
 

 
 

 

 

 

 

 

 

 

 

Scale-invariant probabilistic latent  
component analysis 

 

 

Analyse probabiliste en composantes latentes 
invariante par homothétie 

 
 

 
 

Romain Hennequin 
Bertrand David 
Roland Badeau 

 
 

 
 
 
 

 
 

 

 
 

 
 
 

Février 2011 
 

 

 

Département Traitement du Signal et des Images 
Groupe AAO : Audio, Acoustique et Ondes 

 

 

 
 
 
 

 

 

 

2011D003 
 

 

 

 

 

 

 

 

 

 



1

Scale-invariant probabilistic latent
component analysis

Analyse probabiliste en composantes latentes
invariante par homothétie

Romain Hennequin, Bertrand David and Roland Badeau
Institut Télécom, Télécom ParisTech; CNRS-LTCI

46 rue Barrault 75683, Paris CEDEX 13
romain.hennequin@telecom-paristech.fr

Résumé—Dans cette article, nous présentons une
nouvelle méthode de décomposition de spectrogrammes
musicaux. Cette méthode vise à transposer les decom-
positions invariantes par translation qui permettent de
décomposer des spectrogrammes à Q-constant (avec une
résolution fréquentielle logarithmique) a des spectro-
grammes standard issues de transformées de Fourier à
court terme (avec une résolution fréquentielle linéaire).
Cette technique a l’avantage de permettre facilement
une reconstruction des signaux latents par filtrage de
Wiener, ce qui peut être utilisé par exemple dans des
applications de séparation de sources.

Abstract—In this paper, we present a new method to
decompose musical spectrograms. This method trans-
poses shift-invariant probabilistic latent component
analysis (PLCA) which permits to decompose con-
stant Q spectrograms (with a logarithmic frequency
resolution) to standard short time Fourier transform
spectrograms (with a linear frequency resolution). This
makes it possible to easily use the method reconstruct
the latent signals (which can be useful for source
separation).

Index Terms—Non-negative decomposition, Non-
negative matrix factorization, probabilistic latent com-
ponent analysis, shift-invariant decomposition.

I. INTRODUCTION

Non-negative decompositions are widely used for
audio spectrograms processing: non-negative matrix
factorization (NMF) [5] and PLCA [8], [9] are both
used to decompose spectrograms with applications
such as source separation [15], [11] and automatic
transcription [10], [6]. Shift-invariant decomposition
[7], [6], [12] permits to decompose constant-Q spec-
trograms [1] with a single frequency template for
each harmonic instrument: with a log-frequency res-
olution, a frequency shift corresponds to a transpo-

sition. Then each note of a single instrument can be
modeled as a base template shifted to the right pitch.

Unfortunately, constant-Q transforms (CQT) are
difficult to use for sound source separation: they are
difficult to inverse [4], and the variable resolution of
the decomposition makes it difficult to apply time-
frequency masking. Attempts were made to use shift-
invariant decomposition of CQT for source separation
[3], [2] using a mapping between log-frequency and
linear frequency resolution to avoid CQT inversion.
This paper presents a new decomposition method
inspired by shift-invariant decompositions but which
is designed to directly decompose STFT spectro-
grams: in a constant-Q spectrogram, a change of
fundamental frequency approximately corresponds to
a translation of the spectral template. In a standard
STFT spectrogram, one can model such a change
with an homothety on the spectral template. This
approximation is only valid for small transformations
since:

• The model of transposition (same set of har-
monic amplitudes for all notes) is only valid for
a few electronic instruments (this approximation
is also used in shift-invariant decomposition).

• Harmonics (or partials) are not Dirac functions
in the frequency domain and have a width (given
by the size and the type of the analysis window
used in the STFT) which is the same for all
partials, but an homothety will widen (or slim)
this partials.

We call the new decomposition scale-invariant
PLCA. This scale-invariant model presents some new
issues that were not encountered with shift-invariant
models: an homothety on a set of integers does not
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yield integers. We propose a solution to this issue.
In section II, we remind the principle of standard
PLCA and shift-invariant PLCA. We then present, in
section III, the new scale-invariant model and derive
an algorithm to estimate the parameters. Some exam-
ples are presented in section IV and we propose an
application of single notes repitching in a polyphonic
signal. Finally, we draw conclusions in section V.

