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Abstract Recent advances in information extraction have
led to huge knowledge bases (KBs), which capture knowl-
edge in a machine-readable format. Inductive logic program-
ming (ILP) can be used to mine logical rules from these
KBs, such as “If two persons are married, then they (usually)
live in the same city.” While ILP is a mature field, min-
ing logical rules from KBs is difficult, because KBs make
an open-world assumption. This means that absent infor-
mation cannot be taken as counterexamples. Our approach
AMIE (Galárraga et al. inWWW, 2013) has shown how rules
can be mined effectively from KBs even in the absence of
counterexamples. In this paper, we show how this approach
can be optimized to mine even larger KBs with more than
12M statements. Extensive experiments show how our new
approach, AMIE+, extends to areas of mining that were pre-
viously beyond reach.
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1 Introduction

Recent advances in information extraction have led to the
creation of large knowledge bases (KBs). These KBs contain
facts such as “London is the capital of the United Kingdom,”
“Elvis was born in Tupelo,” or “Every singer is a person.”
Some of the most prominent projects in this direction are
NELL [7], YAGO [40], DBpedia [6], and Freebase [42].
These KBs provide information about a great variety of enti-
ties, such as people, countries, rivers, cities, universities,
movies, animals. The KBs know, e.g., who was born where,
which actor acted in which movie, or which city is located in
which country. Today’s KBs contain millions of entities and
hundreds of millions of facts.

These KBs have been constructed by mining the Web for
information. In recent years, however, the KBs have become
so large that they can themselves be mined for information.
It is possible to find rules in the KBs that describe common
correlations in the data. For example, we can mine the rule

livesIn(h, p) ∧ marriedTo(h, w) ⇒ livesIn(w, p)

This rule captures the fact that, very often, the spouse of a per-
son lives in the same place as the person. Finding such rules
can serve four purposes: First, by applying such rules on the
data, new facts can be derived that make the KB more com-
plete. For example, if we know where Barack Obama lives,
and if we know that Michelle Obama is his wife, then we
can deduce (with high probability) where Michelle Obama
lives. Second, such rules can identify potential errors in the
knowledge base. If, for instance, the KB contains the state-
ment that Michelle Obama lives in a completely different
place, then maybe this statement is wrong. Third, the rules
can be used for reasoning. Many reasoning approaches rely
on other parties to provide rules (e.g., [33,37]). Last, rules
describing general regularities can help us understand the
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708 L. Galárraga et al.

data better. We can, e.g., find out that countries often trade
with countries speaking the same language, that marriage is
a symmetric relationship, that musicians who influence each
other often play the same instrument.

The goal of this paper is to mine such rules from KBs.
We focus on RDF-style KBs in the spirit of the Seman-
tic Web, such as YAGO [40], Wikidata,1, and DBpedia [6].
These KBs provide binary relationships in the form of RDF
triples [44]. Since RDF has only positive inference rules,
these KBs contain only positive statements and no negations.
Furthermore, they operate under the open-world assumption
(OWA). Under the OWA, a statement that is not contained
in the KB is not necessarily false; it is just unknown. This
is a crucial difference to many standard database settings
that operate under the closed-world assumption (CWA).Con-
sider an example KB that does not contain the information
that a particular person is married. Under the CWA, we can
conclude that the person is not married. Under the OWA,
however, the person could be either married or single.

Mining rules from a dataset is the central task of induc-
tive logic programming (ILP). ILP approaches induce logical
rules from ground facts. Yet, classical ILP systems cannot be
applied to semantic KBs for two reasons: First, they usually
require negative statements as counterexamples. Semantic
KBs, however, usually do not contain negative statements.
The semantics of RDF schema are too weak to deduce nega-
tive evidence from the facts in a KB.2 Because of the OWA,
absent statements cannot serve as counterevidence either.
Second, today’s ILP systems are slow and cannot handle the
huge amount of data that KBs provide. In our experiments,
we ran state-of-the-art approaches on YAGO2 for a couple
of days without obtaining any results.

With the AMIE project [17], we have shown how to mine
logical rules from KBs despite the absence of explicit coun-
terexamples. The key technique was the partial completeness
assumption (PCA). It allowed AMIE to “guess” counterex-
amples for rules and thus estimate their quality even under
the OWA. We have shown that our approach outperformed
other rule mining systems both in terms of the quality and the
quantity of the mined rules. AMIE could already run on KBs
with up to onemillion statements—a size thatwas beyond the
reach of any previous ILP-based rule mining system. AMIE
achieved this without any need for parameter tuning or expert
input.

With the present paper, we develop AMIE even further.
We present pruning strategies and approximations that allow
the system to explore the search space muchmore efficiently.
This allows us to findHorn rules onKBswith severalmillions
of statements in a matter of hours or minutes. Such large KBs

1 http://www.wikidata.org.
2 RDF schema has only positive rules and no disjointness constraints
or similar concepts.

were previously out of reach even for AMIE. We also show
how the precision of the predictions can be increased to up
to 70% by using type information and joint reasoning. In
addition, we provide a thorough investigation of the metrics
we use, thus giving a more complete picture of rule mining
on large-scale knowledge bases.

More precisely, our contributions are as follows:

• A comprehensive investigation and description of the
AMIE approach, including a description of our in-
memory database and an evaluation of AMIE’s funda-
mental assumption, the PCA.

• A suite of optimization steps that allow a much more
efficient exploration of the search space.

• Extensive experiments that show the competitiveness of
our approach, including techniques to increase the preci-
sion of our predictions to 70%.

The rest of this paper is structured as follows: Sect. 2 dis-
cusses related work and Sect. 3 introduces preliminaries. In
Sect. 4, we introduce the partial completeness assumption
(PCA) and, based on it, the PCA confidence measure. Sec-
tion 5 recaptures the AMIE approach from [17], extending it
by a description of our in-memory database. Section 6 is the
main part of the paper: it presents the pruning strategies that
optimize the performance of AMIE. Section 7 presents our
experiments before Sect. 8 concludes.

2 Related work

Technically speaking, we aim to mine Horn rules on binary
predicates. Rule mining has been an area of active research
during the past years. Some approaches mine association
rules, some mine logical rules, others mine a schema for
the KB, and again others use rule mining for application pur-
poses. In the following, we survey the most pertinent related
work along these lines.

2.1 Association rule mining

Association rules [4] are mined on a list of transactions.
A transaction is a set of items. For example, in the context
of sales analysis, a transaction is the set of products bought
together by a customer in a specific event. Themined rules are
of the form {ElvisCD, ElvisBook}⇒ElvisCostume, mean-
ing that people who bought an Elvis CD and an Elvis book
usually also bought an Elvis costume. However, these are not
the kind of rules that we aim to mine in this paper; we aim
at mining Horn rules. We show in [17] that Horn rule min-
ing corresponds to association rule mining on a database that
is exponentially large in the maximal number of variables
of the rules. One problem for association rule mining is that
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for some applications the standard measurements for support
and confidence do not produce good results. Tan et al. [41]
discusses a number of alternatives to measure the interest-
ingness of a rule in general. Our approach is inspired by this
work and also makes use of a language bias [3] to reduce the
search space.

2.2 Logical rule mining

Sherlock [38] is an unsupervised ILP method to learn first-
order Horn clauses from open domain facts. Sherlock uses
probabilistic graphical models (PGMs) to infer new facts. It
tackles the noise of the extracted facts by extensive filter-
ing in a preprocessing step and by penalizing longer rules in
the inference part. For mining the rules, Sherlock uses two
heuristics: statistical significance and statistical relevance.
Unlike AMIE, it works on facts extracted from free text
that are not mapped to crisp relations. QuickFOIL [45] is
a standard ILP system based on a generic top-down greedy
algorithm and implemented on top of the QuickStep in-
memory storage engine [8]. It learns a set of hypotheses
(Horn rules) from positive and negative examples of a target
relation and a collection of background facts. When refining
a rule, the QuickFOIL algorithm greedily picks the clause
that maximizes a scoring function depending on the sup-
port and the confidence gain of the new rule. Once a rule is
mined, the algorithm removes the positive examples covered
by the rule and starts the induction process on the remaining
facts. QuickFOIL can scale to problem instances with mil-
lions of background facts thanks to a set of aggressive pruning
heuristics and multiple database optimizations. However,
it is not suitable for mining rules under the open-world
assumption, since it requires explicit negative examples. The
WARMR system [14,15] mines patterns in databases that
correspond to conjunctive queries. It uses a declarative lan-
guage bias to reduce the search space. An extension of the
system, WARMER [18], modified the approach to support a
broader range of conjunctive queries and increase efficiency
of search space exploration. ALEPH3 is a general purpose
ILP system that implementsMuggleton’s Inverse Entailment
algorithm [31] in Prolog. It employs a variety of evaluation
functions for the rules as well as a variety of search strate-
gies. These approaches are not tailored to dealwith largeKBs
under the open-world assumption. We compare our system
to WARMR and ALEPH, which are the only ones available
for download. Our experiments do not only show that these
systems mine less sensible rules than our approach, but also
that they take more time to do so.

3 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html.

2.3 Expert rule mining

Another rule mining approach over RDF data [34] was pro-
posed to discover causal relations in RDF-based medical
data. It requires a domain expert who defines targets and
contexts of the mining process, so that the correct transac-
tions are generated. Our approach, in contrast, does not rely
on the user to define any context or target. It works out of the
box.

2.4 Generating schemas

In this paper, we aim to generate Horn rules on a KB.
Other approaches use rule mining to generate the schema
or taxonomy of a KB. Cimiano et al. [10] applies cluster-
ing techniques based on context vectors and formal concept
analysis to construct taxonomies. Other approaches use
clustering [27] and ILP-based approaches [12]. For the
friend-of-a-friend network on the Semantic Web, Grimnes
et al. [20] applies clustering to identify classes of people and
ILP to learn descriptions of these groups. Another exam-
ple of an ILP-based approach is the DL-Learner [25], which
has successfully been applied [21] to generate OWL class
expressions from YAGO [40]. As an alternative to ILP tech-
niques, Völker andNiepert [43] proposes a statistical method
that does not require negative examples. In contrast to our
approach, these techniques aim at generating a schema for a
given RDF repository, not logical rules in general.

2.5 Relational machine learning

Some approaches learn new associations from semantic data
without mining explicit logical rules. For example, rela-
tional machine learningmethods propose a holistic statistical
approach that considers both the attribute information and
the relationships between entities to learn new links and con-
cepts. Nickel et al. [35] applies tensor factorization methods
to predict new triples on the YAGO2 ontology by represent-
ing theKB as a three-dimensional tensor. In a similar fashion,
Huang et al. [22] uses multivariate prediction techniques to
learn new links on a social graph. In both approaches, how-
ever, the predictions are opaque. It is possible to generate
predictions, but not to derive general structural knowledge
about the data that can explain the reasons why the predic-
tions were made. For example, these approaches will tell us
that Michelle Obama most likely lives in Washington, but
they will not tell us that this is because her husband lives in
Washington and people tend to live in same place as their
spouses. Our approach, in contrast, aims at mining explicit
logical rules that capture the correlations in the data. These
can then be used to derive new facts and also to explain why
these facts were derived.
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2.6 Learning rules from hybrid sources

d’Amato et al. [11] proposes to learn association rules from
hybrid sources (RDBMS and Ontologies) under the OWA.
For this purpose, the definition of frequency (and thus of sup-
port and confidence) is changed so that unknown statements
contribute with half of the weight of the true statements.
Another approach [26] makes use of an ontology and a con-
straint Datalog program. The goal is to learn association rules
at different levels of granularity w.r.t. the type hierarchy of
the ontology.While these approaches focus more on the ben-
efits of combining hybrid sources, our approach focuses on
pure RDF KBs.

