subtraction, we have to run through all conjuncts
in the left argument, and perform a (polynomial) subsumption check for each
of them. This yields a polynomial algorithm. The same is true for succession.

We conclude our discussion of operators by noting that our language can
transform any concept into any target concept. This can always be achieved
trivially by subtracting all conjuncts of the original concept and adding all
conjuncts of the target concept.
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5 Evaluation

We conducted three types of evaluations: a case study on a business case of
a French start-up; a descriptive study, where we use our language to describe
inventions; and a generative study, where we use it to generate new concepts.

5.1 Case Study

As a case study, we consider a business case by Stim2, a French consulting firm
founded in 2013. Stim studies the product or service of the client company, and
then uses the C-K method [12] to rethink it and suggest alternatives. We look
here at the case of the client Turbomeca3, a French manufacturer of gas turbine
engines for helicopters. The original technology that Turbomeca employed was
a motor working with two symmetric turbines, which both run during the whole
flight. The suggested alternative was a “hybrid motor”, which works with two
different turbines that can run and stop during the flight according to power
needs. After a feasibility study, Turbomeca is now developing this new motor,
which reduces the energy consumption by half.

We focus here on how the transition from the old motor to the new one
can be written down explicitly. Assuming suitable sets of named concepts and
relations, the original motor looks as follows:

Original ≡Motor u ∃worksWith.(Turbine u ∃placed.Left u ∃runsDuring.F light)

u∃worksWith.(Turbine u ∃placed.Right u ∃runsDuring.F light)

The motor is then modified as follows:

Original.replace2(∃worksWith.∃runsDuring.F light, (Duration u ∃partOf.F light))

The resulting motor is:

Motor u ∃worksWith.(Turbine u ∃placed.Right u ∃runsDuring.(Duration u ∃partOf.F light))

u∃worksWith.(Turbine u ∃placed.Left u ∃runsDuring.(Duration u ∃partOf.F light))

This shows that it is possible to model the transition from the old motor to
the new one in our language. However, it also shows that we cannot replace
both turbines at the same time. We have to apply the replace operation twice
(by help of the superscript “2”, see Section 4.4). This can be traced back to
a design choice in our language, which allows subtracting the first matching
conjunct, but not all conjuncts. This choice was made because subtracting all
conjuncts can be achieved by successively removing individual conjuncts. What
is more, subtraction becomes idempotent after all matching conjuncts have been
removed, so that one can simulate the removal of all conjuncts by iterating the
removal of individual conjuncts a large number of times (the same is true for
replace()). We leave such extensions for future work.

2http://www.wearestim.com/
3http://www.turbomeca.com/
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Figure 2: A talking toy (left) and a toy that can engage in a dialog (right).

5.2 Descriptive Study

We wanted to analyze to what degree real-world inventions can be described
in our language. For this purpose, we considered the top 25 inventions of 2015
according to Time Magazine4. We asked computer-science students in our de-
partment to model, for each invention, a pair of two concepts: the original
concept (say, a toy that can talk) and the innovative concept (say, a toy that
can engage in a dialog with the child). Each concept had to be drawn as a
graph of concept nodes that are connected by role edges. The students were
allowed to use any concept and role names. Figure 2 shows the talking toy as
an example (in vectorized form).

We translated the graphs to EL, making modifications where necessary. For
example, we translated numeric items such as the age range 5-9 into atomic
concepts (FiveNine). We translated incoming edges (as in the Education node
in Figure 2 on the right) by introducing new roles (e.g. isGoalOf ).

Our goal was then to make the transition of the original concept to the
new concept explicit, by modeling it in our language. Figure 3 exemplifies this
process for the talking toy. In general, we found that the transitions could
be modeled with a few operators in our language. The most useful operation
proved to be replace(). It was used 29 times. The next most frequent operator
was addition, with 16 cases. Subtraction was used in 7 cases.

In some cases, the new concept wrapped the old concept in an existen-
tial conjunct. This can be modeled trivially by adding the existential quan-
tifier before the old concept. However, we could also consider introducing
a “wrapping” operator, as the inverse of the succession operator. We also
noticed that it would be convenient if the replace operator worked with >
as innermost concept. Furthermore, it would be convenient if the opera-
tor could have an additional argument that describes what additional condi-
tions each existential concept on the path must fulfill. For example, we want
to write replace(∃hasPart.Roof, ∃hasPart.∃madeOf.P lastic, Aluminium) to
walk into the conjunct ∃hasPart.Roof and replace there the material of plastic
by aluminium. In one case, two existential concepts were merged. It might be

4http://time.com/4115398/best-inventions-2015/
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(((Toy u ∃input.None u ∃output.Messages u ∃hasUser.Child)

.replace(∃input.None,Voice)).replace(∃hasUser.Child,(Childu∃ageRange.FiveNine))

+ ∃goal.(Education u ∃isGoalOf.Teacher))
...

((((Toy u ∃output.Messages u ∃hasUser.Child u ∃input.Voice) - ∃hasUser.Child)

+ ∃hasUser.((((Toy u ∃output.Messages u ∃hasUser.Child u ∃input.Voice) →
∃hasUser.Child)).replace(Child, (Child u ∃ageRange.FiveNine)))) + ∃goal.(Education u
∃isGoalOf.Teacher))

...

