

Partout : a distributed engine
for efficient RDF processing

Partout : un moteur pour le traitement
distribué de données RDF

Luis Galárraga
Katja Hose

Ralf Schenkel

août 2016

Département Informatique et réseaux
Groupe IC2 : Interaction, Cognition et Complexité

2016D005

Partout: A Distributed Engine for Efficient RDF Processing

Luis Galárraga
Max-Planck Institute for

Informatics
Saarbrücken, Germany

lgallara@mpi-inf.mpg.de

Katja Hose
Department of Computer

Science
Aalborg University, Denmark

khose@cs.aau.dk

Ralf Schenkel
Max-Planck Institute for

Informatics
Saarbrücken, Germany

schenkel@mpi-inf.mpg.de

ABSTRACT
The increasing interest in Semantic Web technologies has led
not only to a rapid growth of semantic data on the Web but
also to an increasing number of backend applications with al-
ready more than a trillion triples in some cases. Confronted
with such huge amounts of data and the future growth, exist-
ing state-of-the-art systems for storing RDF and processing
SPARQL queries are no longer sufficient. In this paper, we
introduce Partout, a distributed engine for efficient RDF
processing in a cluster of machines. We propose an effec-
tive approach for fragmenting RDF data sets based on a
query log, allocating the fragments to nodes in a cluster,
and finding the optimal configuration. Partout can ef-
ficiently handle updates and its query optimizer produces
efficient query execution plans for ad-hoc SPARQL queries.
Our experiments show the superiority of our approach to
state-of-the-art approaches for partitioning and distributed
SPARQL query processing.

1. INTRODUCTION
The increasing interest in Semantic Web technologies led

to a rapid growth of available semantic data on the Web.
Especially advances in information extraction [8, 19, 29, 33]
enabled efficient and accurate extraction of knowledge from
natural language text and its representation in a machine-
readable format – RDF (Resource Description Framework).
DBpedia1, for instance, has now reached a size of 3.6 mil-
lion entities and 1 billion RDF triples extracted from Wiki-
pedia. As the number of Wikipedia articles increases every
day and as information extraction techniques are still being
improved, DBpedia and similar knowledge bases are likely to
keep on growing. Some commercial data sets are even big-
ger by several orders of magnitude; according to the W3C,
commercial data sets have already exceeded the 1 trillion
triples barrier2.

1http://dbpedia.org/
2http://www.w3.org/wiki/LargeTripleStores

It is not only the amount of data provided by a source
that is growing but also the number of sources as the steady
growth of the Linked Open Data (LOD) cloud3 [2] has
shown. LOD sources interlink their data by explicitly refer-
encing data (URIs) provided by other sources and therefore
building the foundations for answering queries over the data
of multiple sources. Furthermore, more and more small RDF
data sets without query processing interfaces become avail-
able on the Web. The data of such sources can usually be
downloaded and processed locally. In the past few years,
such data was crawled for the Billion Triple Challenge and
resulted in about 1.5 billion triples in 20124.

Query processing in these scenarios is challenging because
of the different ways in which sources can be accessed. Some
sources provide SPARQL endpoints, others are available as
downloadable data dumps, and still others as dereference-
able URIs5. This led to a variety of approaches for query
processing that ranges from downloading the data during
query processing [11,13,16] to the application of techniques
known from distributed database systems [17, 26, 31] as a
number of SPARQL endpoints, for instance, resembles a
mediator-based or federated database system. The main
disadvantage of these systems is the lack of control over the
data, i.e., there is no guarantee on response time or that the
data is available during query evaluation or that a source
is answering a subquery at all. Furthermore, statistics that
are essential for query optimization are hard to obtain and
network communication delays are unpredictable.

An alternative approach to answer queries over multiple
RDF sources corresponds to data warehousing, where the
data is downloaded from the Web, collected in a huge triple
store, and updated from time to time. Query processing
in such a setup strongly benefits from efficient centralized
query optimization and execution. Still, the ever-growing
amount of RDF data will sooner or later result in scalability
problems for a single machine. There are two widely used ap-
proaches to solve this problem: buying bigger machines (ex-
pensive mainframes) that can hold and process most of the
data in main memory (centralized processing), or distributed
query processing in a cluster of machines. As the first solu-
tion will sooner or later reach its limits in terms of available
funding or scalability, applying a scale-out architecture and
data partitioning with several cooperating machines based
on commodity hardware is a good alternative, which has not

3http://linkeddata.org/
4http://challenge.semanticweb.org/
5An HTTP lookup of a URI provides a set of RDF triples
with facts about the entity identified by the URI.

ar
X

iv
:1

21
2.

56
36

v1
 [

cs
.D

B
]

 2
1

D
ec

 2
01

2

http://dbpedia.org/
http://www.w3.org/wiki/LargeTripleStores
http://linkeddata.org/
http://challenge.semanticweb.org/

yet been paid much attention to in this context. Although
MapReduce can be used to process SPARQL queries, the
immense overhead caused by starting the jobs makes it in-
ferior to standard techniques for distributed query process-
ing [14]. Similar to distributed databases and data ware-
houses in general, where data is often collected and stored
to serve a particular use case, it is possible for many applica-
tions to derive a representative query workload because the
data is often accessed in a similar way, e.g., simply because
users access the data via a Web form generating SPARQL
queries for a back-end triple store. By exploiting this in-
formation for partitioning the data, we obtain an additional
gain in performance.

In this paper, we propose Partout6, a distributed en-
gine based on a scale-out architecture for RDF data stor-
age and distributed SPARQL query processing in a cluster
of machines. One of the most important cost factors for
query processing in such a setup is communication between
nodes, which can be minimized by partitioning the data in
a way that allows queries to be executed over a minimum
number of nodes. We exploit a representative query load
for partitioning and allocating the data to multiple hosts.
Since access patterns of many applications are regular, such
a query load is often available, or at least information about
frequently co-ocurring subqueries can be collected. In con-
trast to the relational case where data comes in a natural
partitioning into relations, RDF data corresponds to a single
relation with three attributes so that queries involve a high
number of self joins. Thus, standard distributed relational
approaches are not directly applicable.

In summary, this paper makes the following contributions:

• Partout6, a system for scalable RDF storage that can
efficiently handle updates to the data,

• a novel data partitioning and allocation algorithm for
RDF data in consideration of a given sample query
load that finds the optimal configuration of a cluster
of machines, and

• an optimizer for distributed SPARQL query processing
and a cost model for the proposed architecture.

Our evaluation shows that our approach is superior to state-
of-the-art approaches for distributed SPARQL query pro-
cessing.

The remainder of this paper is structured as follows. Af-
ter having discussed related work and preliminaries in Sec-
tions 2 and 3, Section 4 presents a novel method for query
load aware RDF partitioning and allocation. Section 5 then
presents algorithms for efficient query processing and opti-
mization in this setup and Section 6 evaluates the proposed
algorithms and discusses the results. Section 7 finally con-
cludes the paper with a summary and an outlook to future
work.

2. RELATED WORK
We identify four main branches of related work: (i) cen-

tralized and (ii) decentralized approaches for RDF process-
ing as well as (iii) parallel processing in clusters, and (iv)
fragmentation and allocation.

