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Abstract—In order to improve asset knowledge and avoid third
part damages during road works, the localization of gas pipes
in a non-destructive way has become a wide domain of research
during these last years. Several devices have been developed in
order to answer this problem. Acoustic, electromagnetic or RFID
technologies are used to find pipes in the underground. Ground
Penetrating Radar (GPR) is also used to detect buried gas pipes.
However it does not directly provide a 3D position but a reflection
map called B-scan that the user must interpret. In this paper, we
propose a novel method to automatically get the position of gas
pipes with GPR acquisitions. This method uses a dictionary of
theoretical pipe signatures. The correlation between each atom
from the dictionary and the B-scan is used as feature in a two
part supervised learning scheme. Our method has been applied
to real data acquired on a test area and in real condition. The
proposed method presents satisfying qualitative and quantitative
results compared to other methods.

Index Terms—Gas pipes localization, GPR, Dictionary, Super-
vised learning.

I. INTRODUCTION

While roadworks and civil engineering works operate near
network pipes, an inaccurate mapping of pipe networks can
cause damages which lead to human and economical damages.
In France, 156 damages on gas pipelines have been counted
during the 2012 year [1]. Precise location of buried gas
networks in a non-destructive manner becomes primordial
for all network system operators. Several technologies have
been developed to update maps of underground network or
to localize pipes in real time before works which could affect
them. For this purpose, some technologies use the propagation
of acoustic or electromagnetic waves in a passive or active
mode. Another technology uses an RFID chip placed on the
pipe to read information (3D position and characteristics).
In our work, we are interested in using the Ground Penetrating
Radar (GPR) technology to get the position of the gas pipes.
However this sensor does not provide a position in the three
dimensions but a reflection map called B-scan which offers a
high degree of freedom in result interpretation. Operators need
experience to understand this particular data. In order to help
the non-expert users of GPR to detect and find the position of
buried pipes, a novel method to automatically localize them
in the B-scan has been developed. The ground penetrating
radar has been widely used in different applications like civil
engineering, geological study or glaciology [2].

This device is equipped with a transmitting and receiving
antenna with a large band and a high frequency (from 100
MHz to 2 GHz) placed few centimetres above soil surface.
An electromagnetic wave is sent in the underground which is
backscattered when it encounters a heterogeneity. The shape
of the impulse signal looks like a Ricker wavelet (Fig 1 (a)).
Then the receiving antenna records the backscattered wave at
each position as function of time. This function is called an A-
scan. By moving the GPR, a collection of A-scans is recorded
at different positions known thanks to an odometer (Fig 1 (b)).
This ensemble of A-scans forms a B-scan in which each value
corresponds to the amplitude of the backscattered wave at a
certain position of recording and time (Fig 1 (c)). On a B-
scan, the shape of the ensemble of echoes and their intensity
inform about the nature of the object. Thereby, an hyperbolic
shape means there is a punctual object, for instance a pipe or
a rock. On the other hand, a linear shape could be a boundary
between two layers.
Therefore in order to localize the pipes, we have to detect hy-
perbolas in the B-scan. The automatic detection of hyperbolas
offers several advantages :
Easier interpretation : Indeed, the GPR records a lot of
information from the soil which makes reading the B-scan
hard for a non-expert operator. The overprint of an hyperbola
on the B-scan can help him to better understand the data and
to work faster.
Time/depth conversion : After scanning the underground,
a 3D position is not directly obtained but a 2D position
according to the position of the GPR and a back and forth
time travel of the wave. In order to get a depth scale, the
wave speed must be estimated in the soil. This can be done
with the shape of the hyperbola.
Whole pipe 3D position : Indeed the hyperbola detection in
each B-scan in a sequence of acquisitions along a pipe allows
the false alarm removal thanks to the redundant information,
a faster update of maps and a merging data with other devices
(acoustic, RFID, electromagnetic).

Several studies addressed the automatic detection issue in
B-scans. Most of them used supervised learning algorithms.
Thereby, in [3] the authors applied the algorithm Viola Jones.
This algorithm uses Haar wavelet to compute the feature in
input of a boosting learning algorithm, Adaboost.
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Figure 1: Building of a B-scan

