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Université Paris Sud, LRI, TAO, Orsay, France

jamal.atif@lri.fr
Isabelle Bloch

Institut Mines Telecom, Telecom ParisTech, CNRS LTCI, Paris, France
isabelle.bloch@telecom-paristech.fr

February 2014

Abstract

Several researchers have developed properties that ensure compatibility of a concept similarity
or dissimilarity measure with the formal semantics of Description Logics. While these authors have
highlighted the relevance of the triangle inequality, none of their proposed dissimilarity measures
satisfy it. In this work we present several dissimilarity measures with this property: first, a simple
dissimilarity measure, based on description trees for the lightweight Description Logic EL; second, a
general framework based on concept relaxations; third, an instantiation of the general framework using
dilation operators from mathematical morphology, exploiting the link between Hausdorff distance
and dilations using balls of the ground distance as structuring elements. A comparison between these
definitions and their properties is provided as well.

Résumé

Plusieurs chercheurs se sont intéressés aux propriétés qui garantissent la compatibilité entre une
mesure de similarité ou dissimilarité entre concepts et la sémantique des logiques de description. Alors
que l’intérêt de l’inégalité triangulaire a été souligné, aucune mesure de dissimilarité existante ne la
satisfait. Dans ce rapport, nous présentons plusieurs mesures de dissimilarité ayant cette propriété :
nous proposons d’abord une mesure de dissimilarité simple, reposant sur les arbres de description
pour la logique de description EL ; puis nous construisons un cadre général utilisant des opérateurs
de dilatation morphologique, en exploitant le lien entre distance de Hausdorff et dilatation avec des
éléments structurants définis comme des boules de la distance de base. Enfin, nous comparons ces
définitions, ainsi que leurs propriétés.

Keywords: Distances between concepts, triangular inequality, description logics, mathematical morphology,
dilation.
Mots clés : Distances entre concepts, inégalité triangulaire, logiques de descriptions, morphologie mathématique,
dilatation.
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1 Introduction

By nature description logics are well equipped for representing precise knowledge in a formal manner. As ontologies
and description logics (DL) reach out to a broader audience some limitations become evident. In practice, it
often occurs that two concepts have similar meanings, but no precise logical relationship can be established.
Similarity measures, or dually dissimilarity measures are attempts to quantify the differences between concepts, and
therefore providing ways to deal with these imprecisions. They are crucial in areas such as information retrieval in
ontologies, ontology alignment, inductive logic programming and for some tasks in non-monotonic reasoning such
as model-based revision or aggregation.

In a DL setting similarity can be defined between individuals, concepts, or even ontologies. In this work we
focus exclusively on concept similarity. A large number of concept similarity measures has been developed, most of
which are tailored to the specific needs of a particular field, such as biomedicine [19], or geospatial reasoning [12].
These approaches can be classified according to various criteria, such as the ones given in [8]. Initially, the quality of
similarity measures has only been measured in terms of empirical evaluations. Increasingly, researchers are starting
to look at theoretical properties that ensure compatibility of a similarity measure with the formal semantics of
description logics. Works such as the ones in [9] and [14] list amongst others the properties of a metric, in particular
the triangle inequality, as well as soundness with respect to equivalence and subsumption.

Among these criteria the triangle inequality has been somewhat disputed. This dispute originates in [27], where
anecdotal evidence is provided that the human perception of similarity violates the triangle inequality. Tversky
gives the example of the three countries Cuba, Jamaica and Russia, where Cuba and Russia are perceived to be very
similar due to politics, Jamaica and Cuba are perceived to be very similar due to geography, but Jamaica and Russia
are believed to be completely dissimilar. In [13] the point is made that this criticism applies only if the weight of
the features that are compared is allowed to change. In the example the weight shifts from the politics feature to
the feature geography. With the exception of [12], all the aforementioned works on similarity in DL agree that the
triangle inequality is a desirable feature. Despite this, none of their proposed similarity measures satisfy it.

In the presence of the triangle inequality it is often more natural to talk about dissimilarity, instead of similarity,
since this emphasizes the connection to metrics, as they are known from topology. In this work we present several
dissimilarity measures with triangle inequality. In the case of the lightweight DL EL, every concept has a unique
representation as a tree. Therefore, any metric on trees yields a metric on concepts. In particular, a simple tree edit
distance yields a dissimilarity measure with good theoretical properties.

In a second step, we give a general framework that can be used to construct concept dissimilarity measures
with good theoretical properties, including the triangle inequality. The framework is based on concept relaxations,
operators that can be used to successively make concepts more general. A directed distance between two concepts
C and D can then be defined as the number of times D needs to be relaxed before it subsumes C. We show that the
maximum of the two directed distances yields a good dissimilarity measure.

Finally, we instantiate the framework using dilation operators from mathematical morphology. These operators
allow us to leverage a tree metric from the level of tree models to the level of DL concepts. This is based on the
observation that it is “relatively” easy to define a distance between models [16, 20] or between domain elements [15],
whereas on the concept level defining a dissimilarity is much harder. Our approach is based on the Hausdorff
distance. In a metric space the Hausdorff distance can be used to leverage a metric between points to a metric
between sets of points. We apply this idea to leverage a metric between models to a metric between concepts,
by identifying concepts with their sets of models. We then exploit a result from mathematical morphology, that
characterizes the Hausdorff distance by dilations using balls of the ground distance as structuring elements. On the
concept level this dilation gives rise to a relaxation operator, which we use to instantiate our framework.