6pronounced like the French word partout ; the name is a
combination of the terms part ition and scale-out

Centralized Approaches
Building efficient databases for storing and querying RDF
on a single machine has been a very active research topic for
some years. Considering RDF data as a big table with three
columns (subject, property, and object), the data can be
stored in relational databases [28]. For RDF data, however,
optimization techniques can be employed that are usually
too expensive for standard relational databases, e.g., heavy
indexing as used by RDF-3X [22] and Hexastore [35].

In addition, alternative storage formats have been pro-
posed, such as property tables [18] combining multiple prop-
erties with the same subject and column stores [1, 32] split-
ting up triples into separate columns for subject, property,
and object.

Distributed Approaches
As more and more RDF knowledge bases become avail-
able on the Web, research also has to consider how to
efficiently answer queries over multiple independent RDF
sources that are accessible on the Web. Considering au-
tonomous SPARQL endpoints, techniques known from dis-
tributed query processing in federated and mediator-based
databases can be adapted [17,26,31]. Query processing over
non-SPARQL endpoints can be realized by downloading the
data during runtime [11, 13, 16] with or without the need
for indexes or by applying the data warehouse approach,
i.e., downloading all available data and relying on efficient
centralized approaches.

Literature has also proposed approaches for RDF process-
ing based on P2P systems [34]. By using an appropriate
overlay design based on a hash function, these systems are
able to assign RDF triples to different peers and find them
efficiently during query processing. Focusing on individual
triples, however, evaluating queries involving multiple joins
can be very expensive in these systems.

Parallel Processing in Clusters
When sources are organized in a cluster, query processing
can make extensive use of parallel processing techniques, as
applied by some commercial systems [3, 9]. Bigdata7, for
instance, uses B+ tree indexes to organize the data, dynam-
ically partitions the B+ tree into index partitions (key-range
shards), and assigns the partitions to the servers. The Vir-
tuoso Cluster Edition8 partitions the data using hashing and
allows to configure which part of the data to use for this pur-
pose, e.g., the first 5 characters of a string. Other systems,
such as the OWLIM Replication Cluster9, increase through-
put by replicating the data to all nodes. However, none of
these approaches considers query loads and therefore can-
not improve performance by adapting to the way in which
the data is actually used during query evaluation so that
complex queries can become expensive.

As an alternative to applying techniques known from par-
allel databases, an increasingly large number of systems uses
MapReduce [7]-style techniques to efficiently process RDF
data in clusters [5, 15, 25]. A common disadvantage shared
by all of them is the large response time of MapReduce pro-
cesses. A number of proposals combine distributed storage
and MapReduce, e.g., using HBase [25] or graph partition-

7http://www.bigdata.com/
8http://virtuoso.openlinksw.com/
9http://www.ontotext.com/owlim/replication-cluster

http://www.bigdata.com/
http://virtuoso.openlinksw.com/
http://www.ontotext.com/owlim/replication-cluster

ing [14]. Huang et al. [14] use a graph partitioner for splitting
the RDF graph and partially replicate triples at the borders
of partitions. When a query cannot be completely answered
by the partitions alone, MapReduce is applied.

Fragmentation and Allocation
In general, there are two important steps when setting up
a distributed database system: fragmentation (partition-
ing the data into smaller fragments) and allocation (assign-
ing the fragments to hosts). In the context of relational
databases, techniques for horizontal (tuple-wise) and verti-
cal (attribute-wise) partitioning according to a given query
load have been published already about twenty years ago.
Today, these techniques are employed by commercial sys-
tems in the context of relational databases [20,24,27], they
are deeply integrated into the system to efficiently make
use of internal statistics, cost models, and the optimizer.
The main problem when trying to apply these approaches
to RDF data and SPARQL queries is that they were devel-
oped for scenarios with different characteristics, e.g., joins
between multiple relations vs. many self-joins for each query
in case of RDF data.

More recently, graph-partitioning techniques have been
proposed to find an appropriate partitioning of relations.
Schism [6], for instance, constructs a graph where tuples
correspond to nodes and edges connect nodes when they are
accessed in the same transaction. The usually very high
number of triples referenced by a SPARQL query during its
evaluation leads to a very limited applicability to large RDF
data sets.

Without consideration of a query load, [14] applies state-
of-the-art graph-partitioning techniques on the RDF data
graph itself, i.e., nodes correspond to entities occurring at
subject positions in the data and two nodes are connected
if a triple exists that refers to both entities (subject and ob-
ject). In order to increase the number of SPARQL queries
that can be answered without cross-partition joins, the ap-
proach uses replication, i.e., triples involving nodes at the
border of a partition are replicated to multiple partitions.

Further systems applying replication have been proposed
on top of P2P architectures. Still, for our problem sce-
nario we cannot make use of them because they either con-
sider each triple separately [12] or make assumptions on
queries [30] that do not conform to the general-purpose setup
we are considering in this paper.

3. PRELIMINARIES

RDF and SPARQL
The Resource Description Framework10, short RDF, is a
data format proposed by the W3C for representing infor-
mation about subjects in a machine-readable format. Sub-
jects are represented as URIs, and statements about sub-
jects are made in form of triples of the form (subject,
property,object), where property is a URI and object is
either a URI or a string literal. Thus, URIs identify
entities (e.g., http://dbpedia.org/page/Berners-Lee), types
(e.g., ex:Person), properties (e.g., rdfs:label), or values
(mailto:em@w3.org). Collections of RDF triples can be repre-
sented as graphs, with subjects and objects as nodes and an
edge from s to o with label p whenever triple (s,p,o) exists.

10http://www.w3.org/TR/rdf-concepts/

Coordinator

Triple Store

Host 1

Triple Store

Host n

Global Statistics

SPARQL
Query

...

Figure 1: Partout System Model

SPARQL11 is a query language for RDF, proposed by the
W3C. At its core are basic graph patterns that consist of
one or more triple patterns, which are in turn triples where
each of the subject, property, and object may be a vari-
able, denoted by a leading ?. Shared variable names among
different triple patterns connect them to a graph pattern.
SPARQL SELECT queries then retrieve bindings for (some
of) the variables. Triple patterns can be marked as optional,
and the value of variables can be constrained by additional
FILTER expressions with operators such as <, =, and > for
numerical values and string functions such as regular expres-
sions. Multiple graph patterns can be combined through a
UNION operator.

We formally represent a SPARQL query q as its set of
graph patterns B(q) = {b1, . . . , bm}. Each graph pattern
b = (T (b), O(b), F (b)) is represented by its (non-optional)
triple patterns T (b), its optional triple patterns O(b), and
its filter predicates F (b).

System Model
The general architecture of our system is depicted in Fig-
ure 1. It consists of a dedicated central coordinator and a
cluster of n hosts that store the actual data. As discussed in
more detail in Section 5, the central coordinator is responsi-
ble for distributing the RDF data among the hosts, building
an efficient distributed query plan for a SPARQL query, and
initiating query execution. It utilizes global statistics of the
RDF data for query planning. Each of the n hosts runs a
triple store, which in our implementation conforms to an
adapted version of RDF-3X [21,22].

