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Abstract. This paper presents a novel stochastic level set method for
the longitudinal tracking of lung tumors in computed tomography (CT)
and CT/PET images. The proposed model addresses the limitations
of registration-based and segmentation-based methods for longitudinal
tumor tracking. It combines the advantages of each approach using a
new probabilistic framework, namely chance-constrained programming
(CCP). Lung tumors can shrink or grow over time, which can be re-
flected in large changes of shape, appearance and volume in CT images.
Traditional level set methods with a priori knowledge about shape are
not suitable since the tumors are undergoing random and large changes in
shape. Our CCP level set model allows us to introduce a flexible prior to
track structures with a highly variable shape by permitting a constraint
violation up to a specified probability level. The chance constraints are
computed from two given points by the user or from segmented tumors
from a reference image. The reference image can be one of the images
studied or an external template. We present a numerical scheme to ap-
proximate the solution of the proposed model and apply it to track lung
tumors in CT and CT/PET data. Finally we compare our approach with
a Bayesian level set. The CCP level set model gives the best results: it
is more coherent with the manual segmentation.

Keywords: Level set methods, stochastic level set methods, chance con-
straints, image segmentation, longitudinal tumor tracking in CT and
CT/PET images.

Résumé : Cet article présente une méthode originale pour la segmen-
tation longitudinale de tumeurs du poumon en imagerie médicale par
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émission de positons (TEP) et tomodensitométrie (TDM). Le modele
proposé aborde les limitations des méthodes de segmentation et de re-
calage pour le suivi de tumeurs. Notre modele utilise un formalisme
probabiliste original, appelé modele de contraintes fortuites (CCP). Les
tumeurs du poumon sont soumises a des grandes déformations au cours
de la respiration, et cela se traduit par des grands changements de forme
et d’apparence aléatoires dans les images TDM. Les méthodes par ensem-
bles de niveaux traditionnelles avec un a priori de forme ne permettent
pas de gérer ce genre de changements. Notre modele CCP introduit des
contraintes souples sur ’évolution des ensembles de niveaux en permet-
tant des violations des contraintes de forme imposées jusqu’a un niveau
de probabilité prédéfini par I'utilisateur. Les contraintes CCP sont cal-
culées a partir de deux points donnés par 'utilisateur, le premier point
étant situé a 'intérieur de la tumeur et le second sur le bord de la tumeur.
Ces points sont donnés sur une image de référence, typiquement 'image
acquise a la premiere date. Ces deux points peuvent étre remplacés par
une segmentation manuelle de la tumeur dans I'image de référence. Nous
présentons un schéma numérique pour estimer la solution du modele pro-
posé. Nous appliquons notre méthode a la segmentation longitudinale de
tumeurs en imagerie TDM et TDM/TEP. Les résultats obtenus avec
notre modele sont meilleurs que ceux obtenus par un modele bayésien.
En effet les résultats obtenus par CCP sont plus cohérents avec la seg-
mentation manuelle.

Mots clés : Ensembles de niveaux, méthodes stochastiques, contraintes
fortuites, segmentation d’images, suivi longitudinal de tumeurs en TDM
et TDM/TEP.

1 Introduction

In this work we aim to estimate longitudinal tumor volumes to compute accu-
rately the change in tumor volume. These volumes can be used as tumor indica-
tors or to compute a local SUV measure from the PET image, and to then com-
pute the change of the considered measure [17]. Among all tomographic medical
imaging methods (ultrasound, CT, MR, and single photon emission computed
tomography), FDG PET images have the best contrast for most cancers. Con-
sequently, PET imaging is becoming more and more used for diagnosis purposes
and to guide therapy [13]. However, the CT provides an accurate anatomical
image and no PET-only scanners are manufactured for oncology imaging any-
more [22]. Combined CT and PET scanning gives the precise localization of FDG
uptake.

Among the large number of methods for estimating tumor change or tumor
tracking, the following three approaches are the most popular:

— Analyzing the difference of images: this approach consists in analyzing the
registration error between two images. One image is considered as the ref-
erence image and the second one is registered toward this reference. The
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difference between the registered image and the reference image allows de-
tecting tumor changes [10,7]. Other methods based on differences between
images have been proposed, in particular for brain tumors, using a statistical
analysis of grey levels and contrast [1,2].

