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Abstract

In many domains of information processing, bipolarity is a core

feature to be considered: positive information represents what is possible

or preferred, while negative information represents what is forbidden

or surely false. If the information is moreover endowed with vagueness

and imprecision, as is the case for instance in spatial information

processing, then bipolar fuzzy sets constitute an appropriate knowledge

representation framework. With the aim of extending the operations

on such mathematical complex objects, we propose in this paper to

extend mathematical morphology to bipolar fuzzy sets. This requires

defining an appropriate lattice, on which algebraic dilations and erosions

can be defined. We then address the case of operations based on

a structuring element. These new operations have good properties,

and can be useful in particular for processing spatial information, but

also other types of bipolar information such as preferences and constraints.

Résumé

Dans beaucoup de domaines du traitement de l’information, la

bipolarité est une caractéristique essentielle à prendre en compte :

l’information positive représente ce qui est possible ou préféré, et

l’information négative ce qui est interdit ou sûrement faux. De plus

l’information peut être imprécise, comme c’est le cas par exemple en

traitement d’informations spatiales, et les ensembles flous bipolaires

constituent alors un modèle approprié de représentation des connais-

sances. Dans le but d’étendre des opérations à ces objets mathématiques

complexes, nous proposons dans cet article d’étendre la morphologie

mathématique aux ensembles flous bipolaires. Cela nécessite de définir

un treillis approprié, sur lequel des dilatations er érosions algébriques
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peuvent être construites. Nous traitons ensuite le cas d’opérations

définies à l’aide d’un élément structurant. Ces nouvelles opérations ont

de bonnes propriétés, et sont utiles pour le traitement de l’information

spatiale, mais aussi d’autres types d’informations comme des préférences

et des contraintes.

Keywords: Bipolar information, bipolar fuzzy sets, mathematical mor-

phology, complete lattice, dilation, erosion, spatial reasoning.

Mots clés : Information bipolaire, ensembles flous bipolaires, morpholo-

gie mathématique, treillis complets, dilatation, érosion, raisonnement spa-

tial.

1 Introduction

A recent trend in contemporary information processing focuses on bipolar in-
formation, both from a knowledge representation point of view, and from a
processing and reasoning one. Bipolarity is important to distinguish between
(i) positive information, which represents what is guaranteed to be possible,
for instance because it has already been observed or experienced, and (ii) neg-
ative information, which represents what is impossible or forbidden, or surely
false [55, 57]. This domain has recently motivated work in several directions,
for instance for applications in knowledge representation, preference modeling,
argumentation, multi-criteria decision analysis, cooperative games, among oth-
ers [2, 10, 34, 39, 57, 60, 66, 68, 81, 82, 83]. In particular, fuzzy and possibilistic
formalisms for bipolar information have been proposed [9, 10, 56, 58], for asym-
metric bipolar representations, which is the case addressed in this paper as well.
Indeed, we consider the most general case where the positive and negative parts
of information are not necessarily directly linked together, and may for instance
come from completely different sources. Referring to the classification proposed
in [58], the third class of bipolarity (asymmetric) should therefore be considered.

In this paper, we propose to handle such bipolar information using math-
ematical morphology operators. Mathematical morphology [88] has proved to
be useful to process information in many different domains, such as image and
vision [88, 89, 91], spatial reasoning [18, 28], preference modeling and logics (for
fusion, revision, abduction, mediation...) [16, 29, 32, 33]. Extending mathemat-
ical morphology to bipolar information will therefore increase the modeling and
reasoning capabilities in all these domains. This extension can be performed in
a generic way, by defining a lattice as the underlying structure of bipolar knowl-
edge representation (the interest of using complete lattices for mathematical
morphology has been justified in [84]). The general framework of mathematical
morphology leads to the definition of algebraic dilations and erosions, which are
the two main operators, from which other ones can then be derived. This gen-
eral formalism applies in different settings, and the proposed definitions can be
specified for different types of lattices, e.g. based on bipolar sets, fuzzy sets or
logical formulas. Bipolar fuzzy sets can be seen as a general structure covering
several settings, and is therefore considered in this paper. Moreover, it allows
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handling an additional feature of imperfect information, related to its impreci-
sion. Hence the proposed framework allows representing and dealing with both
bipolarity and fuzziness.

Mathematical morphology on bipolar fuzzy sets was proposed for the first
time in [19], by considering the complete lattice defined from the Pareto or-
dering. Then it was further developed, with additional properties, geometric
aspects and applications to spatial reasoning, in [20, 21, 23, 24, 25]. The lexi-
cographic ordering was considered too in [26]. Here we propose a more general
algebraic setting and we show that the usual properties considered in mathemat-
ical morphology hold in any complete lattice representing bipolar information,
whatever the choice of the partial ordering. This constitutes a substantial ex-
tension of our previous work, with more generality and more properties.

Recently, mathematical morphology on interval-valued fuzzy sets and intu-
itionistic fuzzy sets was addressed, independently, in [79], but without consider-
ing the algebraic framework of adjunctions, thus leading to weaker properties.
This group then extended its approach with more properties in [74]. Pareto
ordering was used in this work.

In Section 2, we set the algebraic framework, by defining a lattice struc-
ture on bipolar information, and introducing connectives. The remaining of
the paper will rely on a representation of bipolar information as bipolar fuzzy
sets, which encompasses several other models. We introduce definitions of al-
gebraic dilations and erosions of bipolar fuzzy sets in Section 3, in a general
way, whatever the chosen partial ordering. In the spatial domain, specific forms
of these operators, involving a structuring element, are particularly interest-
ing [88]. They are called morphological dilation and erosion. More generally
they are useful in any application where some relation between elements of
the underlying space should be involved. Morphological erosion and dilation
are then defined in Section 4, and their properties are discussed. In the next
two sections, we detail the case of two particular partial ordering: Pareto (or
marginal) ordering in Section 5 and lexicographic ordering in Section 6. Finally,
some derived operators are introduced in Section 7.

2 Algebraic framework

Mathematical morphology [88] usually relies on the algebraic framework of com-
plete lattices, which has been justified in particular in [84], since it allows dealing
properly with functions and bounded functions (which is particularly useful in
the present context). It has also been extended to complete semi-lattices and
general posets [67], based on the notion of adjunction [62] (see also [28] for a
general description of the algebraic framework). In this paper, we only consider
the case of complete lattices. We first introduce bipolar information models, and
then a lattice structure on them, according to some partial ordering, which can
be specified for any particular domain of application. Then bipolar connectives
are defined.

3



2.1 Bipolar information

As mentioned in the introduction, bipolar information has two components,
one related to positive information, and one related to negative information.
These pieces of information can take different forms, according to the application
domain, such as preferences and constraints, observations and rules, possible and
forbidden places for an object in space, etc.

Let us assume that bipolar information is represented by a pair (µ, ν), where
µ represents the positive information and ν the negative information, under a
consistency constraint [55], which guarantees that the positive information is
compatible with the constraints or rules expressed by the negative information.
From a formal point of view, bipolar information can be represented in different
mathematical frameworks, depending on the application domain, leading to
different forms of µ and ν. Let us mention for instance:

• positive and negative information are subsets P and N of some set, and
the consistency constraint is expressed as P ∩N = ∅, expressing that what
is possible or preferred (positive information) should be included in what
is not forbidden (negative information) [55];

• µ and ν are membership functions to fuzzy sets, defined over a space S,
and the consistency constraint is expressed as ∀x ∈ S, µ(x)+ν(x) ≤ 1 [19].
The pair (µ, ν) is then called a bipolar fuzzy set;

• positive and negative information are represented by logical formulas ϕ
and ψ, generated by a set of propositional symbols and connectives, and
the consistency constraint is then expressed as ϕ ∧ ψ |= ⊥ (ψ represents
what is forbidden or impossible);

• other examples include functions such as utility functions or capaci-
ties [60], preference functions [82], four-valued logics [68], possibility dis-
tributions [57, 58, 81].

In the following, we will detail the case of bipolar fuzzy sets, extending our
previous work in [19, 20, 21, 23, 24, 25, 26] to any partial ordering. This case
includes the other examples described above: the case of sets corresponds to
the case where only bipolarity should be taken into account, without fuzziness
(hence the membership function takes only values 0 and 1). In the case of logical
formulas, we consider the models JϕK and JψK as sets or fuzzy sets. The lattice
defined on the set of models is isomorphic to the one defined on Φ≡, where Φ≡

denotes the quotient space of set of formulas Φ by the syntactic equivalence
relation between formulas (defined as ϕ ≡ ϕ′ iff JϕK = Jϕ′K). Hence the case of
bipolar fuzzy sets is general enough to cover several other mathematical settings.

Let S be the underlying space (the spatial domain for spatial information
processing for instance).

Definition 1. A bipolar fuzzy set on S is defined by an ordered pair of func-
tions (µ, ν) from S into [0, 1] such that ∀x ∈ S, µ(x) + ν(x) ≤ 1 (consistency
constraint).
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Note that a bipolar fuzzy set is formally equivalent to an intuitionistic fuzzy
set [6]. It is also equivalent to an interval-valued fuzzy set [99], where the interval
at each point x is [µ(x), 1−ν(x)] [54]. However the semantics are very different,
and we keep here the terminology of bipolarity. A discussion on semantics is
proposed in Section 2.4. An important point is that a bipolar fuzzy set is not
one physical object (with potentially imprecisely defined membership function),
but rather a complex mathematical object where µ and ν are really two different
functions, which may represent different types of information or may be issued
from different sources. The proposed approach also differs from the one in [100]
where bipolarity is encoded on [−1, 0]× [0, 1] for defining bipolar fuzzy logic.

For each point x, µ(x) defines the membership degree of x (positive in-
formation) and ν(x) its non-membership degree (negative information). This
formalism allows representing both bipolarity and fuzziness. Since the positive
information models what is possible, preferred, observed or experienced, and the
negative information what is forbidden or impossible, the consistency constraint
avoids contradictions between what is forbidden and what is possible (i.e. the
potential solutions should be included in what is not forbidden or impossible).
The set of bipolar fuzzy sets defined on S is denoted by B.

Let us denote by L the set of ordered pairs of numbers (a, b) in [0, 1] such
that a + b ≤ 1 (hence (µ, ν) ∈ B ⇔ ∀x ∈ S, (µ(x), ν(x)) ∈ L). In all what
follows, for each (µ, ν) ∈ B, we will note (µ, ν)(x) = (µ(x), ν(x)) (∈ L), ∀x ∈ S.

Note that fuzzy sets are particular cases of bipolar fuzzy sets, when ∀x ∈
S, ν(x) = 1 − µ(x). Furthermore, if µ (and ν) only takes values 0 and 1, then
bipolar fuzzy sets reduce to classical sets.

2.2 Partial ordering and lattice of bipolar fuzzy sets

Let � be a partial ordering on L such that (L,�) is a complete lattice. We
denote by

∨

and
∧

the supremum and infimum, respectively. The smallest
element is denoted by 0L and the largest element by 1L. We denote by � the
reverse order, i.e. ∀((a, b), (a′, b′)) ∈ L2, (a, b) � (a′, b′) ⇔ (a′, b′) � (a, b).