4. LOAD-AWARE PARTITIONING
The partitioning and allocation process we propose has

three main steps: (i) extract representative triple patterns
from the query load applying normalization and anonymiza-
tion (Section 4.1), (ii) use the extracted information to parti-
tion the data into fragments defined by fragmentation predi-
cates (Section 4.2), and (iii) allocate the obtained fragments
to hosts (Section 4.3). Table 1 shows an overview of our
notation.

4.1 Extracting Relevant Information from a
Query Load

We assume that we are given a query load QL =
{q1, . . . , qL} of SPARQL queries, possibly including identi-

11http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-sparql-query/

q SPARQL query
B(q) graph patterns of q
T (b) non-optional triple patterns of graph pat-

tern b
O(b) optional triple patterns of b
F (b) filter predicates of b
QL query load

Ω anonymized variable
ω(p) anonymized version of triple pattern p

Θ normalization threshold
Φ(QL) set of anonymized normalized triple pat-

terns in QL
G a graph

G(QL) global query graph
G(QL,M) global fragment query graph

M ′ set of minterms for all simple predicates
M set of minterms for reduced set of simple

predicates
m minterm and the corresponding fragment

(long form: Tm)
F sets of fragments
T set of triples to fragment and allocate
p,r triple patterns, possibly normalized and

anonymized
f(p) frequency of a triple pattern in QL
f(m) frequency of a minterm (based on patterns

in QL)
s(m) size of m (in number of triples)

n number of hosts in the cluster
h a host in the cluster
Fh fragments assigned to host h
Th triples assigned to host h

L(m) load induced by fragment m
L load induced by all fragments
U uniform load over all hosts

CLh current load of host h
SCh storage capacity of host h
St space for storing a triple t

Table 1: Notation used in Sections 4 and 5

cal queries. This can either be collected from a running sys-
tem or estimated from queries in applications accessing the
RDF data. For each such query q ∈ QL, we normalize and
anonymize its (optional and non-optional) triple patterns in
the following way: we replace infrequent URIs and literals
in triple patterns with variables to avoid overfitting to the
query-load, i.e., building fragments that contain only very
few triples and that are accessed only by very few queries.
Frequent URIs and literals, however, will not be pruned –
the frequency threshold Θ above which URIs and literals are
normalized is a parameter determined by the application sce-
nario. We never normalize properties. Thus, for each triple
pattern, we obtain its anonymized version ω(p), where each
variable is replaced by the same anonymized symbol Ω. We
denote the set of all normalized and anonymized triple pat-
terns included in the query load QL by Φ(QL).

The global query graph G(QL) for query load QL has the
anonymized triple patterns of all queries q ∈ QL as nodes
and an undirected edge {p, r} iff there is at least one query
q ∈ QL that contains patterns p′ and r′ with ω(p′) = p,
ω(r′) = r, and p′ and r′ share a common variable, i.e., they
join in q; we say that q is a witness for the edge {p, r}. The

weight of such an edge {p, r} is the number of its witnesses
in QL. We further assign a frequency f(p) to each node p
of G(QL) which corresponds to the number of queries from
QL that contain p.

As an example, consider the following query load QL, fo-
cusing on triple patterns and filter expressions only:

• ?s rdf:type db:city . ?s db:located

db:Germany . ?s db:name ?n . (2x)

• ?s rdf:type db:city . ?s db:located db:USA .

?s db:population ?p .

• ?s rdf:type db:company . ?s db:located

db:Germany .

• ?s db:name ?c . ?s db:revenue ?r .

FILTER(?r≥ 109$)

• ?s db:name "Apple" . ?s db:revenue ?r . (10x)

Assuming a normalization threshold of 2 (Θ = 2), we re-
place constants db:USA and db:company by a variable but
keep db:Germany, db:city, and "Apple". The correspond-
ing global query graph G(QL) is depicted in Figure 2.

Figure 2: Example Global Query Graph G(QL)

4.2 Fragmentation
Given a set of triples T (content of the triple store) and

a query load QL, the second step is to determine appro-
priate partitions. Similar to horizontal fragmentation of re-
lations [4, 23], we extract a set of simple predicates from
QL. A simple predicate is a constraint on a triple com-
ponent (subject, property, or object) and either (i) com-
pares a triple component to a constant or URI, i.e., pred-
icates of the form a op const, where a ∈ {subj, prop, obj},
op ∈ {<,≤,=,≥, >}, and const is a constant literal or URI
or (ii) evaluates a function with a boolean result such as
isIRI() and value-based comparisons to constants, using
again one of {subj, prop, obj} to indicate on which compo-
nent of a triple the function is applied. We do not consider
more complex expressions such as subj = obj.

To build the set S(QL) of simple predicates for
query load QL, we consider the anonymized triple pat-
terns as well as the filter expressions. For each t ∈
Φ(QL), each position that does not contain Ω cre-
ates a simple predicate. The set of simple predi-
cates derived from the example query load introduced
above consists of: prop=rdf:type, prop=db:located,

prop=db:population, prop=db:revenue, prop=db:name,
obj=db:city, obj=db:Germany, obj="Apple", and obj≥
109$.

Based on the set of simple predicates S(QL), we generate
the set M ′ of minterms, i.e., all conjunctive combinations
of simple predicates in their positive or negated form, or
formally [4]

M ′ := {
∧

p∈S(QL)

p∗} (1)

where p∗ is either the simple predicate p itself or its negation
¬p. Each minterm defines a partition of the data set T and
the set of all minterms M ′ partitions all triples in T into
|M ′| non-overlapping partitions.

The number of minterms is exponential in |S(QL)| and is
therefore reduced in two ways: (1) we reduce S(QL) to a
subset that is complete (i.e., contained predicates generate
fragments that have triples with uniform access patterns)
and minimal (i.e., all its predicates influence fragmentation
and a fragmentation caused by a predicate is accessed dif-
ferently by the queries in the query load). We apply the
COM MIN algorithm [23], which, given a set of simple pred-
icates as input, iteratively constructs a set of simple pred-
icates ensuring minimality and completeness in each step.
Furthermore, (2) we eliminate all minterms containing con-
tradicting conditions, i.e., contradicting conditions on the
same triple component (subject, property, or object) apply-
ing knowledge about the semantics of functions that may be
called, e.g., isLiteral(obj) and isIRI(obj) will not return
true for the same obj.

This process leads to a smaller set M of minterms with
fewer predicates. Each such minterm m ∈M defines a frag-
ment Tm ⊆ T of the set of triples, consisting of all triples
that satisfy the minterm predicate m. These fragments form
a complete fragmentation of T since any triple is assigned
to at least one fragment by construction of the minterms.
They also form a disjoint fragmentation of T since no triple
is assigned to multiple fragments, again by construction of
the minterms. For notational simplicity, we will identify
fragment Tm by its corresponding minterm m.