— Analyzing the deformation field: as in the previous approach the registration
of the images to a common reference is required. However, in this approach
instead of working with the registration, the deformation field is analyzed to
define tumor changes [20, 18].

— Sequential segmentation: this is the standard method to detect tumor change.
The segmentation of the tumors is followed by a comparison of the segmented
data to evaluate the tumor changes over time [9,17,23].

The two first approaches have the limitations inherent to registration meth-
ods. Indeed, spatial normalization of images in the presence of pathologies is still
a very challenging problem. The registration algorithms are often based on the
assumption of topological equivalence between the fixed and the mobile images.
The presence of tumors in one image and not in the second one violates this as-
sumption. Furthermore, the use of non-rigid registration can deform the tumor
so much that the changes in the tumor cannot be detected in the difference map
of images. The third approach is hampered by the difficulty to extract accurate
target volumes. The estimation of tumor volume is still a very challenging prob-
lem. Note that Tylski [21] shows that tumor volumes can have opposite variations
depending on the method used to estimate the tumor volume. Nevertheless, the
methods discussed in this study are used in clinical practice [21].

While there are many studies of longitudinal tumor or lesion tracking in brain
diseases such as Multiple Sclerosis (MS), there are few studies related to lung
tumors. The lack of longitudinal tracking studies of lung tumors is due to the
complexity of the deformation that the lung is undergoing during respiration,
and the difference between the physical properties of the tumors and the lung
tissue. Furthermore, the significant change of the tumor shape and appearance
during long periods makes longitudinal tracking of lung tumors more challenging.
An example is shown in Figure 1. Patient specific models based on mathemat-
ical models with parameters computed from the image data were proposed to
describe the evolution of brain tumors in order to improve margins for radiother-
apy [8]. Such models do not exist yet for image-based longitudinal tracking of
lung tumor due to the complexity of lung and tumor deformations. In longitudi-
nal tracking of lung tumors much effort has been dedicated to the development
of techniques for segmentation, a follow up of the segmented data through time
is then performed to detect tumor changes [7,9,17,23].

In this paper we introduce a method for the longitudinal tracking of tumors
that combines the advantages of the registration based and segmentation based
approaches. Indeed the registration error is integrated in a temporal segmenta-
tion process using a new probabilistic framework. We propose a stochastic active
model to incorporate prior knowledge about the evolution of the tumors from
the previous CT images (or the current PET images if they are available) to
constrain the tracking process in the current CT image. The model does not
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Fig. 1. Images of the same patient acquired in 2007 and in 2008.

require an initialization at each time point, only information given by the user
from a reference image is needed. The information given by the user can be a
segmentation of the tumor in the reference image or only two points, one point
given inside the tumor and the second point on the tumor surface. This input is
used as key points to construct a probabilistic function to constrain the evolu-
tion of level sets inside the image. One important aspect of our stochastic active
contour is that it is flexible to allow the level sets to fit the boundary of the
target tumor.

The first level set method with prior knowledge about shape was introduced
by Leventon et al. [11]. Recent improvements of this approach were proposed in
[5]. These methods are more adapted to segment structures with small changes in
shape. However, the tumor shape does not at all respect this property: the same
tumor can have different shapes between two longitudinal acquisitions. Tumors
can shrink or grow over time, which can be reflected in CT-images in large
changes of shape, appearance and volume. All these approaches use a Bayesian
framework to constrain the evolution of the level sets.

Our approach introduces a new active contour using a different probabilis-
tic framework, namely chance constraints [6]. Chance constraints programming
(CCP) permits constraint violation up to a specified limit and ensures explic-
itly that the constraints will hold even with a high probability. In contrast, the
Bayesian models do not ensure this latter characteristic of CCP models.They
take into account information obtained through sampling and then formulate a
decision problem. More generally, optimization under CCP is the unique proba-
bilistic framework that ensures that constraints will hold with a high probability.
The proposed CCP level set method allows us to incorporate a flexible prior us-
ing local and global confidence maps to weigh the evolution of the level set. The
local confidence map corresponds to a voxel-wise registration error between the
reference image and the target. The reference image is used to measure the evo-
lution of the tumor in the studied images compared to this reference, it can be
one of the images studied or an external template. The second confidence map
corresponds to a a-quantile that regulates globally the evolution of the level set
in the image. The whole process of our method is summarized into the following
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three steps: (1) estimate the position and shape of the tumors in the reference
image; (2) construct probabilistic constraints from the position estimated at the
first step; (3) extract the tumors at each time point using the constraint defined
in the second step.