2.7 Further applications of rule mining

Jozefowska et al. [23] proposes an algorithm for frequent pat-
tern mining in KBs that uses DL-safe rules. Such KBs can
be transformed into a disjunctive datalog program, which
allows seeing patterns as queries. This approach does not
mine theHorn rules that we aim at. Some approaches use rule
mining for ontology merging and alignment [13,30,36]. The
AROMA system [13], for instance, uses association rules on
extracted terms tofind subsumption relations between classes
and properties of different ontologies. Again, these systems
do notmine the kind of rules we are interested in. In [2], asso-
ciation rules and frequency analysis are used to identify and
classify common misusage patterns for relations in DBpe-
dia. In the same fashion, Abedjan and Naumann [1] applies
association rules to find synonympredicates inDBpedia. The
matched synonyms are then used for predicate expansion in
the spirit of data integration. This is a vital task in manually
populated KBs where the users may not use canonical names
for relations, or for cases when the data is produced by inde-
pendent providers. In contrast to our work, these approaches
do not mine logical rules, but association rules on the co-
occurrence of values. Since RDF data can be seen as a graph,
mining frequent subtrees [9,24] is another related field of
research. However, as the URIs of resources in knowledge
bases are unique, these techniques are limited to mining fre-
quent combinations of classes.

Several approaches, such as Markov Logic [37] or URDF
[33] use Horn rules to perform reasoning. These approaches
can be consumers of the rules we mine with AMIE.

3 Preliminaries

3.1 RDF KBs

In this paper, we focus on RDF [44] knowledge bases. We
follow here the introduction of the preliminaries from [17].
An RDF KB can be considered a set of facts, where each fact

is a triple of the form 〈x, r, y〉 with x denoting the subject, r
the relation (or predicate), and y the object of the fact. There
are several equivalent alternative representations of facts; in
this paper we borrow the notation from datalog and represent
a fact as r(x, y). For example, we write father(Elvis,Lisa).
The facts of an RDF KB can usually be divided into an A-
Box and a T-Box. While the A-Box contains instance data,
the T-Box is the subset of facts that define classes, domains,
ranges for predicates, and the class hierarchy. Although T-
Box information can also be used by our mining approach,
we are mainly concerned with the A-Box, i.e., the set of facts
relating one particular entity to another.

In the following, we assume a given KB K as input. Let
R := πrelation(K) denote the set of relations contained in K
and E := πsubject(K) ∪ πobject(K) the set of entities.

3.2 Functions

A function is a relation r that has at most one object for every
subject, i.e.,

∀x : | {y : r(x, y)} | ≤ 1

Similarly, a relation is an inverse function if each of its objects
has at most one subject. Since RDF KBs are usually noisy,
even relations that should be functions (such as hasBirthdate)
may exhibit two objects for the same subject. Vice versa,
there are relations that are not functions in the strict sense, but
that exhibit a similar behavior. For example, hasNationality
can give several nationalities to a person, but the vastmajority
of people only have one nationality. Therefore, we use the
notion of functionality [39]. The functionality of a relation r
is a value between 0 and 1, which is 1 if r is a function:

f un(r) := #x : ∃y : r(x, y)
#(x, y) : r(x, y)

where #x : X is an abbreviation for |{x : X ∈ K}|. The
inverse functionality is defined accordingly as ifun(r) :=
fun(r−1), where r−1 denotes the inverse relation of r , that
is, the relation defined by swapping the arguments of r ,
e.g., actedIn−1 = hasActor, therefore ifun(actedIn) := fun
(hasActor).

Some relations have roughly the same degree of function-
ality and of inverse functionality. Bijections are an example.
Usually, however, fun and ifun are different. Manual inspec-
tion shows that in Web-extracted common sense KBs (e.g.,
YAGO, DBpedia) the functionality is usually higher than the
inverse functionality. For example, a KB is more likely to
specify isCitizenOf than hasCitizen. Intuitively, this allows
us to consider a fact r(x, y) as a fact about x . In the follow-
ing, we will assume that for all relations r, fun(r) ≥ ifun(r).
Whenever this is not the case, r can be replaced by its inverse
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relation r−1. Then, fun(r−1) ≥ ifun(r−1). In the following,
we assume that all relations have been substituted with their
inverses if their inverse functionality is larger than their func-
tionality. This will simplify the analysis without affecting the
generality of our approach.

3.3 Rules

An atom is a fact that can have variables at the subject and/or
object position. A (Horn) rule consists of a head and a body,
where the head is a single atom and the body is a set of atoms.
We denote a rule with head r(x, y) and body {B1, . . . , Bn}
by an implication

B1 ∧ B2 ∧ · · · ∧ Bn ⇒ r(x, y)

which we abbreviate as
−→
B ⇒ r(x, y).

An instantiation of a rule is a copy of the rule, where all
variables have been substituted by constants. A prediction of
a rule is the head atom of an instantiated rule if all body atoms
of the instantiated rule appear in the KB. For example, the
above rule can predict citizenOf (Lisa,USA) if the KB knows
a parent of Lisa, e.g., hasChild(Elvis,Lisa), who isAmerican,
e.g.,citizenOf (Elvis,USA).

AMIE, like other ILP systems, does not mine general
Horn clauses, but uses a language bias (constraints to the
form of the mined rules) in order to restrict the size of the
search space. Language biases offer a trade-off between the
expressiveness of themined rules and the speed of themining
process. As an example, rules with three atoms can capture
more complicated correlations than rules with two atoms, but
come with a larger search space and thus with a much slower
performance. The less restrictive the language bias is, the
more expressive the rules can potentially be, the larger the
search space grows, and the less tractable the search becomes.

AMIE’s language bias requires rules to be connected.
We say that two atoms in a rule are connected if they
share a variable or an entity. A rule is connected if every
atom is connected transitively to every other atom of the
rule. The restriction to connected rules avoids mining rules
with completely unrelated atoms, such as diedIn(x, y) ⇒
wasBornIn(w, z).

AMIE also requires the rules to be closed. A variable in a
rule is closed if it appears at least twice in the rule. A rule is
closed if all its variables are closed. The restriction to closed
rules avoids mining rules that predict merely the existence of
a fact, as in diedIn(x, y) ⇒ ∃z : wasBornIn(x, z).

AMIE omits also reflexive rules, i.e., rules with atoms of
the form r(x, x), as they are typically of less interest in real-
world KBs. However, unlike some other ILP systems, AMIE
allows mining recursive rules. These are rules that contain
the head relation in the body, as e.g., isMarriedTo(x, z) ∧
hasChild(z, y) ⇒ hasChild(x, y).

3.4 Measures of significance

Normally, data mining systems define a notion of signifi-
cance or support for rules, which quantifies the amount of
evidence for the rule in the data. If a rule applies only to a
few instances, it is too risky to use it to draw conclusions.
For this reason, data mining systems frequently report only
rules above a given support threshold. In the following, we
define this metric for AMIE’s setting and introduce another
notion of significance, the head coverage.
Support In our context, the support of a rule quantifies
the number of correct predictions in the existing data. One
desired property for support ismonotonicity, that is, the addi-
tion of more atoms and constraints to the rule should always
decrease its support. As we will show in Sect. 5.1, such prop-
erty is crucial for pruning. There are severalways to define the
support: It can be the number of instantiations of a rule that
appear in the KB. This measure, however, is not monotonic
if we add atoms to the body. Consider, for example, the rule

R: livesIn(x, y) ⇒ wasBornIn(x, y)

If we add the atom hasGender(x, male) to the body, the
number of instantiations x , y in theKBdecreases. In contrast,
if we add an atomwith a fresh variable, e.g., hasFriend(x, z),
to the body, the number of instantiations x , y, z increases for
every friend of x . This is true even if we add another atom
with z to obtain a closed rule. Alternatively, we can count
the number of facts in one particular body atom. Under this
definition, however, the same rule can have different support
values depending on the selected body atom. We can also
count the number of facts of the head atom. This measure
decreases monotonically if more body atoms are added and
avoids equivalent rules with different support values. With
this in mind, we define the support of a rule as the number
of distinct pairs of subjects and objects in the head of all
instantiations that appear in the KB:

supp(
−→
B ⇒ r(x, y)) := #(x, y) : ∃z1, . . . , zm : −→

B ∧ r(x, y)

where z1, . . . , zm are the variables of the rule apart from x
and y. Table 1 shows an example KB that contains only two
relations and five facts. For this KB, our example rule R
has support 1, because of the facts livesIn(Adam,Paris) and
wasBornIn(Adam,Paris).

Table 1 An example KB containing two relations between people and
cities

livesIn wasBornIn

(Adam, Paris) (Adam, Paris)

(Adam, Rome) (Carl, Rome)

(Bob, Zurich)
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Note that the support is defined even for rules that are
not yet closed. This allows for early pruning of unpromising
candidate rules. For example, consider the rule

R’: livesIn(x, y) ⇒ wasBornIn(y, z)

This rule is obviously unpromising, because it postulates a
birth place for y, which is not a person. The rule is not yet
closed (x and z appear only once). Yet, it has support 0. Thus,
it can be pruned away and does not need further refinement.
Head coverage Support is an absolute number. This means
that a user defining thresholds on support has to know the
absolute size of the KB to give meaningful values. More-
over, if the support threshold is higher than the size of some
relation, this relation will be disregarded as head relation for
rule mining. To avoid this, we propose a proportional version
of support. A naive way would be to use the absolute number
of support (as defined in the previous paragraph) over the
size of the KB. This definition, however, does not solve the
problem for small relations. Therefore, we propose to use the
notion of head coverage:

hc(
−→
B ⇒ r(x, y)) := supp(

−→
B ⇒ r(x, y))

size(r)

with size(r) := #(x ′, y′) : r(x ′, y′) denoting the number of
facts in relation r . Head coverage quantifies the ratio of the
known true facts that are implied by the rule. For the example
presented in Table 1, hc(R) = 1/2.

4 Confidence measures

The support of a rule quantifies the number of known correct
predictions of the rule. However, it does not take into account
the false predictions of the rule. Following [17], we will now
describe measures that judge the quality of a rule. We first
describe the challenges in defining such a measure in our
setting and discuss the most common way to measure the
rule quality, which we call the standard confidence. Then,
we introduce our own measure: the confidence under the
assumption of partial completeness.

4.1 Challenges

Let us consider a given Horn rule
−→
B ⇒ r(x, y). Let us

look at all facts with relation r (Fig. 1). We distinguish four
types of facts: true facts that are known to the KB (KBtrue),
true facts that are unknown to the KB (NEWtrue), facts that
are known to be false in the KB (KBfalse), and facts that
are false but unknown to the KB (NEWfalse). The rule will
make certain predictions about relation r (blue circle). These
predictions can be known to be true (A), known to be false
(C), or unknown (B and D). When they are unknown to the

PredictionsA B

C D

KBtrue

KBfalse

NEWtrue

NEWfalse

true

false

known to KB unknown to KB

Fig. 1 Prediction under incompleteness

KB, they can still be true (B) or false (D) with respect to the
real world.

Our goal is to find rules that make true predictions that
go beyond the current KB. In Fig. 1, we wish to maximize
the area B and to minimize the area D. There are two obvi-
ous challenges in this context: first, the areas NEWtrue and
NEWfalse are unknown. So if we wish to maximize B at the
expense of D, we are operating in an area outside our KB.We
would want to use the areas KBtrue and KBfalse to estimate
the unknown area. This, however, leads to the second chal-
lenge: Semantic KBs do not contain negative evidence. Thus,
the area KBfalse is empty. This is the central challenge of
our setting: to provide counterexamples for the rule mining.
These can take the role of KBfalse so that we can estimate the
areas NEWtrue and NEWfalse. We describe two approaches
to this problem: creating counterexamples according to the
closed-world assumption (CWA) that traditional association
rule mining systems apply and according to the partial com-
pleteness assumption (PCA) that we propose. We will now
present these approaches in detail.

4.2 The CWA and standard confidence

The standard confidencemeasure takes all facts that are not in
the KB (i.e., NEWtrue and NEWfalse) as negative evidence.
Thus, the standard confidence of a rule is the ratio of its
predictions that are in the KB, i.e., the share of A (KBtrue)
in the set of predictions:

conf (
−→
B ⇒ r(x, y)) := supp(

−→
B ⇒ r(x, y))

#(x, y) : ∃z1, . . . , zm : −→
B

For example, consider again the rule

R : livesIn(x, y) ⇒ wasBornIn(x, y)

together with the KB given in Table 1. In this case,
conf (R) = 1/3, because (a) there is one positive example
for the rule, wasBornIn(Adam,Paris), and (b) the predic-
tions wasBornIn(Adam,Rome) and wasBorn(Bob,Zurich)
are counted as negative examples since they do not appear in
the KB.
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Standard confidence is the measure traditionally used in
association rule mining and market basket analysis, where
the closed-world assumption (CWA) is used: If there is no
evidence in any of the transactions of the database that a user
bought a specific product, then this user did not buy the prod-
uct. Albeit natural for the market basket analysis scenario,
standard confidence fails to distinguish between “false” and
“unknown” facts, whichmakes it inappropriate for a scenario
with open-world semantics like ours. Moreover, we also pur-
sue a different goal than market basket analysis: We aim
to maximize the number of true predictions that go beyond
the current knowledge, whereas market basket analysis usu-
ally tries to mine rules that can describe data that is already
known.