Applying these considerations to our example, we re-
move redundant predicates and contradicting minterms. Let
us assume that the example data set provides information
about 3000 cities and 2000 companies all with revenues
greater than 109$ and it does not provide location infor-
mation for all resources. Then, the predicate obj≥ 109$
is redundant and therefore removed because the minterms
containing this predicate in its positive form are not af-
fected by its presence or absence (the predicate is always
true) and minterms containing the predicate in its nega-
tive form generate empty fragments – minimality of M .
After having removed redundant predicates and minterms
with contradicting constraints, e.g., prop=db:located and
prop=db:population, we obtain the set of minterms M , or
fragment definitions respectively, listed in Table 2 – along
with access frequency, size, and expected load. In every row,
the symbol ζ denotes all not explicitly mentioned predicates
in their negated form, e.g., ζ := ¬p1 ∧ ¬p2 · · · ∧ ¬pk.

COM_MIN algorithm
The key consideration that the COM MIN algorithm relies
on is that in each step, it evaluates another simple predi-
cate and compares the obtained fragmentation with it to the

fragmentation without it. For this purpose, the algorithm
builds all possible minterms and determines access frequen-
cies and query load for each fragment defined by a minterm.
By comparing the signatures of the two fragmentations, i.e.,
the expected load for each fragment L(m) (determined using
the query load, the access frequency f(m) and the fragment
size s(m): L(m) := f(m) · s(m)), the algorithm can effi-
ciently determine if adding the predicate is an improvement
(signature changed) or not.

For each fragment m, we need to compute its access fre-
quency f(m) and its size s(m). Given a minterm m ∈ M
and a triple pattern p ∈ Φ(QL), we say that m overlaps
with p if there is at least one triple that matches both m
and p. The access frequency f(m) of m is then the sum of
the frequencies of triple patterns from Φ(QL) that overlap
with m.

We could evaluate the size s(m) of m by evaluating m
over all triples in T , but that would often be too expensive.
Instead, we consider only a sample large enough to index
with a centralized RDF store (we use the open-source system
RDF-3X [22]), and evaluate the query on the sample or, even
more efficient, use engine statistics to estimate the number
of results; the latter is usually only possible for equality
predicates.

4.3 Fragment Allocation
Once fragments have been defined, they need to be allo-

cated to the n hosts in our cluster. On the one hand, we
want to assign fragments that are used together in a (part
of a) query to the same host (goal 1) so that the query can
be executed locally on that host without transferring inter-
mediate results between hosts. On the other hand, we want
to balance the load over all nodes in the cluster (goal 2).

To define the load L(m) attributed to a fragment m, we
consider the number of queries f(m) for which that frag-
ment is accessed, and assume that all s(m) triples of m
are accessed for each such query. Consequently, we get
L(m) := f(m) · s(m). Given a fragmentation M , the to-
tal load L on our system is therefore

L :=
∑
m∈M

L(m) (2)

When the load is uniformly balanced over all n hosts in
our cluster, each node is assigned a load of

U :=
L

n
(3)

Given fragmentation M and query load QL, we now define
the global fragment query graph G(QL,M) which has the
fragments as nodes and an undirected edge {a, b} whenever
there are triple patterns p, r ∈ Φ(QL) such that a overlaps
with p, b overlaps with r, and there is an edge {p, r} in
G(QL); the weight w(a, b) of the edge {a, b} is the sum of the
weight of all such edges in G(QL) (i.e., the number of queries
that contain a join of triple patterns that overlap with a and
b, respectively). Figure 3 shows the global fragment query
graph G(QL,M) for our running example.

We denote the set of fragments assigned to host h as Fh,
and the current load of host h as CLh :=

∑
m∈Fh

L(m).

Initially, no fragments are assigned to any host, thus Fh = ∅
and CLh = 0 for all hosts h.

We can now define the benefit of allocating a currently

Minterm Freq. Size Load
1 prop=db:revenue ∧ ζ 11 2000 22000
2 prop=db:name ∧ ζ 2 4499 9998
3 prop=rdf:type ∧ obj=db:city ∧ ζ 3 3000 9000
4 prop=db:population ∧ ζ 1 3000 3000
5 prop=rdf:type ∧ ζ 1 2000 2000
6 prop=db:located ∧ ζ 1 1700 1700
7 prop=db:located ∧ obj=db:Germany ∧ ζ 3 300 900
8 prop=db:name ∧ obj=Apple ∧ ζ 10 1 10
9 ζ (Remainder fragment) 0 3000 0

Table 2: List of Minterms M (fragments) Obtained for Our Example.

Figure 3: Global Fragment Query Graph.

unallocated fragment m to host h as

benefit(m,h) :=
2 · U

U + CLh
·
∑

m′∈Fh

(
w(m,m′) + 1

)
(4)

The first part of this definition results in a higher benefit
for allocating a fragment to a host which is currently under-
loaded or in a reduced benefit for already overloaded hosts
(goal 2). The second part of the definition results in a high
benefit for allocating fragments to a host where many frag-
ments are already allocated that join frequently with this
fragment (goal 1).

In addition, we have to consider the space constraint, i.e.,
a fragment m with size s(m) can only be assigned to a host
h if its storage capacity SCh is not exceeded. Denoting the
average storage space required for a triple as St, we obtain
the constraint:

SCh ≥ s(m) · St +
∑

m′∈Fh

(s(m′) · St) (5)

For allocating fragments to hosts, we use the following
greedy algorithm:

• We allocate fragments in descending order by their
load L(m).

• For each fragment, we calculate the benefits of allocat-
ing it to every host and assign it to the most beneficial
host for which the space constraint is not violated.

Assume we need to allocate the fragments we generated for
our running example to three hosts (n = 3). We start with
allocating fragment 1 (highest load, Table 2) to a random
host (host 1). For Fragment 2 we determine the benefits of
assigning it to host 1 (benefit: 0.85), host 2 (benefit: 2),
and host 3 (benefit: 2) – we assign it to host 2. After hav-
ing assigned all fragments to hosts, we obtain the following
allocation: host 1 is assigned fragments 1 and 8, host 2 is
assigned fragment 2, and host 3 is assigned fragments 3, 4,
5, 6, and 7. Fragment 9 is receiving special treatment as
explained below.

Avoiding Imbalance
The construction of minterms based on predicates occurring
in queries (Section 4.2) produces one minterm that contains
all predicates in their negated form, i.e., the correspond-
ing fragment contains all triples that do not match any of
the simple predicates contained in the queries of the train-
ing data set. In many cases, this “remainder” fragment is
much bigger than all the other fragments and would lead to
a highly imbalanced usage of storage space at the sources.
Thus, in case it is significantly bigger than the other frag-
ments, we need to split it up into smaller fragments and
assign it to other partitions.

To integrate this consideration into our implementation,
all fragments but the remainder fragment are assigned as
described above. Afterwards, we apply hash partitioning to
assign the triples of the remainder fragment to partitions.
The reason is that, in case of all the other fragments the
global query optimizer can efficiently decide on the relevance
of a fragment by comparing the fragment definition to the
predicates contained in the query. In any other case, the op-
timizer has to use statistics or query all available fragments.
Thus, the decision whether to ask two or all fragments of
roughly the same sizes has only little influence on response
time because queries are processed in parallel at different
hosts whereas querying a much bigger fragment would in-
crease response time.