In Section 2, we will give more details about each step and how to use it
for longitudinal tracking in CT images. In Section 3 we adapt this approach to
tumor tracking in CT/PET images, and in Section 4 we apply our approach on
CT and CT/PET data.

2 Stochastic active contours for longitudinal segmentation
of tumors

2.1 Chance-constrained level set method

Active contour models consist in evolving a curve (2D case) or surface (3D) con-
strained by image-based energy toward the target structure. Chan and Vese [4]
proposed a region based model adapted to segment image with poor boundaries
(edge information). This model is a piece-wise constant approximation of the
Mumford and Shah functional [16]:

V(p,c1,¢2) = [, ()\1 (uo — 61)2He(¢) + Ao (g — 2)*(1 — He(¢))+ (1)
16(9)|Vo| + vH:(¢))dz,

where (2 is the image domain; ug is a given image function; A1, Ag, v, and p
are positive parameters; ¢; and co are two scalar constants used to separate the
image into two regions of constant image intensities. The two last terms in the
equation introduce regularization constraints, where H,. and J. are respectively
the regularized Heaviside and Dirac functions, in this work they are approxi-
mated by: . ) .
T €
He(’T) = 5(1+;artang(;)), 56(7') = ;624—77'2 (2)
While the Chan and Vese energy constraint introduces regularization to
smooth the deformation and to deal with noise, it does not introduce a bias
towards the target structure. Bayesian models were proposed in the literature
to incorporate prior knowledge about the target structure to constrain the evo-
lution of the level set [11]. These models are adapted to segment an object with
well defined shape. However the tumor shape is undergoing large changes over
long time periods and it is difficult to define a model that describes the evolu-
tion of tumors over time from image information. This makes the definition of
an accurate prior for tumor tracking a very challenging problem that has led us
to introduce chance constraints. Qur approach consists in minimizing the Chan
and Vese functional in the probabilistic admissible space:

Al = {qS : P(z,¢) > 1 — q, for almost allz € Q}, (3)

where P is a probabilistic constraint that introduces a priori information about
the target from a given prior defined by the user from the reference image. Note
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that the probabilistic constraint P(z, ¢) is defined for each z in (2, for simplicity
we will note P(¢) instead of P(z, ¢). The integration over the image domain {2
of P is done only in Equation (4). For high values of the probabilistic constraint
the prior introduced by this function constrains the tracking process strongly
whereas for small values the constraint is very weak. The a-quantile (0 < o < 1)
regulates the influence of these probabilistic constraints in the tracking process.
In Section 4, we will see that o can be chosen in a large range for tumor tracking
in CT and CT/PET images. In the next section we will present the methods used
to construct the probabilistic constraints and how to apply it to tumor tracking.
This model is flexible and adapted to follow tumors. The level set evolution is
monitored by the local and global confidence maps that we have defined in the
previous section.

We formulate our optimization approach using the penalization method,
which is well adapted to stochastic optimization. The basic idea of the penal-
ization method is to transform the constrained optimization problem into an
unconstrained optimization problem:

E(¢761;02) :V(¢a01762)+p‘/nmax (0,1—0&—P(¢))256(¢)d$, (4)

where p > 0 is a penalty parameter!; the 6. function allows us to restrict the
shape prior within the region of interest. For ¢ constant, we deduce the values
of ¢; and ca:

/ ug He(¢)dx / U (1 — He(qb))dx
c1(p) = H——, f¢) =L (5)
[ Ho)a | (- H@)ds
Q Q

As in [4] we use an artificial parameter ¢ in the Euler-langrange formulation
associated to Equation (4) :

% = (udiv(%) —v =M (uo —c1)? + Ao (up — 62)2)56(¢)+

p(max (0.1 @ = P(9) TP(6)5.(6) + max (1 - a = P(6),0)* T£(0)) =0 ()
: . B . de(p) 09 _

in 2 x RT; ¢(z,0) = ¢o(z) in £2; Vol %—Oonaﬂ

The estimation of the solution of the model (4) can be summarized in the
following steps:

— initialize ¢ = ¢, n = 0;
— compute ¢1(¢y,) and c2(¢y,) by the relations (5);

! Note that if ¢ € A;_a, the penalty is null whereas for ¢ € A1_n a second term
is added to the functional V to introduce a penalty for violating the constraint

¢ € Al—a-
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— compute ¢, 41 by solving the PDE (6) with respect to ¢;
— update periodically the level set ¢,, by a signed distance;
— repeat the last two steps until convergence (¢, is stationary).