4.3 The PCA and the PCA confidence

In AMIE, we generate negative examples for a rule by means
of the partial completeness assumption (PCA). The PCA is
the assumption that if r(x, y) ∈ KBtrue for some x, y, then

∀y′ : r(x, y′) ∈ KBtrue ∪ NEWtrue ⇒ r(x, y′) ∈ KBtrue

In other words, we assume that if we know one y for a given
x and r , then we know all y for that x and r . This assumption
allow us to generate counterexamples in a way that is less
restrictive than the standard confidence. In our example from
Table 1, the PCAwill assume that any other place of birth for
Adam and Carl is false. Conversely, the PCAwill not assume
anything about the places of birth of Bob, because the KB
does not know any. With this notion in mind, we redefine
the definition of confidence for rules. Under the PCA, the
denominator of the confidence formula is not the size of the
entire set of conclusions derived from the body of the rule,
but the number of facts that we know to be true together with
the facts that we assume to be false.

conf pca(
−→
B ⇒ r(x, y)) :=

supp(
−→
B ⇒ r(x, y))

#(x, y) : ∃z1, . . . , zm, y′ : −→
B ∧ r(x, y′)

(1)

This formula normalizes the support by the number of pairs
(x, y) forwhich there exists a y′ with r(x, y′). Consider again
the KB given in Table 1 and the rule R:livesIn(x, y) ⇒
wasBornIn(x, y). In this case, conf pca(R) = 1/2. This
is because (a) there is one positive example for the rule,
wasBornIn(Adam,Paris), and (b) the prediction wasBornIn
(Adam,Rome) is counted as negative example, because we
already know a different place of birth for Adam. The pre-
diction wasBorn(Bob,Zurich) is completely disregarded as
evidence, because we neither know where Bob was born nor
where he was not born.

Notice that Eq. 1 fixes x and r and implies that rules will
try to predict values for y. AMIE always predicts in the most
functional direction. To see this, recall that it is more intuitive
to predict the birthplace of a specific person than predict all
the people that were born in a specific city. Since in Sect. 3.2
we rewrite all relations so that their functionality is larger
than their inverse functionality, the most functional direction
will be always to predict y given x .

In spite of being an assumption, the PCA is certainly true
for functions, such as birthdate and capital. The PCA also
holds for relations that are not functions but that have a high
functionality, as we shall see in our qualitative analysis of
the PCA in Sect. 7.4. The PCA has been applied in the
Google Knowledge Vault under the name “local complete-
ness assumption” [16].

5 AMIE

We now outline the core algorithm of AMIE and its imple-
mentation. We follow the description in [17] and extend it
with further explanations and details.

5.1 Algorithm

Algorithm Algorithm 1 shows our approach to mine rules.
It takes as input a KB K, a threshold minHC on the head
coverage of the mined rules, a maximum rule lengthmaxLen
and a threshold minConf on the confidence. We discuss the
choice of parameter values later in this section. The algo-
rithm maintains a queue of rules (line 1), which initially
contains all possible head atoms, that is, all rules of size
1. It then iteratively dequeues a rule from this queue. If the
rule meets certain criteria (line 6), it is pushed to the out-
put. If the rule does not exceed the maximum number of
atoms maxLen (line 9), it goes through a refinement process
(described below) which expands the rule (the parent) to pro-
duce a set of new rules (the children). These new rules, if
neither duplicates nor pruned by the head coverage thresh-
old (line 12), are also pushed into the queue. This process is
repeated until the queue is empty. In the following, we will
see in more detail the different phases of the algorithm.
Refinement One of the major challenges of rule mining is to
find an efficient way to explore the search space. The naive
algorithm of enumerating all possible combinations of con-
junctions of atoms is infeasible for large KBs. Hence, we
explore the search space by iteratively extending rules using
a set of mining operators (line 10 of Algorithm 1). We see a
rule as a sequence of atoms. The first atom is the head atom,
and the others are the body atoms. In the process of traversing
the search space, we can extend a rule by using one of the
following operators:
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Algorithm 1 Rule Mining
1: function AMIE(KB K, minHC , maxLen, minCon f )
2: q = [r1(x, y), r2(x, y) . . . rm(x, y)]
3: out = 〈〉
4: while ¬q.isEmpty() do
5: r = q.dequeue()
6: if AcceptedForOutput (r, out,minCon f ) then
7: out.add(r)
8: end if
9: if length(r) < maxLen then
10: R(r) = Ref ine(r)
11: for all rules rc ∈ R(r) do
12: if hc(rc) ≥ minHC & rc /∈ q then
13: q.enqueue(rc)
14: end if
15: end for
16: end if
17: end while
18: return out
19: end function

1. Add Dangling Atom (OD)
This operator adds a new atom to a rule. The new atom
uses a fresh variable for one of its two arguments. The
other argument is a variable that is shared with the rule,
i.e., it occurs in some other atom of the rule.

2. Add Instantiated Atom (OI )
This operator adds a new atom to a rule that uses an entity
for one argument and shares the other argument (variable)
with the rule.

3. Add Closing Atom (OC )
This operator adds a new atom to a rule so that both of
its arguments are shared with the rule.

Note that all above operators create connected rules. By
repeated application of these operators, we can generate the
entire space of rules as defined in Sect. 3. The operators gen-
erate even more rules than those that we are interested in,
because they also produce rules that are not closed. An alter-
native set of operators could consist ofOD and an operator for
instantiation. But these operators would not be monotonic,
in the sense that an atom generated by one operator can be
modified in the next step by the other operator. Therefore,
we chose the above three operators as a canonic set. We will
describe in Sect. 5.2 how these operators are executed on the
KB.
When to output Not every rule that the mining algorithm
dequeues is output. This is because some rules may not be
closed, or may not be better than rules that have already been
output. Algorithm 2 explains how we decide if a rule should
be output or not once it has been dequeued. The algorithm
first checks if the rule is of the form described in Sect. 3
(i.e., closed and connected). The refinement operators used
by AMIE (see Sect. 5.1) always produce connected rules. So,
at this point, the algorithm only checks if the rule is closed.
Then, the algorithm calculates the confidence of the rule and

Algorithm 2 Decide whether to output a rule
1: function AcceptedForOutput(rule r , out , minCon f )
2: if r is not closed ∨ con f pca(r) < minCon f then
3: return f alse
4: end if
5: parents = parentsO f Rule(r, out)
6: for all rp ∈ parents do
7: if con f pca(r) ≤ con f pca(rp) then
8: return f alse
9: end if
10: end for
11: return true
12: end function

performs a quality check. The rule should have a confidence
value that (1) passes the confidence threshold (line 1) and
(2) improves over the confidence of all its parents (line 7).
The latter condition implies that the refinements of a rule
(B1 ∧ · · · ∧ Bn ∧ Bn+1 ⇒ H ) must bring some confidence
gain with respect to the parent rule (B1 ∧ · · · ∧ Bn ⇒ H ).
Since support and head coverage are monotonic metrics, we
know that the child rule will never have a higher score than
its parent rule. If the child rule has also lower confidence,
then its quality is worse in all aspects than the parent rule.
Hence, there is no reason to output it.

A rule can have several parents. For example, the rule
actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y) can be
derived by either adding directed(x, y) to actedIn(x, y) ⇒
created(x, y)or by addingactedIn(x, y) todirected(x, y) ⇒
created(x, y). AMIE requires a confidence gain over all par-
ents of a rule.

Note that the decisions made at this point affect only the
output. They do not influence the refinement process, i.e., a
rule with low confidence can still be refined to obtain new
rules. This is because confidence is a non-monotonic mea-
sure, i.e., we might get good rules with further refinement of
bad rules.
Parameters andpruning If executed naively,Algorithm1will
have prohibitively high runtimes. The instantiation operator
OI , in particular, generates atoms in the order of |R| × |E |.
For this reason, the algorithm defines some parameters that
determine when to stop with the exploration of the space.
These are the minimal head coverage minHC, the maxi-
mal length maxLen and the minimal confidence minConf .
Choosing larger thresholds on head coverage, and choosing
a shorter maximum rule length will make the algorithm stop
earlier and output fewer rules. Relaxing the values will make
the algorithm output the very same rules as before, and find
also rules with a smaller head coverage or a larger number
of atoms. Thus, these parameters define a trade-off between
the runtime and the number of rules.

Interestingly, a larger number of rules is not necessarily a
good thing. For instance, a rule that covers only 1% or less
of the instances of a relation is probably not interesting. It
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simply lacks statistical significance. Assuming that a user is
not interested in such spurious rules, we set minHC = 0.01
by default.

Additionally, we show in our experiments that rules with
more than three atoms tend to be very convoluted and not
insightful. Hence, we set maxLen = 3 by default.

Likewise, rules with low confidence will not be of much
use to the application. For example, a rule with confidence
10% will make correct predictions in only one out of ten
cases. Assuming that a user is not interested in such kind of
rules, we set minConf = 0.1 by default.

That being said, if the user is interested in less confident,
more complex, or less supported rules, she can change these
thresholds. However, we believe that there is no good reason
to deviate from the default values. In particular, relaxing these
valueswill not output better rules. ThismakesAMIEa system
that can be run off the shelf, without the need for parameter
tuning.
Duplicate elimination As mentioned in Sect. 5.1 a rule
can be derived in multiple ways. For example, the rule
actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y) can result
from the application of the operatorOC to both actedIn(x, y)
⇒ created(x, y) and directed(x, y) ⇒ created(x, y). For
this reason, AMIE checks for the existence of duplicate rules
(line 12) in order to avoid queuing the same rule multiple
times. While checking two rules for equality is expensive (it
is a graph isomorphism verification task), we observe that
two rules can only be equal if they have the same head rela-
tion, the same number of atoms and the same head coverage
(or support). This reduces drastically the set of rules that have
to be checked and therefore the time invested in this task.
Multithreading To speed up the process, our implementation
parallelizes Algorithm 1, that is, the main loop (lines 4–17)
runs in multiple threads. This is achieved by synchronizing
the access to the centralized queue from which the threads
dequeue and enqueue and the access to the output.

5.2 Count projection queries

AMIE tries to expand a given rule by applying all mining
operators defined in the last section (one each time). We now
explain how the operators are implemented and executed on
a KB.
Count projection queries Assume that AMIE needs to add
the atom r(x, y) to a rule. For efficiency reasons, we do not
blindly try all possible relations in the place of r . Instead, we
first find all relations that lead to a new rule that passes the
head coverage threshold. In other words, we first fire a count
projection query of the form

SELECT r , COUNT(H )
WHERE H ∧ B1 ∧ · · · ∧ Bn−1 ∧ r(X,Y)

SUCH THAT COUNT(H )≥ k

where k :=minHC × size(H) (see Sect. 3.4) is the trans-
lation of the head coverage threshold into an absolute
support threshold and the expressionCOUNT(·) hasCOUNT
(DISTINCT ·) semantics (also for the rest of this section).
X and Y represent variables that are either fresh or already
present in the rule. The results for r are the relations that,
once bound in the query, ensure that the head coverage of
the rule B1 ∧ · · · ∧ Bn−1 ∧ r(X,Y) ⇒ H is greater or
equal than minHC. Notice also that for each value of r , the
expression COUNT(H ) gives us the support of the new rule.
We now discuss the instantiation of this query for all three
operators.
Dangling atom operator As an example, assume that Algo-
rithm 1 dequeues the following intermediate non-closed rule
for further specialization:

marriedTo(x, z) ⇒ livesIn(x, y)

The application of the operator OD will fire queries of the
form:

SELECT r , COUNT(livesIn(x, y)) WHERE
livesIn(x, y) ∧ marriedTo(x, z) ∧ r(X,Y)

SUCH THAT COUNT(livesIn(x, y))≥ k

with

r(X,Y) ∈ {r(x, w), r(z, w), r(w, x), r(w, z)}
That is, r(X,Y) binds to each possible join combination of
a new dangling atom, where w is an arbitrary fresh variable.
For intermediate rules, dangling atoms are joined on the non-
closed variables; z and y in this example. If the rule is closed,
dangling atoms are joined on all the variables appearing in
the rule.
Closed atom operator The OC operator works in the same
fashion. In our example, the atom r(X,Y) can take values
in {r(z, y), r(y, z)}. The method will produce new atoms
so that all open variables are closed. In this example, the
method produces the minimum number of specializations
required to close the variables y and z. If there is only one
closed variable, the method will produce atoms between the
open variable and all the other variables. If the rule is already
closed, the operator tries with all possible pairs of variables
in the rule.
Instantiated atom operator The operatorOI is implemented
in two steps.Wefirst apply the operatorOD to produce a set of
intermediate rules with a new dangling atom and a new fresh
variable. Then for each rule, we fire a count projection query
on the fresh variable. This step provides bindings for one of
the arguments of the relation. For instance, the application
of the OI operator to our example rule

marriedTo(x, z) ⇒ livesIn(x, y)

will first add all possible dangling atoms to the rule. Let us
consider one group of such atoms, e.g., those of the form
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r(x, w). Then for each value of r that keeps the rule above
the head coverage threshold minHC, the algorithm tries to
find the best bindings for w. For example, imagine we bind
r to the relation citizenOf . The second step will fire a query
of the form:

SELECT w, COUNT(livesIn(x, y)) WHERE
livesIn(x, y) ∧ marriedTo(x, z) ∧ citizenOf (x,w)

SUCH THAT COUNT(livesIn(x, y))≥ k

Each binding of w forms a new rule that will be enqueued
and later evaluated for output.