Handling Updates
Partout can efficiently handle updates: when a new triple
is inserted, the coordinator uses the fragment definitions to
determine the responsible partition and sends the triple to
the corresponding host. The procedure for deletions uses
the same principle. If a modification of a triple does not
affect allocation, the corresponding host handles it locally.
Otherwise, the coordinator converts the update into a dele-
tion followed by an insertion and notifies the corresponding
hosts. We expect that inserts and deletes are usually sub-
mitted in batches and can therefore be handled efficiently.
If a host is heavily overloaded as a result of many newly in-
serted triples allocated to it, some of its assigned fragments
might be relocated to other hosts.

Bootstrapping
The process of distributing the triples in T to the hosts is
run after the allocation is finished. The central coordinator
first scans T once to build a global dictionary of strings (i.e.,
URIs and literals) and a unique mapping of these strings to
integer ids, and distributes this mapping to all hosts. If T
can be accessed from every host, each host then indepen-
dently scans T and inserts the triples matching its assigned

fragments into its local triple store. If T can be accessed
only at the central coordinator, the coordinator scans T ,
collects triples to be stored at the hosts, and sends them to
their target host. Although our current implementation uses
a central coordinator for bootstrapping, this process can be
easily parallelized. The global dictionary, for example, can
be built in parallel by splitting T into multiple temporary
partitions (e.g., using a hash function), creating dictionaries
for the partitions in parallel, and merging these dictionaries
afterwards.

4.4 Determining the Optimal Number of
Hosts

The allocation algorithm introduced above assumes a
fixed number of hosts n as input. To find the optimum trade-
off between communication costs during query processing
and load balancing, the configuration (number of hosts n)
resulting in the minimum response time for the given query
load should be chosen. Thus, to find the optimal number of
hosts, we run the allocation algorithm for different values of
n and choose that value for n that produces the minimum
estimated response time for the given query load – using the
query optimizer and cost model introduced in Section 5 for
estimation.

5. DISTRIBUTED QUERY PROCESSING
Having set up a distributed system as explained above,

we also need a query optimizer that generates efficient query
execution plans. In the following, we first introduce the gen-
eral setup of software components and statistics, and then
provide details on how our optimizer works and how a query
is evaluated.

5.1 System Setup and Statistics
As Figure 1 illustrates, distributed query processing in

Partout involves two software components: a coordina-
tor and multiple slaves – both based on RDF-3X [21, 22].
Queries are issued at the coordinator, which is responsible
for generating a suitable query plan for distributed query
execution. The data is located at the slaves, each manag-
ing a set of fragments of the original database (referred to
as partition). The slaves execute the parts of the query as-
signed to them over their local data and send the results to
the coordinator, which will finally hold the query result.

Coordinator
The coordinator does not have direct access to the actual
data but instead uses a global statistics file generated at
partitioning time containing the following information:

• Fragment definitions, their sizes, and host mappings.
Statistics contain information about how the frag-
ments were created, their cardinality, and which hosts
they were assigned to.

• String dictionary with the unique string-to-integer
mapping used in all hosts, i.e., not the original strings
are stored but the ids they were mapped to. The dic-
tionary is built during bootstrapping (Section 4.3).

• Statistics. The coordinator estimates all necessary
statistics based on a representative sample, e.g., the
same one that was already used in Section 4.2 to esti-
mate sizes of potential fragments. Alternatively, if the

coordinator has enough free storage space, it can also
retrieve detailed statistics directly from the slaves us-
ing caching or aggregation to limit the amount of used
space. The statistics we work with to estimate costs
for operators, such as index scans, are the number of
entries and the number of pages necessary to store the
data.

To avoid a single point of failure and bottlenecks, this infor-
mation can be replicated among several hosts.

The Slaves
Slaves are lightweight server processes running at different
machines. They are listening for execution requests coming
either from the coordinator or from other slaves and execute
them over their local partition. With all necessary statistics
being available at the coordinator, slaves do not need a local
query optimizer.

5.2 Global Query Optimization
Optimizing for response time, our goal is to find query ex-

ecution plans that minimize the time that elapses from the
initiation of a query to its completion. Partout’s global
query optimization algorithm avoids exhaustive search as
estimating costs for all possible plans would be too expen-
sive in a distributed environment because of the additional
options for query execution. We apply a two-step approach
starting with a plan optimized with respect to cardinali-
ties and selectivities and then apply heuristics to obtain an
efficient plan for the distributed setup. As the RDF-3X op-
timizer is known to produce efficient query execution plans,
we have the coordinator create such a plan using the avail-
able statistics and use it as input for the second step. In the
second step, we rely on a cost model that helps us identify
good plans for distributed query execution.

Initial Query Plan
RDF-3X, and therefore each Partout slave, maintains local
indexes for all possible orders and combinations of the triple
components (and for aggregations), which enable efficient
local data access. Hence, leaf-level operators in query plans
are index scans corresponding to triple patterns in the query.
For instance, the triple pattern (?s,rdf:type,db:city) results
in a scan of the POS index, retrieving matching subjects
for given property and object values in increasing id order.
This is exploited for join operators which are implemented
by efficient merge joins whenever the two inputs are ordered
by the join attribute; if that is not the case, the inputs need
to be sorted or a hash join is applied. For more details about
the RDF-3X optimizer, which uses dynamic programming,
we refer the reader to the respective literature [21,22].

Distributed Cost Model
In general, the initial query execution plans produced by
the RDF-3X optimizer use pipelining whenever possible, i.e.,
most operators will report results to the next operator in the
hierarchy before the result has been computed completely.
The only exception to this rule are pipeline breakers, such
as the sort operator, that need to read the complete input
before producing the first result. To minimize communica-
tion costs in the distributed setup, we do not transfer each
tuple individually to another host but in batches (pages) of
1024 results.

Finding the best query execution plan requires a cost func-
tion c(plan) that determines the execution costs for a plan
plan. As defined in Equation 6, the costs c(plan) of a plan
are defined as the costs c(RootOp) of its root operator.

c(plan) = c(RootOp) (6)

The costs of an operator op consist of its execution costs
xc(op) (the estimated response time to evaluate it, which can
be estimated by the RDF-3X optimizer), the costs of its child
operators (because of exploiting parallelism in combination
with response time, we only need to consider the maximum
of all children), and possibly the costs tc(x, op) to transfer
the results between hosts:

c(op) = xc(op) + max
x∈children(op)

(tc(x, op) + c(x)) (7)

We can estimate the costs to transfer results from operator
x to operator op as:

tc(x, op) =

{
tpage ·

⌈
excard(x)

1024

⌉
;hh(x) 6= hh(op)

0 ; otherwise
(8)

hh(op) denotes the home host of an operator and excard(op)
is the expected output cardinality of operator op as esti-
mated by the RDF-3X optimizer. We assume that com-
munication costs for one page of data are symmetric, con-
stant, and equal to tpage, which has to be empirically mea-
sured for a specific setup. Still, tpage can easily be replaced
by more complex models and hence be adapted to environ-
ments with heterogeneous network topologies and distances
between hosts.