2 Preliminaries

2.1 Description Logics

We do not give a complete introduction to description logics, for more information consider [1]. Description
logics are a family of knowledge representation formalisms. Every description logic L provides a set of concept
descriptions C(L). Concept descriptions are recursively obtained from a set of concept names NC and a set of
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role names NR using concept constructors. The pair Σ = (NC ,NR) is called a signature. An overview over
some frequently used constructors can be found in Table 1, where A denotes a concept name, while C and D
denote arbitrary concept descriptions. The semantics of concept descriptions is defined using interpretations. An
interpretation I is a pair I = (∆I , ·I) consisting of an interpretation domain ∆I and an interpretation function ·I
which maps concept names to subsets of the domain ∆I and role names to binary relations on the domain.

Table 1: Semantics of some DL concept constructors.

Constructor Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
concept name A AI ⊆ ∆I

conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ CI :

(x, y) ∈ rI}

A concept description C is said to subsume a concept description D if CI ⊆ DI holds for every interpretation
I . This is denoted by C v D. We say that C and D are equivalent (denoted by C ≡ D) if both C v D and D v C
hold. A concept description E is called a common subsumer of C and D if it subsumes both C and D.

We call a pair (I, x) where I is a DL interpretation and x ∈ ∆I is a domain element a pointed interpretation.
We denote the set of all pointed interpretations for a given signature Σ by IntΣ. We call (I, x) a (pointed) model of
C if x ∈ CI . For every concept description C ∈ L we denote the set of all pointed models of C by Mod (C).

In description logics axioms are typically stored in ontologies, which can be divided into TBoxes and ABoxes.
We define our measures in the absence of background ontologies. In the conclusion we give a brief discussion about
how they can be adapted to take TBoxes into account.

2.2 Similarity and Dissimilarity on Concepts

When similarity measures were first investigated within the DL community, researcher mainly focused on adaptations
of existing measures from other fields (cf. [8] for a survey). The quality of these measures was mainly examined in
an empirical way, showing that they perform well in a given setting, but providing little transferable insight. It was
only in [9] that qualitative criteria were developed, based on criteria given in [7]. The following definition is slightly
adapted to dissimilarity between concepts.

Definition 1 (Dissimilarity [7]). Let L be a DL language. A function d : C(L)×C(L)→ R is called a dissimilarity
measure if it satisfies the following properties for all C,D ∈ C(L).

• positiveness: d(C,D) ≥ 0

• reflexivity: d(C,C) = 0, and

• symmetry: d(C,D) = d(D,C).

These properties can be expected to hold for any dissimilarity measure. In a description logics context it should
also be compatible with the semantics of the logic. To ensure this, the additional properties of equivalence soundness
and (strict) monotonicity were introduced in [9].1

Definition 2 (Equivalence Soundness). A dissimilarity measure d : C(L)× C(L)→ R is called equivalence sound
if for all C,D,E ∈ C(L)

D ≡ E =⇒ d(C,D) = d(C,E).

1Additionally, the properties of soundness and dissimilarity incompatibility were mentioned, however these were never formally defined.
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Notice that in [14] equivalence soundness is referred to as equivalence invariance.

Definition 3 ((Strict) Monotonicity). A dissimilarity measure d : C(L)× C(L)→ R is called (strictly) monotone if
for all C,D,E ∈ C(L) that satisfy

• every common subsumer of C and E also subsumes D,

• there is a common subsumer of C and D that does not subsume E,

it holds that d(C,D) ≤ d(C,E), respectively d(C,D) < d(C,E).

The intuition behind monotonicity is that concepts with more common features should be less dissimilar than
concepts with few common features, and that common subsumers are a way to extract commonalities from concepts.
For example the concepts

F := Male u ∃hasChild.>
HoJ := Male u ∃marriedTo.(Female u Judge)

(1)

share the common feature Male which is also a common subsumer for them. Therefore, the dissimilarity between F
and HoJ should be smaller that say the dissimilarity between F and Female, whose only common subsumer is >.
An argument against monotonicity is that it is very dependent on the language. In a more expressive language, e.g. a
DL with disjunction, F and Female have the common subsumer F t Female and the property will fail to detect that
they do not have common features.

More recently, an extended set of properties has been proposed in [14]. These properties are originally stated for
similarity measures, here we present their equivalents for dissimilarity measures.

Definition 4 ([14]). A dissimilarity measure d : C(L)× C(L)→ R is called

• equivalence closed if d(C,D) = 0 =⇒ C ≡ D,

• subsumption preserving if C v D v E =⇒ d(C,D) ≤ d(C,E)

• reverse subsumption preserving if C v D v E =⇒ d(D,E) ≤ d(C,E)

• structurally dependent if for all sequences (Cn)n of atoms with Ci 6v Cj for all i, j ∈ N, i 6= j the concepts

Dn =
l

i≤n

Ci uD,En =
l

i≤n

Ci u E

satisfy limn→∞ d(Dn, En) = 0 for all C,D,E ∈ C(L).

• We say that d fulfills the triangle inequality if d(C,E) ≤ d(C,D) + d(D,E) for all C,D,E ∈ C(L).

