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Abstract: Classical Probability theory is badly equipped to compute the probability of 

unique events, as it lacks the means to determine the relevant class to which the event 

belongs. Algorithmic Probability is designed to deal with individual events. It computes the 

chances that a given event will be output by a universal computing machine fed with 

random programs. This definition, however, fails to detect what makes an event noticeable. 

All non-trivial events are therefore assigned probabilities close to zero. The definition of 

probability proposed in this paper determines remarkable aspects of a situation ex post (after 

the fact). Contrary to Algorithmic Probability, it computes probability by considering a 

difference in complexity. Improbable situations are situations that are simpler to describe 

than to generate. This definition of probability leads to a new notion of information. 

Keywords: probability, unexpectedness, information. 

 

Probabilité algorithmique ex-post  

 

Résumé: La théorie classique des probabilités est inadaptée lorsqu’il s’agit de calculer la 

probabilité d’événements uniques, car elle ne comporte pas de moyens permettant de 

déterminer la classe à laquelle l’événement appartient. La notion de probabilité 

algorithmique a été conçue pour s’appliquer à des événements isolés. Elle calcule les 

chances qu’un événement donné soit produit par une machine de Turing universelle 

alimentée par des programmes aléatoires. Cette définition, toutefois, ne permet pas de 

détecter ce qui fait qu’un événement est remarquable. Tous les événements, en pratique, se 

voient affecter une probabilité proche de zéro. La définition de la probabilité proposée dans 

ce papier détermine les aspects remarquables d’une situation ex post (après coup). 

Contrairement à la probabilité algorithmique, elle calcule la probabilité en considérant une 

différence de complexité. Les situations improbables sont les situations qui sont plus 

simples à décrire qu’à produire. Cette définition de la probabilité conduit à une nouvelle 

notion d’information. 

Mots clés: probabilité, inattendu, information. 
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1. Introduction 

Most events, in Science or in everyday life, are unique: they will never occur again as such, in exactly 

the same conditions. Classical Probability calculus does not say much about the occurrence of unique 

events. A given occurring event or situation s must first be generalized by ignoring ‘irrelevant’ 

features, before any probability computation can take place. Unfortunately, what counts as relevant or 

irrelevant is not known. Let’s illustrate the problem with an intuitive example. 

Suppose that five coins are thrown on the table and that we are asked what the probability of the 

actual outcome was. Giving a definite answer proves difficult, as one does not know which features are 

relevant: the face of each coin, their position on the table, the face in relation to the year of issue of the 

coin, their position in relation to their color or to their monetary value, etc. Now suppose that the five 

falling coins happen to end up aligned. The event seems amazingly improbable. One ‘intuitively’ 

knows that relative positions are relevant to compute probability, whereas face and value remain 

irrelevant. Once a relevant feature f, such as ‘being aligned (within a certain precision)’, is available, 

the actual outcome s is generalized while maintaining f true, to give the set of all situations that share f. 

The set is then numerically compared with the set of all situations, and the ratio gives an estimate of 

the probability. This example illustrates the fact that computing the probability of a unique event 

requires two induction operations: one that gives the set R(s) of all situations that are similar to s in a 

relevant way, and another that provides the set A(s) of all alternatives to s. R(s) is characterized by the 

fact that some relevant feature f holds, whereas f ignored when determining A(s). This induction phase 

requires that f be available ex ante (before the fact). When playing dice, one knows in advance that 

numbers showing on the upper surface are the only relevant features and that positions or orientations 

should be ignored. In most situations of practical interest, however, relevant features must be 

discovered ex post, i.e. after the event has occurred. Traditional Probability Calculus is not appropriate 

to compute ex-post probability. 

Algorithmic Probability looks like a better candidate to deal with unique events. It has been 

introduced [1] to measure the probability, not of classes of situations, but of individual situations. The 

algorithmic probability of s is the probability that randomly chosen programs generate s. It can be 

assessed using the length of the shortest program that can generate s as result. Contrary to Classical 

Probability, Algorithmic Probability avoids the burden of putting s into a class R(s) of presumably 

similar events. However, as we will see, it still lacks the ability to determine which features are 

relevant in s. As a consequence, any complex situation receives a probability close to zero, since 

producing it from scratch by mere chance is highly unlikely. 