Count projection queries allow us to choose the relation-
ships and entities for the operators in such away that the head
coverage for the new rules is above minHC. We discuss how
to implement count projection queries efficiently in Sect. 5.3.

5.3 Query implementation details

In-memory database We have shown [17] that count pro-
jection queries translate into very inefficient queries in both
SPARQL and SQL. Therefore, we have implemented an in-
memory database that is specifically geared toward this type
of queries.Our implementation indexes the facts aggressively
with one index for each permutation of the columns subject
(S), relation (R), and object (O). This means that there are six
indexes, namely SRO, SOR, RSO, ROS, OSR, and ORS. We
call them fact indexes. Each fact index is a hash table, which
maps elements of the first column to a nested hash table. This
nested hash table maps elements of the second column to a
set of elements of the third column. For example, the index
ORS has as keys the objects of all triples in the KB. It maps
each object o to a hash table. This hash table has as keys all
possible relations of theKB. It maps each relation r to a set of
subjects {s1, . . . , sn}, such that r(si , o) for i = 1 . . . n. Fact
indexes allow us to check the existence of a triple in constant
time. They also allow us to efficiently fetch the instantiations
of an atom.

In addition to the fact indexes, our database relies on three
aggregated indexes S, P, O. These store the aggregated num-
ber of facts for each key of the fact indexes. For example,
the aggregated index P stores the number of triples for each
relation in the KB, whereas the aggregated index S stores the
number of triples where each entity appears as subject.
Size queries Fact indexes in combination with aggregated
indexes can be used to determine the size of an atom
(size(a,K)), i.e., its number of bindings in the KB K. For
example, the size of the atom livesIn(x, y) can be retrieved
by a simple lookup in the aggregated index P. The size of the
atom livesIn(x,USA) requires two lookups in the fact index
ROS: the first lookup to get the object values of livesIn and
the second to retrieve the list of subjects for the object value
USA.

Algorithm 3 Existence Queries
1: function Exists(B1 ∧ ... ∧ Bn , K)
2: q := B1 ∧ ... ∧ Bn
3: if n = 1 then
4: return size(B1, K) > 0
5: else
6: s := argmini {si ze(Bi ,K)}
7: q := q \ {Bs}
8: for all instantiations bs ∈ Bs do
9: q ′ := q instantiated with bindings from bs
10: if Exists(q ′, K) then
11: return true
12: end if
13: end for
14: end if
15: return false
16: end function

Existence queries One of the central tasks of the in-memory
database is to determine whether there exists a binding for
a conjunctive query. Algorithm 3 shows how this can be
implemented. The algorithm requires as input a conjunctive
query and a KB K. If the query is a single atom (Line 3),
we can directly verify whether its size is greater than zero
using the indexes (Line 4). Otherwise, we select the atom Bs

with fewest instantiations using the indexes (Line 6), and run
through all of its instantiations (Lines 8–13). We apply such
instantiations to the remaining atoms (Line 9) and repeat
this process recursively (Line 10) until we end up with a
single atom. Since rules are connected query patterns, the
atom Bs must share at least one variable with the remaining
atoms. This means that by instantiating Bs , some variables in
the remaining atoms become instantiated, making the atoms
more selective with every recursive step.
Select queries Algorithm 4 describes the implementation of
SELECTDISTINCT queries on one projection variable for a
conjunction of atoms. The algorithm starts finding the atom
with the fewest number of instantiations Bs . If the projection
variable x is in Bs (Lines 5–11), the algorithm goes through
all the instantiations x̂ of x , instantiates the query accordingly
and checks whether there exists a solution for the instantiated
query pattern in the KB (Line 8). If there is, the solution x̂
is added to the result set. In contrast, if the projection vari-
able is not in the most restrictive atom Bs (Lines 13–17),
the algorithm iterates through the instantiations of Bs and
recursively selects the distinct bindings of x in the remaining
atoms (Line 16).
Count queries To compute the confidence of a rule

−→
B ⇒

r(x, y), AMIEmust fire a count query to estimate the denom-
inator of the confidence formula. For the PCA confidence,
such queries have the form:

SELECT COUNT(x , y) WHERE r(x, y′) ∧ −→
B

where x , y are the variables in the head atom of the rule,−→
B = B1, . . . , Bn are the body atoms, and r(x, y′) is a vari-
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Algorithm 4 Select Distinct Queries
1: function Select(x, B1 ∧ ... ∧ Bn , K)
2: q := B1 ∧ ... ∧ Bn
3: s := argmini {si ze(Bi ,K)}
4: result := {}
5: if x ∈ Bs then
6: for all instantiations x̂ ∈ x do
7: q ′ := q instantiated with x̂ for x
8: if Exists(q ′, K) then
9: result .add(x̂)
10: end if
11: end for
12: else
13: q := q \ {Bs}
14: for all instantiations bs ∈ Bs do
15: q ′ := q instantiated with bindings from bs
16: result .add(Select(x, q ′, K))
17: end for
18: end if
19: return result
20: end function

ant of the head atom where the least functional variable has
been replaced by a fresh variable y′ (see Sect. 4.3). These
queries return the number of distinct bindings of the head
variables that fulfill the pattern r(x, y′) ∧ −→

B . They are used
to calculate the confidence of rules. The in-memory database
first fires a SELECT query on variable x :

SELECT DISTINCT x WHERE r(x, y′) ∧ −→
B

Then, for each binding of x , it instantiates the query and fires
another select query on variable y, adding up the number of
instantiations.
Count projection queries Count projection queries take the
form

SELECT x, COUNT(H ) WHERE H ∧ B1 ∧ · · · ∧ Bn

SUCH THAT COUNT(H )≥ k

These are the types of queries used to determine the rela-
tions and instances for new atoms in the refinement phase
of AMIE. Algorithm 5 shows how we answer these queries.
The algorithm takes as input a selection variable x, a projec-
tion atom H := R(X,Y), remaining atoms B1, . . . Bn , the
threshold k, and a KB K. The algorithm returns a hash table
with each instantiation of the selection variable x as key and
the number of distinct bindings of the projection atom H as
value.

We first check whether x appears in the projection atom
(Line 3). If that is the case (Lines 4–10), we run through all
instantiations of the projection atom, instantiate the query
accordingly (Line 6), and check for existence (Line 7). Each
existing instantiation increases the counter for the respective
value of the selection variable x (Line 8). If the selection vari-
able does not appear in the projection atom (Lines 12–18),
we iterate through all instantiations of the projection atom.
We instantiate the query accordingly and fire a SELECTDIS-

Algorithm 5 Count Projection Queries
1: function SELECT(x, R(X, Y ) ∧ B1 ∧ ... ∧ Bn , k, K)
2: map = {}
3: q = B1 ∧ ... ∧ Bn
4: if x ∈ {R, X, Y } then
5: for all instantiations r(x, y) ∈ R(X,Y) do
6: q ′ := q, replace R by r , X by x , Y by y
7: if Exists(q ′, K) then
8: map[x] + +
9: end if
10: end for
11: else
12: for all instantiations r(x, y) ∈ R(X,Y) do
13: q ′ := q, replace R by r , X by x , Y by y
14: X := Select(x, q ′, K)
15: for all x ∈ X do
16: map[x] + +
17: end for
18: end for
19: end if
20: map := {〈x → n〉 ∈ map : n ≥ k}
21: return map
22: end function

TINCT query for x (Line 14). We then increase the counter
for each value of x (Line 16).

6 Scalability improvements: AMIE+
Since the publication of the original AMIE framework [17],
we have extended it with a series of improvements that allow
the system to run over very large KBs. In the following,
we will introduce and discuss these extensions and refer
to this new version of AMIE as AMIE+. Our extensions
aim to speed up two different parts of the main rule mining
algorithm: (1) the refinement phase and (2) the confidence
evaluation.

6.1 Speeding up rule refinement

In this section, we will discuss how AMIE+ speeds up the
rule refinement phase for specific kinds of rules. We empha-
size that the techniques described below do not alter AMIE’s
output in any way.
Maximum rule length The maximum rule length maxLen
is an input parameter for our system. AMIE stops explor-
ing the search space as soon as all rules with a length of
at most maxLen have been produced. During the mining
process, AMIE creates connected rules by applying all pos-
sible mining operators (line 10 in Algorithm 1) on previously
created rules. Given a maximum rule length maxLen and a
non-closed Horn rule of length maxLen − 1, AMIE+ will
refine it only if it is possible to close it before exceeding the
length constraint. This means that for a not-yet-closed rule of
lengthmaxLen−1, AMIE+will not apply the add-dangling-
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atom operator OD , because this results in a non-closed rule,
which will be neither output nor refined. In the same spirit,
if the same rule contains more than two non-closed vari-
ables (see Sect. 3.3), AMIE+ will skip the application of
the add-closing-atom operatorOC . This happens because an
application of the operatorOC can close atmost twovariables
with one atom.This reasoning also applies to the instantiation
operator OI : rules with more than one non-closed variable
are not refined with instantiated atoms, because the addition
of an instantiated atom can close at most one variable.
Perfect rules By definition, a rule cannot achieve a PCA
confidence that is higher than 100%. Thus, once a rule has
achieved 100% PCA confidence, we can stop adding new
atoms. This is because the confidence cannot increase and
the support can only decrease. Hence, any refinement is futile
andwill be discarded by the output routine described inAlgo-
rithm 2. We call rules with 100% PCA confidence perfect
rules.
Simplifying projection queries Support is monotonically
decreasing with the length of the rule (Sect. 3.4). Hence,
whenever we apply an add-dangling-atom operator to a rule
Rp (the parent rule) to produce a new rule Rc (the child
rule), the support of Rc will likely be smaller than the sup-
port of Rp. However, there is one case in which the addition
of a dangling atom cannot reduce the support. This happens
when Rc (1) already contains atoms with the same relation
as the dangling atom and (2) these atoms have a variable
in common with the dangling atom. An example is the par-
ent rule Rp : livesIn(x, y) ⇒ citizenOf (x, y) and the child
rule Rc : citizenOf (z, y) ∧ livesIn(x, y) ⇒ citizenOf (x, y).
Intuitively, the addition of the dangling atom citizenOf(z, y)
cannot further restrict the support of Rp because the new
atom is a less restrictive version of the atom citizenOf (x, y).
This means that z will always bind to the same values as x .
From this observation, it follows that the support of Rc can
be rewritten as

supp(Rc) = #(x, y) : citizenOf (x, y) ∧ livesIn(x, y)

∧ citizenOf (x, y)

supp(Rc) = #(x, y) : livesIn(x, y) ∧ citizenOf (x, y)

which is the same as supp(Rp). Thus both Rp and Rc have
the same support. This observation can be leveraged to speed
up projection queries. The query for supp(Rp) has one fewer
join and thus executes faster.