Structural dependence is another attempt to formalize the idea that dissimilarity should decrease as the number
of common features increases. In fields such as topology or geometry it is generally accepted that distances should
be measured using metrics, or at least pseudo-metrics. A pseudo-metric δ1 is a binary operator that is non-negative,
symmetric, reflexive and respects the triangle inequality. A metric δ2, is a pseudo-metric that additionally is strict,
i.e. δ2(x, y) = 0 implies x = y. The bottleneck preventing most dissimilarity measures from being metrics is the
triangle inequality. Notice, that any equivalence sound dissimilarity measure that fulfills the triangle inequality
yields a pseudo-metric on C(L) modulo equivalence. If, additionally, it is equivalence closed we obtain a metric.
Unfortunately, even the measures presented in [14] and [9] with their otherwise good theoretical properties do not
satisfy the triangle inequality.
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3 EL and Distances on Trees

3.1 From Concepts to Description Trees

EL denotes the simple description logic, that allows only for conjunction u, existential restrictions ∃ and the top
concept>. Despite its limited expressivity, it is a very popular choice among ontology engineers, as it is tractable [2]
and forms the basis of the OWL 2 profile OWL 2 EL [17].

It has been noted early on that EL concept descriptions can appropriately be represented as labeled trees, often
called EL description trees [3]. An EL description tree is of the form G = (V,E, v0, `), where G is a tree with root
v0. The labeling function ` associates nodes with sets of concept names from NC , and edges with role names from
NR. An EL concept description of the form

C ≡ P1 u · · · u Pn u ∃r1.C1 u · · · u ∃rm.Cm (2)

with Pi ∈ NC ∪ {>}, can be translated into a description tree by labeling the root node v0 with {P1, . . . , Pn},
creating an rj successor, and then proceeding inductively by expanding Cj for the rj-successor node for all
j ∈ {1, . . . ,m}. As an example consider the concept description

Person u ∃c.Male u ∃c.∃c.Female. (3)

Its description tree is depicted in Figure 1.

v0

c c

c

Person

Male

Female

Figure 1: EL-Description Tree for (3).

v0

c c

m
c

Male

Female

Figure 2: Figure 1 after two edits: Removing the label at
v0 and adding an m-edge.

Due to this tight link between EL-concepts and trees it is natural to use distance measures defined on trees.
Examples for existing metrics defined on trees are tree edit distances and tree alignment distances [4]. In the
following we assume that we are given a metric δ on the space of all EL-concept descriptions and try to lift it to
a dissimilarity measure between EL-concepts. One cannot simply define dissimilarity between two concepts as
the distance between their description trees. This would violate equivalence soundness, since a concept can have
multiple equivalent representations and thus multiple description trees.

A frequently used workaround is restricting to the normal form, introduced in [3]. An EL-concept is in normal
form if it is of the form (2) with the additional requirement that no subsumption relation holds between two distinct
conjuncts and that all Cj , j ∈ {1, . . . ,m}, are also in normal form. The normal form is unique up to reordering of
conjuncts, and since reordering of conjuncts does not change the description tree, it yields a unique description tree
for each equivalence class of EL-concepts.

Definition 5 (Dissimilarity from Tree Metric). Let δ be a metric on the space of all EL-description trees. We define
a dissimilarity measure dtree

δ (C,D) = δ(TC , TD) where TC and TD are the EL-description trees of the normal
form of C and D, respectively.

It follows immediately from the uniqueness of the EL-description trees for normal forms that dtree
δ is equivalence

sound. Since δ is a metric, and thus positive, reflexive, symmetric, strict and satisfying the triangle inequality,
we obtain immediately that dtree

δ is positive, reflexive, symmetric, equivalence closed, and satisfies the triangle
inequality. However, dtree

δ does not, in general have the properties of monotonicity, structural dependence and
(reverse) subsumption preserving.
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3.2 Tree Edit Distances

Among the various approaches for defining distances between labeled trees arguably the most widely used are tree
edit distances, first introduced in [26]. They have been successfully applied in fields as diverse as computer vision,
natural language processing, and computational biology (cf. [4] for a survey).

The idea of tree edit distances is simple. One defines a set of edits, each with its associated cost. The tree edit
distance is then the minimal total cost of transforming one tree into another. If each edit is reversible at the same
cost, then the tree edit distance will be a metric. Which set of edit operations is chosen depends on the particular
application.

In this paper we use a particularly simple tree edit distance δedit, allowing for two simple operations addLabel
and addNode, as well as their inverses delLabel and delNode:

• the operation addLabel adds a concept name to a node in the tree,

• delLabel removes a concept name from a node,

• for any role r an (unlabeled) r-successor can be added to a node using addNode, and

• any unlabeled node without successors can be deleted using delNode.

We assign the same cost 1 to each edit. Therefore, the tree edit distance δedit between two trees T1 and T2 is the
minimal number of tree edit operations that need to be performed to transform T1 into T2. Refer to Figures 1 and 2
for an example.

Using a characterization of subsumption between EL-concepts through homomorphisms between their descrip-
tion graphs, it is straightforward to prove that the dissimilarity measure dtree

δedit is subsumption preserving and reverse
subsumption preserving, in addition to the properties that all dissimilarity measures obtained from Definition 5 have.

This shows that for the description logic EL, it is possible to define dissimilarity measures with good theoretical
qualities based on metrics on labeled trees. Unlike EL, concepts written in more expressive description logics lack a
simple characterization as labeled trees. It is therefore not possible to transfer the ideas from this section to more
expressive logics in a straightforward way. In Section 6 we will show how, by working on the space of pointed
tree-shaped models instead of the space of concept descriptions, we can still make use of tree distances to define
dissimilarity measures.

4 General Framework

In this section we provide a general framework for defining dissimilarity measures. We show that all dissimilarity
measures obtained within this framework have all properties from Section 2.2, except monotonicity and structural
dependence. The framework is based on concept relaxation operators, operators that allow a stepwise generalization
of concepts. In Sections 6 and 7 we will instantiate this framework using relaxation operators derived from distances
on the model space using mathematical morphology.