The central claim of this paper is that Algorithmic Probability should be based on the difference 

between generation complexity and description complexity, rather than on absolute complexity. In the 

Algorithmic Probability framework, there is hardly any distinction between describing an object or 

situation s and generating it. A description of s is any program pr that outputs s when run on a Turing 

machine T. We note: T(pr) = s. The description complexity K(s) of s, also called Kolmogorov 

complexity, is the length of the shortest program that outputs s when run on a universal Turing 

machine U. 
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K(s) = min {length(pr) | U(pr) = s} (1)

To generate s, one considers all programs by increasing length that may run on U and that produce 

s as output. The probability of generating s through such a process is called algorithmic probability 

pa(s) [1]. It amount to: 

pa(s) = 
 

 






sprU

prlength2  (2)

For the sum to converge, one must make clear that any program pr such that U(pr) = s has stopped 

after having output s, so that no program producing s is the prefix of another program producing s. 

Since the shortest program provides the major contribution to the sum, one may choose to define pa by: 

pa(s) = 2–K(s) (3)

Formulas (1) and (3) illustrate the conceptual proximity between description and generation in the 

standard algorithmic framework. The conflation between description and generation is however a 

major problem. It can only encompass situations in which objects result from an unconstrained 

constructive process, in which case complexity and probability tend to be aligned [2]. In most 

situations of practical interest, however, observed situations are not produced by unconstrained 

computing devices.  

Physical phenomena result from devices that are not universal Turing machines. Even if we regard 

these devices as computing machines, they are particular Turing machines, bound to perform certain 

classes of computations. This is the case for random events, which are considered to result from 

memoryless devices. A disintegration event in a radioactive sample occurs independently from the 

duration between the two preceding disintegration events. If it were not the case, periodic 

disintegration would be the most probable and the most often observed situation, as it would be easiest 

for the system to merely copy the preceding interval. More generally, one cannot prevent a universal 

Turing machine from using one of its previous partial outputs s when computing new ones. The 

complexity K((s, s)) of the couple (s, s) is close to K(s): K((s, s))  K(s) + K(c), where c is a ‘copy’ 

operator. Though c may not always be trivially simple, we have K((s, s)) < 2 K(s) for any sufficiently 

complex situation s. The repetition of s is more probable than the generation of any new structure s of 

comparable complexity. Since c can be implemented on any universal Turing machine, such a machine 

cannot be memoryless. Only a particular Turing machine T, or equivalently a universal Turing 

machine U bound to execute a particular program p0 first, such that U(<p0,s>) = T(s) for any s, can 

behave in a memoryless way (<,> denotes an appropriate concatenation). 

In what follows, the divergence between description and generation complexity will be used to 

define the notion of simplicity. From there, a new definition of algorithmic probability that subsumes 

definition (3) will be derived. To make things more concrete, two simple models of description and 

generation machines will be provided. They will be useful to show that the new definition of 

probability produces results which are more in conformity with the intuition of what probability should 

measure. 
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2. Probability and abnormal simplicity 

2.1 Randomness deficiency 

The idea that description and generation might be performed by two different machines has been 

implicitly used to measure the randomness deficiency of a situation [3]. The idea was already present 

in Kolmogorov initial writings on complexity [4]. Randomness deficiency (RD) is assessed by 

contrasting a given (computable) probability distribution P with the universal probability distribution 

pa, given by (3). The point of RD is that the universal distribution, since it is based on shortest 

computations, assigns greater probabilities to most considered situations. As the size of computations 

may vary depending on the machine, we have  pa(s) > P(s) for any considered situation s, where the 

constant  depends on P but not on s [5]. 

In the definition of RD, pa is computed from optimal descriptions (simple situations are considered 

more probable) whereas P (the actual distribution of observed situations) can be seen as the 

distribution of outputs of a generation machine. Suppose that P is a uniform lottery that outputs series 

of 10 binary digits. Such a device is expected to produce maximally complex objects most of the time. 

Maximally complex binary sequences x are incompressible, which means here that K(x) = 10. For 

maximally complex objects, P(x) = 2–10 = pa(x). If the device happens to produce a simple object s, we 

get P(s) = 2–10 << pa(s), which is the signature of a lack of randomness. If the first observed series is 

s = 0000000000, P(s) = 2–10 as for any series of length 10. On the other hand, pa(s) is significantly 

larger, as s may be described using a very short program. The output is much simpler than expected 

from the generating device and RD has a high value. 