II. PROBABILISTIC LATENT COMPONENT
ANALYSIS

The model that we used is inspired by shift-
invariant PLCA [12] which is a probabilistic drawing
model. In PLCA decompositions [9], a non-negative
spectrogram Vft is considered as an histogram ob-
tained from a structured draw of a frequency random
variable f ∈ {1, 2, . . . , F} and a time random vari-
able t ∈ {1, 2, . . . , T} which follow the joint distri-
bution P (f, t). One can design P (f, t) in different
ways, which lead to different decompositions.

A. Standard PLCA

Standard PLCA (non shift-invariant) [9] leads to
a decomposition very similar to NMF. The draw is
structured with a latent (hidden) random variable z
which corresponds to a “component”, assuming that
f and t are independent conditionally to z:

P (f, t|z) = P (f |z)P (t|z),

then:

P (f, t) =
Z∑
z=1

P (z)P (f |z)P (t|z).

The histogram Vft is thus assumed to be obtained
in the following way: first z is drawn following P (z)
and then f and t are drawn following respectively
P (f |z) and P (t|z).

In an NMF framework, P (f |z) corresponds to
the spectral templates and P (t|z) corresponds to the
activations of each component. P (z) is the relative
weight of each component and can be computed.

B. Shift-invariant PLCA

Shift-invariant PLCA introduces another latent ran-
dom variable τ ∈ Z which describes a transposition
and another random variable f ′ ∈ {1, 2, . . . , F ′}
which corresponds to the base frequency. f ′ and t
are assumed independent conditionally to z, and τ
and f ′ are also independent conditionally to z (but t

and τ are not). f is obtained by a transposition of the
base template: f = f ′ + τ . P (f, t) takes the form:

P (f, t) =
Z∑
z=1

P (z)
F ′∑
f ′=1

PK(f ′|z)PI(f − f ′, t|z).

PK is called the kernel distribution: it corresponds
to the base spectral templates which are shifted by
the impulse distribution PI .

III. SCALE-INVARIANT PLCA

A. Model

In standard short-time Fourier transform spectro-
grams (with a linear frequency resolution), trans-
position is no longer a shift: we model it with a
multiplication by a scalar λ ∈ R+\{0}. Let X
be a discrete random variable taking its values in
{0, 1, 2, ...K} and λ a continuous positive random
variable with a density function p. The density of
u = λX is then:

pλX(u) =
K∑
k=1

P (X = k)p(uk )
k

+ δ(u)P (X = 0)

(1)
where δ(u) is a Dirac delta function.

In our model, one assumes that the frequency
random variable fc ∈ R is obtained by multiplying
the base frequency f ′ ∈ {0, 1, . . . , F ′} (which is
independent of t conditionally to z) with the trans-
position factor λ ∈ R+\{0} (which depends on t but
not on f ′ conditionally to z). The random variable
fc is continuous, but the observed random variable
f ∈ {0, 1, . . . , F} is discrete. Then we will suppose
that:

P (f, t) =
∫ f+ 1

2

f− 1
2

P (fc, t)dfc.

Using (1), we get:

P (fc, t|z) =
F ′∑
f ′=1

PK(f ′|z)
f ′

PI

(
fc
f ′
, t|z

)
+δ(u)PK(0|z).

We use the notation PK for the kernel distribution
and PI for the impulse distribution, as for shift-
invariant PLCA. However they do not represent the
same object.

In this paper, we consider that PK(0|z) = 0 to
avoid the singularity of the null frequency. As we will
see later, there still can be energy in the frequency
channel 0 by scaling down the frequency template.
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We then get:

P (fc, t) =
Z∑
z=1

P (z)
F ′∑
f ′=1

PK(f ′|z)
f ′

PI

(
fc
f ′
, t|z

)
.

Consequently:

∀f ∈ {0, 1, . . . , F},∀t ∈ {1, . . . , T}

P (f, t) =
∑
z,f ′

P (z)PK(f ′|z)
f ′

∫ f+ 1
2

f− 1
2

PI

(
fc
f ′
, t|z

)
dfc

The parameters to be estimated are then: θ =
{P (z), PK(f ′|z), PI(λ, t|z)}.