6.2 Speeding up confidence evaluation

Confidence scores A significant part of the runtime of our
algorithm is spent on computing confidence scores (up to
35% in our experiments). The reason is that the calculation of
confidence (both PCA and standard) requires the calculation

of the number of instantiations of the rule body. If the body
contains atoms with many instantiations, the joins can be
very expensive to compute.

At the same time, we will not output rules with a confi-
dence below the threshold minConf (Sect. 5.1). This means
that the system might spend a significant amount of time
evaluating expensive confidence queries only to find out that
the rule was of low confidence and will not be output. An
example of such a rule (which we will also use later in this
section) is:

directed(x, z) ∧ hasActor(z, y) ⇒ married(x, y)

This rule concludes that a director is married to all the actors
that acted in his/her movies, producing a total of 74,249
married couples in YAGO2. AMIE needs more than 500ms
(more than twice the average cost: 200ms) to calculate the
confidence of this intuitively bad rule.
ApproximationWe have developed a method to approximate
the confidence value of such a rule very quickly. Our approx-
imation is based on statistics, such as the functionalities of
the atoms, or the size of the joins between two relations. We
precompute these quantities, so that they can be accessed in
constant time. As a result, AMIE+ prunes the example rule
above in <1ms.

Our approximation is designed such that it is more likely
to overestimate confidence than to underestimate it. This is
important, because we use it to prune rules, and we want to
avoid pruning rules that have a higher confidence in real-
ity. Our experiments (see Sect. 7.2) show that this technique
prunes only 4% of the rules erroneously. In return, it makes
AMIE+ run in the range of minutes instead of days. It is
thus one of the main techniques that allow AMIE+ to run on
large-scale KBs.

In Sect. 6.2.1, we give an overview of the confidence
approximation and we explain for which form of rules we
use it. Section 6.2.2 describes how the size of the rule’s
body is approximated. Section 6.2.3 discusses the underlying
assumptions made by our approximation and explains how
it is used within AMIE+. Finally, Sect. 6.2.4 derives upper
bounds for the confidence of a particular class of rules.

6.2.1 Confidence approximation

Computing confidence Recall that confidence and PCA con-
fidence (see Sects. 4.2, 4.3) are defined as:

conf (
−→
B ⇒ rh(x, y)) := supp(

−→
B ⇒ rh(x, y))

#(x, y) : ∃z1, . . . , zm : −→
B

and

conf pca(
−→
B ⇒ rh(x, y)) :=
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supp(
−→
B ⇒ rh(x, y))

#(x, y) : ∃z1, . . . , zm, y′ : −→
B ∧ rh(x, y′)

By the time AMIE has to calculate the confidence of a rule,
the system already knows the support of the rule. Hence, the
remaining step is to fire the queries for the denominators of
the confidence expressions (see Sects. 4.2, 4.3). We denote
them by dstd and dpca:

dstd(
−→
B ⇒ rh(x, y)) := #(x, y) : ∃z1, . . . , zm : −→

B (2)

dpca(
−→
B ⇒ rh(x, y)) := #(x, y) : ∃z1, . . . , zm, y′ :−→

B ∧ rh(x, y′)
(3)

Our aim is to derive a conservative approximation for dpca
(or dstd) denoted by ̂dpca. By plugging this expression into
the confidence formula, we get

̂conf pca(R) := supp(R)

̂dpca(R)
(4)

Let us reconsider Eq. 3 and rewrite it as follows:

dpca(
−→
B (x, y) ⇒ rh(x, y)) := #(x, y) : ∃z1, . . . , zm, y′ :

−→
B (x, y) ∧ rh(x, y

′)

Here, we resort to an abstraction that treats the body of the
rule

−→
B (x, y) as a relation on the head variables. If

−→
B has

functionality fun(
−→
B ), thismeans that, on average, each entity

in variable x relates to #yper x = 1/fun(
−→
B ) bindings in y. If

we denote the domain and range of a relation r as dom(r) and
rng(r) respectively, the expression #yper x · |dom(

−→
B )| gives

us an estimate for the body size of the rule, i.e., dstd(
−→
B ⇒

rh(x, y)). However, for the PCAconfidence, the denominator
is restricted also by the entities in the domain of the head
relation. This consideration leads us to the expression:

̂dpca(R) := |dom(
−→
B ) ∩ dom(rh)| · #yper x (5)

In the following, we first describe for which kind of rules
it makes sense to use this approximation and then, in
Sect. 6.2.2, we discuss how to calculate the terms of Eq. 5 in
an efficient way.
When to use the approximation Using any form of confi-
dence approximation always involves the risk of pruning a
good rule. At the same time, if the exact confidence value
is cheap to compute, the potential gain of using an approxi-
mation is small. For this reason, we only use the confidence
approximation for rules whose exact confidence is relatively
“expensive” to compute. These rules typically have a large
number of bindings in the body because of the presence of

intermediate variables. This translates into higher runtimes
and memory usage. An example is the rule we saw before:

directed(x, z) ∧ hasActor(z, y) ⇒ married(x, y)

In this example, a director x is related to many movies z (the
intermediate variable) that have different actors y. Hence,
we consider a rule expensive (1) if its body contains vari-
ables other than the variables appearing in the head atom (z
in our example) and (2) if these additional variables define
a single path between the head variables (x → z → y
in our example). Note that rules without intermediate vari-
ables (such as livesIn(x, y) ∧ bornIn(x, y) ⇒ diedIn(x, y))
or that contain multiple paths between the head variables
(such as livesIn(x, z1) ∧ locatedIn(z1, y) ∧ bornIn(x, z2) ∧
locatedIn(z2, y) ⇒ isCitizenOf (x, y)) are usually associ-
ated with more selective queries. In these examples, both
livesIn and bornIn join on x in the body and restrict the size
of the result.

We therefore use the confidence approximation only
for rules where the head variables x, y are connected
through a single chain of existentially quantified variables
z1, . . . , zn−1. These rules have the form:

r1(x, z1) ∧ r2(z1, z2) ∧ · · · ∧ rn(zn−1, y) ⇒ rh(x, y)

In order to write a rule in this canonical form, we may
have to replace some relations by their inverses (i.e., sub-
stitute r2(z2, z1) with r−1

2 (z1, z2)) and change the order of
the atoms.

We will now see how to compute the approximation for
this type of rules.

6.2.2 Computing the approximation

In the following, we denote the domain and range of a rela-
tion r by dom(r) and rng(r), respectively. In addition,we use
the shortcut notations ovdr (r1, r2), ovrd(r1, r2), ovdd(r1, r2),
ovrr (r1, r2) for the size of the overlap sets between the
domains and ranges of pairs of relations. For example,

ovdr (r1, r2) := |dom(r1) ∩ rng(r2)|

Let us now consider again the rule

directed(x, z) ∧ hasActor(z, y) ⇒ married(x, y)

which implies that a director is married to all actors that acted
in his movies. In this case, dpca(R) is defined as

dpca(R) := #(x, y) : ∃ z, y′ : directed(x, z)

∧ hasActor(z, y) ∧ isMarried(x, y′)
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Here
−→
B (x, y) = directed(x, z) ∧ hasActor(z, y). To cal-

culate the approximation defined in Eq. 5, we need to
calculate the number of directors in

−→
B that are married, i.e.,

|dom(
−→
B ) ∩ dom(isMarried)| and the number of actors y

associated to each director x , i.e., #yper x . We focus on the
latter term. This requires us to walk from the most to the
least functional variable, i.e., through the path x → z → y,
connecting a director to his potential actors. If f un(r) and
ifun(r) denote the functionality and inverse functionality of
the relation r , respectively, then walking through this path
involves the following steps:

1. For each director x , the relation directed will produce on
average 1

f un(directed) movies z.
2. Some or all of these movies z will find join partners in

the first argument of hasActor.
3. For each movie z, hasActor will produce on average

1
f un(hasActor) actors y.

4. Each of these actors in y acted on average in 1
ifun(hasActor)

movies of the hasActor relation.

Up to step 2, we can approximate the number of distinct
movies that bind to the variable z for each director in the
variable x as:

#zper x := ovrd(directed, hasActor)

|rng(directed)| × fun(directed)

Here, |rng(directed)| is the number of distinct movies in
the range of directed and ovrd(directed, hasActor) denotes
the distinct movies in the overlap between the objects of
directed and the subjects of hasActor. The term 1

f un(directed)
corresponds to step 1. Our join estimation assumes that the
movies in the overlap of directed and hasActor are uniformly
distributed among the different directors in directed.

For steps 3 and 4,we can approximate the number of actors
in the variable y for each movie in the variable z as follows:

#yper z := ifun(hasActor)

f un(hasActor)

The term 1
f un(hasActor) corresponds to Step 3. At the end of

this step, we already have, for a single director x , a bag of
actors y associated to him. However, these are not necessar-
ily distinct actors, since x and y are connected through the
variable z (movies). Therefore, a duplicate elimination step
is needed. To see why, assume that each director has directed
on average 3 movies and that each movie has five actors.
Then, the rule will produce on average 15 actors y for each
director x . However, there is no guarantee that these actors
are distinct. If the director trusts specific actors and collabo-
rates repeatedly with them in some or all of his movies, there
will be less than 15 distinct actors. The term ifun(hasActor)

achieves this duplicate elimination: Since each actor partic-
ipated in 1

ifun(hasActor) different movies, the actor contributes
to the final count with a weight that is inversely proportional
to this number.

In this way of performing duplicate elimination, a single
actor y belongs to 1

ifun(hasActor) different movies z, which are
chosen from all the movies in the relation hasActor. In real-
ity, we want the number of different movies to be chosen
from those that remain after Step 2, i.e., the average num-
ber of movies by the same director that an actor acts in.
This number is obviously smaller, which implies that the
factor ifun(hasActor) is a pessimistic estimator. This makes
our approximation an underestimation of the real confidence
denominator, and the overall confidence approximation an
overestimation of the actual confidence.

With all that said, we can estimate the number of actors y
that are supposed to be married with each director x as:

#yper x := #z per x × #yper z

To calculate ̂dpca of Eq. 5, we are now only missing the

expression |dom(
−→
B ) ∩ dom(isMarried)|. Here we make

the simplifying assumption that dom(
−→
B ) = dom(directed),

so that the expression becomes the size of the join between
the relations directed and married, on the subject argument,
i.e., ovdd(directed,married).

To summarize, the factor ̂dpca(R) for a rule r1(x, z) ∧
r2(z, y) ⇒ rh(x, y) can be approximated by:

̂dpca(R) := ovdd(r1, rh) · ovrd(r1, r2) · ifun(r2)
f un(r1) · |rng(r1)| · f un(r2)

For the more general case of a rule that contains n − 1 exis-
tential variables forming a single path from x to y

r1(x, z1) ∧ r2(z1, z2) ∧ · · · ∧ rn(zn−1, y) ⇒ rh(x, y)

the formula becomes:

̂dpca(R) := ovdd(r1, rh)

f un(r1)
×

n
∏

i=2

ovrd(ri−1, ri )

|rng(ri−1)|
ifun(ri )

f un(ri )

6.2.3 Discussion

Application We precompute the functionalities, the inverse
functionalities, and the overlaps between the domains and
ranges of each pair of relationswhen theKB is loaded into the
in-memory database. This results in longer loading times, but
pays off easily during rule mining. The sizes of the ranges of
the relations are given by our indexes in constant time. After
this preprocessing, the approximation of the confidence can
be computed as a simple product of precomputed valueswith-
out actually firing a single query.We apply the approximation
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only if the query is expensive (see Sect. 6.2.1). If the approx-
imated value is smaller than the threshold, we abandon the
rule. Otherwise, we compute the exact PCA confidence and
proceed as usual.
Assumptions Our approximation makes a series of assump-
tions. First, we make use of functionalities as average values.
In other words, we assume that for any relation all objects
are uniformly distributed among the subjects (which corre-
sponds to a zero variance). In reality, this is not always the
case. Additionally, the estimation of the expression #z per x

uses the term ovrd (r1,r2)|rng(r1)| . This term assumes that the entities in
the overlap are uniformly distributed among the entities in the
range of r1. This also introduces some error that depends on
the variance of the real distribution. Nevertheless, the dupli-
cate elimination largely underestimates the count of #yper x ,
and therefore we expect our approximation to usually result
in an overestimation of the actual confidence. This is indeed
the case, as our experiments in Sect. 7.2 show.