Ex-post algorithmic probability p(s) generalizes the notion of randomness deficiency. However, 

contrary to the standard RD notion, the definition of p(s) avoids any reference to some preexisting 

probability distribution P. In the spirit of the algorithmic approach to probability, we should only 

consider computations performed by machines. Instead of contrasting two probability distributions pa 

and P, we will contrast the length of the computation leading to the shortest description of s with the 

length of the computation leading to its generation. 

One crucial departure from the definition of randomness deficiency comes from the fact that the 

objective character of probability is no longer a desired property. Ex-post algorithmic probability is 

intrinsically observer-dependent. The fact that a national Lottery draw matches my phone number is 

highly improbable to me, but not to the crowd. To represent this property, we suppose that the 

description of an observed situation s is performed by a particular Turing machine called “observation-

machine” or O, which represents the computing powers of the observer (see section 4). Observation 

complexity C(s) is the minimum information needed for O to unambiguously designate s. 

C(s) = min {length(pr) | O(pr) = s}  (4) 

This definition is identical to Kolmogorov complexity (1), except that the machine is imposed. 

Observation complexity will also be called description complexity.  

The observer not only describes s, but also makes assumptions about the way s has been produced. 

To represent this ability, we suppose that s is produced by a generation device called “world-machine” 

or W. Since W is defined by the observer, it appears as a constrained version of O (see section 3). 
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Generation complexity Cw(s) is defined as the minimum information needed for the “world” W to 

generate s. 

Cw(s) = min {length(pr) | W(pr) = s}  (5) 

This definition is again identical to Kolmogorov complexity, except that the machine is a particular 

one. A situation s is unexpected when C(s) is significantly smaller than Cw(s). Unexpectedness is 

defined as: 

U(s) = Cw(s) – C(s) (6) 

Since the observation machine is less constrained than the world machine, U(s) > 0. Ex-post 

algorithmic probability is defined by converting unexpectedness into binary choices.  

p = 2–U (7) 

Note that (7) is an inverted version of Shannon’s definition of information, if we equate information 

with unexpectedness. This is a first reason why ex-post algorithmic probability is rightfully called 

‘probability’. The next section offers further justification. 

2.2 Link with standard probability 

Suppose that an urn contains N objects with various complicated shapes. One object s is blindly 

drawn from it. The generation complexity of this event is Cw(s) = log(N), as the “world” requires 

log(N) bits to opt for any given object (all logarithms are supposed to be in base 2). Suppose that we 

use some feature f to describe s. If K objects in the urn are known to share f, we need log(K) bits to 

designate s once f is available. We may write C(s) < C(f) + log(K) (as characterizing s through f may 

be sub-optimal). We get from (7): 

p < 2C(f) × K/N (8) 

When computing ex-ante probability, f is given in advance: C(f) = 0, and expression (8) coincides 

with set-theoretic probability K/N. In situations in which probability must be evaluated ex-post, 

however, expression (8) departs from set-theoretic probability by a corrective term, 2C(f). This is 

another justification why ex-post algorithmic probability is a genuine probability notion, which 

subsumes the standard one. 

The corrective term 2C(f) explains why, in the example of the urn, the event appears more 

improbable (ex post) if the drawn object is the only spherical object rather than if it is the only object 

that has an odd number of spots on it. Though the drawn object is still unique in the latter case, the 

reason why it is unique is more complex than in the former case, what makes the event less 

improbable, according to (8). More generally, every object, if described with enough precision, can be 

said to be unique; therefore, in a set-theoretic approach to probability, every object should be regarded 

as improbable. Relation (8) gets us out of this conundrum. Rare objects must be rare for a simple 

reason. 

Equation (7) is the central equation of simplicity theory [6]. The point is that any situation that 

appears abnormally simple, i.e. that is simpler to describe than to generate, is regarded as improbable. 