The partial ordering on L induces a partial ordering on B, also denoted by
� for sake of simplicity:

(µ1, ν1) � (µ2, ν2) iff ∀x ∈ S, (µ1(x), ν1(x)) � (µ2(x), ν2(x)). (1)

Then (B,�) is a complete lattice, for which the supremum and infimum are
also denoted by

∨

and
∧

. The smallest element is the bipolar fuzzy set (µ0, ν0)
taking value 0L at each point, and the largest element is the bipolar fuzzy set
(µI, νI) always equal to 1L.

The following result is useful for proving the results in the next sections.

Lemma 1. The following equivalence holds:

∀(a1, b1) ∈ L, ∀(a2, b2) ∈ L, (a1, b1) � (a2, b2) ⇔

{

(a1, b1) ∨ (a2, b2) = (a2, b2)
(a1, b1) ∧ (a2, b2) = (a1, b1)

(2)
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and similarly in B:

∀(µ, ν) ∈ B, ∀(µ′, ν′) ∈ B, (µ, ν) � (µ′, ν′) ⇔

{

(µ, ν) ∨ (µ′, ν′) = (µ′, ν′)
(µ, ν) ∧ (µ′, ν′) = (µ, ν)

(3)

Proof. This result is directly derived from the fact that the supremum is the
smallest upper bound and the infimum is the greatest lower bound.

Note that the supremum and the infimum do not necessarily provide one of
the input bipolar numbers or bipolar fuzzy sets (in particular if they are not
comparable according to �). However, they do if � is a total ordering.

2.3 Bipolar connectives

Let us now introduce some connectives, that will be useful in the following and
that extend to the bipolar case the connectives classically used in fuzzy set
theory [26]. In all what follows, increasingness and decreasingness are intended
according to the partial ordering �. Similar definitions can also be found e.g.
in [44, 51] in the case of interval-valued fuzzy sets of intuitionistic fuzzy sets,
for a specific partial ordering (Pareto-like ordering).

Definition 2. A bipolar negation, or complementation, on L is a de-
creasing operator N such that N(0L) = 1L and N(1L) = 0L.
In this paper, we restrict ourselves to involutive negations, such that ∀(a, b) ∈
L, N(N((a, b))) = (a, b) (these are the most interesting ones for mathematical
morphology).

A bipolar conjunction is an operator C from L × L into L such that
C(0L, 0L) = C(0L, 1L) = C(1L, 0L) = 0L, C(1L, 1L) = 1L, and that is increas-
ing in both arguments, i.e.: ∀((a1, b1), (a2, b2), (a

′
1, b

′
1), (a

′
2, b

′
2)) ∈ L4, (a1, b1) �

(a′1, b
′
1) and (a2, b2) � (a′2, b

′
2) ⇒ C((a1, b1), (a2, b2)) � C((a′1, b

′
1), (a

′
2, b

′
2)).

A bipolar t-norm is a commutative and associative bipolar conjunction
such that ∀(a, b) ∈ L, C((a, b), 1L) = C(1L, (a, b)) = (a, b) (i.e. the largest
element of L is the unit element of C). If only the property on the unit element
holds, then C is called a bipolar semi-norm.

A bipolar disjunction is an operator D from L × L into L such that
D(1L, 1L) = D(0L, 1L) = D(1L, 0L) = 1L, D(0L, 0L) = 0L, and that is increas-
ing in both arguments.

A bipolar t-conorm is a commutative and associative bipolar disjunction
such that ∀(a, b) ∈ L, D((a, b), 0L) = D(0L, (a, b)) = (a, b) (i.e. the smallest
element of L is the unit element of D).

A bipolar implication is an operator I from L × L into L such that
I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L, I(1L, 0L) = 0L and that is decreas-
ing in the first argument and increasing in the second argument.

Proposition 1. Bipolar connectives reduce to classical fuzzy connectives in the
limit cases where there is no bipolarity in the input value and in the result.
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Let C be a bipolar t-norm. Then, under the non-bipolarity conditions, there
exists a t-norm t such that ∀(a1, a2) ∈ [0, 1]2, C((a1, 1 − a1), (a2, 1 − a2)) =
(t(a1, a2), 1 − t(a1, a2)). Similar expressions hold for the other connectives.

Proof. This result is directly derived from the definitions.

Proposition 2. Any bipolar conjunction C has a null element, which is the
smallest element of L: ∀(a, b) ∈ L, C((a, b), 0L) = C(0L, (a, b)) = 0L.

Similarly, any bipolar disjunction has a null element, which is the largest
element of L: ∀(a, b) ∈ L, D((a, b), 1L) = D(1L, (a, b)) = 1L.

For implications, we have ∀(a, b) ∈ L, I(0L, (a, b)) = I((a, b), 1L) = 1L.

Proof. This follows directly from the monotony property and the boundary
values of bipolar conjunctions and disjunctions: ∀(a, b) ∈ L, 0L � (a, b) � 1L,
and since any conjunction C is increasing, we have: C(0L, 0L) � C(0L, (a, b)) �
C(0L, 1L). Since C(0L, 0L) = C(0L, 1L) = 0L, it follows that C(0L, (a, b)) = 0L.
Similarly C((a, b), 0L) = 0L. The same reasoning applies for the proof for
disjunctions and for implications.

As in the fuzzy case, conjunctions and implications may be related to each
other based on the residuation principle, which corresponds to a notion of ad-
junction, which is also foundamental in mathematical morphology. This princi-
ple is expressed as follows in the bipolar case.

Definition 3. A pair of bipolar connectives (I, C) forms an adjunction if:
∀(ai, bi) ∈ L, i = 1...3,

C((a1, b1), (a3, b3)) � (a2, b2) ⇔ (a3, b3) � I((a1, b1), (a2, b2)). (4)

The connectives introduced in Definition 2 can be linked to each other in
different ways (again this is similar to the fuzzy case).

Proposition 3. The following properties hold:

• Given a bipolar t-norm C and a bipolar negation N , the following operator
D defines a bipolar t-conorm: ∀((a1, b1), (a2, b2)) ∈ L2,

D((a1, b1), (a2, b2)) = N(C(N((a1, b1)), N((a2, b2)))). (5)

• A bipolar implication I induces a bipolar negation N defined as:

∀(a, b) ∈ L, N((a, b)) = I((a, b), 0L). (6)

• The following operator IN , derived from a bipolar negation N and a bipolar
conjunction C, defines a bipolar implication: ∀((a1, b1), (a2, b2)) ∈ L2,

IN ((a1, b1), (a2, b2)) = N(C((a1, b1), N((a2, b2)))). (7)
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• Conversely, a bipolar conjunction C can be defined from a bipolar negation
N and a bipolar implication I: ∀((a1, b1), (a2, b2)) ∈ L2,

C((a1, b1), (a2, b2)) = N(I((a1, b1), N((a2, b2)))). (8)

• Similarly, a bipolar implication can be defined from a negation N and a
bipolar disjunction D as: ∀((a1, b1), (a2, b2)) ∈ L2,

IN ((a1, b1), (a2, b2)) = D(N((a1, b1)), (a2, b2)). (9)

• A bipolar implication can also be defined by residuation from a bipo-
lar conjunction C such that ∀(a, b) ∈ L \ 0L, C(1L, (a, b)) 6= 0L:
∀((a1, b1), (a2, b2)) ∈ L2,

IR((a1, b1), (a2, b2)) =
∨

{(a3, b3) ∈ L | C((a1, b1), (a3, b3)) � (a2, b2)}.

(10)
The operators C and IR are then said to be adjoint (see Definition 3).

• Conversely, from a bipolar implication IR such that ∀(a, b) ∈ L \
1L, IR(1L, (a, b)) 6= 1L, the conjunction C such that (C, IR) forms an ad-
junction is given by: ∀((a1, b1), (a2, b2)) ∈ L2,

C((a1, b1), (a2, b2)) =
∧

{(a3, b3) ∈ L | (a2, b2) � IR((a1, b1), (a3, b3))}.

(11)

Proof. It is straightforward to show that the connectives defined by Equations 5,
6, 7, 8, and 9 satisfy all required properties, according to Definition 2.

Let us just detail the last two properties, involving the adjunction concept.
Let C be a conjunction and IR defined according to Equation 10. Then:

IR(0L, 0L) =
∨

{(a3, b3) ∈ L | C(0L, (a3, b3)) � 0L}

and since C(0L, 1L) = 0L, the supremum is equal to 1L.
Since ∀((a, b), (a3, b3)) ∈ L2, C((a, b), (a3, b3)) � 1L, we have:

∀(a, b) ∈ L, IR((a, b), 1L) =
∨

{(a3, b3) ∈ L | C((a, b), (a3, b3)) � 1L} = 1L.

For the last boundary condition, we have:

IR(1L, 0L) =
∨

{(a3, b3) ∈ L | C(1L, (a3, b3)) � 0L}

and since C(1L, (a3, b3)) cannot be equal to 0L except for (a3, b3) = 0L by
hypothesis, the supremum is equal to 0L.

Finally the monotony properties directly result from the ones of C, and
hence IR is an implication.

Let us now show that the adjoint of C is actually IR, as expressed in Equa-
tion 10. Let (IR, C) be an adjoint pair. Then, ∀(ai, bi) ∈ L, i = 1...3,

C((a1, b1), (a3, b3)) � (a2, b2) ⇔ (a3, b3) � I((a1, b1), (a2, b2)).
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Hence

∨

{(a3, b3) ∈ L | C((a1, b1), (a3, b3)) � (a2, b2)} � IR((a1, b1), (a2, b2)).

Conversely, from the tautology IR((a1, b1), (a2, b2)) � IR((a1, b1), (a2, b2)) we
derive, by applying the adjunction property and setting IR((a1, b1), (a2, b2)) =
(a3, b3):

C((a1, b1), IR((a1, b1), (a2, b2))) � (a2, b2) ⇒

IR((a1, b1), (a2, b2)) �
∨

{(a3, b3) | C((a1, b1), (a3, b3))) � (a2, b2)}.

Hence IR =
∨

{(a3, b3) ∈ L | C((a1, b1), (a3, b3)) � (a2, b2)}.
The proof for the last property is similar. Note that the condition on IR

makes C(1L, 1L) = 1L hold.

Proposition 4. Let C be a bipolar conjunction and I a bipolar implication
derived from C, either as IN using an involutive negation (Equation 7) or as
IR by residuation (Equation 10). The following equivalence holds:

∀(a, b) ∈ L, C(1L, (a, b)) = (a, b) ⇔ ∀(a, b) ∈ L, I(1L, (a, b)) = (a, b), (12)

i.e. C admits 1L as unit element on the left iff I admits 1L as unit element on
the left.

Proof. This result directly follows from Equations 7, 8, 10, and 11.