For practical purposes, one needs to discretize PI
(which is a continuous density function with respect
to λ) in some way, in order to estimate θ. We propose
to perform this discretization by parameterizing PI
assuming that λ 7→ PI(λ, t|z) is piece-wise constant
for all t and z. We select a family {λk}k∈{1,...,K}
(which does not depend on t and z). In this paper,
we choose λk = 2

k−k0
12nst : his exponential discretization

is chosen to fit a transposition scale in subdivisions of
the tone (nst corresponds to the number of discretized
values of λ for each semitone). We assume that PI
is given by:

∀λ ∈ [λk2−
1

24nst , λk2
1

24nst ], PI(λ, t|z) = PI(λk, t|z).

Moreover, we assume that PI is zero outside these
intervals. The values PI(λk, t|z) (for all k, t et z)
then completely describe PI .

Then:∫ f+ 1
2

f− 1
2

PI(
fc
f ′
, t|z)dfc = f ′

kf,f′
max∑

k=kf,f′
min

PI(λk, t|z)δλf,f
′

k

where kf,f
′

min is chosen so that λ
kf,f′

min
2−

1
24nst <

f− 1
2

f ′ ≤ λ
kf,f′

min
2

1
24nst and kf,f

′

max is chosen so that

λ
kf,f′

max
2−

1
24nst ≤ f+ 1

2
f ′ < λ

kf,f′
max

2
1

24nst (with the follow-

ing constraints: 1 ≤ kf,f
′

min ≤ K and 1 ≤ kf,f
′

max ≤ K):

kmin =
⌈
k0 −

1
2

+ 12nst log2(
f − 1

2

f ′
)
⌉

kmax =
⌊
k0 +

1
2

+ 12nst log2(
f + 1

2

f ′
)
⌋

where d.e is the ceiling function and b.c the floor
function.

Thus δλf,f
′

k is given by δλf,f
′

k =
min (λk2

1
24nst ,

f+ 1
2

f ′ ) − max (λk2−
1

24nst ,
f− 1

2
f ′ ).

When δλf,f
′

k is not limited by constraints on f and
f ′, we will denote δλk = λk2

1
24nst − λk2−

1
24nst .

The parameters are then: θ =
{P (z), PK(f ′|z), PI(λk, t|z)|z ∈ {1, ..., Z}, f ′ ∈
{1, ..., F ′}, k ∈ {1, ...,K}, t ∈ {1, ..., T}}.

Remark: Other parameterizations of PI are pos-
sible (for instance, piecewise affine functions). Then,
in order to keep calculation as general as possible,
the parametrization of PI will only appear at the end
of the calculus.

B. Expectation-Maximization algorithm

We intend to estimate the value of the parameter θ
that maximizes the log-likelihood of observing Vft:

L((f̄ , t̄)|θ) =
∑
i∈I

logP (fi, ti), (2)

where f̄ and t̄ correspond to the draws of f and t
(draws are indexed by i ∈ I = {1, ..., N} where N
is the total number of draws). As the number of draws
that leads to the value (f, t) is Vft, the log-likelihood
can be rewritten:

L((f̄ , t̄)|θ) =
F∑
f=1

T∑
t=1

Vft logP (f, t)

The estimation will be performed with the
Expectation-Maximization (EM) algorithm with la-
tent variables z and f ′ (it would be equivalent to
consider z and λ as latent variables since f = λf ′).

The completed log-likelihood is:

L((f̄ , t̄, z, f ′)|θ) =
∑
i∈I

logP (fi, ti, z, f ′)

=
F∑
f=1

T∑
t=1

Vft logP (f, t, z, f ′)

Moreover, since

P (f, t, z, f ′) =
∫ f+ 1

2

f− 1
2

P (fc, t, z, f ′)dfc,

and

P (fc, t, z, f ′) = P (z)
PK(f ′|z)

f ′
PI(

fc
f ′
, t|z),

then:

P (f, t, z, f ′) = P (z)
PK(f ′|z)

f ′

∫ f+ 1
2

f− 1
2

PI(
fc
f ′
, t|z)dfc.
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Consequently:

L((f̄ , t̄, z, f ′)|θ) =
∑
f,t

Vft

{
logP (z)

+ logPK(f ′|z)

+ log

(∫ f+ 1
2

f− 1
2

PI(
fc
f ′
, t|z)dfc

)}
+ c

where c is a constant that does not depend on θ.
The completed log-likelihood expectation is then:

Q(θ|θ(c)) = Ez,f ′|f,t,θ(c)(L((f̄ , t̄, z, f ′)|θ))

=
∑

f ′,z,f,t

VftP (z, f ′|f, t, θ(c))
{

logP (z)

+ logPK(f ′|z) + log
(∫

PI(
fc
f ′
, t|z)dfc

)}
+ c

(3)

where θ(c) is the current value of the parameter.
We can get an expression for P (z, f ′|f, t, θ(c))

with respect to θ(c) using the Bayes theorem (E step):

P (z, f ′|f, t, θ(c)) =
P (f, t, f ′|z)P (c)(z)

P (c)(f, t)

=
P

(c)
K (f ′|z)P (c)(z)

∫
P

(c)
I ( fc

f ′ , t|z)dfc
f ′P (c)(f, t)

.

(4)

The notation (.)(c) refers to values
computed from the current parameter:
θ(c) = {P (c)(z), P (c)

K (f ′|z), P (c)
I (λ, t|z)}.

The completed expectation (3) will be maximized
(M step) with respect to θ (θ(c) being fixed). As θ
is made up of probabilities that must sum to 1, the
maximization is constrained. Thus we use Lagrange
multipliers with the Lagrangian:

H(θ|θ(c)) =
∑

f,z,f ′,t

VftP (z, f ′|f, t, θ(c))
{

logP (z)

+ logPK(f ′|z) + log
(∫

PI(
fc
f ′
, t|z)dfc

)}
+µ

(∑
z

P (z)− 1

)

+
∑
z

ρz

∑
f ′

PK(f ′|z)− 1


+
∑
z

τz

(∑
t

∫ λmax

λmin

PI(λ, t|z)− 1

)
where µ, ρz and τz are Lagrange multipliers.

1) Update of P (z): ∂H(θ|θ(c))
∂P (z) = 0 leads to the

update rule of P (z) (details of the calculation are
given in appendix A):

P (z)←

∑
f,f ′,t

VftP (z, f ′|f, t, θ(c))∑
z,f,f ′,t

VftP (z, f ′|f, t, θ(c))
(5)

2) Update of PK(f ′|z): In a similar way, we
obtain the update rule of PK(f ′|z):

PK(f ′|z)←

∑
f,t

VftP (z, f ′|f, t, θ(c))∑
f,f ′,t

VftP (z, f ′|f, t, θ(c))
(6)

3) Update of PI(λk, t|z): Because of the expres-
sion of the Lagrangian H(θ|θ(c)) with respect to
PI(λk, t|z), the update rule of PI(λk, t|z) is more
complex to derive.

We consider the following “fixed-point” update
rule (iterated several times) which hopefully will
converge to a zero of ∂H

∂PI(λk,t|z) (see appendix B):

PI(λk, t|z)←∑
f,f ′

VftP (z,f ′|f,t,θ(c))PI(λk,t|z)1[kmin,kmax](k)

−τzδλk

∑k
f,f′
max

k′=k
f,f′
min

PI(λk′ ,t|z)δλ
f,f′

k′

δλf,f
′

k

(7)

In equation (7), the division by τz is a normaliza-
tion.

We did not manage to prove convergence of PI
under several iterations of the update rule (7) to a
zero of ∂H

∂PI
. However we observed it in practice. As

the constrained maximization problem considered is
striclty concave with affine equality constraints, the
obtained fixed point which verifies the Karush-Kuhn-
Tucker conditions is necessarily the global maximum
of Q(θ|θ(c)) (defined in equation (3)) under the nor-
malization constraints. Thus, Q(θ|θ(c)) is effectively
maximized at each iteration and the EM algorithm
converges to a local minimum of the likelihood.

C. Multiplicatives updates

Update rules (5) and (6) can be rewritten in a
multiplicative form, using expression (4), replacing
the calculus of the denominator of each rule by a
normalization:
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1) Update of P (z):

P (i)(z) ← P (c)(z)
∑
f,t,f ′

Vft

P (c)(f, t)
P

(c)
K (f ′|z)

∑kf,f′
max

k′=kf,f′
min

PI(λk′ , t|z)δλf,f
′

k′

P (z) ← P (i)(z)∑
z′ P

(i)(z′)
(normalization)

2) Update of PK(f ′|z):

P
(i)
K (f ′|z) ← P

(c)
K (f ′|z)

∑
f,t

Vft

P (c)(f, t)
P (c)(z)

∑kf,f′
max

k′=kf,f′
min

PI(λk′ , t|z)δλf,f
′

k′

PK(f ′|z) ←
P

(i)
K (f ′|z)∑

f ′′ P
(i)
K (f ′′|z)

(norm.)