The authors of [4] and [5] used Neural Network. In par-
ticular, in [4], they proposed to use trapezoidal patches to
minimize the amount of background in patches with hyperbola
during the learning step. We call patch, a local representation
of an image, namely a small group of close pixels. In [6],
the authors proposed a classification method from A-scan. For
this, they used an adaptive dictionary of 1D gabor wavelets
to compute a sparse decomposition of the signal. Then they
applied the parameters used during the sparse decompositon
of the A-scan as feature in a classification step with the Suport
Vector Machine (SVM). For the detection results of these
works, the algorithm proposed by [3] shows a detection rate
from 59% to 76% on three different test sets. The method
of the authors of [6] obtained a detection rate between 91.7%
and 99.3% according to the dataset. However these last results
have been obtained from the training set and so they cannot be
compared with results obtained from a test set independent of
the learning step. [4] and [5] did not mention their detection
rates. In order to denoise seismic data a new frame with
hyperbolic shape has been developed by [7]. The frame is
built on three parameters. Both parameters jointly modified the
thickness and shape of hyperbola. The last one influence the
flattening of the hyperbola top. These parameters also act on
the position of the hyperbola top. Our work has been inspired
by the frame of [7] to build a dictionary of theoretical pipe
signatures. Nevertheless, in our case, the atoms remain centred
regardless the parameter values. The thickness, the shape
and the flattening of the atom are controlled by independent
parameters.
In the subsequent part, the proposed method is presented.
Especially the dictionary and the supervised learning scheme
are detailed. Then, qualitative and quantitative results are
shown from real data and compared with other methods.

II. PROPOSED METHOD

The correlation between the atoms of the dictionary and the
B-scans is used as feature in input of a supervised learning
scheme. First of all the dictionary and the feature coefficients
computation are described. Then the supervised learning steps
for the detection of hyperbola are detailed.

A. Dictionary

The dictionary is composed of hyperbolas (g(x)) convolved
with a Ricker wavelet (r(t)) according to vertical axis.

Each atom is parametrized by Θ = {α, σ, f, a, x0, t0}
We define an atom h(x, t|Θ) of our dictionary :

h(x, t|Θ) = e−α.A(x,t).(r(t) ? δ(t− g(x))) (1)

r(t|σ) =
2√

3σ.π1/4
.(1− t2

σ2
).e−

t2

2σ2 (2)

g(x|x0, t0, a, f) = a.
√
f2 + (x− x0)2 + t0 − f.a (3)

where δ(.) is the Dirac distribution. α and function A(x, t)
impact the atom attenuation. Especially, as we are working in
a finite space, A ensures a low energy of the atom close to the
boundaries. σ parameter is the standard-deviation of the Ricker
wavelet and controls the thickness of the atom. Parameter a
affects the opening of hyperbolas (spacing of the hyperbola
branches) which is directly related to the wave velocity in the
soil. Then f also affects the shape of the hyperbola but plays
a role in the flattening of the top of hyperbolas located at
(x0,t0).

(a) f = 50; a = 1.5; σ = 5 (b) f = 150; a = 2; σ = 5

Figure 2: Atom examples with different parameters

Because the hyperbola shape mainly depends on the pa-
rameter a, in practice to keep a reasonable dictionary size,
α, f and σ are set such that only one shape parameter and
two position parameters remain. The coefficient C is computed
according to the parameters, in our case just a, x0 and t0 vary
(Θ = (a, x0, t0)):

C(x, t|a, x0, t0) =

X∑
x=1

T∑
t=1

Y (x, t).h(x, t|a, x0, t0) (4)

where Y is a B-scan of dimension X × T .
With an atom centred, it amounts to :

C(x, t|a, x0, t0) =

X∑
x=1

T∑
t=1

Y (x, t).h(x− x0, t− t0|a) (5)



C(x, t|a, x0, t0) = (Y ? ha)(x0, t0) (6)
where ha = h(−x,−t|a) (7)

The parameters x0 and t0 are also set such that each atom
are centred. Therefore, the correlation between the B-scan
to analyse and each atom is computed and an image stack
is obtained (Fig : 5 (1)). Each image from the stack is the
correlation of B-scan and an atom (Figure 4 (b)). Thus a pixel
from the B-scan is associated with a vector of coefficients
Cx,t = (C(x, t|Θ1), ..., C(x, t|ΘK))

T , with K, the number of
atoms in the dictionary. We can see Cx,t as a local score of
the correlation between the B-scan and each atom.

High value coefficients would show the position of an
hyperbola. Thus a simple way to detect hyperbola would be to
keep these coefficients by a thresholding step. However high
value coefficients do not always correspond to the presence of
an hyperbola top and they lead to an important false alarm rate.
Figure 3 illustrates the computation of correlation between an
atom (green) and an horizontal clutter with high energy (dark
grey) and a background with a low energy (light grey). Thus,
the correlation value corresponds to the contribution of the
inner product between the part of the atom which intersects the
clutter (red hatched), the one which intersects the background
and the B-scan. For an hyperbola with a total energy slightly
above the background one its coefficient value will be lower
than the clutter one.