Proposition 5. If C and I are bipolar connectives such that (I, C) forms an
adjunction (i.e. verifies Equation 4), then C distributes over the supremum and
I over the infimum on the right, i.e.:

∀(ai, bi) ∈ L, ∀(a, b) ∈ L,

∨

i

C((a, b), (ai, bi)) = C((a, b),
∨

i

(ai, bi)), (13)

∧

i

I((a, b), (ai, bi)) = I((a, b),
∧

i

(ai, bi)). (14)

Proof. The proof is similar to the classical proof done in mathematical mor-
phology to show that an adjunction defines a dilation (i.e. an operation that
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commutes with the supremum) and an erosion (see Section 3 for these defini-
tions) [61]. Let us assume that (I, C) is an adjunction. The following equiva-
lences hold, for any (a, b), (α, β) and any family (ai, bi) in L:

(1)
∨

i

C((a, b), (ai, bi)) � (α, β) ⇔ ∀i, C((a, b), (ai, bi)) � (α, β)

(adjunction property) ⇔ ∀i, (ai, bi) � I((a, b), (α, β))

⇔
∨

i

(ai, bi) � I((a, b), (α, β))

(adjunction property) ⇔ C((a, b),
∨

i

(ai, bi)) � (α, β) (2)

Let (α, β) =
∨

iC((a, b), (ai, bi)). Then (1) trivially holds, and therefore (2)
holds too, i.e. C((a, b),

∨

i(ai, bi)) �
∨

i C((a, b), (ai, bi)). Now let (α, β) =
C((a, b),

∨

i(ai, bi)). Then (2) holds, hence (1) holds, i.e.
∨

iC((a, b), (ai, bi)) �
C((a, b),

∨

i(ai, bi)). Finally we have
∨

i C((a, b), (ai, bi)) = C((a, b),
∨

i(ai, bi)),
i.e. C commutes with the supremum on the right.

The proof for I is similar.

Note that the distributivity on the left requires C to be commutative, and
in that case we also have:

∨

i

C((ai, bi), (a, b)) = C(
∨

i

(ai, bi), (a, b)), (15)

and then we have in a similar way for I:

∧

i

I((ai, bi), (a, b)) = I(
∨

i

(ai, bi), (a, b)). (16)

The following properties of adjunctions will also be useful for deriving math-
ematical morphology operators.

Proposition 6. Let (I, C) be an adjunction. Then the following properties
hold:

• C is increasing in the second argument and I in the second one. If fur-
thermore C is commutative, then it is also increasing in the first one.

• 0L is the null element of C on the right and 1L is the null element of I
on the right, i.e.

∀(a, b) ∈ L, C((a, b), 0L) = 0L, I((a, b), 1L) = 1L.

Proof. From Lemma 1, and from the distributivity of C over the supremum on
the right if (I, C) is an adjunction (Proposition 5), it follows that:

∀((a1, b1), (a2, b2)) ∈ L2, (a1, b1) � (a2, b2) ⇒
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∀(a, b) ∈ L, C((a, b), (a1, b1))∨C((a, b), (a2, b2)) = C((a, b), (a1, b1)∨(a2, b2)) = C((a, b), (a2, b2))

hence C((a, b), (a1, b1)) � C((a, b), (a2, b2)). Obviously if C is commutative, the
increasingness with respect to the first argument follows directly.

The proof for I is similar.
From the adjunction property and the fact that 0L is the smallest element,

we can write:

∀((a, b), (a′, b′)) ∈ L2, 0L � I((a, b), (a′, b′)) ⇒ C((a, b), 0L) � (a′, b′)

hence C((a, b), 0L) has to be the smallest element, i.e. 0L.
Similarly for I, we show that ∀(a, b) ∈ L, I((a, b), 1L) has to be the largest

elements, i.e. 1L.

Finally, some ordering properties hold with respect to the infimum and the
supremum of the lattice (L,�). More ordering properties can be exhibited for
specific orderings, as we will see later on for the Pareto ordering.

Proposition 7.

• Let C be a bipolar conjunction that admits 1L as unit element. Then

∀((a, b), (a′, b′)) ∈ L2, C((a, b), (a′, b′)) � (a, b) ∧ (a′, b′).

• Let I be a bipolar implication that admits 1L as unit element on the left.
Then

∀((a, b), (a′, b′)) ∈ L2, (a′, b′) � I((a, b), (a′, b′)).

• Let I be a bipolar implication that admits 0L as unit element on the right.
Then

∀((a, b), (a′, b′)) ∈ L2, (a, b) � I((a, b), (a′, b′)).

Proof. Let C be a bipolar conjunction that admits 1L as unit element. Since C
is increasing, we have:

∀((a, b), (a′, b′)) ∈ L2, C((a, b), (a′, b′)) � C((a, b), 1L)

and C((a, b), 1L) = (a, b) under the hypothesis. Similarly, C((a, b), (a′, b′)) �
(a′, b′) and the first result follows.

The two results on I are derived in a similar way, by using the decreasingness
of I with respect to the first argument and its increasingness with respect to
the second one.

11



2.4 A few comments about semantics

It is interesting to note that bipolar fuzzy sets are formally linked to intu-
itionistic fuzzy sets [6], interval-valued fuzzy sets [99] and vague sets, or to
clouds when boundary constraints are added [52, 80], as shown by several au-
thors [38, 54]. However, their respective semantics differ. Concerning intuition-
istic fuzzy sets, there has been a lot of discussions about terminology in this
domain recently [7, 54], mainly because of the word “intuitionistic” which is
misleading and introduces confusions with intuitionistic logics. The semantics
of intuitionistic fuzzy sets reveals the possibility of some indetermination be-
tween membership and non-membership to a set. As for interval-valued fuzzy
sets or clouds, their semantics correspond to the representation of some impre-
cision or uncertainty about the membership value, which can only be given as
an interval, and not as a crisp number.

However the semantics of bipolar fuzzy sets is different. A bipolar fuzzy
set in the spatial domain does not necessarily represent one physical object or
spatial entity, but rather more complex information, potentially issued from
different sources. This refers to the third type of bipolarity, according to the
classification presented in [55, 56]. What we call a bipolar fuzzy set is then a
mathematical complex object, not a physical object. An example is the modeling
of information concerning the location of a robot: positive information could
concern potential locations (for instance derived from sensor data) and negative
information could concern forbidden places (because they are already occupied
by other objects, or the robot is not allowed to move there, etc.). Let us consider
another example, in a different domain, about preference modeling [9]. Positive
information describes what is desired and allows sorting solutions, while negative
information describes what is rejected or unacceptable and defines constraints
to be fulfilled. The gap between positive and negative information does not
necessarily concern indetermination, but rather neutrality or indifference.

2.5 A note on partial ordering

One of the main issues in the proposed extensions of mathematical morphology
to bipolar information is to handle the two components (i.e. positive and nega-
tive information) and to define an adequate and relevant ordering. Two extreme
cases are Pareto ordering (also called marginal ordering) and lexicographic or-
dering. The Pareto ordering handles both components in a symmetric way,
while the lexicographic ordering on the contrary gives a strong priority to one
component, and the other one is then seldom considered. These features can
be seen as either advantages or drawbacks, depending on the context and on
the application. This issue has been addressed in other types of work, where
different partial orderings have been discussed. We mention here two examples:
color image processing and social choice.

Color image processing: The question of defining a suitable ordering on vec-
torial images (in particular color images) has been widely addressed in the
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mathematical imaging community (see e.g. [4] for a review). The lexico-
graphic ordering is known to excessively privilege one of the colors, and
can be refined for instance by defining a rougher quantization on the first
color, so as to have more frequent comparisons based on the two other
ones. Other approaches use a 1D scale by applying a scalar function
to the vectors, define groups of vectors which are then ranked, or base
the comparison on a distance to a reference vector, just to cite a few
ones [3, 4, 5].

Social choice: This is another domain where the question of defining a par-
tial ordering is crucial, in particular for multi-criteria decision making or
voting problems. Various orderings have been proposed, including refine-
ments of the lexicographic ordering, leximin/leximax, discrimax, tolerant
Pareto, etc. [37, 53, 59, 77, 86].

All these works can guide the choice of an ordering adapted to bipolar in-
formation.

The two following sections remain general, and apply to any partial ordering,
while two specific examples will be detailed next: Pareto ordering in Section 5
and lexicographic ordering in Section 6.

3 Algebraic dilations and erosions of bipolar

fuzzy sets

Once we have a complete lattice, it is easy to define algebraic dilations and
erosions on this lattice, as classically done in mathematical morphology [61, 62,
89]. Here we only consider operations from the lattice (B,�) into itself.

Definition 4. A dilation is an operator δ from B into B that commutes with
the supremum:

∀(µi, νi) ∈ B, δ(
∨

i

(µi, νi)) =
∨

i

δ((µi, νi)), (17)

where (µi, νi) is any family (finite or not) of elements of B.
An erosion is an operator ε from B into B that commutes with the infimum:

∀(µi, νi) ∈ B, ε(
∧

i

(µi, νi)) =
∧

i

ε((µi, νi)). (18)

The following results are directly derived from the properties of complete
lattices [61, 62] (they hold for any dilation and erosion defined on any complete
lattice, hence on B).

Proposition 8. Algebraic dilations δ and erosions ε on B satisfy the following
properties:

13



• δ and ε are increasing operators;

• δ preserves the smallest element: δ((µ0, ν0)) = (µ0, ν0);

• ε preserves the largest element: ε((µI, νI)) = (µI, νI);

• by denoting (µx, νx) the canonical bipolar fuzzy set associated with (µ, ν)
and x such that (µx, νx)(x) = (µ(x), ν(x)) and ∀y ∈ S \ {x}, (µx, νx)(y) =
0L, we have (µ, ν) =

∨

x(µx, νx) and δ((µ, ν)) =
∨

x δ((µx, νx)).

The last result leads to morphological operators in case δ((µx, νx)) has the
same “shape” everywhere (and is then a bipolar fuzzy structuring element).
This case is detailed in Section 4.

A fundamental notion in this algebraic framework is the one of adjunction.

Definition 5. A pair of operators (ε, δ) defines an adjunction on (B,�) iff:

∀(µ, ν) ∈ B, ∀(µ′, ν′) ∈ B, δ((µ, ν)) � (µ′, ν′) ⇔ (µ, ν) � ε((µ′, ν′)) (19)

Again we can derive a series of results from the properties of complete lattices
and adjunctions [61, 62].

Proposition 9. If a pair of operators (ε, δ) on B defines an adjunction, then
the following results hold:

• δ preserves the smallest element and ε the largest element of the lattice;

• δ is a dilation and ε is an erosion, in the sense of Definition 4;

• δε is anti-extensive: δε � Id, where Id denotes the identity mapping on
B (i.e. ∀(µ, ν) ∈ B, Id(µ, ν) = (µ, ν)), and εδ is extensive: Id � εδ (the
compositions δε and εδ are called morphological opening and morphological
closing, respectively);

• δεδε = δε and εδεδ = εδ, i.e. morphological opening and closing are
idempotent operators.

Proposition 10. Let δ and ε be two increasing operators such that δε is anti-
extensive and εδ is extensive. Then (ε, δ) is an adjunction.

The following representation result also holds.

Proposition 11. If ε is an increasing operator, it is an algebraic erosion if and
only if there exists δ such that (ε, δ) is an adjunction. The operator δ is then
an algebraic dilation and can be expressed as:

δ((µ, ν)) =
∧

{(µ′, ν′) ∈ B : (µ, ν) � ε((µ′, ν′))}. (20)

A similar representation result holds for erosion.

Proofs are omitted in this section, since they are exactly the same as in any
complete lattice, and there is nothing specific to do for the particular case of
the lattice (B,�).
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4 Morphological dilations and erosions of bipo-
lar fuzzy sets

Particular forms of dilations and erosions, called morphological dilations and
erosions, are defined in classical morphology, involving the notion of structuring
element [88].