The estimation of the probabilistic constraint P and its gradient will be discussed
in Section 2.2.

2.2 Design of the probabilistic constraints

In this section we describe the method used to construct the probabilistic con-
straints that guide the evolution of our stochastic active contour. The method
consists of the two following steps: (1) construct a deterministic prior; (2) con-
struct the probabilistic constraints. In the first step we extract prior from the
reference image. This prior can be a segmentation of the tumors from this ref-
erence image. The segmentation of each tumor corresponds to a surface which
approximates the boundary of this tumor. The segmentation can be replaced by
two points given by the user for each tumor, the first point is required to be inside
the tumor and the second point on the tumor surface. These two points allow us
to approximate the tumor boundary with a closed surface centered at the point
chosen inside the tumor and with a radius defined by the second point. At the
end of this first step we construct a set of surfaces, each surface approximates
the boundary of one tumor in the reference image.

The aim of the second step is to build from these surfaces probability maps
that we use to constrain the evolution of the level. We propose to use chance
constraints [6], these constraints are defined from a set of random constraints.
Each surface allows us to construct a component g, of the random constraint
such that the level set function ¢ satisfies:

g, A) <cpp=1,...,m (7)
where n; is the number of tumors detected in the reference image and c,,p =
1, ..., n; are real constants; A is a random vector, with a multi-variate normal

distribution, describing the uncertainty about the localization and the shape of
the tumor boundary in the current image. As for P, for simplicity we noted
g(¢, A) instead of g(z,$, A). The argument x s given to the constraints g, via
¢ and the registration error. An example of random constraints is given in by
Equation (15) in Section 2.4. We can picture each component of the random
constraint as a surface that oscillates around the boundary of one tumor in the
reference image. The oscillations are monitored by the random vector A, the di-
mension of A corresponds to the number of tumors in the reference image and the
covariance matrix is estimated from the registration errors of the reference image
and each target image. The registration error is computed before the evolution
of the levels and is used as confidence map in the stochastic term. Locally, the
level set follows the target image in regions with a high voxel-wise registration
error while it follows the prior in regions with low voxel-wise registration errors.
The global confidence map corresponds to a a-quantile such that:

P(gb):P(gp(gb,A) <cpp=1, nt) >1-a (8)
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The a-quantile is used to monitor the evolution of the level set according
to the random constraints (7): the model allows the active contour to evolve
towards regions that violate the constraint for a small amount of realizations
when no alternative solution is found. For a large « the level set follows the
data while for small « the level set follows the prior. The a-quantile is given
by the user to introduce his knowledge about the evolution of tumors in the
studied images. This parameter can be also estimated from the registration error,
when the registration error is small we can introduce a strong prior from the
reference image to constrain the tracking process. Moreover, we will show in
Section 4 that the parameter o can be chosen in a large range. In this method
we have used the rigid registration, this choice will be discussed in Section 2.4.
In Section 2.4, we will give an example of probabilistic constraints that can be
used to track a single tumor. In this case the estimation of the probabilistic
constraint and its gradient is computed analytically. Figure 2 shows examples
of the probabilistic constraints. However, in the case of more than one tumor or
when several random constraints are needed, the probabilistic constraint can be
intractable analytically. In the next section, we will discuss how the probabilistic
constraints and their derivatives can be computed in this situation.