6.2.4 Confidence upper bounds

In some particular cases, we can derive lower bounds for
the confidence denominator (dpca, dstd ) instead of using the
approximation described in Sect. 6.2.2. Consider a rule of
the form:

r(x, z) ∧ r(y, z) ⇒ rh(x, y)

Here, the confidence denominator is given by

dstd := #(x, y) : ∃z : r(x, z) ∧ r(y, z)

Since both atoms contain the same relation, we know that all
the entities of z in the first atom will join with the second
atom. Furthermore, we know that the join will result in at
least one y-value for each binding of x , i.e., the case where
y = x . This allows us to deduce

dstd ≥ #(x, x) : ∃z : r(x, z) ∧ r(x, z)

dstd ≥ #x : ∃z : r(x, z) (6)

This expression can be calculated in constant time with the
indexes of our in-memory database (Sect. 5.3). Similar analy-
ses can be used for rules of the form r(z, x) ∧ r(z, y) ⇒
rh(x, y).

The same reasoning applies to the denominator of the PCA
confidence, yielding

dpca ≥ #x : ∃ z, y′ : r(x, z) ∧ rh(x, y
′) (7)

Although this expression requires to fire a query, it contains
fewer atoms than the original expression and counts instances

of a single variable instead of pairs. It is therefore much
cheaper than the original query.

Both Inequalities 6 and 7 define lower bounds for the num-
ber of pairs in the denominator expressions of the standard
and the PCA confidence, respectively. Thus, AMIE+ uses
them to upper bound the respective confidence scores. If the
upper bound is below the threshold, the rules can be pruned
even before computing the approximate confidence denom-
inator.

7 Experiments

We conducted four groups of experiments. In the first round
(Sect. 7.2) we compared AMIE with AMIE+. We show the
performance gain carried by each of the new techniques
presented in Sect. 6. In the second group of experiments
(Sect. 7.3),we comparedAMIE+ to competitor systems. The
comparison was based on runtime and prediction quality of
the rules. In the third round of experiments (Sect. 7.4), we
investigated the partial completeness assumption (PCA). We
evaluated how often the PCA actually holds in a real-world
KB (YAGO). Finally, in Sect. 7.5, we conducted a proof of
concept to show how the rulesmined byAMIE can be used to
make predictions.We compared the performance of the PCA
confidence with the performance of the standard confidence
for this purpose. We also showed how post-processing of the
results can increase the precision of our predictions.

Our experimental results show that:

1. The optimizations implemented in AMIE+ allow us to
run on KBs with more than 1K relations and 10M facts
in a matter of minutes—while AMIE took more than one
day for them.

2. AMIE, and inparticularAMIE+, outperforms competing
systems by a large margin in terms of the quality and the
quantity of the mined rules.

3. The PCA is often a valid assumption, even for relations
that are not strictly functional.

4. Type constraints can improve the precision of the predic-
tions made by rules to about 70%.

7.1 Experimental setup

Hardware All experiments were run on a server with 48GB
of RAM, eight physical CPUs (Intel Xeon at 2.4GHz, 32
threads) and using Fedora 21. All rules and all experi-
mental results are available at http://www.mpi-inf.mpg.de/
departments/ontologies/projects/amie/.
Datasets We ran our experiments on different KBs. Table 2
shows a summary of the KBs used for our experiments.
In all cases, we removed all facts with literals (numbers
and strings). This is because literal values (such as geo-
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Table 2 Knowledge bases used to test AMIE and AMIE+
KB Facts Subjects Relations

YAGO2 core 948K 470K 32

YAGO2s 4.12M 1.65M 37

DBpedia 2.0 6.70M 1.38M 1595a

DBpedia 3.8 11.02M 2.20M 650

Wikidata 8.4M 4.00M 431

a Relations with more than 100 facts only

graphical coordinates) are shared by only very few entities,
which makes them less interesting for rule mining. For both
DBpedia 2.0 and 3.8, we used the person data and mapping-
based properties datasets. For Wikidata, we used a dump
from December 2014, available for download at http://tools.
wmflabs.org/wikidata-exports/rdf/exports/20140420/.
Settings In their default settings, AMIE and AMIE+ use a
1% head coverage threshold (i.e., minHC = 0.01), and a
maximum of three atoms for rules (i.e., maxLen = 3, see
Sect. 5.1). By default, AMIE does not impose a confidence
threshold, i.e., minConf = 0. In contrast, AMIE+ defines
a PCA confidence threshold of 0.1, i.e., minConf = 0.1
(Sect. 6.2). Unless explicitly mentioned, the instantiation
operator OI was disabled. (“without constants”). Both sys-
tems use as many threads as available logical cores in the
system (32 in our hardware platform). Any deviation from
these settings will be explicitly stated. Whenever AMIE and
AMIE+ behave equivalently, we will refer to these systems
jointly as AMIE(+).
Metrics We compared AMIE and AMIE+ in terms of qual-
ity and runtime to two popular state-of-the-art systems:
WARMR [14,15] and ALEPH (see footnote 3). To have an
equal basis for the comparison with these systems, we made
AMIE(+) simulate their metrics. AMIE(+) can threshold on
support, head coverage, standard confidence, and PCA con-
fidence, and can rank by any of these. She can also deviate
from the default setting and count support on one of the head
variables (like WARMR). In that case, AMIE(+) counts on
the most functional variable of the relation (see Sect. 3.2
about functions). Again, any such deviation from the default
behavior will be mentioned explicitly.

7.2 AMIE versus AMIE+

In this section, we discuss the runtime improvements in
AMIE+ over the previous version AMIE. Let us first discuss
only AMIE. Recall from Sect. 5.1 that the AMIE algorithm
consists of three main phases:

– Refinement (i.e., rule expansion).
– Output, which includes confidence calculation.
– Duplicate elimination.

Table 3 shows the proportion of time spent by AMIE in each
phase when running on YAGO2—first without constants and
then with constants. We observe that the refinement and out-
put phases dominate the system’s runtime. When constants
are not enabled, most of the time is spent in the refinement
phase. In contrast, the addition of the instantiation operator
increases the number of rules and therefore the time spent in
the output and duplicate elimination phases. In both cases,
the duplicate elimination is the least time-consuming phase.
The enhancements introduced by AMIE+ aim at reducing
the time spent in the refinement and output phases.
Runtime comparison Table 4 shows the runtimes of AMIE
and AMIE+. We set a threshold of 0.1 PCA Confidence for
AMIE to make it comparable with AMIE+. For the latter,
we show the results in several categories:

1. Only output: only the improvements affecting the out-
put process are active, i.e., the confidence approximation
and the confidence upper bounds, both with confidence
threshold 0.1 (Sect. 6.2).

2. Only refinement: only the improvements affecting the
refinement process (Sect. 6.1) are active, namely themax-
imum rule length (MRL), the query rewriting (QRW) and
the perfect rules (PR).

3. Output + MRL/QRW/PR: the output improvements and
one of the refinement improvements are active.

4. Full: All improvements are active.

We first note that AMIE is not able to finish within a day for
YAGO2s, DBPedia 2.0, DBpedia 3.8, and Wikidata. In con-
trast, AMIE+ can mine rules on all these datasets in a matter
of hours, and even minutes. For YAGO2 (const), we can see
that the full version of AMIE+ is 3.8× faster than AMIE.
For YAGO2, this speedup nearly doubles to 6.7×. This boost
is mainly due to the improvements in the refinement process:
AMIE+with only these improvements is already 3.2× faster
on YAGO2 (const) and 6.5× faster on YAGO2 than AMIE.
This is not surprising since for YAGO2 most of the time is
spent on refining rules (Table 3). Therefore, the improve-
ments in this phase result in a significant gain.

Notice also that AMIE+ (only output) is only marginally
faster than AMIE for the YAGO2 family of datasets. This
is because the confidence approximation heuristic requires
computing the join cardinalities for every pair of relations
in the KB. This means that there is a trade-off between an
initial additional cost for precomputing these values and the
potential savings. For the case of YAGO2, the output phase
takes only around 9% of the overall mining time, i.e., the
confidence evaluation is not really a problem.

For YAGO2s, DBpedia 2.0, DBpedia 3.8, and Wikidata,
we see that using only the refinement improvements or
only the output refinements is not enough. If we activate
all improvements, however, AMIE+ is able to terminate in
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Table 3 Time spent in the different phases of the AMIE algorithm on YAGO2, first without the instantiation operator and then with this operator

Dataset Rules Refinement (%) Output (%) Dup. elim. (%)

YAGO2 135 87.48 8.79 3.74

YAGO2 (c) 19,132 53.54 35.64 10.82

Table 4 Runtime and output comparison between AMIE and AMIE+ on different KBs

KB AMIE AMIE+
Only refinement Only output Output+ Full

MRL QRW PR

YAGO2 3.17min 29.37 s 2.82min 29.03 s 38.16 s 2.80min 28.19 s

YAGO2 (const) 37.57min 11.72min 37.05min 8.90min 12.04min 36.48min 9.93min

YAGO2 (4) 27.14min 9.49min 26.48min 8.65min 15.69min 24.20min 8.35min

YAGO2s >1day >1day >1day 1h 7min 1h 12min >1day 59.38min

DBpedia 2.0 >1day >1day >1day 45.11min 46.37min >1day 46.88min

DBpedia 3.8 >1day >1day 11h 46min 8h 35min 7h 33min 10h 11min 7h 6min

Wikidata >1day >1day >1day 1h 14min 7h 56min >1day 25.50min

On YAGO2 (4), maxLen = 4. On YAGO2 (const), the instantiation operator was switched on

the majority of cases within an hour or in the worst case
overnight.

Table 4 also shows the benefit of individual refinement
improvements over the baseline of AMIE+ (only output).
The improvement that offers the highest speedup (up to 6.7×)
is the maximum rule length (MRL), closely followed by
query rewriting (QRW, up to 5.1× speedup), whereas per-
fect rules (PR) rank last. This occurs because MRL is much
more often applicable than QRW and PR. Besides, perfect
rules are relatively rare in KBs. AMIE found, for instance,
one perfect rule on YAGO2s and 248 (out of 5K) in DBpedia
3.8.

All in all, we find that AMIE+ can run on several datasets
onwhichAMIEwas not able to run. Furthermore, on datasets
on which both can run, AMIE+ achieves a speedup of up to
6.7×.
Output comparisonTable 6 shows a comparisonofAMIEand
AMIE+ in terms of output (number of rules). For AMIE+
(full), we report the number of rules that were pruned by
the confidence approximation. To assess the quality of the
confidence approximation, we report in addition the prun-
ing precision. The pruning precision is the ratio of rules for
which the confidence approximation introduced inSect. 6.2.2
overestimates the actual confidence. We calculate this ratio
by counting the number of times that the heuristics produce
a higher value than the real confidence (among the rules on
which the approximation is applicable). For example, a prun-
ingprecisionof 96%means that in 4%of the cases the system
erroneously pruned rules with a confidence higher than 0.1.
As in the previous section, we set a threshold of 0.1 PCA
confidence for AMIE. We also interrupted the system if it

Table 5 Some Rules mined by AMIE on different datasets

y:isCitizenOf (x, y) ⇒ y:livesIn(x, y)

y:wasBornIn(x, y)∧ y:isLocatedIn(y, z) ⇒ y:citizenOf (x, z)

y:hasWonPrize(x,G. W. Leibni z) ⇒ y:livesIn(x,Germany)

y:hasWonPrize(x,Grammy) ⇒ y:musicalRole(x,Guitar)

d:countySeat(x, y) ⇒ d:largestCity(x, y)

d:jurisdiction(z, y)∧ d:successor(x, z) ⇒ d:jurisdiction(x, y)

w:ownedBy(x, y) ⇒ w:subsidiary(y, x)

w:relative(y, z)∧w:sister(z, x) ⇒ w:relative(x, y)

y YAGO, w Wikidata, d DBpedia

ran more than one day. In those cases, we report the output
until the point of interruption (denoted by a “*” in Table 6).4