In the spatial domain S for instance (S is then assumed to be an affine space
or at least a space where translations can be defined), a structuring element is
a subset of S with fixed shape and size, directly influencing the spatial extent
of the morphological transformations. It is generally assumed to be compact,
so as to guarantee good properties. In the discrete case, it is often assumed to
be connected, in the sense of a discrete connectivity defined on S. The general
principle underlying morphological operators, under an assumption of invari-
ance by translation, consists in translating the structuring element at every
position in space and checking if this translated structuring element satisfies
some relation with the original set (inclusion for erosion, intersection for dila-
tion) [61, 62, 85, 88, 89]. This principle has also been used in the main extensions
of mathematical morphology to fuzzy sets [30, 49, 50, 72, 78, 90]. It has been
further investigated in the algebraic framework of quantales [1, 87, 92].

More generally, without any assumption on the underlying domain S, a
structuring element is defined as a binary relation between two elements of S
(i.e. y is in relation with x if and only if y ∈ Bx) [28]. This allows on the
one hand dealing with spatially varying structuring elements (when S is the
spatial domain), as e.g. in [11, 35, 36, 42, 48, 69], or with graph structures
(e.g. [46, 76, 94, 96]), and on the other hand establishing interesting links with
several other domains, such as rough sets [15], formal logics [16, 29, 31, 33], and,
in the more general case where the morphological operations are defined from
one set to another one, with Galois connections and formal concept analysis, as
shown e.g. in [28].

From now on, we assume that S is an affine space on which translations are
defined (but all definitions and results also apply to the other situations men-
tioned above). Following the same principle as in classical morphology, defining
morphological erosions of bipolar fuzzy sets, using bipolar fuzzy structuring ele-
ments, requires to define a degree of inclusion between bipolar fuzzy sets. Such
inclusion degrees have been proposed in the context of intuitionistic fuzzy sets
and interval-valued fuzzy sets [44, 51]. With our notations, a degree of inclusion
of a bipolar fuzzy set (µ′, ν′) in another bipolar fuzzy set (µ, ν) is defined as [19]:

∧

x∈S

I((µ′(x), ν′(x)), (µ(x), ν(x))) (21)

where I is a bipolar implication, and a degree of intersection is defined as:
∨

x∈S

C((µ′(x), ν′(x)), (µ(x), ν(x))) (22)

where C is a bipolar conjunction. Note that both inclusion and intersection
degrees are elements of L, i.e. they are defined as bipolar degrees.
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Based on these concepts, we can now propose a general definition for mor-
phological erosions and dilations, thus extending our previous work in [19, 20,
21, 26].

Definition 6. Let (µB , νB) be a bipolar fuzzy structuring element (in B). The
erosion of any (µ, ν) in B by (µB, νB) is defined from a bipolar implication I

as:

∀x ∈ S, ε(µB ,νB)((µ, ν))(x) =
∧

y∈S

I((µB(y − x), νB(y − x)), (µ(y), ν(y))). (23)

In this equation, µB(y − x) (respectively νB(y − x)) represents the value at
point y of the translation of µB (respectively νB) at point x.

Definition 7. Let (µB , νB) be a bipolar fuzzy structuring element (in B). The
dilation of any (µ, ν) in B by (µB , νB) is defined from a bipolar conjunction C

as:

δ(µB ,νB)((µ, ν))(x) =
∨

y∈S

C((µB(x− y), νB(x− y)), (µ(y), ν(y))). (24)

Proposition 12. Definitions 6 and 7 are consistent: they actually provide bipo-
lar fuzzy sets of B, i.e. ∀(µ, ν) ∈ B, ∀(µB, νB) ∈ B, δ(µB ,νB)((µ, ν)) ∈ B and
ε(µB ,νB)((µ, ν)) ∈ B.

Proof. The degrees of inclusion and intersection are elements of L. Therefore
∀x ∈ S, δ(µB ,νB)((µ, ν))(x) ∈ L and ε(µB ,νB)((µ, ν))(x), i.e. δ(µB ,νB)((µ, ν)) ∈ B
and ε(µB ,νB)((µ, ν)) ∈ B.

Proposition 13. In case the bipolar fuzzy sets are usual fuzzy sets (i.e. ν =
1 − µ and νB = 1 − µB), the definitions lead to the usual definitions of fuzzy
dilations and erosions. Hence they are also compatible with classical morphology
in case µ and µB are crisp.

Proof. This directly follows from the boundary constraints in the definitions of
bipolar conjunctions and implications.

Proposition 14. Definitions 6 and 7 provide an adjunction (ε, δ) if and only
if (I, C) is an adjunction.

Proof. Let us first assume that (I, C) is an adjunction. Expressing Equation 4
for (a1, b1) = (µB , νB)(x − y), (a3, b3) = (µ, ν)(y), (a2, b2) = (µ′, ν′)(x) we ob-
tain, for all (µ, ν), (µ′, ν′), (µB, νB) in B, and all x, y in S:

C((µB , νB)(x−y), (µ, ν)(y)) � (µ′, ν′)(x) ⇔ (µ, ν)(y) � I((µB, νB)(x−y), (µ′, ν′)(x))
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and, by taking the supremum over y on the left hand side of the equivalence
and the infimum over x on the right hand side, we get:

δ(µB ,νB)((µ, ν)) � (µ′, ν′) ⇔ (µ, ν) � ε(µB ,νB)((µ
′, ν′))

hence (ε, δ) is an adjunction.
Conversely, let us assume that (ε, δ) is an adjunction. Expressing the

adjunction equivalence for bipolar fuzzy sets taking constant values (∀x ∈
S, (µB , νB)(x) = (a1, b1), (µ, ν)(x) = (a2, b2), (µ

′, ν′)(x) = (a3, b3)), we derive
immediately the adjunction equivalence for I and C.

Proposition 15. If I and C are bipolar connectives such that (I, C) is an
adjunction, then the operator ε defined from I by Equation 23 commutes with
the infimum and the operator δ defined from C by Equation 24 commutes with
the supremum, i.e. they are algebraic erosion and dilation. Moreover they are
increasing with respect to (µ, ν).

Proof. Let I and C be bipolar connectives forming an adjunction. From Propo-
sition 5, it follows that I (respectively C) commutes with the infimum (re-
spectively with the supremum) on the right. Applying these properties to the
expressions of ε and δ as given in Equations 23 and 24 leads to the result. The
increasingness property directly follows, as in any lattice (see Proposition 8).

Proposition 16. If (I, C) is an adjunction such that C is increasing in the first
argument and I is decreasing in the first argument (typically if they are a bipolar
conjunction and a bipolar implication), then the operator ε defined from I by
Equation 23 is decreasing with respect to the bipolar fuzzy structuring element
and the operator δ defined from C by Equation 24 is increasing with respect to
the bipolar fuzzy structuring element.

Proof. These monotony properties are directly derived from the ones of C, I, ∨
and ∧.

Proposition 17. C distributes over the supremum and I over the infimum on
the right if and only if ε and δ defined by Equations 23 and 24 are algebraic
erosion and dilation, respectively.

Proof. Let us assume that C and I distribute on the right over the supremum
and the infimum respectively. Then for all (µB, νB) in B and for any family
(µi, νi) in B, the following equalities hold, ∀x ∈ S:

δ(µB ,νB)(∨i(µi, νi))(x) = ∨y∈SC((µB , νB)(x − y),∨i(µi, νi)(y))

= ∨y∈S ∨i C((µB , νB)(x − y), (µi, νi)(y))

= ∨iδ(µB ,νB)((µi, νi))(x)

ε(µB ,νB)(∧i(µi, νi))(x) = ∧y∈SI((µB , νB)(y − x),∧i(µi, νi)(y))

= ∧y∈S ∧i I((µB , νB)(y − x), (µi, νi)(y))

= ∧iε(µB ,νB)((µi, νi))(x)
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Hence the distributivity of C and I entails the commutativity of δ with the
supremum and the one of ε with the infimum, i.e. δ is a dilation and ε is an
erosion.

Conversely, if δ is an algebraic dilation and ε is an algebraic erosion (i.e. they
commute with the supremum and the infimum, respectively), then by applying
this property to bipolar fuzzy sets taking constant values, the distributivity of
C over the supremum on the right and the distributivity of I over the infimum
on the right directly follow.

In the following, we only consider cases where the definitions actually provide
algebraic dilations and erosions (which are the only ones that are interesting).
Obviously, all results of Section 3 also hold.

Note that while δ commutes with the supremum and ε with the infimum,
the converse is generally not true. However, inequalities hold, as in classical
morphology.

Proposition 18. Let δ and ε be a dilation and an erosion defined by Equa-
tions 24 and 23. Then, for all (µB , νB), (µ, ν), (µ′, ν′) in B, we have:

δ(µB ,νB)((µ, ν) ∧ (µ′, ν′)) � δ(µB ,νB)((µ, ν)) ∧ δ(µB ,νB)((µ
′, ν′)), (25)

ε(µB ,νB)((µ, ν)) ∨ ε(µB ,νB)((µ
′, ν′)) � ε(µB ,νB)((µ, ν) ∨ (µ′, ν′)). (26)

Proof. The results are derived from the increasingness of C and the increasing-
ness of I with respect to the second argument.

Proposition 19. A dilation δ defined by Equation 24 is increasing with respect
to the bipolar fuzzy structuring element, while an erosion ε defined by Equa-
tion 23 is decreasing with respect to the bipolar fuzzy structuring element.

Proof. The results are directly derived from the increasingness of C,∨,∧ and
from the decreasingness of I with respect to the first argument.

These results fit well with the intuitive meaning behind the morphological
operators. Indeed, a dilation is interpreted as a degree of intersection, which is
easier to achieve with a larger structuring element, while an erosion is interpreted
as a degree of inclusion, which means a stronger constraint if the structuring
element is larger.

Proposition 20. Let δ and ε be a dilation and an erosion defined by Equa-
tions 24 and 23. Then, for all (µB , νB), (µ′

B, ν
′
B), (µ, ν) in B, we have:

δ(µB ,νB)∧(µ′

B
,ν′

B
)((µ, ν) � δ(µB ,νB)((µ, ν)) ∧ δ(µ′

B
,ν′

B
)((µ, ν)), (27)

ε(µB ,νB)((µ, ν)) ∨ ε(µ′

B
,ν′

B
)((µ, ν)) � ε(µB ,νB)∧(µ′

B
,ν′

B
)((µ, ν)). (28)

Proof. The results are derived from the increasingness of C and the decreasing-
ness of I with respect to the first argument.
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Depending on the choice of C and I, some additional property may hold.

Proposition 21. Let δ be a dilation defined by Equation 24 from a bipolar
conjunction C. The dilation satisfies δ(µB ,νB)((µ, ν)) = δ(µ,ν)((µB, νB)) if and
only if C is commutative.

Proof. The implication directly results from the commutativity of C. The con-
verse implication is obtained by considering constant membership and non-
membership functions for the bipolar fuzzy sets.

This result is quite intuitive. When interpreting the dilation as a degree
of intersection, it is natural to expect this degree to be symmetrical in both
arguments. Hence the commutativity of C has to be satisfied.

Proposition 22. Let δ be a dilation defined by Equation 24 from a bipolar
conjunction C. It satisfies the iterativity property, i.e.:

δ(µB ,νB)(δ(µ′

B
,ν′

B
)(µ, ν)) = δδ(µB ,νB)((µ

′

B
,ν′

B
))((µ, ν)),

if and only if C is associative.

Proof. Similar to the one of Proposition 21.