2.3 Estimation of the probabilistic constraint and its derivative

In this section we present the method used to estimate the probabilistic con-
straint, described in the previous section, and its derivative. If the random con-
straints are nonlinear, to compute the gradient we need to perform the following
approximation:

(6, 4) = 5,(6,0) + 3 5% (6,0)4,,
q=1 "1

for random variables A,, ¢ = 1...n; with zero means and small variances.
Therefore the probability P(¢) in relation (8) can be approximated by:

P(9) = P(G(6) 4 < C(@)), ©)
where :
Ogp
qu(¢)=87(¢,0),pzl,...,nt, q=1,...,n (10)
Cp(®) = cp — gp(#,0), p=1,...,ns. (11)

Since A has a zero mean multi-variate distribution, the random vector G(¢)A
has also a zero mean multi-variate normal distribution with the covariance ma-
trix:

I'(¢) = G(¢)KG(9)",

where K is the covariance matrix of A.
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The probability P(¢) can be expressed as the n;-dimensional integral :

C1(¢) Cny(9)
P(¢):/ / Prie) (21, .., 2n,)d21 .. day,,

— 00 oo

where pr is the density of the n;-dimensional normal distribution with a zero
mean and a covariance matrix I
1

1 tr—1
pF(Z):WeXp(—§ZF Z)

The gradient of P(¢) is given by the relation:

VPO) = 3 Ay(0)52 +30Bi9) (12)

where the matrix A and the vector B are given by:

C1(¢) Cn(®) 9
Azj(qﬁ):/ / g(zl,...,zn,)dzl---dzn, |[‘:[‘(¢)

- oo 01
C1(¢) Cn(d’) 1
[ [ S s e (13)

01(¢) i— 1(¢) 1+1(¢) Crz(¢)
=[S

Xpr) (21,52 = Ci(x), ..., zn)d2y - - - dzi_1dziqy - - - dzp

1 C (¢) Cl(@» i— 1(@5) 7+1(¢) Ch (¢)
e () [ [
27TF“ ( 21—’” ) —
Xpr) (22 = Ci(¢))d" 2", (14)

Here pr(z’'|z;) is the conditional density of the (n; — 1)-dimensional random
vector Z' = (Z1,...,Zi—1,Zi+1,---,Zn,) given Z; = z;. Therefore, pr(z'|z; =
C;(¢)) is the density (n;-1)-dimensional normal distribution with mean:

(i Ci(¢)L}i(¢)
() — J
. ( Iy )jzl,...,i—l,i—i-l,...,nt

and (ny — 1) x (ny — 1) covariance matrix

o 1
= <Fkl - F—ﬂmﬂ:z)

i k,l=1,...,i—1,i+1,...,n¢
We give in [6] an efficient Monte Carlo estimation of the functions A;;(¢)
and B;(¢). Note that if I" is diagonal, then the gradient of P(¢) is given by the

relation:
oC)

nt —Fpp(¢) - _C ¢)
0 0d -
vP®) =Y o ( Fpﬁ;))

p=1
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where @' is the derivative of the standard normal distrubution function. Note
that in the case of a single constraint the estimation of the probabilistic con-
straint and its gradient is computed analytically, see next section.

2.4 Probabilistic constraint for a single tumor

In this section we describe the process used in this work to construct an explicit
random constraint to define the prior that will constrain the tracking process.
As explained in Section 2.2, for each tumor we generate from the user input a
surface S that approximates the tumor boundary in the reference image. Let ¢
be defined as the signed distance associated with the surface S:

TR D(x), if z is inside S,
¢(z) = {—D(x), otherwise,

where D is a distance from S: D(z) = infsd(x, S) with d a given metric, we use
IS

in this work the Euclidean metric. We consider the following random constraint:
9(¢,4) =e A+ (6 —¢)* <0. (15)

where e is the confidence map and A is a random variable with a Gaussian

distribution with the variance o2. Consequently the random variable 7" = e A has

a Gaussian distribution with the variance (ec)? and with the normal distribution

pr. Consequently, the probabilistic constraint P, given by Equation (8), becomes:
—(¢-9)* 1 —(¢— QB)Q

P(gp) = zdz:—(l—i—erf(i)). 16

@=[ " m R (16)

o 2

where erf is the Gauss error function?. Note that the level set function ¢ is very
close to the prior é when P is close to its maximum value 0.5. This probability
is the one used in Equation (4). Figure 2 shows examples of the probabilistic
constraint ¢ — P(g(¢, A) < 0) associated with the random constraint (15).
We have considered two examples of the confidence map, in the first example
e=1(z — e(x) =1, Vz € R?), and in the second example we defined e as
a voxel-wise registration error plus a very small strictly positive constant. The
registration was performed with rigid transformation. We will discuss this choice
in the next section.