The update rule (7) of PI can also be rewritten in
a multiplicative form:

P
(i)
I (λk, t|z)← PI(λk, t|z)P (c)(z)

∑
f ′

P
(c)
K (f ′|z)

∑
f

Vft

∫
P

(c)
I (λ, t|z)dλδλf,f

′

k

P (c)(f, t)
∫
PI(λ, t|z)dλ

1
[kf,f′

min ,kf,f′
max ]

(k)

PI(λk, t|z)←
P

(i)
I (λk, t|z)

δλk
∑
k′,t′ P

(i)
I (λk′ , t′|z)

(norm.)

with :∫
P

(c)
I (λ, t|z)dλ =

∑
k′

P
(c)
I (λk′ , t|z)δλf,f

′

k′

and
∫
PI(λ, t|z)dλ =

∑
k′

PI(λk′ , t|z)δλf,f
′

k′

.

D. Computational complexity of the algorithm

The main drawback of our algorithm is its impor-
tant computational complexity: in opposition to shift-
invariant PLCA, the computation of the parametric
spectrogram P (f, t) can not be done with a fast
convolution algorithm. Then the computation time
to get the decomposition is quite important, and the
computation time is about a hundred to a thousand
(depending on the parameters size) times longer than
real-time on a recent standard personal computer.

IV. EXAMPLES AND APPLICATIONS

A. Toy example

In this section, we present the decomposition pro-
vided by our algorithm of a simple spectrogram. The
decomposed spectrogram is obtained by STFT (using
a 1024 sample-long Hann window with 75% overlap)
of a a short excerpt of synthesizer which plays the
notes of a A major scale on two octave (From A4
to A6) sampled at 11025Hz. The original spectro-
gram is pictured in figure 1(a). The decomposition
provides the reconstructed spectrogram pictured in
figure fig:reconstructedspectrogram: the reconstructed
spectrogram is very similar to the original one. The
difference of maximum amplitudes between original
and reconstructed spectrograms come from the nor-
malization of P (f, t) (Vft is not normalized), but
the dynamic remains the same in both spectrogram.
High frequency harmonics of the reconstructed spec-
trogram are slightly larger than the original one.

Obtained kernel distribution PK is represented in
figure 2(b): we can see that the factorized template is
actually harmonic. For high values of the frequency
index, amplitudes of the templates tend to be very
small. This comes from the fact that our model
consider that values of the spectrogram outside the
observed frequencies are zeros whereas the model
spectrogram P (f, t) can take positive values outside
this range. This can be solved using the approach of
[14], [13]. In practice, for signals of actual acoustic
instruments this not a real issue, since the harmonic
content of such signal is almost entirely smothered by
quantification noise from 5000Hz: thus a sampling
rate of 22050Hz or more permits to reduce this issue.

Impulse distribution PI is represented in figure
2(a): high probabilities clearly appear at actual notes
relative positions. There are also some replicas of
the notes at position with high harmonic similitudes
(octave, twelfth, double octave...). At onset time, PI
takes high values for many values of the homothety
factor λ: this comes from the flat shape of the
spectrum of onset which is matched her with several
rescaled harmonic templates.

B. Real audio data

In this section, we present the SIPLCA decompo-
sition of the spectrogram of the 10 first second of the
song Because by the Beatles with a single template
(Z = 1). The decomposed signal consists in a
polyphonic harpsichord introduction recorded in real
condition. The original signal was transformed in a
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(a) Original spectrogram

(b) Reconstructed spectrogram

Figure 1. Original and reconstructed spectrogram.

mono signal (summing both channels) and downsam-
pled to 22050Hz. The spectrogram was calculated
with a STFT using a 2048 sample-long Hann window
with 75% overlap.