Definition 6 (Relaxation). A (concept) relaxation is an operator ρ : C(L)→ C(L) that satisfies the following three
properties for all C,D ∈ L.

1. ρ is non-decreasing, i.e. C v D implies ρ(C) v ρ(D),

2. ρ is extensive, i.e. C v ρ(C), and

3. ρ is exhaustive, i.e. ∃k ∈ N0 : > v ρk(C),

where ρk denotes ρ applied k times, and ρ0 is the identity.

Notice that extensivity and exhaustivity together entail strong extensivity, i.e. for all C ∈ C(L) it holds that
C @ ρ(C) or C ≡ >. A trivial relaxation is the operator ρ> that maps every concept to >. Another relaxation in
EL is the operator ρdepth that reduces the role depth of each concept by 1, simply by pruning the description tree.
Figure 3 depicts two applications of ρdepth to (3).
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v0

c c

c

Person

Male

Female

v0

c c

Person

Male

v0
Person

Figure 3: Consecutive application of ρdepth to (3).

A dissimilarity measure that is equivalence sound and closed should have the value d(C,D) = 0 if and only if
C ≡ D, i.e. iff C v D and D v C. Like in [14] and [25] we first introduce directed measures ddρ that capture how
“far”D is from being a subsumer of C, and vice versa. If both C v D andD v C hold, then both directed measures
will be 0. The directed measure ddρ(C,D) counts how often we need to successively relax D to reach a subsumer of
C. If we think of concepts in terms of sets of individuals, then the intuition behind successive relaxations can be
visualized as in Figure 4. This also corresponds to the idea of applying successive dilations, as detailed later.

C

D

ρ(D)

ρ2(D)

Figure 4: D needs to be relaxed twice before it subsumes C, i.e. ddρ(C,D) = 2.

Definition 7 (Directed measure). Let ρ be a relaxation on C(L). For C,D ∈ C(L) the directed measure ddρ(C,D)
is defined as

ddρ(C,D) = min{k ∈ N0 | C v ρk(D)},

where ρk denotes ρ applied k times, and ρ0 is the identity.

The directed measure is always finite because of the exhaustiveness of the ρ operator. We can then define the
relaxation dissimilarity based on a relaxation operator simply as the maximum of the two directed measures.

Definition 8 (Relaxation Dissimilarity). Let ρ : L → L be a relaxation on C(L). For two concepts C and D the
relaxation dissimilarity dρ(C,D) is defined as

dρ(C,D) = max{ddρ(C,D), ddρ(D,C)}.

Lemma 1. For every relaxation ρ the operator dρ is a dissimilarity measure, that is equivalence sound, equivalence
closed, subsumption preserving and reverse subsumption preserving, and satisfies the triangle inequality.

Proof. Positiveness, reflexivity and symmetry follow trivially from Definitions 7 and 8, and therefore dρ is a
dissimilarity measure.

We have the following chain of equivalences: C ≡ D, iff C v D and D v C, iff C v ρ0(D) and D v ρ0(C),
iff ddρ(C,D) = ddρ(D,C) = 0, iff dρ(C,D) = 0. Thus dρ is both equivalence sound and equivalence closed.
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To prove the triangle inequality, let C, D, E be concept descriptions and let dρ(C,D) = d1, dρ(D,E) = d2.
Then in particular, ddρ(C,D) ≤ d1 and thus C v ρd1(D) by extensivity. Similarly, we obtain D v ρd2(E). Using
non-decreasingness of relaxations we obtain from the latter

ρd1(D) v ρd1+d2(E)

and therefore C v ρd1+d2(E), i.e. ddρ(C,E) ≤ d1 + d2. Analogously, it can be shown that ddρ(E,C) ≤ d1 + d2

and thus dρ(C,E) ≤ d1 + d2 = dρ(C,D) + dρ(D,E).
To show subsumption preservingness let C v D v E with dρ(C,E) = d. Then in particular, E v ρd(C) and

thus also D v ρd(C). On the other hand, C v ρ0(D) v ρd(D) by extensivity, which yields dρ(C,D) ≤ k =
dρ(C,E), which proves subsumption preservingness.

Lemma 1 shows that relaxation operators yield dissimilarity measures with good theoretical properties, even for
simple relaxations such as ρ> or ρdepth. Obviously, ρ> yields a very coarse dissimilarity measure that is 0 iff the
concepts are equivalent and 1 otherwise. The dissimilarity measure ρdepth is also very coarse, as it only looks at the
first depth-level where the concepts differ, thereby giving higher weight to features at a smaller depth. For example,
if we compare F and HoJ from (1) to the concept ∃hasChild.> the value will be 2 in both cases, since the change
occurs at the lowest level, in the concept name Male. This is counter-intuitive, since F and ∃hasChild.> share more
common features than HoJ and ∃hasChild.>. This effect cannot occur with the relaxation obtained from a tree edit
distance on models which we will introduce in Section 7, since the tree edit distance puts equal weight on each edit,
independent of the depth in the tree at which it occurs.

5 Existing Metrics for Other Logics

Outside of description logics several works have proposed metrics between logical objects. Works such as the one
in [18, 21] exploit the fact that is relatively easy to define a metric on ground expressions in first order logic. They
extend these ground distances to sets of atoms, or Herbrand interpretations using constructions such as Hausdorff
distances or Manhattan distances.