2.5 Local confidence map

In this section, we will compare confidence maps (registration errors) computed
with the following registration methods: Rigid, Affine, B-Spline, and Demons
using the correlation coefficient as a similarity measure. Figure 3 shows registra-
tion results obtained with these methods and the registration errors. In a second

2 erf(x) = % I3 exp(—t?)dt
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Fig. 2. Confidence map. First row, left: image acquired in 2007 (mobile image); center:
image acquired in 2008; right: registered image using rigid transformation. Second row,
the left panel shows the registration error (ROI on the tumor); the center panel shows
the probabilistic constraint computed without registration error; the right panel shows
the confidence map computed using the registration error. The red color corresponds
to high values, the yellow to medium values, and green to low values.

experiment we have segmented the lungs from all images and performed an inten-
sity registration of the segmented data, see Figure 4. To compare the registration
quality, we have considered three metrics: mean squares (MS), normalized cor-
relation (CC), and normalized correlation coefficient histogram (CCH). These
metrics are calculated with the following relations:

MS(Iy, 1) = 5 3 (Iy(w0) — Ine)? (a7
v
Zlf(xi)lm(xl)
CC(Iy, I,) = ;:1 = (18)
J 2 I} () ;Im(xz)

— f7m
N YT AS S A A
f m

where [y and I,, are respectively the fixed image and the transformed image, N
is the number of pixels in the images Iy and I,,,; the values Iy and I,,, are the
mean values of Iy and I,,; H(f,m) is the joint histogram of Iy and I,,; H(f)
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and H(m) are respectively the histogram counts of Iy and I,,,. The transformed
image is obtained by mapping the mobile image with the transformation com-
puted by registering the mobile image to the fixed image. The comparison of the
registration errors in terms of the metrics, MS, CC, and CCH is presented in
Table 1. On the one hand, the B-Spline method gives the smallest registration
error according to the three metrics. Furthermore, these results can be improved
by increasing the number of control points in the B-Spline method. On the other
hand the B-Spline method deforms the tumor so much that the change in the tu-
mor is not well detected in the difference image, which is defined as the absolute
value of the the difference between the fixed and the transformed image. To deal
with this problem, the authors in [12, 19, 15, 14] proposed to constrain the control
points located on the tumor to have a rigid deformation during the registration
process. While this approach allows preserving the tumor volume, it requires the
segmentation of the tumor to define the rigid constraints. Therefore, we have
chosen the rigid rigistration to compute the confidence map which is used to
construct the probabilistic constraints for our stochastic level set method.

. . Not segmented data Using segmented lungs
Registration method oM oo CCH SM oo COH
Rigid 050724.5 | 0.831 | 0.777 | 53394.10 | 0.842 | 0.774
Affine 069959.9 | 0.801 | 0.735 | 64196.10 | 0.816 | 0.737
B-Spline 037430.4 | 0.868 | 0.829 | 09788.99 | 0.963 | 0.948
Demons 105160.0 | 0.729 | 0.630 | 82955.60 | 0.783 | 0.688
Table 1. Comparison of the following registration methods: Rigid, Affine, B-Spline,

and Demons with respect to the metrics SM, CC, and CCH.

2.6 Chance-Constrained Programming versus Bayesian model

In this section we compare the proposed approach with the traditional approach
of introducing shape priors in the level set formulation: the Bayesian model. In
the formulation (15), we introduce as a probabilistic constraint that the similar-
ity between ¢ and é is superior to a given quantile. In the Bayesian formulation
the prior is introduced through sampling and then a decision problem is formu-
lated. To compare our CCP level set method with the Bayesian level set model,
we developed a Bayesian approach that can be compared to the CCP model
proposed in this paper. Let P(¢|¢, u) be the posterior probability of the level
set ¢ given the image function u and the level set shape prior q~5 defined in the
previous section. The Bayesian formulation of this probability is given by Bayes’
theorem:

where ]P’(g5|¢) is the shape prior term. We suppose that this probability fol-
lows a Gaussian distribution and that P(u|¢) P(¢) is derived from the Chan and

(016) P(uld) P() (20)
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Fig. 3. First row, left: image acquired in 2007 (mobile image); right: image acquired in
2008. In the second, third and fourth rows, on the left the registered image using rigid,
B-Spline, and Demons methods, respectively; on the right, the registration errors for
each registration method. The green color correpond to high values of the registration
€error.
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Fig. 4. B-Spline registration with segmented lungs. First panel, segmentation of the

image acquired in 2007; second panel, segmentation of the image aquired in 2008; third
panel, the registered image; fourth panel, the registration error.