Proposition 23. Let δ be a dilation defined by Equation 24 from a bipolar
conjunction C. If C is a bipolar conjunction that admits 1L as unit element
on the left (i.e. ∀(a, b) ∈ L, C(1L, (a, b)) = (a, b)) and C((a, b), 1L) 6= 1L for
(a, b) 6= 1L, then the dilation is extensive, i.e. δ(µB ,νB)((µ, ν)) � (µ, ν), if and
only if (µB, νB)(0) = 1L, where 0 denotes the origin of space S.

A similar property holds for erosion and if I is a bipolar implication that
admits 1L as unit element to the left (i.e. ∀(a, b) ∈ L, I(1L, (a, b)) = (a, b))
and I((a, b), 0L) 6= 0L for (a, b) 6= 1L, then the erosion is anti-extensive, i.e.
ε(µB ,νB)((µ, ν)) � (µ, ν), if and only if (µB, νB)(0) = 1L.

Proof. Let C be a conjunction satisfying the conditions, and assume that
(µB, νB)(0) = 1L. Then, ∀(µB , νB) ∈ B, (µ, ν) ∈ B, ∀x ∈ S, since 1L is unit
element on the left we have:

δ(µB ,νB)((µ, ν))(x) � C((µB , νB)(0), (µ, ν)(x))

� C(1L, (µ, ν)(x))

� (µ, ν)(x)

i.e. δ is extensive.
Conversely, if δ is extensive, let us write the extensivity inequality for the

bipolar fuzzy set (µ, ν) defined by (µ, ν)(y) = 0L for y 6= 0 and (µ, ν)(0) = 1L
and for x = 0L:

∨yC((µB , νB)(−y), (µ, ν)(y)) � (µ, ν)(0)
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⇒ ∨y 6=0C((µB , νB)(−y), 0L) ∨ C((µB , νB)(0), 1L) = 1L

⇒ 0L ∨ C((µB , νB)(0), 1L) = C((µB , νB)(0), 1L) = 1L

(from Proposition 2). Since under the hypothesis the only value of (a, b) for
which C((a, b), 1L) can be equal to 1L is 1L, it follows that (µB, νB)(0) = 1L.

The proof for I and ε is similar.

The second condition on C holds in particular if 1L is also unit element on
the right. This holds in specific cases in which C is a bipolar t-norm, which are
the most interesting ones from a morphological point of view, as shown below.

Note that the condition (µB , νB)(0) = 1L (i.e. the origin of space completely
belongs to the bipolar fuzzy set, without any indetermination) is equivalent to
the conditions on the structuring element found in classical [88] and fuzzy [30]
morphology to have extensive dilations and anti-extensive erosions.

Proposition 24. If I is derived from C and a negation N , then δ and ε are
dual operators, i.e.: δ(µB ,νB)(N(µ, ν)) = N(ε(µ̌B ,ν̌B)((µ, ν))), where (µ̌B , ν̌B)
denotes the symmetrical of (µB, νB) with respect to the origin of S.

Proof. This result directly follows from Equation 7.

Duality with respect to complementation, which was advocated in the first
developments of mathematical morphology [88], is important to handle in an
consistent way an object and its complement for many applications (for instance
in image processing and spatial reasoning). Therefore it is useful to know exactly
under which conditions this property may hold, so as to choose the appropriate
operators if it is needed for a specific problem. On the other hand, adjunction is
a major feature of the “modern” view of mathematical morphology, with strong
algebraic bases in the framework of complete lattices [84]. This framework is
now widely considered as the most interesting one, since it provides consistent
definitions with sound properties in different settings (continuous and discrete
ones) and extending mathematical morphology to fuzzy sets in this framework
inherits a set of powerful and important properties. Due to the interesting
features of these two properties of duality and adjunction, in several applications
both are required.

From all these results, we can derive the following theorem, which shows that
the proposed forms are the most general ones for C being a bipolar t-norm.

Theorem 1. Definition 7 defines a dilation with all properties of classical math-
ematical morphology if and only if C is a bipolar t-norm. The adjoint erosion is
then defined by Equation 6 from the residual implication IR derived from C. If
the duality property is additionally required, then C and I have also to be dual
operators with respect to a negation N .

Proof. This theorem directly follows from the previous propositions.
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This important result shows that taking any conjunction may not lead to
dilations that have nice properties. For instance the iterativity of dilation is of
prime importance in concrete applications, and it requires associative conjunc-
tions.

This is actually a main contribution of our work, which differs from [79],
where some morphological operators are suggested on intuitionistic fuzzy sets
and for the Pareto ordering, but without referring to the algebraic framework,
and leading to weaker properties (for instance the erosion defined in this work
does not commute with the infimum and is then not an algebraic erosion). This
group has then proposed some extensions in [74], still for the specific case of
Pareto ordering, which closely follow our previous results in [19, 21, 24, 26].
Moreover the result expressed in Theorem 1 is stronger and more general since
it applies for any partial ordering leading to a complete lattice on B.

Note that pairs of adjoint operators are not necessarily dual. Therefore
requiring both adjunction and duality properties may drastically reduce the
choice for C and I. This will be illustrated for � being the Pareto partial
ordering in Section 5. Note that this strong constraint is similar to the one
proved for fuzzy sets in [17, 22].

Although the choice of C and I is limited by the results expressed in Theo-
rem 1 if sufficiently strong properties are required for the morphological oper-
ators, some choice may remain. The following property expresses a monotony
property with respect to this choice.

Proposition 25. Dilations and erosions are monotonous with respect to the
choice of C and I:

C � C′ ⇒ δC � δC′

where δC is the dilation defined by Equation 24 using the bipolar conjunction or
t-norm C, and

I � I ′ ⇒ εI � εI′

where εI is the erosion defined by Equation 23 using the bipolar implication I.

Proof. The result is straightforward, from the monotony of the supremum and
infimum.

More properties on the compositions δε and εδ are provided in Section 7.3.

5 Pareto (marginal) partial ordering

In this section, we detail the case of Pareto ordering, in order to illustrate the
general definitions and results of Sections 3 and 4. This summarizes our previous
results in [19, 21, 24, 26], with some extensions.
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5.1 Complete lattice derived from Pareto ordering and
connectives

The marginal partial ordering on L, or Pareto ordering (by reversing the scale
of negative information) is defined as:

(a1, b1) �p (a2, b2) iff a1 ≤ a2 and b1 ≥ b2. (29)

This ordering, often used in economics and social choice, has been been used for
bipolar information [59], intuitionistic fuzzy sets e.g. in [45], or interval-valued
fuzzy sets [74].

For this partial ordering, (L,�p) is a complete lattice. The greatest element
is (1, 0) and the smallest element is (0, 1). The supremum and infimum are
respectively defined as:

(a1, b1) ∨p (a2, b2) = (max(a1, a2),min(b1, b2)), (30)

(a1, b1) ∧p (a2, b2) = (min(a1, a2),max(b1, b2)). (31)

The partial order �p induces a partial order on the set of bipolar fuzzy sets:

Definition 8. A Pareto ordering on B is defined as:
∀(µ1, ν1) ∈ B, ∀(µ2, ν2) ∈ B,

(µ1, ν1) �p (µ2, ν2) iff ∀x ∈ S, µ1(x) ≤ µ2(x) and ν1(x) ≥ ν2(x). (32)

Note that this corresponds formally to the inclusion on intuitionistic fuzzy
sets [6] (again the semantics are different).

Proposition 26. (B,�p) is a complete lattice. The supremum and the infimum
are:

∀x ∈ S, ((µ1, ν1)∨p (µ2, ν2))(x) = (max(µ1(x), µ2(x)),min(ν1(x), ν2(x))), (33)

∀x ∈ S, ((µ1, ν1)∧p (µ2, ν2))(x) = (min(µ1(x), µ2(x)),max(ν1(x), ν2(x))). (34)

Let us now consider any family of bipolar fuzzy sets (µi, νi), i ∈ I, where the
index set I can be finite or not. Supremum and infimum for any family are
expressed similarly:

∀x ∈ S,
∨

p
i∈I

(µi, νi)(x) = (sup
i∈I

µi(x), inf
i∈I

νi(x)),

∀x ∈ S,
∧

p
i∈I

(µi, νi)(x) = (inf
i∈I

µi(x), sup
i∈I

νi(x)),

The greatest element is the pair of functions (µI, νI) constantly equal 1L, and
the smallest element is the pair of functions (µ0, ν0) constantly equal to 0L.
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Let us now mention a few connectives. In Definition 2, the monotony prop-
erties have now to be intended according to the Pareto ordering.

An example of negation, which will be used in the following, is the standard
negation, defined by N((a, b)) = (b, a).

Two types of t-norms and t-conorms are considered in [51] (actually in the
intuitionistic case) and will be considered here as well in the bipolar case:

1. Operators called t-representable bipolar t-norms and t-conorms, which can
be expressed using usual t-norms t and t-conorms T :

C((a1, b1), (a2, b2)) = (t(a1, a2), T (b1, b2)), (35)

D((a1, b1), (a2, b2)) = (T (a1, a2), t(b1, b2)). (36)

A typical example is obtained for t = min and T = max. Although t

and T are usually chosen as dual operators, other choices are possible, as
discussed e.g. in [73] for adjunction properties. Distributivity properties
of implications over t-norms are further investigated in [8].

2. Bipolar Lukasiewicz operators, which are not t-representable:

CW ((a1, b1), (a2, b2)) = (max(0, a1+a2−1),min(1, b1+1−a2, b2+1−a1)),
(37)

DW ((a1, b1), (a2, b2)) = (min(1, a1+1−b2, a2+1−b1),max(0, b1+b2−1)).
(38)

In these equations, the positive part of CW is the usual Lukasiewicz t-norm of
a1 and a2 (i.e. the positive parts of the input bipolar values). The negative part
of DW is the usual Lukasiewicz t-norm of the negative parts (b1 and b2) of the
input values.

The two types of implication introduced in Section 3 can be used here as
well, and were also considered in [44, 51]. The two types of implication coincide
for the Lukasiewicz operators [45].

Proposition 27. Let us denote by Cmin (respectively Dmax) the t-representable
bipolar conjunction (respectively disjunction) built from the minimum and
maximum, and Cprod (respectively Dsum) the one built from the product
and algebraic sum. We have the following ordering between conjunctions:
∀((a1, b1), (a2, b2)) ∈ L2,

CW ((a1, b1), (a2, b2)) �p Cprod((a1, b1), (a2, b2)) �p Cmin((a1, b1), (a2, b2)),
(39)

and for disjunctions:

Dmax((a1, b1), (a2, b2)) �p Dsum((a1, b1), (a2, b2)) �p DW ((a1, b1), (a2, b2)).
(40)
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Proof. In the fuzzy (non-bipolar case), the Lukasiewicz t-norm is smaller than
the product which is smaller than the minimum (largest t-norm). Therefore
the inequalities between t-representable bipolar t-norms are straightforward, as
well as the one with CW for its positive part. It is then enough to show the
inequality for the negative part of CW . We have 1 − a1 ≥ b1 and 1 − a2 ≥ b2
hence b2 + 1 − a1 ≥ b2 + b1 and b1 + 1 − a2 ≥ b1 + b2. Therefore the negative
part of CW is larger than min(1, b1 + b2), which completes the proof for bipolar
t-norms. The reasoning for bipolar t-conorms follows the same line.

Morphological operators derived from these connectives will inherit these
properties.