In some cases it is straightforward to define a distance between two terms if one is a generalization of the other.
To obtain a distance between two arbitrary terms one can simply use the sum of the distances to their least general
common generalization. In a general form the author in [5] has presented this idea as the classical distance in graded
lattices. It is used to define a distance between first order literals in [11], who then generalizes it to a distance
between clauses using the Hausdorff metric. This idea can also be extended to cases where there is no unique
minimally general generalization [10].

6 Relaxation Operators from Dilations

6.1 Mathematical Morphology and the Hausdorff distance

Mathematical Morphology is a theory of spatial transformation, mainly developed in digital image processing [24].
Its deterministic part relies on the algebraic framework of complete lattices [22], thus extending its scope to many
domains of information processing, including logics [6]. At the heart of mathematical morphology are two classes of
operators: dilations and erosions. They are defined in the general algebraic setting of complete lattices as operators
that commute with the supremum and the infimum, respectively. Particular forms of dilations and erosions involve
the notion of “structuring element”, representing a binary relation between elements of the underlying space, or a
neighborhood of each element. In the case of metric spaces, the structuring element can be a ball of a distance, and
dilations and erosions can then be defined as follows. Let (M, δ) be a metric space and λ ∈ R a real number. The
dilation dilδ,λ and the erosion eroδ,λ by a ball of δ of radius λ are then defined as operators on the power set of M :

dilδ,λ(S) = {x ∈M | ∃y ∈ S : δ(x, y) ≤ λ} (4)
eroδ,λ(S) = {x ∈M | ∀y ∈M : δ(x, y) ≤ λ =⇒ y ∈ S}
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for all S ⊆M . For erosions and dilations by a unit ball, i.e. for λ = 1, we simply write dilδ and eroδ . Additionally
to the commutativity with the supremum for dilδ,λ, and with the infimum for eroδ,λ, these operations have important
properties that will be used in the following: they are increasing with respect to S, dilδ,λ is increasing and eroδ,λ is
decreasing with respect to λ, dilδ,λ is extensive (i.e. S ⊆ dilδ,λ(S)) and eroδ,λ is anti-extensive (i.e. eroδ,λ(S) ⊆ S).
Other properties may hold depending on the ground distance δ.

Figure 5: Subset S of binary digi-
tal image in white.

Figure 6: Its dilation by a ball of
radius 3 pixels.

Figure 7: Its erosion by a ball of
radius 3 pixels.

Dilations and erosions are illustrated in Figures 5–7 for a binary image. There is an intuitive connection between
dilations and relaxations, e.g. both are extensive and monotone. In Section 6.2 we shall exploit this connection
for the purpose of defining relaxations based on dilations. In that section we will mostly be interested in discrete
metrics, i.e. metrics that only take values from N. For these metrics, arbitrary dilations can be characterized by
successive dilations with a unit ball, provided that the betweenness property holds.

Definition 9 (Betweenness Property). Let δ be a discrete metric onM . We say that δ has the betweenness property if
for all x, y ∈M and all k ∈ {0, 1, . . . , δ(x, y)} there exists z ∈M such that δ(x, z) = k and δ(z, y) = δ(x, y)−k.

Simple induction over λ can be used to prove the following result.

Lemma 2. If δ is a discrete metric with betweenness property, then for all sets X ⊆M and all λ ∈ N it holds that
dilδ,λ(X) = (dilδ,1)

λ
(X).

But first, we point out a connection between dilations and the classical Hausdorff distance mentioned in [24].
Remember that for a metric space (M, δ) the Hausdorff distance h is a metric on the power set of M . For m ∈M
and non-empty compact subsets X,Y ⊆M let δ(x, Y ) = inf{δ(x, y) | y ∈ Y }, and define

hδ(X,Y ) = max

{
sup
x∈X

δ(x, Y ), sup
y∈Y

δ(y,X)

}
.

The Hausdorff distance can then be expressed in terms of dilations as described by the following lemma.

Lemma 3 ([24]). For all non-empty compact sets X,Y ⊆M

hδ(X,Y ) = max(hd,δ(X,Y ), hd,δ(Y,X))

where hd,δ(X,Y ) = inf {λ | X ⊆ dilδ,λ(Y )} and where hd,δ(Y,X) is defined analogously.

6.2 From Model Space to Concept Space

The idea behind the Hausdorff distance is to lift a metric defined on points to a metric on sets of points. In a similar
way we demonstrate how a metric can be lifted from pointed models to concept descriptions. Let δ be a metric on
the space of pointed models IntΣ. In a logic L with the tree model property, no two concept descriptions C and D
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Discrete Metric
δ : IntΣ × IntΣ → N

Dilation
dilδ : P(IntΣ)→ P(IntΣ)

Relaxation
ρdilδ : C(L)→ C(L)

Dissimilarity
dρdilδ : C(L)×C(L)→ N(4) Def. 10 Def. 8

Figure 8: From discrete metrics on IntΣ to dissimilarity measures.

can have the same sets of pointed models Mod (C) and Mod (D), unless they are equivalent. In fact it even holds
that

C v D ⇐⇒ Mod (C) ⊆ Mod (D) . (5)

In particular, the description logic ALC and all of its fragments have the tree model property [23]. Therefore, it
is natural to use the Hausdorff distance between sets of pointed models to define dissimilarity measures between
concepts, and to use dilations of sets to define relaxations on concepts. There are, however, two issues with this
approach. First, for two concepts C, D it is usually not possible to compute the suprema and infima in the definition
of the Hausdorff distance hδ , since the sets Mod (C) and Mod (D) are usually infinite. Furthermore, Mod (C) and
Mod (D) are not necessarily compact. Secondly, not every set of pointed models can be obtained as the models of a
concept description. In order to be able to obtain a relaxation from a dilation in a straightforward way, we need to
focus on dilations that are expressible in our logic.