Obtained impulse distribution PI is represented
in figure IV-B: actual played notes are materialized
by a rectangle in the figure. We can see that in all
rectangles, PI takes high values. PI

The impulse distribution PI is thus very similar
to the impulse distribution that can be obtained with
shift-invariant decompositions. However, as our de-
composition is done on linear frequency resolution
spectrograms, it has an important advantage: it is
possible to generate time-frequency mask that can be
directly used to separate different components with
Wiener filtering. Thus it is possible to isolate single
notes in a polyphonic signal and to repitch them
individually.

(a) Impulse distribution PI

(b) Kernel distribution PK

Figure 2. Scale-invariant PLCA: Kernel and impulse.

Figure 3. Impulse distribution of the introduction of the song
Because.
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V. CONCLUSION

In this paper, we proposed a new way to decom-
pose non-negative music spectrogram: the decompo-
sition is based on a few frequency templates which
can be rescaled at each frame (which corresponds to
a transposition). We presented examples of this de-
composition on music spectrogram and showed how
this decomposition can be used to modify individual
notes in a polyphonic signal.

Future works should deal with a better representa-
tion of non-harmonic components of musical sounds,
such as transients.
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APPENDIX A
UPDATE RULE OF P (z) (CALCULATION)

The partial derivative of H(θ|θ(c)) with respect to
P (z) is:

∂H(θ|θ(c))
∂P (z)

=
∑
f,f ′,t

Vft
P (z, f ′|f, t, θ(c))

P (z)
+ µ

This partial derivative must be zero: ∂H(θ|θ(c))
∂P (z) =

0, then:∑
f,f ′,t

VftP (z, f ′|f, t, θ(c)) + µP (z) = 0 (8)

A summation on z leads to:

µ = −
∑

z,f,f ′,t

VftP (z, f ′|f, t, θ(c))

Then, from equation (8), we get the update rule of
P (z):

P (z)←

∑
f,f ′,t

VftP (z, f ′|f, t, θ(c))∑
z,f,f ′,t

VftP (z, f ′|f, t, θ(c))
(9)

APPENDIX B
UPDATE RULE OF PI(λk, t|z) (CALCULATION)

The partial derivative of the Lagrangian with re-
spect to PI(λk, t|z) is:

∂H(θ|θ(c))
∂PI(λk, t|z)

=
∑
f,f ′

VftP (z, f ′|f, t, θ(c))

∂ log
(∫

PI( fc

f ′ , t|z)dfc
)

∂PI(λk, t|z)
+ τz

∂
∫ λmax

λmin
PI(λ, t|z)

∂PI(λk, t|z)

=
∑
f,f ′

Vft
P (z, f ′|f, t, θ(c))∫
PI( fc

f ′ , t|z)dfc

∂
(∫

PI( fc

f ′ , t|z)dfc
)

∂PI(λk, t|z)
+ τz

∂
∫ λmax

λmin
PI(λ, t|z)

∂PI(λk, t|z)
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Using the proposed parametrization of PI (piece-
wise constant function):

∂H

∂PI
=
∑
f,f ′

Vft

P (z, f ′|f, t, θ(c))1
[kff′

min ,k
ff′
max ]

(k)∑kf,f′
max

k′=kf,f′
min

PI(λk′ , t|z)δλf,f
′

k′

δλff
′

k

+τzδλk

where 1S denotes the indicator function of set S.
Then, we must have:∑
f,f ′

Vft

P (z, f ′|f, t, θ(c))1
[kf,f′

min ,kf,f′
max ]

(k)

kf,f′
max∑

k′=kf,f′
min

PI(λk′ , t|z)δλf,f
′

k′

δλf,f
′

k

+τzδλk = 0

which is equivalent to:∑
f,f ′

VftP (z, f ′|f, t, θ(c))
PI(λk, t|z)1[kf,f′

min ,kf,f′
max ]

(k)

kf,f′
max∑

k′=kf,f′
min

PI(λk′ , t|z)δλf,f
′

k′

δλf,f
′

k

+τzδλkPI(λk, t|z) = 0

A summation on k and t leads to:

τz = −
∑

k,t,f,f ′

VftP (z, f ′|f, t, θ(c))
PI(λk, t|z)δλf,f

′

k 1
[kf,f′

min ,kf,f′
max ]

(k)

kf,f′
max∑

k′=kf,f′
min

PI(λk′ , t|z)δλf,f
′

k′

We thus get the fixed-point update rule (7).
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