Conversely, situations cannot be improbable if they are not complex to generate or simple to describe. 
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Some readers may be troubled about the fact that p(s), when cumulated over all possible situations 

s, adds up to more than 1. The problem seems obvious, since for situations that are complex to 

describe, U(s)  0 and p(s)  1. The problem is only apparent, however, as it results from a conflation 

between ex-ante and ex-post probability. From a set-theoretic perspective, any situation s, when 

considered ex-post, should be replaced by the set R(s) of all situations that share the relevant features 

with s, as we saw in the five-coin example. These sets are not mutually exclusive for different 

situations. No wonder that the sum of the corresponding probabilities is larger than 1.  

From an algorithmic probability perspective, the distinction between generation and description 

demands that we apply formula (3) twice. On the generation side, 2–Cw(s) is the algorithmic probability 

that the world produces s, what we can note Proba(h(s)) (where the predicate h() means “happen”). On 

the description side, 2–C(s) is the algorithmic probability Proba(s) that s comes out when the observer 

considers random descriptions. We can see that p(s) = Proba(h(s)) / Proba(s). Since h(s) entails s 

(generating h(s) is a way of generating s), we can write: 

p(s) = Proba(h(s) | s) (9)

(here, ‘|’ means probabilistic conditional). This probabilistic writing explains why p(s) adds up to more 

than one when summed over different situations s. Relation (9) is congruent with the name “ex-post 

algorithmic probability”, as the probability of the occurrence of s is assessed, considering that s is 

available. It is also another reason why p(s) is rightfully named ‘probability’. 

Definition (7) relies on the postulated existence of two machines, W and O. For the sake of 

concreteness, we propose now two illustrations showing what these machines may consist of.  

3. Generation complexity 

Considering particular machines instead of a universal Turing machine has several advantages. One is 

that Cw(s) or C(s) may be computable, whereas Kolmogorov complexity K(s) is not [3]. Another 

advantage is that W and O may implement models of actual observers (humans or machines) 

characterized by particular knowledge or biases. The purpose of this section is to show that it is easy to 

sketch concrete instance of a generation machine. The following section will do the same for the 

observation machine. 

Rational observers have some ideas about the way situations are generated by the world. The world 

is more constrained than the observer’s mind (represented by O). In particular, the world is supposed 

to function causally: it is not sufficient to think of a property f to have it implemented in reality. We 

can sketch a simple model for W.  

The simplest device representing the world’s action is an unbiased lottery. If s is chosen among N 

alternatives, Cw(s) = log(N). The world’s causal behavior can be elaborated by considering a cascade 

of random choices. The successive potential states of the world form a tree, i.e. a graph W = (S, T) 

where S is a set of states and T  N×N represents the set of admissible transitions. One particular state 

s0 has no incoming transition, whereas all other si have exactly one incoming transition: ! (x, si)  T. 

The degree d(si) of a state si is the number of outgoing transitions: d(si) = |{x | (si, x)  T}|. States s 

such that d(s) = 0 are resulting states, or leaves. In such a graph, there is always one single path (s0, s) 

leading from s0 to a leave s. This path can be seen as a causal explanation for s. The generation 

complexity of a resulting state is: 
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(10) 

Importantly, the computation of Cw(s) does not require the knowledge of the set of leaves, not even 

their number. This is a fundamental difference with the computations underlying set-theoretic 

probability. 

The previous definition of the World-machine can be extended to acyclic graphs. In that case, we 

must add a minimization among all possible paths m leading from s0 to s.  

    



mis

i
m

w sdsC


logmin  

(11) 

Note that thanks to the restriction to acyclic graphs, W is a prefix-free machine for all states that are 

mutually exclusive, i.e. that belong to different paths (and, in particular, for leaves). 

Another extension of the generation process consists in splitting situation s into several independent 

aspects sj such that s = & sj (where & designates co-occurrence). By definition, independence holds if 

the generation complexity of s is the sum of the partial generation complexities. 

   
j

jww sCsC  

(12) 

A predicate f may be considered true for a subset of S. We define conditional generation complexity 

Cw(s|f(s)) as the complexity of the shortest path leading to s from a state in which f holds. 

     
 

   






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

True&  ,  logmin
,

kk
sss

iw sfsssdsfsC
ki




 
(13) 

If f is an observed property of s (which means f(s) = True), then f(s) can be generated first. 