As we can see, the pruning by approximation does not
entail a serious decrease in the quality of the output: AMIE+
does not miss more than 5% of the rules with confidence
above 10%. At the same time, the pruning yields a speedup
by a factor of up to 3, as Table 4 shows. Table 5 shows some
examples of rules with high confidence that we mined.
Longer rules To investigate the performance of AMIE and
AMIE+ with longer rules, we ran both systems also with
maxLen = 4. As Table 4 shows, this affects the runtime:
AMIE on YAGO2 with maxLen = 4 is nine times slower
than with maxLen = 3. This is because the number of rules
is much larger now: As Table 6 shows, the number of output

4 In these cases, the pruning precision in Table 6 was computed by
comparing the output of AMIE+ to the output of AMIE on the mined
subset.
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Table 6 Output comparison of AMIE (PCA conf ≥0.1) and AMIE+
full

KB AMIE AMIE+ (full)

Rules Rules Pruned Prun. prec. (%)

YAGO2 68 68 24 100.00

YAGO2 (c) 15,634 15,634 24 100.00

YAGO2 (4) 645 645 203 100.00

YAGO2s 94* 94 78 100.00

DBpedia 2.0 24,308* 11,2865 5380 98.26

DBpedia 3.8 2470* 5087 2621 98.41

Wikidata 889* 1512 773 95.35

Starred: output after processing for 1 day. On YAGO2 (4),maxLen = 4.
On YAGO2 (const), the instantiation operator was switched on

Table 7 Examples of rules mined by AMIE on YAGO2 with n = 4
atoms

exports(y, z)∧ imports(y, z)∧ livesIn(x, y) ⇒ citizenOf (x, y)

diedIn(x, z)∧ locatedIn(z, y)∧ livesIn(x, z) ⇒ politician(x, y)

advisor(z, w)∧ citizenOf (w, y)∧ livesIn(z, x) ⇒ deals(x, y)

rules increases by one order of magnitude from 68 to 645.
Irrespective of the rule length, the confidence approximation
of AMIE+ works correctly, with a 100% pruning precision.
At the same time, the approximation reduces the runtime
drastically, so thatAMIE+ runs three times faster thanAMIE
on rules with four atoms. Table 7 shows some rules with four
atoms mined on YAGO2. Such rules motivate us to keep the
default rule length at three atoms.

7.3 AMIE(+) versus state-of-the-art systems

In this section we compare AMIE and AMIE+ to two state-
of-the-art rule mining systems that are publicly available:
WARMR [18] and ALEPH [32]. We compare the systems
in terms of runtime and quality of produced rules. A more
detailed description of these experiments (for AMIE), as
well as a comparison of usability, can be found in [17]. For
these experiments, we did not use any confidence threshold
(minConf = 0), and hence AMIE+ only used refinement
improvements (Table 8).

7.3.1 AMIE(+) versus WARMR

WARMR is a system that unifies ILP and association rule
mining. Similar to APRIORI algorithms [5], it performs a
breadth-first search in order to find frequent patterns. It gen-
erates datalog queries of the form “? − A1, A2, . . . , An”,
where Ai are logical atoms.WARMR applies a closed-world
assumption for assessing the quality of the produced rules.

Table 8 Categories of relations w.r.t. the validity of the PCA

Category Relation % of hits

Functions wasBornIn 96.67

diedIn 96.42

hasCapital 93.33

Quasi-functions hasCurrency 75

hasOfficialLanguage 73.33

graduatedFrom 64.29

isCitizenOf 96.42

directed−1 90

hasAcademicAdvisor 88.89

created−1 86.67

isLeaderOf 89.47

isPoliticianOf 100

isAffiliatedTo 89.47

Granularity differences isLocatedIn 50

livesIn 20.83

Implicit Assumptions livesIn 20.83

Source incompleteness influences−1 34.78

imports 0

exports 0

actedIn−1 0

worksAt 89.66

hasMusicalRole 22.22

dealsWith 10

Extraction incompleteness participatedIn−1 48.14

isMarriedTo 79.31

produced−1 56.67

actedIn−1 0

playsFor 20

holdsPoliticalPosition 26.67

hasChild−1 26.67

hasWonPrize 31.03

dealsWith 10

influences−1 34.78

hasMusicalRole 22.22

RuntimeWefirst compareWARMRwithAMIE andAMIE+
in terms of runtime only. For a fair comparison, we have to
make sure that both systems run in the same settings. Hence,
we tweaked AMIE(+) to simulate WARMR’s notion of sup-
port. We run all systems with an absolute support threshold
of five entities.We also use the standard confidence as quality
metric for rules, instead of the PCA confidence.

In our initial experiment, WARMR was not able to ter-
minate on YAGO2 in a time period of 1day. Therefore, we
created a sample of YAGO2 containing 47K triples (see [17]
for details about the sampling method). Table 9 summarizes
the runtime results for WARMR, AMIE, and AMIE+ on

123



Fast rule mining in ontological knowledge bases with AMIE+ 725

Table 9 Runtimes on YAGO2 sample

Constants WARMR AMIE AMIE+
No 18h 6.02 s 2.59 s

Yes (48h) 1.43min 1.45min

this dataset. We see that AMIE mines her rules in 6.02 s, and
AMIE+ even in 3 s. WARMR, in contrast, took 18h.

We also ran both systems in a mode that allows them to
mine ruleswith constants. ForAMIE(+), thismeans enabling
the instantiation operator OI (see Sect. 5.1). AMIE and
AMIE+ completed the task in <2min. WARMR, in con-
trast, did not terminate in 3days. Therefore, we ran it only
for the relations diedIn, livesIn,wasBornIn, for which it took
48h. To understand this drastic difference, one has to take
into account that WARMR is an ILP algorithm written in a
logic programming environment, which makes the evalua-
tion of all candidate queries inefficient.
Results After filtering out non-connected rules, WARMR
mined 41 closed rules.AMIE andAMIE+, in contrast,mined
75 closed rules, which included the ones mined byWARMR.
We checked back with the WARMR team and learned that
for a given set of atoms B1, . . . , Bn , WARMR will mine
only one rule, picking one of the atoms as head atom (e.g.,
B1 ∧ · · · ∧ Bn−1 ⇒ Bn). AMIE(+), in contrast, will mine
one rule for each possible choice of head atom (as long as the
thresholds are met). In other words, AMIE(+) with the stan-
dard support and confidence measures simulates WARMR,
but mines more rules. Furthermore, it runs orders of magni-
tude faster. Especially for large datasets for which the user
would have needed to use complicated sampling schemes
in order to use WARMR, AMIE(+) can be a very attractive
alternative. Even for smaller datasets with rules with con-
stants, AMIE(+) can provide results while WARMR cannot.
Moreover, AMIE(+) does not make a closed- world assump-
tion as WARMR does. In Sect. 7.4 we show that the PCA
confidence defined by AMIE(+) is more suitable than the
standard confidence to identify predictive rules in a web-
extracted KB designed under an open-world assumption.

7.3.2 AMIE(+) versus ALEPH

ALEPH is an ILP system that implements a variety of
scoring functions for measuring a rule’s quality. For our
experiments, we used the Positives-only evaluation func-
tion [29,32], which is the most interesting for our setting,
since it does not require the existence of explicit negative
examples. It takes random facts as negative evidence, instead:

Score := log(P) − log
R + 1

Rsize + 2
− L

P

Table 10 Runtimes ALEPH versus AMIE versus AMIE+
KB ALEPH AMIE AMIE+
YAGO2 full 4.96 s to >1day 4.41min 3.76min

YAGO2 Sample 0.05 s to >1day 5.65 s 2.90 s

Table 11 Runtimes of ALEPH on YAGO2

Relations Runtime

isPoliticianOf, hasCapital, hasCurrency <5min

dealsWith, hasOfficialLanguage, imports <5min

isInterested, hasMusicalRole <19min

hasAcademicAdvisor, hasChild >1day

isMarriedTo, livesIn, worksAt, isLocatedIn >1day

Here, P is the number of known true facts covered (KBtrue,
or A resp., in Fig. 1), R is the number of random examples
covered, Rsize is the total number of randoms, and L is the
number of atoms in the rule. The intuition behind the formula
is that a good rule should cover many positive examples, and
few or no randomly generated examples. This ensures that
the rule is not overly general. Furthermore, the rule should
use as few atoms as possible.
Runtime We ran AMIE, AMIE+ and ALEPH on YAGO2.
For ALEPH, we used the positives-only evaluation function
with Rsize = 50 and we considered only clauses that were
able to explain at least two positive examples, so that we
will not get grounded facts as rules in the output. For a fair
comparison, we also instructed AMIE and AMIE+ to run
with a support threshold of two facts.

Table 10 shows the results. AMIE terminated in 4.41min
and found rules for all relations. AMIE+ was slightly faster.
ALEPH runs for one head relation at a time. For some rela-
tions (e.g., isPoliticianOf ), it terminated in a few seconds.
For others, however, we had to abort the system after 1day
without results (Table 11). For each relation, ALEPH treats
one positive example at a time. Some examples need little
processing time, others block the system for hours. We could
not figure out a way to choose examples in such a way that
ALEPH runs faster. Hence, we used the sample of YAGO2
that we created for WARMR. Again, runtimes varied widely
between relations (Table 12). Some relations ran in a few
seconds, while others did not terminate in a day. AMIE, in
contrast, found her rules in 6 s, and AMIE+ in half that time.
Results We compared the output of ALEPH with the
positives-only evaluation function to the output of AMIE(+)
using the PCA confidence on the sample of YAGO2 used for
the runtime experiments. Since ALEPH required more than
one day for some relations, we used only rules for which the
head relation runs in less than one day. ALEPH mined 56
rules, while AMIE(+) mined 302 rules. We ordered the rules
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Table 12 Runtimes of ALEPH on YAGO2 sample

Relations Runtime

diedIn, directed, hasAcademicAdvisor <2min

graduatedFrom, isPoliticianOf, playsFor <2min

wasBornIn, worksAt, isLeaderOf <2min

exports, livesIn, isCitizenOf <1.4h

actedIn, produced, hasChild, isMarriedTo >1day

Table 13 PCA confidence versus positives-only score: aggregated pre-
cision of rules mined on YAGO2 sample

Top n Predictions Precision (%)

Positives-only 7 2997 27

PCA Confidence 12 2629 62

Positives-only 9 5031 26

PCA Confidence 22 4512 46

Positives-only 17 8457 30

PCA Confidence 23 13,927 43

by decreasing score (ALEPH) and decreasing PCA confi-
dence (AMIE(+)). We computed the precision of the rules
by evaluatingwhether a predictionmade by the rule is correct
or not (more on that metric in Sect. 7.5). Table 13 shows the
number of predictions and their total precision. We show the
aggregated values at the points where both approaches have
produced around 3, 5, and 8K predictions. AMIE(+)’s PCA
confidence succeeds in sorting the rules roughly by descend-
ing precision, so that the initial rules have an extraordinary
precision compared toALEPH’s.AMIE(+) needsmore rules
to produce the same number of predictions as ALEPH (but
she also mines more).

We suspect that ALEPH’s positives-only evaluation func-
tion manages to filter out overly general rules only to some
extent. The reason is that this measure “guesses” negative
examples at random, whereas rules usually create false pre-
dictions in a non-random way. Even if a rule produces many
false predictions, the intersection of these false predictions
and the random counterexamples may be very small. Con-
sider for example the rule bornIn(x, y) ⇒ diedIn(x, y),
which produces false predictions for example for persons
who have moved to a different place during their life.
By creating negative examples just by considering random
person–location pairs, we might not produce any case for
which the rule will give a false prediction, simply because
such a negative example will have a relatively small proba-
bility to be generated.
Summary Our experimental results show that AMIE (and
in particular AMIE+) can be up to three orders of mag-
nitude faster than other state-of-the-art systems, namely
WARMR [18] and ALEPH [32]. The PCA confidence was

shown to rank productive and correct rules higher than other
confidence metrics.

7.4 Evaluation of the PCA

The partial completeness assumption (PCA) says that if, for
a given subject s and a given relation r , the KB knows one
object o with r(s, o), then the KB knows all objects o′ with
r(s, o′) (Sect. 4). The original AMIE paper used the PCA
but it did not evaluate whether this assumption is true or
not [17]. Since the PCA is one of the basic ingredients of
AMIE(+)’sminingmodel, wewanted to know towhat extent
this assumption holds in a real-world KB.
Setup We looked into each of the 31 relations between enti-
ties in YAGO2. For each relation r , we randomly sampled
30 subjects. For each subject x , we checked whether the KB
knows all y with r(x, y). If the relation is more inverse func-
tional than functional (ifun(r) > f un(r), see Sect. 3.2), we
considered r−1 instead.