Definition 10 (Expressibility). Let ω : P(IntΣ)→ P(IntΣ) be a unary operator. We say that ω is expressible in L
if for every C ∈ C(L) there exists some DC ∈ C(L) such that

Mod (DC) = ω(Mod (C)).

If L has the tree model property, then DC is unique up to equivalence, provided that it exists.
If ω is expressible in L then we can define an operator ρω : C(L)→ C(L) that maps C to DC for every concept

C ∈ C(L).

An example for a Hausdorff-based dilation that is expressible in a description logic will be given in Section 7.
The following result is an immediate consequence of the tree model property, the definition of subsumption, and the
fact that dilations are non-decreasing and extensive.

Lemma 4. Let L be a logic that has the tree-model property. Let dil be a dilation on C(L). If dil is expressible in
L then ρdil is non-decreasing and extensive.

Notice that in some logics such as EL, a concept can have only finitely many subsumers. For these logics, if ρdil

is strongly extensive, then it is also exhaustive, and therefore a relaxation.
For discrete metrics, we now have all the necessary definitions to obtain a dissimilarity measure on concepts,

according to Figure 8. The following theorem shows that the dissimilarity measure obtained in this way can be
viewed as a Hausdorff distance, if we identify concepts with their sets of models according to (5).

Theorem 1. Let δ be a discrete metric on IntΣ andC,D ∈ C(L) concept descriptions such that Mod (C), Mod (D)
are compact. Let dilδ , ρdilδ and dρdilδ

be defined as in Equation (4), Definition 10 and Definition 8, respectively. If
δ satisfies the betweenness property, dilδ is expressible in L and ρdilδ is exhaustive, then ρdilδ is a relaxation and

dρdilδ
(C,D) = hδ(Mod (C) ,Mod (D)).

Proof. Lemma 3 states that
hδ(Mod (C) ,Mod (D)) = max(HCD, HDC)

where HCD = inf {λ | Mod (C) ⊆ dilδ,λ(Mod (D))}. The betweenness property and expressibility of dilδ entail

dilδ,λ(Mod (D)) = (dilδ)
λ
(Mod (D))

= Mod
(
ρλdilδ

(D)
)
.

Together with (5) this yields
HCD = inf

{
λ | C v ρλdilδ

(D)
}
,

and finally HCD = ddρdilδ
(C,D) from Definition 7. Analogously, one can show HDC = ddρdilδ

(D,C), and thus
from Definition 8 we obtain dρdilδ

(C,D) = max(HCD, HDC) = hδ(Mod (C) ,Mod (D)).

10



7 A Relaxation from a Tree Edit Distance

In Section 3 we have defined the tree edit distance δedit on trees with labeled nodes and edges. We have used it on
EL-description trees, but since it only requires labeled nodes and edges, it can equally be used as a metric on IntΣ.
In this section, we show how, based on δedit, a dissimilarity measure can be defined according to the framework
depicted in Figure 8.

We consider the logic ELt, which allows for disjunction t in addition to the normal constructors of EL. The
extension by disjunction will later be needed to ensure expressibility of the dilation. Note that disjunction commutes
with existential restrictions, i.e. for all concepts C, D and all role names r it holds that ∃r.(C tD) ≡ ∃r.C t ∃r.D.
In particular, this means that any complex ELt concept description C can be written as a disjunction of pure EL
concept descriptions (Ci)1≤i≤k:

C ≡ C1 t C2 t · · ·Ck. (6)

In the later parts of this section, conjunctions over existential restrictions that share the same role name will require
special attention. Therefore, we group them when transforming a concept into normal form.

Definition 11. We say that an EL-concept D is written in normal form with grouping of existential restrictions if it
is of the form

D =
l

A∈ND

A u
l

r∈NR

Dr, (7)

where ND ⊆ NC is a set of concept names and the concepts Dr are of the form

Dr =
l

E∈CDr

∃r.E, (8)

where no subsumption relation holds between two distinct conjuncts and CDr is a set of complex EL-concepts, that
are themselves in normal form with grouping of existential restrictions. The purpose of Dr terms is simply to group
existential restrictions that share the same role name. For an ELt-concept C we say that C is in normal form if it is
of the form (6) and each of the Ci is an EL-concept in normal form with grouping of existential restrictions.

Given the tree edit distance δedit we want to apply the framework from Figure 8. Notice that in order to apply
Definition 10 we first need to show that the dilation dilδedit is expressible in ELt. Furthermore, in order to apply
Definition 8 it is necessary to show that ρdilδedit is exhaustive (non-decreasingness and exhaustivity follow from
Lemma 4). Our expressibility proof requires the following technical lemma which follows from monotonicity of the
ELt-constructors.

Lemma 5. Let (I, x) is a pointed model of an ELt-concept C and let (I ′, x) be a model that has been obtained
from (I, x) by either addLabel or addNode. Then (I ′, x) is also a model of C.

Conversely, if (I, x) is not a model of D and (I ′′, x) is obtained by either delLabel or delNode then (I ′′, x) is
not a model of D.