     
 

   








 


True;,  logmin
,0

jkj
sss

iw sfssssdsfC
ki




 
(14) 

Then we get: 

Cw(s) < Cw(f(s)) + Cw(s | f(s)) (15) 

The inequality comes from the fact that the best path leading from s0 to s is no longer guaranteed to 

be globally minimal in (11) if it is bound to be minimal between s0 and a state where f(s) is true.  

4. Description complexity 

The simplest observation machine consists in a short-term memory, which can be implemented as a list 

(figure 1). This list functions as a stack, with the most recently observed objects being located first. 

Figure 1 shows a positional code (with no left completion by zeros) that can be used to address 

elements in the list. The complexity C(s) of a known object s is obtained using the size of its address.  
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Figure 1: Positional code 

 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 . . . 

Address  0 1 00 01 10 11 000 001 010 011 100 . . . 

 

The purpose of O is to provide the shortest representation of a given situation s. The code shown in 

figure 1 is designed to be maximally compact. Unsurprisingly, the complexity of an object at rank r is 

approximately log(r). The point of designing such a code is to spare bits when addressing the top of 

the list. Note that the first item requires a null code, which means that it is meant by default when the 

list itself is addressed. 

Note that the code is not prefix-free. To keep the probabilistic interpretation of equation (9), we 

must turn it into a prefix-free code, for instance by prefixing the address by the indication of its length 

(this can be done using less than 2log(1+L) bits, where L is the size of the address).  

The memory structure of the observation machine can be elaborated by distinguishing long-term 

memory (LTM) from short-term memory (STM). Ideally, LTM should be an associative memory device 

that can be addressed by content. Figure 2 shows a rough approximation where LTM has a tree 

structure and where each branch has its own prefix. After a branching node, the first node in each 

branch is used as prefix for the whole subtree (figure 2). Note that the code in figure 2 is not optimally 

compact, as there is no word starting with 000.  

 

Figure 1: Branching positional code 

 

      10- 10-0 10-1 10-00 10-01 10-10   

 0 1 00 01  11- 11-0  11-1- 11-1-0 11-1-00 11-1-01 11-1-10 

         11-00- 11-00-0 11-00-1 11-00-00  

 

LTM can be organized by a learning mechanism. If the observer is adapted to its environment, 

frequent objects are stored higher in the LTM tree. Addresses in LTM will thus approximate a 

Shannon-Fano code. 

When a situation is new to the observer, it must be constructed, using a set of available operators, 

instead of being merely retrieved from memory. The observer may rely on preferred operations, such 

as ‘copy’ or ‘symmetry’. If we wish the observation machine to reflect human cognitive capabilities, it 

may be given a specialized device to detect group invariants [7]. These preferred operators are stored 

in an operator list, OP, and thus have their own complexity. The complexity of a constructed object is 

obtained by summing the complexity of the operations and of the operands that are used to construct it.  

Our observation machine is thus defined as a triple (STM, LTM, OP). The complexity C(s) of a 

situation s is either the size of its shortest address in STM or in LTM, or the size of the cheapest 

computation that generates s (where cost is the cumulated complexity of operators and operands). Due 

to the minimization in (4), the computation of C(s) may not be always tractable. For practical 

purposes, however, it may be performed under limited time resources, as in [8]. 

The previous description aims at providing a concrete picture of what a basic observation machine 

may look like. The main point is that the observation machine is only constrained by its own biases: its 



9 

Technical Report Telecom ParisTech 2011D009  -  www.dessalles.fr/papers/Dessalles_11060501.pdf 

operator list and the organization of its memory. It can reuse any previously stored element (even 

addresses) if it helps finding the shortest path to a given object.  

If the long-term memory is associative, a situation s may be described using one of its property f(s). 

This means that to describe s, the observer may first retrieve the predicate f itself, and then use f(s) to 

disambiguate s.  

C(s) < C(f) + C(s | f(s)) (16) 

The symbol | in C(s | f(s)) is the standard conditional for complexity computation. It means that f(s) 

is available when constructing a description of s. Note that contrary to the generation machine, the 

observer just counts the complexity of retrieving the feature f, not f(s). For instance, the Pisa Tower, 

Cw includes the complexity of some causal explanation of the fact that the tower is leaning. On the 

description size, however, the tower can be individualized among all towers by merely retrieving the 

predicate ‘leaning’ from memory, and then by discriminating among all towers that have the ‘leaning’ 

property. If this fails to reach uniqueness, an upper bound is obtained by writing C(s | f(s)) < log(K), 

where K = |{x | f(x) = True}| is the size of the class characterized by predicate f (note that the extension 

of predicate f has no objective character here, as it is assessed by the observer). Several characteristics 

fi may be successively used to diminish the eventual discrimination among the K undistinguished 

situations.  