Query Planning
The leaf nodes of the initial query plan represent index scans
on a global database corresponding to triple patterns in the
query. In our setup, however, the triples matching these
triple patterns are spread across the hosts. Thus, we first
need to identify the hosts that are relevant to the leaf node
scans.

Using the coordinator’s statistics, more specifically frag-
ment definitions and host mappings, we compare the triple
pattern to the fragments’ minterm definitions and thus iden-
tify if a host’s partition contains a fragment with relevant
data. If the triple pattern overlaps with the minterm of the
remainder fragment, all hosts might be relevant in depen-
dence on its treatment during allocation (Section 4.3). The
leaf nodes in the initial plan are replaced accordingly: if
there is only a single relevant host for a leaf operator, the
scan for the triple pattern is exclusively executed at that
host. If there is more than one relevant host, the scan is ex-
ecuted at each host and their results are combined through
a chain of binary merge-union (BMU) operators preserving
sort order.

In the obtained plan, leaf operators in the query plan are
annotated with their execution site (home host), i.e., the
hosts holding the data the operator refers to. In the next
step, the optimizer has to assign home hosts to inner op-
erators as well – with hh(op) denoting the home host of
operator op. Moreover, the optimizer considers to replace
the chains of BMU operators with distributed joins. Thus,
the optimizer recursively traverses the operator tree, assigns
hosts to the inner nodes, applies transformations, and uses
the cost model to find an efficient query execution plan.

In a bottom up fashion, starting at the leaf nodes, the
home host for an operator on a higher level is selected among
the set of home hosts assigned to its children and the candi-
date home host for the root operator – the optimizer consid-
ers each available host as a candidate for the root operator,
which generates good candidate execution plans that would
not be found using a purely greedy approach based on the
hosts of child operators only. For chains of BMU operators,
the optimizer does not consider each BMU operator in sep-
arate but assigns the same home host to all BMU operators
and the parent operator (e.g., a join) of the topmost BMU
operator.

The optimizer also considers transformations to the query
plan motivated by heuristics if applicable and evaluates the
benefit of the transformation using the cost model. One
of them is to prefer merge joins over hash joins, another
one is to push down selections and projections contained
in the query using standard algebraic transformation rules
exploiting associativity, commutativity, and distributivity
rules. Another transformation tries to improve the plan by
introducing distributed joins that exploit pipelining. For
example, for a join involving multiple hosts (i.e., a chain of
BMU operators), the optimizer (i) identifies all relevant com-
binations of partial joins between involved hosts, (ii) adds a
MergeJoin operator for each combination, and (iii) combines
partial results using binary merge union (BMU) operators.
Especially for non-selective queries with many intermediate
results, this transformation can significantly reduce response
time because many tuples can be processed in parallel.

Example
Figure 4 shows an example query execution plan obtained
by applying the algorithm above on the following query:

SELECT ?NAME WHERE {

?s rdf:type db:city .

?s db:located db:Germany .

?s db:name ?name . }

According to the statistics, hosts H1, H2, and H3 hold rele-
vant data for the first triple pattern, only H1 for the second,
and only H2 for the third. For local access to the triples at
each host, the POS (predicate-object-subject) index is cho-
sen by the RDF-3X optimizer. The optimizer added a chain
of BMU operators to scan the data for the first triple pat-
tern and computes the join with the second triple pattern,
and therefore with the data provided by host H1, using a
chain of efficient MergeJoins. According to the cost model,
the optimizer decided to have the MergeJoins executed at
host H1, which uses local pipelining to execute the assigned
parts of the query plan efficiently in parallel.

Note that, although in this example most of the compu-
tation is done using pipelining at the same host, in general
bigger parts of the query are executed in parallel at differ-
ent hosts. Furthermore, load balancing can be improved by
extending the cost model to consider the load generated by
currently running queries.

5.3 Query Execution
For query execution, the optimized query plan is extended

with operators for exchanging data between hosts (Remote
Sender and Remote Fetcher operators). Thus, whenever
the home host of a child node differs from the one of its
parent node, the two operators are inserted. Before query

Figure 4: Example query execution plan after optimization

execution can start, subqueries are identified and sent to the
corresponding home hosts for execution.

Query execution at each host starts as soon as inputs to an
operator are available, e.g., local index scans, intermediate
results of local operators, or results retrieved via Remote
Fetcher operators. Results of root nodes are forwarded to
other hosts according to the corresponding Result Sender
operator when either one page of results is filled (pipelining)
or all results have been generated.

6. EVALUATION
To evaluate Partout’s partitioning technique, we com-

pared it against a variant (fragmentation by property) used
by state-of-the-art approaches that defines partitions using
predicates contained in the query load and that does not con-
sider the co-occurrence of predicates in the queries for frag-
ment allocation. We also measured performance using the
centralized RDF-3X version that Partout is based upon.

Moreover, we compared Partout’s partitioning technique
to the 2-hop directed partitioning proposed by Huang et
al. [14], i.e., after having applied a graph-partitioning algo-
rithm on the complete data set (RDF graph), triples at the
borders of the obtained partitions are replicated. Assume,
for instance, the node db:AngelaMerkel is a border node and
assigned to partition 1, then all triples with this node as
subject are assigned to partition 1, e.g., (db:AngelaMerkel,
db:livesIn,db:Berlin). In addition, all triples connected to
the border node in a distance of 2 hops (e.g., (db:Berlin,
db:locatedIn,db:Germany)) are replicated to partition 1 al-
though their subject nodes and therefore the triples are as-
signed to other partitions. The replication allows to eval-
uate queries in one partition although relevant triples are
originally assigned to other partitions. If a query cannot
be answered completely on a single partition (e.g., the di-
ameter of the query graph pattern exceeds a threshold –
a so-called non-PWOC query), Huang et al. propose the
use of MapReduce, which results in a start-up overhead of
about 20 seconds [14]. As our main interest concerns the
proposed partitioning technique, our implementation avoids
the expensive use of MapReduce; instead, we split up a non-
PWOC query into subqueries that each can be handled by

a single partition, and use a pipelined query plan involving
hash joins and union operators. Therefore, execution times
for non-PWOC queries are much lower than they would have
been with the original system because we save the substan-
tial overhead that comes along with MapReduce. In the
following, we will refer to this implementation as HAR+.

Setup
All experiments were implemented on top of RDF-3X ver-
sion 0.3.612 using a cluster of machines each with an Intel
Xeon E5430 processor and 32 GB of RAM running Debian
GNU/Linux 6.0 for 64 bits. The machines ran instances of
Partout’s lightweight slave component each managing one
data partition. An additional machine ran the coordinator
component; an Intel Xeon E5530 processor, 32 GB of RAM
running Debian GNU/Linux 5.0.9 for 64 bits.

Datasets
Sp2Bench is one of the datasets of the FedBench bench-
mark13 and, as part of FedBench, includes 10M RDF triples
of synthetic bibliographic information. The second dataset
originates from the Billion Triple Challenge (BTC) 200814

and was already used in [21] to evaluate RDF-3X. It con-
tains more than 500M triples originating from different
datasets that are part of the Linked Open Data cloud. Note
that we could not use the Lehigh University Benchmark
(LUBM) [10] used by Huang et al. [14] because most of
its queries require inferencing, which is not supported by
RDF-3X and therefore lead to empty results.