Vese model, see Equation (1). Therefore, the maximum of the posterior proba-
bility (20) is equivalent to the lowest energy of the — log functional, and after
integration over the image domain we end up with the following Bayesian model:

ey
Ey(¢, c1,c2) = V(o,c1,c2) +7/Q de (21)

202

where 7 is a weight parameter on the prior. We will see in the result section how
this parameter affects the segmentation results in the Bayesian and CCP level
set methods.

Formally, comparing Equations 21 and 4, it is clear that in the Bayesian
model, the penalty depends continuously on the distance between ¢ and ¢, aver-
aging over all points of {2, while CCP is able to accommodate constraint violation
up to a controlled extent, in a globally satisfied constraint, guaranteed with a
high probability (see also the discussion below).

3 Longitudinal tracking in CT/PET

In this section we adapt the previous method which was developed for CT-
tracking to multi-modality CT/PET.

The segmentation of tumors using a simple threshold of the PET images
is still a matter of debate [3]. Here we used a PET threshold of 30% to 50%
as a first approximation of the tumor boundary that we use to construct the
probabilistic constraint as described in Section 2.4. Subsequently, we perform a
longitudinal tracking of the tumors in the CT images with these probabilistic
constraints using our stochastic level set method presented in Section 2.1. The
tracking process in CT/PET can be summarized as follows:

1. Threshold the PET image at the time point ¢ between 30% and 50% in
such a way that each tumor corresponds to only one connected component.
Morphological filtering may be needed to ensure this property.

2. Construct from the approximation of the tumor boundary, obtained in the
first step, the probabilistic constraint according to the method presented in
Section 2.2.
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3. Perform the stochastic level set method in CT image at the time point ¢
according to the process (6).
4. Get the CT/PET image at time ¢t 4+ 1 and go to step (1).

Note that the use of the multi-modality CT/PET helps us to reduce the in-
tervention of the user in the tracking process. In CT/PET only a single point
given by the user on the target tumor is needed. Furthermore, in CT/PET the
probabilistic constraint is used with high confidence compared to the probabilis-
tic constraint used for the tracking with CT data only. Indeed, the prior used
for CT-stochastic tracking is computed from a reference image acquired at a dif-
ferent date whereas in CT/PET-stochastic tracking the prior is computed from
the PET image acquired at the same date as the CT image.

4 Results

The data are composed of two data sets for two patients and each data set is
composed of at least two images acquired at different time points: for patient
1,data were aquired on 02/2007 and 03/2008 and for patient 2 on 06/11/2007,
05/14/2008, and 07/24/2008. The CT and PET resolutions are 1.172 x 1.172 x
5mm? and 4 x 4 x 4mm3, respectively. For the CT scan, the patients held their
breath at full inspiration during the acquisition.

We have applied our stochastic model to track tumors in CT and CT/PET
images. For the CT data, the level set function that is used as prior to constrain
the tracking process is constructed from the image acquired at the first date. The
tracking process is performed with the images acquired at the following dates,
which are used as fixed images in the registration process. For the CT/PET im-
ages, we used the PET threshold between 30% and 50% as a first approximation
of the tumor boundary that we use to construct the probabilistic constraint as
described in Section 2.2. The longitudinal segmentation is performed in the CT
image acquired as the same date as the PET image used to build the constraints.
Figure 6-second-row shows the results obtained for patient 1 with our stochastic
active contour model using only the CT scan. Figure 6-first-row(right) shows
the results obtained using the CT/PET data. Figure 7-center shows a compar-
ison between the manual segmentation and the results obtained with our CCP
level set method using different values of «, the best results were obtained with
0.6 < a < 0.85. This shows also that the quatile @ can be chosen for CT and
CT/PET longitudinal segmentation in a large range. For o smaller than 0.6 the
probabilistic constraint constrains strongly the segmentation process, as we can
see in Figure 6-second-row the results are very close to the level set prior, whereas
for a superior to 0.8 the constraint is very weak, therefore the propagation leaks
outside the region of interest (localization of the tumor).