Figure 3: High value coefficient for clutter; Dark grey : clutter
with high energy; Light gray : background with low energy;
Red hatched area : Atom centred at (xi,ti) intersecting clutter

Before starting the coefficient computation, in order to
enhance hyperbola energy the B-scans are preprocessed to
remove the clutter which could hide hyperbolas. We applied
an algorithm based on curvelet transform [8] and an additional
automatic gain which suppresses the main horizontal informa-
tion in the B-scan, namely the direct wave and boundaries
between layers.
Figure 4 (a) shows the original B-scan which has been
acquired above an area with five pipelines. It seems easy to
distinguish three of them but two hyperbolas (in the centre) are
very hard to distinguish. Figure 4 (b) shows the coefficients
C(.|Θi), where the atom parametrized by Θi is the most
correlated with the hyperbolas in the B-scan. We noticed that
the hyperbola energy is concentrated on the hyperbola top
localization.

(a) Original B-scan (b) Coefficients

Figure 4: Coefficients from image stack associated to the most
correlated atom with the hyperbolas in the B-scan; Five blobs
are shown in the red boxes (b)

Our problem is no longer to find hyperbolas but to detect
blobs, marked in the red boxes in Figure 4 (b). A threshold
would still lead to a too high false alarm rate. Hence, to detect
these blobs in a robust manner, we apply a supervised learning
algorithm.

B. Supervised Learning

The purpose of this part is to predict if there is an hyperbola
top or not at a position (x, t). The supervised learning part
has been split into two models. The first model uses the
coefficient vectors Cx,t whereas the second one uses blob
patches. This allows us to be more robust. Indeed hyperbolas
will be detected in two separated models. Moreover the blob
detection from a patch search in the image stack is too
computer intensive. A detection step is realized among X×T
(B-scan size) coefficient vectors of K values (the number
of different hyperbolas in the dictionary, around 50) each,
whereas with patches (size 40x40) it is done in the image
stack namely X×T ×K patches have to be processed. Hence
the first step which is lighter in computer resource greatly
reduces the possibility number for the blob search.
Two models have been learnt with a supervised learning
algorithm. The first one, the Dictionary model separates the
coefficient vectors associated to a blob and those associated to
the background (namely without blobs). The second one, the
Blob model predicts if a patch contains a blob or not. For this
purpose, a first database has been built with a set of coefficient
vectors which are related to blobs and a set of coefficient
vectors randomly chosen among a set of vectors without blob.
The second database has been build with blob patches and
background patches. The hyperbola detection method consists
as follows (Fig 5) :

1) A coefficient vector for each position of the B-scan is
computed Cx,t.

2) Each coefficient vector is used in the Dictionary Model.
3) According to the classification results, coefficient vectors

related to a position is kept or rejected.
4) From the kept position, we look at the atom the more

correlated namely j = argmax
i

(C(x, t|Θi)).
5) The Blob Model decides if a patch centred at (x, t) at

the jth image from the image stack is a blob patch or
not. If this the case then the position is kept as being an
hyperbola top.
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Figure 5: The proposed framework; 3 and 5 respectively show the positions kept in white after the binary classification by the
models learnt based on coefficient vectors (Dictionary Model) and blob patches (Blob Model).

There are several algorithms for supervised learning, we
chose to apply the Support Vector Machine (SVM) algorithm
[9] with a RBF kernel for both learning steps. Figure 5 (3
and 5) presents the results of the two parts of the supervised
learning step.

C. Wave speed

Once an hyperbola has been found its mathematical func-
tion is automatically given by the atom which is the more
correlated with. Hence the averaged wave speed in the soil
can be estimated.
Let v, the averaged wave speed in the underground, dn the
distance between the pipe and the antenna at nth emitted pulse
at the position xn and tn the back and forth time of the wave
after reflection on the pipe. xap and tap are respectively, the
GPR device position and back and forth wave time when the
GPR is located above the hyperbola apex (Fig 1 (c)).

v = 2

√
(xn − xap)2
t2n − t2ap

(8)

Hence with the automatic hyperbola detection with our
dictionary, we can convert the time scale in a depth scale and
finally we can get an estimated depth.

III. RESULTS

In order to assess the performances of the proposed method,
a set of B-scans has been acquired by a 500 MHz antenna
USRADAR GPR and a 400 MHz antenna GSSI GPR on a test
area where the nature of the soil, the 3D position, diameter
(from 20 mm to 160 mm) and the material (polyethylene, cast
iron, steel) of pipes are known. This configuration diversity
allows us to observe a lot of different responses from pipes
relative to the soil.