5.2 Algebraic and morphological erosions and dilations

Since the Pareto ordering is an example leading to complete lattices, algebraic
dilations and erosions can be defined as in Section 3.

Next, introducing structuring elements, morphological erosions and dilations
are defined as in Equations 23 and 24.

It is easy to show that the bipolar Lukasiewicz operators are adjoint, accord-
ing to Equation 4. Therefore, if Lukasiewicz operators (up to a bijection) are
used, then all algebraic properties detailed in Section 3 hold.

Moreover, it has been shown that the adjoint operators are all derived from
the Lukasiewicz operator, using a continuous bijective permutation on [0, 1] [51].
Hence having dilations and erosions that are both dual and adjoint can be
achieved only for this class of operators. This completes the result of Theorem 1
in the particular case of the Pareto ordering.

If the bipolar fuzzy sets are usual fuzzy sets (i.e. ν = 1−µ and νB = 1−µB),
the definitions based on the bipolar Lukasiewicz operators are equivalent to
fuzzy dilation and erosion defined for the classical Lukasiewicz t-norm and t-
conorm [22, 30].

Details can be found in [19, 21, 26].

5.3 Interpretation

In order to interpret the expression of morphological erosion, let us first con-
sider the implication I defined from a t-representable bipolar t-conorm D, i.e.
∀((a, b), (a′, b′)) ∈ L2, I((a, b), (a′, b′)) = D((b, a), (a′, b′)), when using the stan-
dard negation, and D is defined as in Equation 36. Then the erosion writes:

ε(µB ,νB)((µ, ν))(x) =
∧

p
y∈S

I((µB(y − x), νB(y − x)), (µ(y), ν(y)))

=
∧

p
y∈S

(T ((νB(y − x), µ(y)), t(µB(y − x), ν(y)))

= ( inf
y∈S

T ((νB(y − x), µ(y)), sup
y∈S

t(µB(y − x), ν(y))).(41)

The second line is derived from the fact that D is supposed here to be a t-
representable bipolar t-conorm, defined from a t-norm t and a t-conorm T . The
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third line is derived from the definition of the infimum in L and in B for �p.
This resulting bipolar fuzzy set has a membership function which is exactly
the fuzzy erosion of µ by the fuzzy structuring element 1 − νB, according to
the original definitions in the fuzzy case [30]. The non-membership function is
exactly the dilation of the fuzzy set ν by the fuzzy structuring element µB.

Let us consider the dilation, defined from a t-representable t-norm C (Equa-
tion 35). Using the standard negation, it writes:

δ(µB ,νB)((µ, ν))(x) = (sup
y∈S

t(µB(x − y), µ(y)), inf
y∈S

T ((νB(x− y), ν(y))). (42)

The first term (membership function) is exactly the fuzzy dilation of µ by µB,
while the second one (non-membership function) is the fuzzy erosion of ν by
1 − νB, according to the original definitions in the fuzzy case [30].

This observation has a nice interpretation, which well fits with intuition.
Let (µ, ν) represent a spatial bipolar fuzzy set, where µ is a positive informa-
tion for the location of an object for instance, and ν a negative information for
this location. A bipolar structuring element can represent additional impreci-
sion on the location, or additional possible locations. Dilating (µ, ν) by this
bipolar structuring element amounts to dilate µ by µB , i.e. the positive region
is extended by an amount represented by the positive information encoded in
the structuring element. On the contrary, the negative information is eroded by
the complement of the negative information encoded in the structuring element.
This corresponds well to what would be intuitively expected in such situations.
A similar interpretation can be provided for the bipolar fuzzy erosion. Examples
are provided in the next subsections.

Let us now consider the implication derived from the Lukasiewicz bipolar
operators (Equations 37 and 38). The erosion and dilation write:

∀x ∈ S, ε(µB ,νB)((µ, ν))(x) =
∧

p
y∈S

(min(1, µ(y)+1−µB(y−x), νB(y−x)+1−ν(y)),max(0, ν(y)+µB(y−x)−1)) =

( inf
y∈S

min(1, µ(y)+1−µB(y−x), νB(y−x)+1−ν(y)), sup
y∈S

max(0, ν(y)+µB(y−x)−1)),

(43)

∀x ∈ S, δ(µB ,νB)((µ, ν))(x) =

(sup
y∈S

max(0, µ(y)+µB(x−y)−1), inf
y∈S

min(1, ν(y)+1−µB(x−y), νB(x−y)+1−µ(y)).

(44)

The negative part of the erosion is exactly the fuzzy dilation of ν (negative part
of the input bipolar fuzzy set) with the structuring element µB (positive part of
the bipolar fuzzy structuring element), using the Lukasiewicz t-norm. Similarly,
the positive part of the dilation is the fuzzy dilation of µ (positive part of the
input) by µB (positive part of the bipolar fuzzy structuring element), using
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the Lukasiewicz t-norm. Hence for both operators, the “dilation” part (i.e.
negative part for the erosion and positive part for the dilation) has always a
direct interpretation and is the same as the one obtained using t-representable
operators, for t being the Lukasiewicz t-norm.

In the case the structuring element is non bipolar (i.e. ∀x ∈ S, νB(x) =
1−µB(x)), then the “erosion” part has also a direct interpretation: the positive
part of the erosion is the fuzzy erosion of µ by µB for the Lukasiewicz t-conorm;
the negative part of the dilation is the erosion of ν by µB for the Lukasiewicz
t-conorm.

It follows from Propositions 25 and 27 that the some erosions and dilations
can be ordered according to the used connectives.

Proposition 28. Let us denote by δmin, δprod and δW the dilations built
from Cmin, Cprod and CW , respectively. We have the following ordering:
∀((µB , νB), (µ, ν)) ∈ B2,

δW
(µB ,νB)(µ, ν) �p δ

prod

(µB ,νB)(µ, ν) �p δ
min
(µB ,νB)(µ, ν). (45)

Let us denote by εmax, εsum and εW the erosions built from the implications de-
rived from Dmax, Dsum and DW , respectively. We have the following ordering:
∀((µB , νB), (µ, ν)) ∈ B2,

εmax
(µB ,νB)(µ, ν) �p ε

sum
(µB ,νB)(µ, ν) �p ε

W
(µB ,νB)(µ, ν). (46)

This means that operations built from min and max have a stronger effect
on the initial bipolar fuzzy set.

Let us finally comment on the practical use of these operators, where dis-
cretization may induce some approximations. This has already been addressed
in the case of interval-valued fuzzy sets in [75]. The discretization of the space
S does not induce any particular problem. As for the values of µ and ν, the
discretization of [0, 1] may induce some small errors depending on the choice
of C and I. Let us assume that the values are regularly discretized (as is usu-
ally the case), in the form k

n
where k and n are integer values, with n defining

the granularity of the discretization and 0 ≤ k ≤ n. The negation, mini-
mum, maximum and Lukasiewicz operators provide exact results, and hence
Cmin, CW , Dmax, DW , δmin, δW , εmax, εW . However the product and algebraic
sum (and thus Cprod, Dsum, δ

prod, εsum) need some approximation. For a quan-
tification on 6 to 10 bits (n = 26 − 1 to n = 210 − 1), we have tested that the
maximal error on the product does not exceed the quantification step 1

n
. There-

fore the approximation errors can be considered as low enough to be neglected
in the applications.

5.4 Illustrative example in the spatial domain

When dealing with spatial information, in image processing or for spatial rea-
soning applications, bipolarity may be an important feature of the information
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to be processed. For instance, when assessing the position of an object in space,
we may have positive information expressed as a set of possible places, and
negative information expressed as a set of impossible or forbidden places (for
instance because they are occupied by other objects). As another example, let
us consider spatial relations. Human beings consider “left” and “right” as op-
posite relations. But this does not mean that one of them is the negation of the
other one. The semantics of “opposite” captures a notion of symmetry (with
respect to some axis or plane) rather than a strict complementation. In partic-
ular, there may be positions which are considered neither to the right nor to the
left of some reference object, thus leaving room for some indetermination [13].
This corresponds to the idea that the union of positive and negative information
does not cover all the space. Similar considerations can be provided for other
pairs of “opposite” relations, such as “close to” and “far from” for instance.

An example is illustrated in Figure 1. It shows an object at some position
in the space (the rectangle in this figure). For visualization purposes, in all
illustrations, a representation using grey levels is adopted for encoding µ(x)
and ν(x) (0 = black, 1 = white). Two images are shown, one for positive
information and one for negative information.

Let us assume that some information about the position of another object is
provided: it is to the left of the rectangle and not to the right. The region “to the
left of the rectangle” is computed using a fuzzy dilation with a directional fuzzy
structuring element providing the semantics of “to the left” [13], thus defining
the positive information. The region “to the right of the rectangle” defines
the negative information and is computed in a similar way. The membership
functions µL and µR represent respectively the positive and negative parts of
the bipolar fuzzy set. They are not the complement of each other, and we have:
∀x, µL(x) + µR(x) ≤ 1. Here we assume that this consistency constraints hold.
A discussion on how to achieve it can be found in [25].

Figure 1: Region to the left of the rectangle (positive information, µL) and
region to the right of the rectangle (negative information, µR). The membership
degrees vary from 0 (black) to 1 (white).

Another example, for the pair of relations close/far, is illustrated in Figure 2.
The reference object is the square in the center of the image. The two fuzzy
regions are computed using fuzzy dilations, using structuring elements that
provide the semantics of “close” and “far” [14]. Again, the two membership
functions µC and µF are not the complement of each other and actually define
a bipolar fuzzy set, with its positive and negative parts.

27



Figure 2: Region close to the square (µC) and region far from the square (µF ).

Note that considering “opposite” relations is but one example. Other exam-
ples could be provided, where relations could not be opposite, or even of different
nature. For instance: we have some positive information for an object being
above a reference object (directional relation), and some negative information
for the object not being in some region of space (topological relation).

To our knowledge, bipolarity has not been much exploited in the spatial
domain. A few works deal with image thresholding, filtering, or edge detection,
based on intuitionistic fuzzy sets derived from image intensity and entropy or
divergence criteria [12, 40, 47, 97]. Spatial representations of interval-valued
fuzzy sets have also been proposed in [41], as a kind of fuzzy egg-yolk, for evalu-
ating classification errors based on ground-truth, or in [70, 71] with preliminary
extensions of RCC to these representations. But there are still very few tools
for manipulating spatial information using both its bipolarity and imprecision
components.

Let us now illustrate the proposed morphological operations on the simple
example shown in Figure 1. Let us assume that an additional information,
given as a bipolar structuring element, allows us to reduce the positive part and
to extend the negative part of the bipolar fuzzy region. This can be formally
expressed as a bipolar fuzzy erosion, applied to the bipolar fuzzy set (µL, µR),
using this structuring element. Figure 3 illustrates the result. It can be observed
that the region corresponding to the positive information has actually been
reduced (via a fuzzy erosion), while the region corresponding to the negative
part has been extended (via a fuzzy dilation).

An example of bipolar fuzzy dilation is illustrated in Figure 4 for the bipolar
fuzzy set close/far of Figure 2. The dilation corresponds to a situation where
the structuring element represents by how much the positive part of the infor-
mation can be expanded (positive part of the structuring element), for instance
because new positions become possible, and by how much the negative part of
the information should be reduced (negative part of the structuring element),
for instance because it was too severe. These operations allow modifying the
semantics attached to the concepts “close” and “far”: in this example, a larger
space around the object is considered being close to the object, and the regions
that are considered being far from the object are put further away.