6.1 Billion Triple Challenge (BTC)
As no standard benchmarks are available for this use case,

we generated 30 random queries from the complete data set
by randomly picking properties from the data, using the
property as a seed to generate a triple pattern, and ex-
tending the triple pattern according to the available data
to SPARQL queries (limiting the max. number of triple

12http://code.google.com/p/rdf3x/
13http://code.google.com/p/fbench/
14 http://challenge.semanticweb.org/

http://code.google.com/p/rdf3x/
http://code.google.com/p/fbench/
http://challenge.semanticweb.org/

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

re
sp

on
se

 ti
m

e
(m

s)

queries

Centralized By property Partout HAR+

(a) 3 hosts

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

re
sp

on
se

 ti
m

e
(m

s)

queries

Centralized By property Partout HAR+

(b) 5 hosts

Figure 5: Response Times for the Billion Triple Challenge (BTC) Data Set

patterns for a star-shaped query to 6 and for a path-shaped
query to 4). For presentation, we have ordered the queries
according to their main characteristics, i.e., queries 1 and
2 consist of a single triple pattern, queries 3 to 6 are path-
shaped queries, queries 7 to 9 are double-star-shaped path
queries (two connected star query patterns), queries 10 to
30 correspond to star-shaped queries. With respect to the
technique proposed by Huang et al. queries 3, 4, 5, 7, 10,
11, 12 correspond to non-PWOC queries.

Having determined the optimal number of hosts for our
setup (Section 4.4) to be 3, we present our results for a
Partout configuration with 3 and 5 slave hosts in Figure 5.
The first observation is that the workload-aware partitioning
technique proposed in this paper outperforms by-property-
partitioning and therefore state-of-the-art approaches rely-
ing on such a technique. The reason for the gain in perfor-
mance is the consideration of co-occurrences of triple pat-
terns in queries during partitioning and allocation. Ignoring
these co-occurrences, fragments corresponding to triple pat-
terns involved in a join are likely to be assigned to different
hosts and much data needs to be transferred to answer a
query.

For 3 hosts, Partout even outperforms the centralized
approach for almost all the queries. The reason is that in
Partout, query processing benefits from parallel query pro-
cessing on smaller partitions, i.e., parts of the query are ex-
ecuted in parallel and evaluating a query on a smaller frag-
ment is faster than on the complete original data set. Fur-
thermore, having optimized the partitioning with respect to
a particular query load, Partout can often identify a single
partition that can answer the query completely, eliminat-

ing the need for costly communication between hosts. In
the experiments for 5 hosts, we see the negative influence of
communication on some queries, i.e., response time for some
of the queries is higher than for 3 hosts because relevant frag-
ments have been assigned to different hosts for the benefit
of load balancing. Note that when setting up the system
(Section 4.4), Partout would have identified 3 hosts to be
the optimum.

Similar observations hold for HAR+. Whereas Partout
often identifies a relevant partition, for HAR+ (because of
the absence of fragment definitions) all partitions (hosts)
have to participate (run the query in parallel) and for non-
PWOC queries compute a join across partitions. Further-
more, the necessary removal of duplicates introduced by the
replication increases processing time for HAR+, even though
we use an additional isOwned triple to indicate the original
partition of a triple (i.e., the partition of its subject) [14];
however, this results in an additional join during query eval-
uation.

6.2 Sp2Bench
Figure 6(a) reports our results for the FedBench13

Sp2Bench benchmark with 2 hosts. We used a modified
subset of the benchmark queries; we removed components
and queries (such as optional, offset, etc.) that RDF-3X
does not support. The dataset is rather small in compari-
son to the BTC dataset – only 10 million RDF triples. In
fact, the approach outlined in Section 4.4 would report that
1 host is the optimal configuration. The benchmark queries
were designed to generate high load on a system, i.e., expen-
sive queries with joins whose evaluation basically involves all

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

re
sp

on
se

 ti
m

e
(m

s)

queries

Centralized By property Partout HAR+

(a) Response Times for Sp2Bench with 2 hosts

0
20
40
60
80

100
120
140
160

0 200 400 600 800

qu
er

ie
s

pe
r s

ec
on

d

concurrent queries

Centralized Partout
HAR+ By property

(b) Throughput for the BTC data set with 3 hosts

Figure 6: Response Times for Sp2Bench and Throughput for BTC

the data in the system. The results show that even though
evaluating most of these queries involves all the data of all
partitions and Partout has the disadvantage of communi-
cation costs, Partout’s performance is still competitive in
comparison to the other approaches, especially the central-
ized approach.

6.3 Throughput
We also ran experiments to compare the approaches with

respect to throughput at different levels of concurrency –
we issued the set of queries several times in intervals of 1
second. The results for the BTC data set running 3 hosts
are depicted in Figure 6(b). With all queries handled by one
machine, the centralized approach does not scale that well
for this large data set. The number of concurrent queries
is also limited for the by-property-partitioning approach be-
cause of the high level of necessary communication between
hosts – tests with more than 120 concurrent queries already
ran into a timeout. Similar problems occur with HAR+;
with the need of sending each query to all hosts and remov-
ing duplicates, high load is generated for all machines and
it is hence difficult to handle a large number of concurrent
queries. By sharing the load among 3 hosts, Partout can
efficiently handle concurrent queries because for each query
that can be answered by a single host, load at all the other
nodes is not affected.

6.4 Discussion
The evaluation results show that Partout’s performance

in a distributed setup is competetive to other architectures,
even the centralized one. Especially in terms of through-
put Partout scales much better than any of the other ap-
proaches because Partout does not always require the par-
ticipation of all hosts when evaluating a query, and each host
keeps only a subset of the data.

In our current implementation, we do not consider repli-
cation, i.e., each triple is stored only once. In comparison
to other approaches this reduces the overall amount of data
that has to be stored in the whole system. At the same time,
it alleviates the problem of handling duplicates. More im-
portantly, it enables Partout to efficiently handle updates,
which is, as discussed in Section 4.3, much more difficult and
expensive in other distributed systems using replication.

For query execution, however, Partout would benefit
from replication and some queries could be executed even
more efficiently. We can extend Partout with replication
by running the fragmentation and allocation algorithms as

explained in this paper and replicating fragments to hosts ac-
ccording to the benefit and the global fragment query graph
in a second round. In so doing, Partout would also better
scale with the number of hosts and might in extreme cases
lead to a system where the data is replicated to all nodes.
However, as a consequence of such a replication, updates
would be less efficient, query optimization would become
more complex, and local query execution at the hosts would
be slower because of the larger data sets they have to man-
age, so throughput could decrease.

As the focus of this paper is partitioning the data accord-
ing to a query load and showing that an appropriate dis-
tributed approach without replication can already compete
with existing solutions, we consider replication an orthogo-
nal problem and will consider it in detail in our future work.