(Toy u ∃output.Messages u ∃input.Voice u ∃hasUser.(Child u ∃ageRange.FiveNine) u
∃goal.(Education u ∃isGoalOf.Teacher))

Figure 3: Transition from a talking toy to a toy that engages in dialog. Top
line: original concept. Following lines: transition formula. In the middle: an
example step from the actual transition. Bottom lines: new concept.

worth adding an operator for this. We leave such extensions for future work.

5.3 Generative Study

We want to show that our language can also be used (in a limited manner) to
generate new concepts. More precisely, our goal is to show that our operators
can be used to model something similar to brainstorming.

We use ConceptNet [15], a large knowledge base of commonsense facts. Con-
ceptNet knows, e.g., that cars have wheels, and that they are used for locomo-
tion. Since we are interested in generating new objects, we remove relations that
describe words (EtymologicallyDerivedFrom, etc.), as well as relations that de-
scribe agents and events. To clean out noise, we also remove all definitions that
have 2 or less conjuncts. This leaves us with a terminology T of 28 relations
and 5485 concept definitions, each of which contains 41 conjuncts on average.

To generate new concepts, we use the following formulas. Here, childTi (·)
retrieves the ith declared child of a concept in T .

1. Addition of a conjunct of a sibling concept:

(T (childTi (T (x) ↑j >)) ↑k ∃u.>)− T (x)

For integers i, j, k and a concept x, this formula selects the jth conjunct
of the input concept x. In the example of Figure 1 with j = 1, this yields
V ehicle. The formula then asks for the ith child of that conjunct in the
terminology. This could be, e.g., Plane (a sibling of Car under V ehicle).
From this sibling concept, we choose the kth existential conjunct. This
could be, e.g., ∃has.Wing. We make sure that the chosen conjunct does
not already appear in the original concept x. If the result of this operation
exists5, and if the result is not >, we propose to add this conjunct to the
original concept.

5The operation childTi may fail if the concept is undefined in the terminology.
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Addition Reversal Removal
Already exists 15 (19%) 7 (41%) 50 (31%)
Can be imagined 29 (37%) 5 (29%) 66 (40%)
Funny or creative 10 (12%) 1 (5%) 18 (11%)
Nonsense 23 (29%) 4 (23%) 27 (16%)
Total 77 (100%) 17 (100%) 161 (100%)

Table 1: Human judgement of generated concepts per technique
2. Removal of a conjunct: T (x) ↑i ∃u.>

We select the ith existential conjunct of the input concept x. In Figure
1, we could e.g., choose the 3rd conjunct, ∃hasPart.Wheel. Then we
propose to remove it.

3. Reversal of a conjunct:

∃HasProperty.(T (T (x)→i ∃HasProperty.>)→ ∃Antonym.>)

This formula takes the ith HasProperty conjunct of the input concept
x (e.g., ∃HasProperty.Fast), and picks its target concept (Fast). It
expands this target concept from the terminology, and finds its antonym
(Slow). If the result of this operation exists and is not >, we propose to
replace the original conjunct by the conjunct with the antonym.

For each of these cases, we automatically generate a human-readable question
such as “Can you imagine a car with wings?” (for Addition), “Can you imagine
a car without wheels?” (for Removal), and “Can you imagine a car that is
slow?” (for Reversal).

Experiment. We randomly chose 100 concepts from our terminology. Then
we applied the above formulas to each of them, increasing each variable i, j, k
from 1 to 100. For each formula, we took the first two concepts generated this
way (if they exist). Then we asked 9 computer science students to judge the
generated concepts. We wanted to know whether the proposed modification is
nonsense, already exists in the real world, can be imagined, or is considered
creative. Some of concepts in our filtered ConceptNet do not describe objects,
but people, actions, or events. We could not filter these out automatically, and
hence added an option “This sentence does not describe a physical object”. A
final option is “I don’t understand the sentence”.

In total, we generated 313 new concepts. Of these, 39 did not describe a
physical item. 19 used concepts from ConceptNet that the judge did not under-
stand (such as ny). For the remaining concepts, Table 1 shows the distribution
of human judgements. In up to 29% of the cases, our techniques return non-
sensical concepts, e.g., A solar wind that is used for learning. The addition of
a sibling conjunct is the most risky technique here. In a large number of cases,
our techniques return an existing concept. This is not surprising: it indicates
that ConceptNet is incomplete. Interestingly, it also indicates that our tech-
niques actually generated a reasonable concept. 29%–40% of the concepts we
generate can be imagined, e.g., A patio that is used for an orchestra to sit. Fi-
nally, around 10% of our concepts are considered funny or creative. Examples
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are Broken glass that does not cut feet, A front door without a doorbell, or Jelly
beans that contain chocolate.

Many improvements to our generative formulas can be envisaged, but a full
investigation is outside the scope of the present paper. Here, we only show that
one of the applications of our language is to express formulas that can generate
concepts. We leave the study of better concept generation and more extensive
experimental evaluation (using e.g., criteria proposed in [19]) for future work.

6 Conclusion

In this paper, we have introduced a formal language for combinatorial creativ-
ity. We have justified the choice of our operators and discussed their formal
properties. In our experiments, we have shown that our language can be used
to describe real-world inventions. In another experiment, we have demonstrated
that our language can also be used, to a limited degree, to generate new con-
cepts. For future work, we plan to investigate how our language can be used
to generate reasonable concepts more systematically, thus working towards the
goal of making machines truly creative one day.
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