Figure 6 illustrates the final result of the hyperbola detection
and shape estimation from two preprocessed B-scans (a) and
(c). The results show the detected hyperbola in red (Figures 6
(b) and (d)). Especially, Figure 6 (d) illustrates the detection
result of the B-scan shown in Figure 4 (a) with five pipes.

In order to assess the detection rate of our method, both
databases have been divided into three parts : a learning
database which contains 60% of the whole database to learn
the model, a cross-validation database which allows the best
parameter selection and a test database to assess the detection

performances with respectively 20% of the whole database.
Four metrics (Eq:12, 13, 14, 15) are also applied.

The precision (P ) represents the good classification rate
among positive predictions. The recall (R) represents the good
classification rate when the class in input is positive.

#TruePositive =

m∑
i=1

1{predictioni = yi ∧ predictioni = 1}

(9)

#FalsePositive =

m∑
i=1

1{predictioni 6= yi ∧ predictioni = 1}

(10)

#FalseNegative =

m∑
i=1

1{predictioni 6= yi ∧ predictioni = 0}

(11)

with m, the number of elements in the database, predictioni
the result of the algorithm for the ith database element and yi,
the true value for the ith element, we measure :

P =
#TruePositive

#TruePositive+ #FalsePositive
(12)

R =
#TruePositive

#TruePositive+ #FalseNegative
(13)

F-Score = 2× P.R

P +R
(14)

The good detection rate is also used which represents the
good prediction percent regardless the class in input.

Rate =
1

m
×

m∑
i=1

1{predictioni = yi} (15)

We compare our method with different supervised learning
algorithms coupled with different features to learn. Firstly,
a database composed of hyperbola patches and background
patches have been learnt. Different descriptor algorithms have
also been computed to extract features of this database,
Histogram of Gradient (HOG) and the Canny Edge detector
algorithms. Table II shows the results of the learning process
on a test set. We noticed from these results that our method
outperforms the detection results from hyperbola patches.



(a) Radar preprocessed 1 (b) Results 1 (c) Radar preprocessed 2 (d) Results 2

Figure 6: Automatic hyperbola localization results on two preprocessed B-scan (a) and (b) and their shape estimation in red
(b) and (d)

Feature Kernel Precision Recall F-Score Rate

Raw Linear 57.9 53.5 55.6 55.8
RBF 80.2 80.5 80.3 79.6

HOG Linear 74.1 69.3 71.6 71.6
RBF 78.1 80.3 79.2 78.2

Canny Linear 58.2 55.7 56.9 56.4
RBF 71.0 71.0 71.0 70

Table I: Results (%) of the model learning with SVM algo-
rithm from the test hyperbola database

Feature Kernel Precision Recall F-Score Rate

Coef. Linear 66.7 75.5 70.9 69.2
RBF 96.5 93.3 94.9 95.0

Blobs Linear 55.0 59.0 56.9 54.6
RBF 96.7 95.9 96.3 96.3

Table II: Results (%) of the model learning with SVM algo-
rithm from the test coefficient and blob database

The use of hyperbola patches can be problematic. These
patches may be too specific and do not cover all the pos-
sibilities. Indeed an hyperbola can be partially overlapped
by clutter, distorted, polluted by noise or several hyperbolas
may overlap each other. Moreover, hyperbola detection from
patches does not appear to be the best solution. Several
patch dimensions have to be considered. If the panel size
is too restrictive the detection result will be bad. On one
hand if patches size is too large, most of the clutter will
be present and will distort the detection. On the other hand
if it is not large enough to cover the whole hyperbola, it
will risk being classified as clutter. Here the detection from
the correlation between an hyperbola dictionary and B-scan
reduces the impact of the background on the data representing
the presence of the hyperbola (the positive class) and use a
unique patch size.

IV. CONCLUSION

In this work, we proposed a method to automatically
detect hyperbolas in B-scan and thus to localize pipes in the
underground. For this purpose, we chose to use a dictionary of
simple theoretical measures of pipes coupled with a supervised
learning scheme. For reasons of robustness and computation
speed, two models have been learnt.

The first one uses the coefficient vectors obtained with the
correlation between a B-scan and the dictionary as feature in
input. The second one look for a blob at the kept positions by
the first model for the atom with the highest correlation value.
Especially Support Vector Machine algorithm has been chosen
to learn both models. The results show a good detection rate
of 95% for the coefficient vector model and upper than 96%
for blob patch model.
In future works, complementary studies about the blob en-
hancement and on the dictionary should be done. A more
focused study on supervised learning algorithm should also
be undertaken.
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