7. CONCLUSION
In this paper, we have proposed Partout, a distributed

system for evaluating queries over large amounts of RDF
data. Building upon a state-of-the-art triple store for cen-
tralized query execution, this paper focused on higher-level
problems that come along with the distribution: data par-
titioning, allocation, and distributed query processing. In
consideration of the query load, we presented algorithms
for partitioning the data into fragments and assigning the
obtained fragments to the set of available hosts so that frag-
ments that are often needed in combination to evaluate a
query are located at the same host. We also presented a
query optimizer along with a distributed cost model and sev-
eral heuristics that lead to efficient query execution plans
that also exploit pipelining. Our evaluation results show
that the proposed techniques are suitable for the distributed
setup and especially speed up queries involving large inter-
mediate results that in combination with a beneficial alloca-
tion scheme do not have to be transferred to another host.
Moreover, throughput scales much better with the number
of queries in comparison to alternative approaches. Our ex-
periments also showed that setting up a distributed system
in consideration of replication and without consideration of
a query load has advantages in some scenarios, which are,
however, very often outweighed by the need to handle du-
plicates during query processing and the absence of means
to identify irrelevant hosts. Nevertheless, in our future work
we will try to combine the advantages of query-load aware
partitioning and replication in one system trying to avoid
the disadvantages we have identified. Partout in its cur-

rent state can already efficiently handle updates on the data.
In our future work, we plan to consider also changes in the
query load, i.e., finding answers to the question how a run-
ning system might be adapted efficiently and identify when
it is worthwhile to reconfigure.

8. REFERENCES
[1] D. J. Abadi, A. Marcus, S. Madden, and

K. Hollenbach. SW-Store: a vertically partitioned
DBMS for Semantic Web data management. VLDB
J., 18(2):385–406, 2009.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[3] P. Castagna, A. Seaborne, and C. Dollin. A parallel
processing framework for RDF design and issues.
Technical Report HPL-2009-346, Hewlett-Packard
Labs, 2009.

[4] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data
partitioning in database design. In SIGMOD, pages
128–136, 1982.

[5] H. Choi, J. Son, Y. Cho, M. K. Sung, and Y. D.
Chung. SPIDER: a system for scalable, parallel /
distributed evaluation of large-scale RDF data. In
CIKM, pages 2087–2088, 2009.

[6] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden.
Schism: a workload-driven approach to database
replication and partitioning. PVLDB, 3(1):48–57,
2010.

[7] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51:107–113, January 2008.

[8] A. Doan, L. Gravano, R. Ramakrishnan, and
S. Vaithyanathan, editors. Special issue on
information extraction. SIGMOD Record, 37(4), 2008.

[9] Franz Inc. AllegroGraph.
http://www.franz.com/agraph/allegrograph/.

[10] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. Web Semant.,
3(2-3):158–182, Oct. 2005.

[11] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U.
Sattler, and J. Umbrich. Data summaries for
on-demand queries over linked data. In WWW, pages
411–420, 2010.

[12] A. Harth, J. Umbrich, A. Hogan, and S. Decker.
YARS2: A federated repository for querying graph
structured data from the Web. In ISWC/ASWC,
pages 211–224, 2007.

[13] O. Hartig. Zero-knowledge query planning for an
iterator implementation of link traversal based query
execution. In ESWC (1), pages 154–169, 2011.

[14] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
Querying of Large RDF Graphs. PVLDB,
4(11):1123–1134, 2011.

[15] M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R.
Khan, and B. M. Thuraisingham. Heuristics-based
query processing for large RDF graphs using Cloud
Computing. IEEE Trans. Knowl. Data Eng.,
23(9):1312–1327, 2011.

[16] G. Ladwig and T. Tran. SIHJoin: Querying remote
and local linked data. In ESWC (1), pages 139–153,

2011.
[17] A. Langegger, W. Wöß, and M. Blöchl. A Semantic

Web middleware for virtual data integration on the
Web. In ESWC, pages 493–507, 2008.

[18] J. J. Levandoski and M. F. Mokbel. RDF data-centric
storage. In ICWS, pages 911–918, 2009.

[19] N. Nakashole, M. Theobald, and G. Weikum. Scalable
knowledge harvesting with high precision and high
recall. In WSDM, pages 227–236, 2011.

[20] R. Nehme and N. Bruno. Automated partitioning
design in parallel database systems. In SIGMOD,
pages 1137–1148, 2011.

[21] T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In SIGMOD, pages
627–640, 2009.

[22] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J.,
19(1):91–113, 2010.

[23] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.

[24] S. Papadomanolakis and A. Ailamaki. AutoPart:
Automating Schema Design for Large Scientific
Databases Using Data Partitioning. In SSDBM, pages
383–392, 2004.

[25] N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: adaptive query processing on
RDF data in the cloud. In WWW, pages 397–400,
2012.

[26] B. Quilitz and U. Leser. Querying distributed RDF
data sources with SPARQL. In ESWC, pages 524–538,
2008.

[27] J. Rao, C. Zhang, N. Megiddo, and G. Lohman.
Automating physical database design in a parallel
database. In SIGMOD, pages 558–569, 2002.

[28] S. Sakr and G. Al-Naymat. Relational processing of
RDF queries: a survey. SIGMOD Record, 38(4):23–28,
2009.

[29] S. Sarawagi. Information extraction. Found. Trends
databases, 1:261–377, March 2008.

[30] T. Scholl, B. Bauer, J. Müller, B. Gufler, A. Reiser,
and A. Kemper. Workload-Aware Data Partitioning in
Community-Driven Data Grids. In EDBT, pages
36–47, 2009.

[31] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and
M. Schmidt. FedX: Optimization techniques for
federated query processing on linked data. In ISWC,
pages 601–616, 2011.

[32] L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes,
and S. Manegold. Column-store support for RDF data
management: not all swans are white. PVLDB,
1(2):1553–1563, 2008.

[33] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: a
self-organizing framework for information extraction.
In WWW, pages 631–640, 2009.

[34] G. Tsatsanifos, D. Sacharidis, and T. K. Sellis. On
enhancing scalability for distributed RDF/S stores. In
EDBT, pages 141–152, 2011.

[35] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for Semantic Web data
management. PVLDB, 1(1):1008–1019, 2008.

Dépôt légal : 2016 - 3e trimestre
Imprimé à Télécom ParisTech – Paris

ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

Télécom ParisTech

Institut Mines-Télécom - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.telecom-paristech.fr

Département INFRES

©

In
st

itu
t

M
in

e
s-

T
é

lé
co

m
 -

T
é

lé
co

m
 P

a
ris

T
e

ch
 2

01
6

	publication-312.pdf
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Load-Aware Partitioning
	4.1 Extracting Relevant Information from a Query Load
	4.2 Fragmentation
	4.3 Fragment Allocation
	4.4 Determining the Optimal Number of Hosts

	5 Distributed Query Processing
	5.1 System Setup and Statistics
	5.2 Global Query Optimization
	5.3 Query Execution

	6 Evaluation
	6.1 Billion Triple Challenge (BTC)
	6.2 Sp2Bench
	6.3 Throughput
	6.4 Discussion

	7 Conclusion
	8 References