We show that dilδedit , defined as in (4), is expressible in ELt, by explicitly giving the operator ρdilδedit . Given an
ELt-concept description C we define an operator ρ recursively as follows. For C = A ∈ NC and for C = > we
define

ρ(A) = ρ(>) = >.

For C = Dr, where Dr is a group of existential restrictions as in (8), we need to distinguish two cases:

• if Dr ≡ ∃r.> we define ρ(Dr) = >, and

• if Dr 6≡ ∃r.> then we define

ρ(Dr) =
⊔
S⊆CDr

(
l

E/∈S

∃r.E u ∃r.ρ
( l

F∈S
F

))
.

11



Notice that in the latter case > /∈ CDr since Dr is in normal form. For C = D as in (7) we define

ρ(D) =
⊔

G∈CD

(
δ(G) u

l

H∈CD\G

H

)
,

where CD = ND ∪ {Dr | r ∈ NR}. Finally for C = C1 t C2 t · · ·Ck we set

ρ(C) = ρ(C1) t ρ(C2) t · · · ρ(Ck).

Theorem 2. The operator ρ as defined above satisfies

Mod (ρ(C)) = dilδedit(Mod (C)).

for all concept descriptions C ∈ ELt. In particular, this means that dilδedit is expressible in ELt and ρ = ρdilδedit .

Proof. Our proof will follow the structure of the definition of ρ. For each case, we need to show that for all pointed
models (I, x) it holds that

(I, x) ∈ Mod (ρ(C)) ⇐⇒ ∃(I ′, x) ∈ Mod (C) : δedit((I, x), (I ′, x)) ≤ 1, (9)

i.e. (I, x) is a model of ρ(C) iff one edit suffices to reach a model (I ′, x) of C.
Concept Names and Top: The case C = > is trivial. We consider the case C = A ∈ NC . It is clear that for

every pointed model (I, x) ∈ IntΣ = Mod (>) = Mod (ρ(A)) at most one edit operation addLabel suffices to
obtain a model (I ′, x) ∈ Mod (A), namely adding the label A to the root node x. The other direction is trivial.

Groups of Existential Restrictions: We consider the case where C = Dr as in (8). The case where Dr ≡ ∃r.>
can be treated analogously to the case of concept names. In the case where Dr 6≡ ∃r.> the main issue is that an edit
performed on an r-branch in a pointed model (I, x) can affect membership in several of the concepts E ∈ CDr
simultaneously. In the definition of ρ this is accounted for by the disjunction over all subsets of CDr .

We start our formal proof by showing the only-if-direction from (9). That is, we show that every tree-shaped
pointed model (I, x) of ρ(Dr) can be transformed into a model (I ′, x) of Dr using one edit. Assume that (I, x) is
a tree-shaped pointed model of ⊔

S⊆CDr

(
l

E/∈S

∃r.E u ∃r.ρ
( l

F∈S
F

))
.

By the semantics of the disjunction there must be some set S ⊆ CDr such that (I, x) is a model of

DS =
l

E/∈S

∃r.E u ∃r.ρ
( l

F∈S
F

)
.

In particular this means that x ∈
(
∃r.ρ(

d
F∈S F )

)I
. Thus there is an r-successor y of x, (x, y) ∈ rI , satisfying

y ∈
(
ρ(

d
F∈S F )

)I
. If we consider the subtree (I, y) of (I, x) with root y as a pointed model, then by the

induction hypothesis one edit operation suffices to obtain a pointed model (I ′, y) that satisfies y ∈ (
d
F∈S F )

I .
In the larger model (I, x) we can now simply replace the subtree starting at y by (I ′, y) to obtain a model (I ′, x)
(cf. Figure 1). Then in particular (I ′, x) is a model of ∃r.

d
F∈S F . By Lemma 5 this edit operation must have

been either addLabel or addNode, and therefore (I ′, x) is still a model of
d
D/∈S ∃r.D, again by Lemma 5. Hence,

(I ′, x) is a model of DS and thus also of Dr, and it is only one edit removed from (I, x).
Let us now prove the if-direction from (9). Assume we have performed an edit operation on a pointed tree model

(I ′, x) of Dr and obtained the interpretation (I, x).
Suppose first, that an operation delLabel or delNode has been applied within some subtree starting at an r-

successor y of x. Let Sy ⊆ CDr be the set of all concepts E ∈ CDr satisfying y ∈ EI′ . By the induction hypothesis
it must then hold that y ∈ ρ

(d
F∈Sy F

)I
, and therefore (I, x) is a model of

l

E/∈Sy

∃r.E u ∃r.ρ
( l

F∈Sy

F
)
v ρ(Dr).
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Figure 9: Changes exclusively in the subtree starting at y

For the remaining cases, notice that Dr v ρ(Dr) holds, since we allow S to be the empty set. The case where
delLabel has been used to remove a label of the root node x is trivial, since in Dr concept names only occur behind
existential quantifiers, and therefore removing a label at the root node does not affect membership in Dr. The claim
then follows from Dr v ρ(Dr). In the case where delNode has been used to remove a direct r-successor y of x we
know that y is unlabeled and has no successors, therefore the only concept it belongs to is >. Since > /∈ CDr we
know that y /∈ EI′ for any E ∈ CDr and thus (I, x) will still be a model of Dr. Again, the claim follows from
Dr v ρ(Dr).