In Table 2, we compare the results obtained with our CCP level set method
and the Bayesian model using the CT and CT/PET data for the two patients.
Note that only manual segmentations were available for the CT images, this
may explain the relatively low values of the Dice measure for the CT/PET
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segmentation. Figure 7 compares the two approaches using different values of
the parameters that weight on the prior for each approach. The CCP model
gives the best results in terms of Dice measure. For the two patients considered
in this study, a strong prior leads to an underestimation of the area of the
tumor for both models. However, in contrast to the CCP model the Bayesian
model suddenly leaks outside the tumor when a weak or medium weight on
the prior is used. This can be explained by the fact that the prior in the CCP
model is introduced as an explicit constraint which allows us to constrain the
segmentation more efficiently.

Fig.5. CT and CT/PET images of the same time acquired in 2007 and 2008. First
row, left: the CT image aquired in 2007; center and right: CT image aquired in 2008.
Second row, left: PET image overlaped with the CT image aquired in 2007; center and
right: PET image overlaped with the CT image acquired in 2008.

. . Dice similarity Sensitivity Specificity
Patient Modality | —555—p53v | —ccP  BAY | COP  BAY
1 CcT 0.898 | 0.851 0.815 | 0.774 1.000 | 0.945
1 |CT/PET|| 0.772| 0.723 0.653 | 0.585 0.944 | 0.945
2 CT 0.875 | 0.826 | 0.784 | 0.705 | 0.991 | 0.996
2 |CT/PET|| 0.806 | 0.700 | 0.678 | 0.539 | 0.994 | 0.997
Table 2. Comparison of the proposed CCP level set method with the Bayesian model

in terms of the following evaluation measures: Dice similarity, sensitivity and specificity,
using CT and CT/PET data for two patients.
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Fig. 6. 3D longitudinal segmentation of tumors with our CCP level set method in
CT and CT/PET. First row, left: the results obtained using only the CT images; right
panel shows in blue the result obtained with our stochastic model, in yellow and red the
PET level thresholded at 20% and 50% respectively. Second row, right panel: the signed
distance from the initial contour (prior), the level zero of this distance corresponds to
the black contour; the second panel shows the results obtained with a = 1 (no prior);
the third panel corresponds to aw = 0.47 (very strong prior); the right panel corresponds
to @ = 0.7 (medium prior). See Figure 5 to locate the position of this lung tumor in
2007 and 2008.

5 Discussion and conclusion

We presented a novel approach for the longitudinal tracking of tumor in CT and
CT/PET images. Our approach combines the registration and segmentation to
derive a model that benefits from the advantages of each approach. We introduce
chance constraints to incorporate priors for the shape and localization of the
tumors. In the case of CT-tracking, the prior is computed from the registration
error and the user input. In the case of CT/PET-tracking the prior is computed
from the CT-registration error and by thresholding the PET images. Our results
illustrate the efficiency and the flexibility of our approach: the method is adapted
to large changes in tumor shape and the user can introduce priors easily from
different sources. The prior is used to build chance constraints to guide the
evolution of the level set in the CT images. The CCP makes it possible to
introduce an explicit constraint and permits the violation of the constraints up to
a specified level. However, the constraints can be hold even with high probability.
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Fig. 7. CCP level set method versus Bayesian level set model. The left and middle panel
show the effect of the variation on the prior parameters for CCP and Bayesian level set
methods on the statistics: Dice similarity, Sensitivity, and Specificity; the right panel
shows the variation of the Dice measure for the CCP and Bayesian level set methods.

On the one hand, the deterministic approach is too rigid to allow constraint
violations. Therefore a solution that satisfies the constraint everywhere except
for a very small set of image points will be rejected even when this solution
gives the best minimizer except for this insignificant set of points. On the other
hand the Bayesian models which introduce priors through sampling and then
formulate a decision problem do not ensure that the constraint holds with a
high probability. This makes chance-constrained programming a powerful and
unique tool for optimization problems under uncertainty. CCP is therefore very
suitable for medical image analysis where uncertainties and risk are omnipresent.
In the future, we will validate the proposed approach using a larger data set.
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