When several pieces of information are available, such as information on
direction and information on distance, they can be combined using fusion tools,
in order to get a spatial region accounting for all available information. This

28



µB 1 − νB µB + νB

ε(µB ,νB)((µG, µD)): ε(µB ,νB)((µG, µD)):
positive information negative information

Figure 3: Illustration of a bipolar fuzzy erosion on the example shown in Fig-
ure 1. The results, displayed on the second line, show the reduction of the
positive part the extension of the negative part.

µB 1 − νB µB + νB

δ(µB ,νB)((µC , µF )): δ(µB ,νB)((µC , µF )):
positive information negative information

Figure 4: Illustration of a bipolar fuzzy dilation on the example shown in Fig-
ure 2. The results show the extension of the positive part and the reduction of
the negative part.
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type of approach has been used to guide the recognition of anatomical structures
in images, based on medical knowledge expressed as a set of spatial relations
between pairs or triplets of structures (e.g. in an ontology), in the fuzzy case [27,
43, 64]. This idea can be extended to the bipolar case. As an example, a result
of fusion of directional and distance information is illustrated in Figure 5. The
positive information “to the left” of the reference object (and the negative part
“to the right”) is combined with the dilated distance information shown in
Figure 4. The positive parts are combined in a conjunctive way (using a min
here) and the negative parts in a disjunctive way (as a max here), according
to the semantics of the fusion of bipolar information [55]. This example shows
how the search space can be reduced by combining spatial relations to reference
objects, expressed as bipolar fuzzy sets. This can be considered as an extension
to the bipolar case of attention focusing approaches. Illustrations of this idea on
the problem of recognition of brain structures from magnetic resonance imaging
are presented in [21, 25], and the integration of bipolar fuzzy mathematical
morphology into descriptions logics for spatial reasoning has been proposed
in [65].

positive information µL negative information µR

Conjunctive fusion of Disjunctive fusion of
positive information negative information

Figure 5: Fusion of bipolar information on direction (µL, µR) and on distance
δ(µB ,ν′

B
)((µC , µF )) of Figure 4.

5.5 Example in preference modeling

To illustrate the features of bipolar mathematical morphology in another do-
main, we propose here a simple example in a logical formalism, as briefly intro-
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duced in Section 2.1.
Let us consider preferences of agents about the countries in which they would

like to travel, and constraints about their travels. The set of propositional
symbols if the set of all countries in the world. Preferences are denoted by
formulas ϕ and constraints by formulas ψ. In the following example, we show
how dilation of bipolar representations of preferences and constraints can help
reaching an agreement between agents.

Let us assume that Agent 1:

• prefers to travel in Spain: ϕ1 = Spain,

• has to stay in Europe: ψ1 = ¬(Belgium ∨ France ∨ Spain ∨ Portugal ∨
Italy ∨Germany ∨ TheNetherlands∨ ...}.

On the other hand, Agent 2:

• prefers to travel in Morocco: ϕ2 = Morocco,

• has to stay in a Mediterranean country: ψ2 = ¬(Morocco∨Spain∨Italy∨
Portugal ∨ ...).

In this example, the two agents have conflicting preferences. However, each
agent is now ready to extend his preferences so that the two agents can travel
together (under the conditions that the constraints, which are fixed, are sat-
isfied). This is can be simply modeled by a dilation such that some neighbor
countries are included in the preferences, conditioned by the constraints:

δ(ϕ1) = Spain ∨ France ∨ Portugal ∨Morocco

δ(ϕ2) = Morocco ∨Algeria ∨ Portugal ∨ Spain

Introducing the constraints in order to satisfy the consistency requirements leads
to:

ϕ′
1 = δ(ϕ1) ∧ ψ1 = Spain ∨ France ∨ Portugal

ϕ′
2 = δ(ϕ2) ∧ ψ2 = δ(ϕ2)

Now the preferences are no more conflicting. The fusion of their preferences
and constraints can be expressed as the conjunction of the preferences and
disjunction of the constraints:

(ϕ, ψ) = (ϕ′
1 ∧ ϕ

′
2, ψ1 ∨ ψ2)

= (Spain ∨ Portugal,¬(
∨

Medit. andEur. countries))

A solution for travelling can then be found in the set of models of these formulas.
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6 Bipolar fuzzy mathematical morphology
based on lexicographic ordering

In the previous section, we developed a theory for mathematical morphology on
bipolar fuzzy sets based on Pareto partial ordering. This implies that positive
information and negative information play symmetrical roles. However, based
on the discussion about semantics in Section 2.4, this might not always be ap-
propriate, since we may want to process positive and negative information in
different ways, in particular when the two types of information are issued from
different sources or have different semantics. For instance if the positive infor-
mation represents preferences and the negative information rules or constraints,
then it may be interesting (or mandatory) to give more priority to the con-
straints (or in the contrary to the positive information) [9, 10, 57, 66, 82]. The
partial ordering should then be replaced by another one, accounting for these
priorities. Moreover, in the particular context of mathematical morphology, this
ordering has an additional drawback: the value at a point in the resulting di-
lation or erosion is generally expected to be one of the values of neighborhood
points (defined by the structuring element), but this is in general not the case
when using Pareto ordering. This point has already raised discussions in the
mathematical morphology community, in particular when dealing with vector-
valued images, such as color images (see e.g. [3, 5, 95]). It has been shown
that non vector-preserving orderings may lead to counter-intuitive results (for
instance introducing new colors, that do not belong to any of the image objects,
may prevent their correct recognition).

In this section, we therefore introduce priorities between the two types of
information, based on a lexicographic ordering which induces another way of
modeling mathematical morphology, and which guarantees that the resulting
bipolar value at a point is one of the values of neighborhood points. Thus,
this addresses the two issues mentioned above. The lexicographic ordering (also
called dictionary ordering) is denoted by �L. It is additionally a total order
on L. On the induced lattice on B, we define algebraic dilations and erosions.
We also propose connectives that are adapted to this ordering, and then derive
morphological dilations and erosions. This extends a preliminary work in [26].

6.1 Lexicographic ordering and associated lattice

Definition 9. The lexicographic relation �L on L, giving priority to negative
information, is defined as:

(a, b) �L (a′, b′) ⇔ b > b′ or (b = b′ and a ≤ a′). (47)

Proposition 29. The relation �L defines a total ordering on L and (L,�L)
is a complete lattice. The smallest element is (0, 1) and the largest element is
(1, 0).

A lexicographic ordering giving priority to the positive information can be
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defined in a similar way. All what follows applies in both cases, and we only
detail the one of Definition 9 in this paper.

Figure 6 illustrates the difference between �p and �L.

0 1
0

1

(a,b)

(a’,b’) smaller than (a,b)

(a’,b’) larger than (a,b)

0 1
0

1

(a,b)

b’ > b

b’ = b

b’ < b

a’ < a a’ > a

(a’,b’) larger than (a,b)

(a’,b’) smaller than (a,b)

Figure 6: Comparison, in L, between the partial ordering �p (left) and the total
ordering �L (right). Plain (respectively dashed) lines indicate the regions of L
in which points (a′, b′) are smaller (respectively larger) than point (a, b).

This ordering induces a partial ordering on B (the same notation is used):

Definition 10. The lexicographic relation on B is defined by:

(µ, ν) �L (µ′, ν′) ⇔ ∀x ∈ S, (µ(x), ν(x)) �L (µ′(x), ν′(x)). (48)

This definition means that a bipolar fuzzy set is considered as smaller than
another one if its negative part is larger, or if the two negative parts are equal
and the positive part is smaller. This strongly expresses the priority given to
the negative information, since only the negative parts are considered as soon
as they differ.

Proposition 30. The relation �L (Definition 10) defines a partial ordering,
called lexicographic ordering, on B and (B,�L) is a complete lattice. The small-
est element is (µ0, ν0) (defined by ∀x ∈ S, µ0(x) = 0, ν0(x) = 1), and the largest
element is (µI, νI) (defined by ∀x ∈ S, µI(x) = 1, νI(x) = 0).

Proposition 31. Infimum and supremum for �L are expressed, for any two
elements (a, b) and (a′, b′) of L, as:

min �L
((a, b), (a′, b′)) =







(a, b) if b > b′

(a′, b′) if b < b′

(min(a, a′), b) if b = b′
(49)

max �L
((a, b), (a′, b′)) =







(a, b) if b < b′

(a′, b′) if b > b′

(max(a, a′), b) if b = b′
(50)
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Infimum and supremum for any family of elements of L or B are derived in a
straightforward way, and are denoted by

∧

�L
and

∨

�L
. They can be computed

using fast sorting algorithms.
Let us note that, in all cases, the lexicographic minimum (or maximum)

provides a result which is one of the input bipolar values, and the following
equivalences hold:

min �L
((a, b), (a′, b′)) = (a, b) ⇔ (a, b) �L (a′, b′),

max �L
((a, b), (a′, b′)) = (a, b) ⇔ (a, b) �L (a′, b′).

6.2 Connectives

Bipolar connectives are defined as in Section 2.3. However, as already noticed,
the notion of monotonicity depends on the considered ordering defined on L.
Here we then have to consider monotonicity with respect to �L.

With respect to the Pareto ordering �p, the standard negation N((a, b)) =
(b, a) is decreasing. However it is not for the lexicographic ordering �L and
is hence not a negation. Therefore, we propose a new definition of negation,
illustrated in Figure 7.

Definition 11. The natural negation n�L
associated with the lexicographic or-

dering is defined as the operator that reverses the ordering of the elements of
L.

This definition of n�L
is actually a negation (involutive and decreasing).

This result is derived from the fact that �L is a total ordering on L.

(1,0) = largest element

(0,1) = smallest element

n(a,b) (a’,b’)

(a,b)n(a’,b’)

Figure 7: Natural negation for the lexicographic ordering. Plain arrows indicate
the ordering from the smallest to the largest element of L and the dashed arrows
indicate the reverse order. Two examples of points (a, b) and (a′, b′) and their
negations n�L

(a, b) and n�L
(a′, b′) are shown.

From an algorithmical point of view, the computation of the negation is
simple when the levels between 0 and 1 are discrete, i.e. take only a finite
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number of values (which is generally the case in practical applications). We
tabulate the ranks of (ai, bj), for i and j varying from 0 to N if the interval
[0, 1] is discretized on N + 1 levels (for instance ai = i

N
, bj = j

N
). The rank

of ( i
N
, j

N
) is rij = (N−j+1)(N−j)

2 + i and the rank of n�L
( i

N
, j

N
) is equal to

(N+1)(N+2)
2 − 1 − rij .

From a geometrical point of view, the negation of a point (a, b) is the point
n�L

(a, b) such that the number of points in the triangle comprising the points
smaller than (a, b) (see Figure 6) is equal to the number of points in the trapeze
formed by the points that are larger than n�L

(a, b).

Proposition 32. The minimum min �L
and maximum max �L

associated
with the lexicographic ordering are bipolar t-norms and t-conorms on the lat-
tice (L,�L)1. Moreover they are idempotent and mutually distributive, min �L

is the largest t-norm and max�L
the smallest t-conorm (according to �L). They

are also dual with respect to the negation n�L
.

Proof. It is easy to show that min�L
and max�L

are commutative, associative,
increasing with respect to both arguments, and satisfy the boundary conditions
of bipolar t-norms and t-conorms, directly from their definitions.