Finally, if the operation was addLabel or addNode then the claim follows from Lemma 5 and Dr v ρ(Dr).
Arbitrary conjunctions: Let D =

d
G∈CD G where CD = ND ∪ {Dr | r ∈ NR}. We start by proving the

only-if direction from (9). Let (I, x) be a model of ρ(D). By the semantics of disjunction (I, x) is a model of
δ(G) u

d
H∈CD\GH for some G ∈ CD. We only consider the case where G = Dr for some r ∈ NR is a group

of existential restriction, since the case where G is a concept name is similar and slightly easier. Since (I, x) is a
model of δ(G) we know that performing one edit operation on (I, x) suffices to obtain a model (I ′, x) of G by the
induction hypothesis. This edit must have taken place in a subtree starting with the role r. Since we have grouped
all r-restrictions into G no concept H ∈ CD \ G can contain a restriction on r successors. Hence, after the edit
(I ′, x) is still a model of

d
H∈CD\GH . Therefore, (I ′, x) is a model of G u

d
H∈CD\GH ≡ D.

To prove the if-direction from (9) let (I ′, x) be a pointed model of D and (I, x) a model that has been obtained
from (I ′, x) using one edit. Like in the previous case, only delete operations are interesting. If the delete has
occurred inside a subtree starting with r, then (I, x) will be a model of δ(Dr) and still be a model of all the other
concepts in H ∈ CD \Dr. Thus (I ′, x) will be a model of ρ(D). The cases where a direct successor of the root
node or a label of the root node have been deleted can be treated similarly to the previous case.

Disjunctions: The case where C = C1 t · · ·Ck is a simple consequence of the semantics of disjunctions.

In order for Theorem 1 to be applicable, it only remains to show that ρ is exhaustive.

Lemma 6. The operator ρ is exhaustive.

Proof. From (5) it follows that ρk(C) ≡ > iff Mod
(
ρk(C)

)
= IntΣ. By Theorem 2 this is equivalent to

(dilδedit)k(Mod (C)) = IntΣ. Thus in order to show that ρ is exhaustive, it suffices to show that for every ELt-
concept C there exists k ∈ N0 such that all (I, x) ∈ IntΣ satisfy δedit((I, x),Mod (C)) ≤ k. If C is a concept
in pure EL then we can simply take k = size(C) to be the size of C, i.e. the number of labels and edges in the
description tree of C. Then, using k operations addLabel and addNode we can attach the full description graph of
C to the root node x in the model (I, x). This yields a model (I ′, x) of C, and thus δedit((I, x),Mod (C)) ≤ k.
If C is not in pure EL, then it can be written as a disjunction of pure EL concepts C1, . . . , Cn. In that case,
δedit((I, x),Mod (C)) is bounded by

min
1≤j≤n

size(Cj).

Hence, ρ is exhaustive.

This finally allows us to apply Theorem 1.

Corollary 1. The operator ρdilδedit is a relaxation, and the distance dρdil
δedit

is a dissimilarity measure that corre-
sponds to the Hausdorff distance hδedit in the sense of Theorem 1.

13



Notice that by Lemma 1 the dissimilarity dρdil
δedit

is also equivalence sound, equivalence closed, subsumption
preserving, reverse subsumption preserving, and satisfies the triangle inequality.

Example 1. For the relaxation ρdepth we observed that in certain cases it contradicts the intuition that a greater
number of common features should yield smaller dissimilarities. If we apply dρdil

δedit
to this example we obtain the

dissimilarities

dρdil
δedit

(F,∃hasChild.>) = 1,

dρdil
δedit

(HoJ,∃hasChild.>) = 4, and

dρdil
δedit

(HoJ,F) = 3.

as we would expect it by looking at the commonalities between the concepts.

8 Conclusion

In this work, we have presented several dissimilarity measures. Our approach for the Description Logic EL looks at
the unique description tree of a concept’s normal form. Then any tree metric can be used to define a dissimilarity. In
the general case, such a dissimilarity is not subsumption preserving and reverse subsumption preserving. A special
case is the dissimilarity based on the tree edit distance dtree

δedit , which satisfies these properties. The problem with this
approach is that it is very specific to EL and cannot easily be adapted to other logics.

For this reason, we have presented a second approach, a framework based on relaxation operators. In order
to define a dissimilarity for a new logic, it suffices to find a unary operator on concepts that is non-decreasing,
extensive and exhaustive. The relaxation dissimilarity obtained in this way satisfies all the listed properties except
monotonicity and structural dependence. We have then instantiated this framework by defining a morphological
dilation on the concept space and then expressing it as a relaxation at the concept level. An overview of the properties
of the similarity measures that we defined compared to some earlier works can be found in Table 2.

Table 2: Properties of some (dis-)similarity measures.
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[14] X – X X X X –
[9] X X – X X – –
dtree
δ X – X – – – X
dtree
δedit X – X X X – X

relaxation dissimilarity X – X X X – X

With respect to the intuition that greater numbers of common features should entail smaller dissimilarity we
were only able to provide anecdotal evidence. This is partly due to problems inherent to the two criteria subsumption
preserving and monotonicity, which try to formalize that intuition. Subsumption preservingness is in many cases
unnecessarily restrictive, while monotonicity has very limited significance in logics with disjunction.

The similarity measures that we have presented here are defined for concepts without a background terminology.
We briefly discuss how they can be adapted to the presence of background ontologies. If the background ontology
is an acyclic TBox, then concepts can be unfolded with respect to the TBox. In that case, it is possible to simply
compute the dissimilarity with respect to the unfolded concepts. In principle, it is possible to generalize relaxations

14



with respect to general TBoxes, by simply replacing the subsumption relation in their definition by subsumption
with respect to a TBox. How to instantiate relaxations with respect to TBoxes is left for future work.
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