5. Relevant features 

The main drawback we found in set-theoretic probability and in algorithmic probability is their 

inability to discard irrelevant properties ex post. Definition (7) solves the problem. Let’s call optimal 

any feature f used in the optimal description. When only one feature f is used, f is optimal if:  

C(s) = C(f) + C(s | f(s)) (17) 

A feature f is relevant if it can be used to generate compression between Cw(s) and C(s). If s is 

unexpected: U(s) > 0, then any optimal feature is relevant. Even if a large number of features can be 

found in a situation, only those that contribute to compression are worth paying attention to. In the 

five-coin example, relative positions are relevant because their description is more compressed than 

their generation. When computing Cw, we need two numbers per coin to guide the world’s decision 

process. If numbers are represented with 10 bits each (what provides roughly one-millimeter 

precision), Cw(s) = 100. If coins happen to be aligned, their positions can be described with less 

information. We need two numbers to determine the position of an extreme coin, then one number to 

designate the angle, and then one additional number for each of the four remaining coins. This makes 7 

numbers, U(s) = 30 bits and p(s) = 2–30. Relevant “observables” are all the characteristics that generate 

compression, as do positions when coins are aligned. If all five coins show a head, then the common 

side of the coins becomes relevant, since it contributes to unexpectedness. 

We can say that a feature f is directly relevant if f is sufficient to make s improbable: 

Cw(f(s)) – C(f) > 0 (18) 

Most situations that we encounter are such that Cw(s)  C(s), which means that they are not 

unexpected. This is a non-trivial fact, which is due to our capacity to adapt to the surrounding world. 

In the previous example about the urn where Cw(s) = log(N), we are able to find optimal features to 
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describe s so that (in the case of one single feature f): C(f) + C(s|f(s)) = log(N). Experience allows 

observers to promote frequent properties higher in the memory tree. Memory organization then 

approximates a Shannon-Fano code, which means that C(f)  log(N/k), where k/N is the frequency of 

occurrence of f in the “world”. Once we know that f(s) is true, s must be distinguished among k objects 

on average, which means that C(s|f(s))  log(k). This makes the similarity Cw(s)  C(s) most of the 

time valid. But there are exceptions. Those are the unexpected ones. 

We now analyze a few cases in which (7) provides non-trivial results. 

6. Examples of unexpected situations 

6.1 Improbable structures  

A remarkable lottery draw, such as 1–2–3–4–5–6, is perceived as highly improbable, and players 

are highly reluctant to bet on them [9,10]. In a Lottery game, Cw(s) is supposed to be identical for any 

draw. C(s), however, is very low for the consecutive combination, compared to a “standard”, i.e. 

complex, one. With the kind of coding described in section 4, a consecutive sequence has minimal 

complexity, since the increment operator is, at least in a generic lottery context, the simplest among all 

available operators. If we neglect this complexity, then according to formula (7), ex-post probability is 

the same as the probability of winning. Ex-post probability grows with the complexity of the draw and 

is close to 1 for any combination devoid of apparent structure. 

Contrary to improbability feelings in the coin throwing experiment, such judgment about lottery 

draws can be regarded as erroneous. They are traditionally attributed to a representativeness bias [11]. 

Note, however, that unexpected lottery draws are a reliable clue of cheating whenever fraud can be 

suspected. 