As a ground truth, we took the Wikipedia page of x and
what we could find on the Web by a search engine. It is
obvious that such an evaluation cannot be done strictly quan-
titatively. For example, a person might have worked for a
company, but this factmight appear nowhere onWikipedia—
or even on theWeb. Or a musician might play 10 instruments
at different levels of proficiency, butWikipediamentions only
the four main instruments. Even a search on the Web might
not tell us that there are more than four instruments. There-
fore, we resorted to a qualitative analysis. We analyzed each
of the relations manually, and grouped the relations into cat-
egories. Some relations fall into multiple categories. Table 8
shows, for each relation, the percentage of subjects in our
sample for which the PCA holds.
Functions and quasi-functions By definition, the PCA holds
for functions. Our manual analysis, however, did not result
in 100% precision for functional relations in Table 8. This
is because our analysis also counts the cases where the KB
contains bugs. If, for instance, YAGO knows the wrong place
of death of a person, then there exists another value outside
YAGO that is the right value. However the PCAwould reject
it. Hence, we count this case as a miss.

The PCA extends well to relations that are strictly speak-
ing not functions, but that have a high functionality. These are
relations that usually have one object per subject, even though
there could be several objects. For example, a person can
graduate from several universities, but most people graduate
from a single university. We call these relations quasi-
functions. The PCA worked very well also on these, and
predicted completeness correctly for 73–100% of the sub-
jects under investigation. Since the PCA takes into account
the direction of the functionality, the PCA also holds for
quasi-inverse functional relations such as directed.
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Granularity differences Some relations, such as locatedIn
and livesIn, hold between an entity and a geographical region.
In that case, the region can be given at the granularity of a
city, a region, a country, or a continent. Naturally, if YAGO
contains one of these, the others are possible options. Hence,
PCA fails and we found rather low-precision values. How-
ever, these cases could be addressed if one restricts the range
of the relation (say, to cities).With such a restriction, the rela-
tions become functions or quasi-functions, which lifts them
into the category where the PCA works well. As we will see
in Sect. 7.5, the use of types can significantly improve the
performance of AMIE.
Implicit assumptions Some statements can be inferred from
the Wikipedia page even if the page does not mention them.
People usually do not state information that can easily be
inferred by what they have stated before (following Grice’s
Maxim of quantity and manner [19]). For example, if some-
one graduated from a university, people usually do not feel
obliged to mention that this person used to live in the country
in which the university is located, because this can eas-
ily be inferred by the reader. Only less obvious residences
will be explicitly mentioned. Therefore, the PCA does not
always hold. Note that rules such as graduatedFrom(x, y) ⇒
livesIn(x, y) can only be mined if Grice’s maxims are occa-
sionally violated by the authors of the articles. If the authors
always follow the maxims, then such rules cannot be mined,
because there are not even positive examples for which the
rule holds (lack of support). In the case of YAGO, the only
relation that we found in this category is livesIn.
Source incompleteness For many relations, the source itself
(Wikipedia) is incomplete. Usually, these relations have, for
each subject, some objects that are undisputed. For example,
it is undisputed that Albert Einstein is interested in physics.
However, these relations also have objects that are less impor-
tant, disputed, or unknown. For example, Albert Einstein
might also be interested in music (he played the violin), but
maybe also in pancakes. These less prominent objects are a
lot less likely to appear in Wikipedia, or indeed on any Web
page. Even if they do, we can never be sure whether there is
not still something else that Einstein was interested in. For
these relations, the knowledge sources are often incomplete
by nature. For example, not every single product that a coun-
try imports and exports is explicitly mentioned. Whether or
not this poses a problemdepends on the application. If ground
truth is defined aswhat is universally true, then source incom-
pleteness is a problem. If ground truth is the source of the
KB (i.e., Wikipedia in this case), then source incompleteness
is not an issue.
Extraction incompleteness For a large number of relations,
theWikipedia page contains more objects for a given subject
than the KB. These are cases where the extraction process
was incomplete. In the case of YAGO, this is due to a strong
focus on accuracy, which causes the extraction to discard

any extracted fact that cannot be type checked or linked to an
entity. This class of relations is themost sensitive category for
the PCA. The success of the PCA will depend on how many
relations and to what extent they are affected by incomplete
extractions.
Discussion In summary, our analysis shows that it depends
on the nature of the relation and on its type signature whether
the PCA holds or not. There is a large number of relations
for which the PCA is reasonable. These are not just functions
and inverse functions, but also relations that exhibit a similar
behavior.

For many other cases, the PCA does not hold. In these
cases, AMIE(+) will falsely assume that a rule is making
incorrect predictions—although, in reality, the predictions
might be correct. Thus, when the PCA does not hold,
AMIE(+) will err on the side of caution.

At the same time, the PCA is not as restrictive as the
closed-world assumption (CWA): the PCA admits that there
can be facts that are true, but not known to the KB. For
example, if a person has a birth date, then both the CWA and
PCAwould not admit another birth date. However, if a person
does not have a birth date, then the PCA will admit that there
can be a birth date, while the CWA will assume that there
cannot be a birth date. Thus, the PCA is more permissive
than the CWA. This encourages us to use the PCA for the
definition of our confidence. In the following, we will show
that this definition of confidence produces more predictive
and more accurate rules than the standard confidence, which
is based on the CWA.

7.5 Predicting facts

PredictionOneof the applications of themined rules could be
to predict new facts. Based on what the KB knows, one aims
to predict what elsemight be the case in the real world. This is
a difficult endeavor: It amounts to guessing the places of res-
idence for people, their birth place, or even their death place.
Naturally, we may not assume a high precision in the predic-
tion of the future. We may only expect educated guesses.

To evaluate the precision of these guesses, we proceeded
as follows: We ran our system with the default setting on
the YAGO2 dataset. For each rule, we evaluated whether the
predictions that go beyond YAGO2 were true. We did this
by either checking whether the prediction appears in a newer
version of the KB (YAGO2s), or by manually checking them
in Wikipedia. If we could find the predicted fact in neither,
we evaluated it as false.
Standard versus PCA confidence Our first goal is to see
whether the PCA confidence or the standard confidence per-
form better in this task. Since both AMIE and AMIE+ can
work with both confidence metrics, and since their output is
the same,we report here our results from [17]withAMIE.We
ran AMIE and sorted the resulting rules first by descending
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Fig. 2 Std. confidence versus PCA confidence

PCAconfidence and thenbydescending standard confidence.
We looked at the top-ranked rules in each case, and evaluated
the precision of the predictions. The bottom curves of Fig. 2
plot the aggregated predictions versus the aggregated preci-
sion for the standard and the PCA confidence. The nth dot
from the left represents the total number of unique predic-
tions and the total precision of these predictions, aggregated
over the first n rules. As we see, ranking the rules by standard
confidence is a very conservative approach: it identifies rules
with reasonable precision, but these do not produce many
predictions. Going down in the list of ranked rules, the rules
produce more predictions—but at lower precision. The top
30 rules produce 113K predictions at an aggregated precision
of 34%. In contrast, if we rank the rules by PCA confidence,
we quickly get large numbers of predictions. The top 10
rules already produce 135K predictions—at a precision of
45%. The top 30 rules produce three times more predictions
than the top 30 rules by standard confidence—at comparable
precision. This is because the PCA confidence is less conser-
vative than the standard confidence. We thus conclude that
the PCA confidence is better suited for making predictions
than the standard confidence. We show in [17] that the PCA
confidence also correlates better with the actual precision of
a rule.
Using type information The previous experiment showed
us the precision of individual rules for prediction. To make
more accurate predictions, we have to combine these rules
with more signals. We proceed as follows. In Sect. 7.4
we discussed the granularity differences in relations. For
instance, the relation livesIn is used to express a person’s
city or country of residence. This implies that, for example,
the rule livesIn(x, y) ⇒ isCitizenOf (x, y) can predict that

some people are citizens of cities. Such spurious predictions
decrease the precision of the inference process. Therefore,
we configured AMIE+ to mine typed rules. These have the
form:

−→
B ∧ rdf:type(x, D) ∧ rdf:type(y, R) ⇒ r(x, y)

where D and R correspond to the domain and range of
the head relation r in YAGO3.5 To allow AMIE+ to find
such rules, we augmented the YAGO2 dataset by adding
the rdf:type statements about the subjects and objects of the
triples.
Joint predictionOur second observation is that the same pre-
diction can be fired from multiple rules. If we consider rules
as signals of evidence, then facts predicted by more rules
should get a higher confidence score. In YAGO2, 9% of the
predictions are fired bymore than one rule (with a PCAconfi-
dence threshold of 0.1). To take this into account, we changed
the way predictions are ranked. In the original experimental
setup, if multiple rules R1, . . . Rk made a prediction p, the
prediction was only counted the first time it was fired. Since
the rules were ranked by decreasing PCA confidence, this
was equivalent to ranking the predictions according to their
highest PCA confidence:

score(p) :=max
{

conf pca(R1), . . . , conf pca(Rk)
}

We propose an alternative score instead:

score∗(p) := 1 −
k

∏

i=1

(1 − conf pca(Ri )) (8)

Equation 8 aggregates the PCA confidence of the rules so
that the predictions concluded by multiple rules are ranked
higher. It also confers a probabilistic interpretation to the
PCA confidence. The score of a prediction is the probabil-
ity that at least one of the rules in R1, . . . Rk concludes p.
This is computed as 1 minus the probability that none of the
rules concludes p. The probability of a rule not concluding
p is defined as 1 minus the PCA confidence of the rule. The
probability that none of the rules concludes p is the product
of the individual probabilities. Although this scoring-scheme
is very simplistic (it assumes independence of the rules, and
confers a probabilistic interpretation to the confidence), it can
still serve as a proof of concept. In real applications, more
involved methods [33,37] can be used for joint prediction.
Results The upper curve in Fig. 2 shows the precision of
the predictions made with both heuristics. We proceeded as

5 We used the YAGO3 [28] types because the type signatures in older
versions of YAGO were too general. For example, the relation livesIn
is defined from person to location in YAGO2s, whereas in YAGO3 it is
defined from person to city.
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in the previous experiment, that is, we first used the rules
to fire predictions, and then we ranked these predictions by
descending score and computed their cumulative precision.
Unlike in the original experimental setup, the nth point from
the left in the new curve corresponds to the cumulative pre-
cision of the predictions up to the nth bucket. We bucketized
the predictions by score using a bucket size of 0.1, i.e., the
first point corresponds to the predictions with score between
1 and 0.9, the next one accounts for the predictionswith score
between 0.9 and 0.8 and so on.

As we can observe, our heuristics have a significant effect
on the precision of the predictions. The precision is much
higher at each level of recall, compared to the original exper-
iment. We can make 100,000 predictions at a precision of
70%. At 400K predictions, we still achieve a precision of
60%. While these predictions should not be added directly
to aKB, they could be sent to human evaluators to check their
correctness. It is much easier for a person to check fact can-
didates for their correctness than to invent them from scratch.
In addition, this experimental setup can serve as a baseline
for more sophisticated inference approaches.

8 Conclusion

In this paper, we have presented AMIE, an approach to mine
Horn rules on large RDF knowledge bases. AMIE is based on
a formalmodel for ruleminingunder the open-world assump-
tion, a method to simulate counterexamples, and a scalable
mining algorithm. In contrast to state-of-the-art approaches,
AMIE requires no input other than the KB and does not need
configurations or parameter tuning.

We have extendedAMIE toAMIE+ by a series of pruning
and query rewriting techniques, both lossless and approx-
imate. As our extensive experiments have shown, AMIE+
runs on millions of facts in only a few minutes and out-
performs state-of-the-art approaches not only in terms of
runtime, but also in terms of the number and quality of the
output rules. If we combine these rules with simple heuristics
for type checking and joint prediction, we can use them to
predict facts with a precision of about 70%.

For future work, we aim to develop better joint inference
approaches based on the rules mined by AMIE. We also aim
to extend the set of rules beyond the language of closed Horn
rules, so that even more facts can be predicted.
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