6.2 Improbable closeness 

An observer would consider a fire occurring in the vicinity as more improbable than if it occurred in 

a distant location. Formula (7) explains this effect. The most concise method to code for locations in 

an isotropic 2-D space consists in numbering them following concentric circles centered on the 

observer’s position. Performed this way, the description complexity of a location x of size a at distance 

d requires no more than log(d2/a2) bits. Generation complexity depends on the spatial density of 

similar events. It can be estimated by the distance D to the last remembered event of the same class 

[12]. As far as spatial position is concerned, generation is equivalent to choosing among D2/a2 

locations. Unexpectedness due to location amounts to:  

U(x) =  2×log(D/d) (19) 

The formula correctly predicts the effect of closeness on probability. The minimal description of 

location x may go through landmarks, when available. The best landmark L0 satisfies: 

L0 = argmin (C(L) + log(dL
2/a2) (20) 

Here dL represents the distance from L to x. The contribution of position to unexpectedness is thus:  

U(x) =  2×log(D/dL0) – C(L0)
 (21) 
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This explains why a fire occurring on a famous landmark such as the Eiffel Tower is regarded as 

news. 

6.3 Improbable coincidences 

Coincidences are universally perceived as improbable [13]. Consider two situations s1 and s2. The 

description complexity of the joint situation s1 & s2 obeys the following relation: 

C(s1 & s2) < C(s1) + C(s2| s1)
 (22) 

By definition, s1 and s2 are independent iff Cw(s1 & s2) = Cw(s1) + Cw(s2). We get: 

U(s1 & s2) > U(s1) + Cw(s2) – C(s2| s1)
 (23) 

If we suppose that s1 and s2 are not unexpected separately, we get: 

U(s1 & s2) > C(s2) – C(s2| s1)
 (24) 

Relation (24) shows that the joint situation (s1 & s2) is all the more unexpected as both situations are 

analogue, since analogy minimizes conditional complexity [14]. It makes correct predictions about the 

various parameters that influence coincidence intensity [15].  

7. Discussion 

The definition of probability given by (7) shares with definition (3) the crucial property of 

computing probability of unique events, in contrast with set-theoretic probability which assigns 

probability only to sets of events. Contrary to algorithmic probability, which assigns virtually zero 

probability to all events of significant complexity, definition p = 2–U is able to ignore irrelevant 

features in the situation. The definition of ex-post algorithmic probability is based, not just on 

complexity, but on a contrast between generation complexity and description complexity. It can be 

successfully applied in many situations in which other definitions of probability are either silent or 

give erroneous results. 

By turning away from extensional reasoning, ex-post algorithmic probability can no longer 

represent the effect of disjunction or even negation. Kolmogorov’s axioms are relevant to ex-ante 

probability, not to ex-post probability. It is a necessary price to pay for being able to detect unexpected 

situations. However, although definition (7) cannot represent p(not s) for an unexpected situation s, it 

is possible to look for the most probable (i.e. less unexpected) way of undoing s [16].  

Definition (7) has many advantages that compensate for these limitations and make it useful to 

perform ex post judgments of probability. Section 6 lists some of them. In addition, we may mention 

the fact that it offers a new way of resolving the information/entropy divorce. Maximally complex 

states are given maximum probability by definition (7). This is in congruence with the principle of 

maximal entropy for closed systems in statistical Physics, where the most probable macro-states 

correspond to complex (unordered) micro-states. This makes sense if we consider that rather than a 

measure of disorder, entropy is a measure of the typicality of disorder [17]. 

Definition (7) also distinguishes information from randomness. If we equate information with 

unexpectedness, a random DNA sequence offers no information whatsoever. According to (6), 

information requires an observer and two viewpoints: generation and description. A DNA molecule 

would bring different information values to a forensic investigator who instantiates the murderer’s 
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identity and to a molecular biologist who instantiates a gene. In both cases, formula (6) creates a 

complexity drop. The amplitude of the drop defines the amount of information retrieved from the DNA 

sample by the observer. 

Ex-post algorithmic probability implements the idea that improbable situations are abnormally 

simple. The notion of simplicity has been introduced to demonstrate that Kolmogorov complexity 

plays a role in cognition [18, 19]. Simplicity, as defined by (6), contributes to the definition of 

interestingness [16]. It differs from Schmidhuber’s notion of interestingness, which is C(s)/t [8]. 

Unexpected situations elicit a subjective feeling of improbability and of interest, and people feel 

obliged to talk about them [16].  

Simplicity theory [6] builds on definition (7) to explore situations in which human judgments are 

involved, including bets, decision and emotional intensity [20]. A possible extrapolation would be to 

consider non-human observers, e.g. in data mining or in monitoring, where automata are supposed to 

spot any unusual pattern. 
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