We have ∀(a, b) ∈ L,min �L
((a, b), (a, b)) = (min(a, a), b) = (a, b) hence

min �L
is idempotent. Similarly max �L

is idempotent.
In order to show the distributivity property, let us consider any

(a, b), (a′, b′), (a′′, b′′) in L, with (a′, b′) �L (a′′, b′′) (the case where the reverse
inequality holds is similar). Then:

max �L
((a, b),min �L

((a′, b′), (a′′, b′′))) = max �L
((a, b), (a′, b′))

and, from the increasingness of max �L
:

min �L
(max �L

((a, b), (a′, b′)),max �L
((a, b), (a′′, b′′))) = max�L

((a, b), (a′, b′)).

Let C be a bipolar t-norm for �L and (a, b) �L (a′, b′). Then
min �L

((a, b), (a′, b′)) = (a, b). From the increasingness of C we have:
C((a, b), (a′, b′)) �L C((a, b), (1, 0)) and since C((a, b), (1, 0)) = (a, b), it follows
that C((a, b), (a′, b′)) �L min �L

((a, b), (a′, b′)). Hence min �L
is the largest

bipolar t-norm for �L. The proof for bipolar t-conorms is similar.
The duality of min �L

and max �L
with respect to n�L

is straightforward
and directly follows from the fact that n�L

reverses the order.

Proposition 33. The connective IN defined as ∀(a, b) ∈ L, ∀(a′, b′) ∈ L,

IN ((a, b), (a′, b′)) = max �L
(n�L

(a, b), (a′, b′)) (51)

is a bipolar implication.
Conversely, the negation can be deduced from the implication according to:

n�L
(a, b) = IN ((a, b), (0, 1)).

1Note that min �L
and max �L

are not increasing with respect to �p and are therefore
not t-norms and t-conorms on (L,�p).
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Proof. This follows directly from Proposition 3.

Proposition 34. The connective IR defined as ∀(a, b) ∈ L, ∀(a′, b′) ∈ L,

IR((a, b), (a′, b′)) =
∨

�L
{(α, β) ∈ L | min �L

((a, b), (α, β)) �L (a′, b′)} (52)

is a bipolar implication (it is the residual implication of the t-norm min �L
). A

closed-form expression is as follows:

IR((a, b), (a′, b′)) =















(1, 0) if b > b′

(a′, b′) if b < b′

(1, 0) if b = b′ and a ≤ a′

(a′, b′) if b = b′ and a > a′

(53)

or, equivalently:

IR((a, b), (a′, b′)) =

{

(1, 0) = 1L if (a, b) �L (a′, b′)
(a′, b′) if (a′, b′) ≺L (a, b)

(54)

It is the adjoint of min �L
, i.e.: ∀(ai, bi) ∈ L, i = 1...3,

min �L
((a1, b1), (a2, b2)) �L (a3, b3) ⇔ (a2, b2) �L IR((a1, b1), (a3, b3)). (55)

Proof. It is easy to show that IR is decreasing in the first argument and increas-
ing in the second one. Moreover, we have IR(0L, 0L) = 1L, IR(0L, 1L) = 1L,
IR(1L, 1L) = 1L, and IR(1L, 0L) = 0L. Hence IR is a bipolar implication.

Let us now show that (IR,min �L
) is an adjunction. Assume that

(a2, b2) �L IR((a1, b1), (a3, b3)).

If (a1, b1) �L (a3, b3), then this implies IR((a1, b1), (a3, b3)) = 1L and (a2, b2) �L

1L which is always true. And min �L
((a1, b1), (a2, b2)) �L (a1, b1) �L (a3, b3).

If (a3, b3) ≺L (a1, b1), then this implies IR((a1, b1), (a3, b3)) = (a3, b3) and
(a2, b2) �L (a3, b3). And min �L

((a1, b1), (a2, b2)) �L (a2, b2) �L (a3, b3).
Therefore in both cases we have

(a2, b2) �L IR((a1, b1), (a3, b3)) ⇒ min �L
((a1, b1), (a2, b2)) �L (a3, b3).

The reverse implication can be proved in a similar way.

This result is important for the construction of morphological operations, as
will be seen next.
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6.3 Algebraic and morphological dilations and erosions on
the lattice (B,�L)

Since (B,�L) is a complete lattice, algebraic dilations and erosions can be de-
fined as in Section 3, as operators that commute with

∨

�L
and

∧

�L
, respectively.

Similarly, the adjunction is defined with respect to �L.
The properties of these operators and their compositions (in particular clos-

ing and opening) are directly derived from the properties of complete lattices
and are the same as those described in Section 3 for the general case.

Let us now consider the case where S is an affine space, on which transla-
tions are defined. Again, we define a degree of intersection as the supremum
of a bipolar t-norm C and a degree of inclusion as the infimum of a bipolar
implication I, where the bipolar connectives are defined according to �L.

Let (µB, νB) be a bipolar structuring element (in B). The dilation and
erosion of any element (µ, ν) in B by (µB , νB) are then expressed as:

∀x ∈ S, δ(µB ,νB)((µ, ν))(x) =
∨

�L
y∈S

C((µB(x− y), νB(x− y)), (µ(y), ν(y))).

(56)

∀x ∈ S, ε(µB ,νB)((µ, ν))(x) =
∧

�L
y∈S

I((µB(y − x), νB(y − x)), (µ(y), ν(y))).

(57)
In particular, we can use the lexicographic minimum min �L

as a t-norm.
An example is illustrated in Figure 8.

As expected, the dilation extends the positive parts and reduces the negative
parts. The priority given to the negative parts and the fact that min �L

always
provides one of the input values (which is not the case of the Pareto ordering)
induces a stronger effect of the transformation when using the lexicographic
ordering (the Pareto minimum has the same negative part than min �L

and a
smaller positive part).

It should be noted that, as in Section 4, a bipolar t-norm (i.e. a stronger op-
erator than a general bipolar conjunction) is involved in the proposed definition
(Equation 56), so as to guarantee good properties. For the erosion (Equa-
tion 57), both types of implications IN and IR can be used, with somewhat
different properties.

Proposition 35. The dilation defined from min�L
and the erosion defined from

IN (for max�L
and the negation n�L

) are dual with respect to the negation n�L
:

δ(µB ,νB)(n�L
(µ, ν)) = n�L

(ε(µB ,νB)(µ, ν)).

Proof. Since IN is an implication (Proposition 33), this follows from the duality
of min �L

and max �L
with respect to n�L

(Proposition 32).

Proposition 36. The dilation defined from min �L
and the erosion defined

from IR (residual implication of min �L
) are adjoint. It follows that all general

algebraic properties described in Sections 3 and 4 hold.
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Positive information Negative information

Figure 8: From top to bottom: bipolar fuzzy structuring element, original bipo-
lar fuzzy set, dilation using the lexicographic minimum, dilation using Pareto
ordering, for the sake of comparison. The grey levels encode the membership
(or non-membership) values, ranking from 0 (black) to 1 (white).

38



Proof. This follows from the adjunction property of min �L
and IR (Proposi-

tion 34).

Note that the two properties of adjunction and of duality are not simultane-
ously satisfied for these operators (since the dual operator of min �L

is max �L

but it is not its adjoint). It would be interesting to prove the existence and then
build operators equivalent to Lukasiewicz ones, for �L, so as to derive results
similar to those in the fuzzy case (see e.g. [17, 22, 30]) and in the bipolar fuzzy
case for the Pareto ordering (see Section 5).

It follows that the compositions δε and εδ are true opening and closing if
min �L

and IR are used (because of the adjunction property), while they are
not if min �L

and max �L
are used (they are not idempotent in this case).

Proposition 37. Dilation and erosion defined by Equations 56 and 57 form
an adjunction if and only if the involved C and I operators are adjoint. The
general algebraic properties then hold (see Sections 3 and 4).

Proposition 38. The following properties hold:

• Equations 56 and 57 are consistent and provide results in B.

• The dilation commutes with the supremum and the erosion with the infi-
mum of the lattice (B,�L).

• Both operations are increasing with respect to �L.

• The dilation is extensive and the erosion is anti-extensive if and only
if the origin of B completely belongs to the structuring element (i.e.
(µB , νB)(0) = 1L).

• In the particular case where the set and the structuring element are not
bipolar (ν = 1−µ and νB = 1−µB), the definitions reduce to the classical
ones in the fuzzy case.

• The following iterativity property holds:

δ(µB ,νB)(δ(µ′

B
,ν′

B
)((µ, ν))) = δδ(µB ,νB)((µ

′

B
,ν′

B
))((µ, ν)). (58)

Proof. The fact that dilation commutes with the supremum (and erosion with
the infimum) is obvious in the case of adjunctions. In the more general case,
it results from the fact that C distributes over the supremum and D over the
infimum.

The increasingness is also straightforward in case of adjunctions. In the more
general case, this is derived from the increasingness of the bipolar connectives
and of the infimum and supremum with respect to �L.

Extensivity of dilation and anti-extensivity of erosion (iff (µB , νB)(0) = 1L)
comes from the fact that 1L is the unit element of the bipolar t-norms, and 0L
of the bipolar t-conorms.

The iterativity property directly follows from the associativity of the bipolar
t-norm.

39



7 Derived operators

Once the two basic morphological operators, erosion and dilation, have been
defined on bipolar fuzzy sets, a lot of other operators can be derived in a quite
straightforward way. We provide a few examples in this section.

7.1 Morphological gradient

A direct application of erosion and dilation is the morphological gradient, which
extracts boundaries of objects by computing the difference between dilation and
erosion [88]. We propose here an extension to the bipolar fuzzy case.

Definition 12. Let (µ, ν) a bipolar fuzzy set. We denote its dilation by a bipolar
fuzzy structuring element by (δ+, δ−) and its erosion by (ε+, ε−). We define the
bipolar fuzzy gradient as:

∇(µ, ν) =
∧

(N(ε+, ε−), (δ+, δ−)) (59)

which is the set difference, expressed as the conjunction between (δ+, δ−) and
the negation of (ε+, ε−).

For instance, in the case of Pareto ordering and standard negation, the
gradient is expressed as ∇(µ, ν) = (min(δ+, ε−),max(δ−, ε+)).

Proposition 39. The bipolar fuzzy gradient has the following properties:

1. Definition 12 defines a bipolar fuzzy set.

2. If the dilation and erosion are defined, in the case of Pareto ordering and
using t-representable bipolar t-norms and t-conorms, we have:

∇(µ, ν) = (min(δµB
(µ), δµB

(ν)),max(ε1−νB
(ν), ε1−νB

(µ))). (60)

Moreover, if (µ, ν) is not bipolar (i.e. ν = 1 − µ), then the positive part
of the gradient is equal to min(δµB

(µ), 1 − εµB
(µ)), which is exactly the

morphological gradient in the fuzzy case.

Proof. These results follow directly from the expressions of bipolar dilations and
erosions.

An illustration is displayed in Figure 9. It illustrates both the imprecision
(through the fuzziness of the gradient) and the indetermination (through the
indetermination between the positive and the negative parts). The object is here
somewhat complex, and exhibits two different parts, that can be considered as
two connected components to some degree. The positive part of the gradient
provides a good account of the boundaries of the union of the two components,
which amounts to consider that the region between the two components, which
has lower membership degrees, actually belongs to the object. The positive
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part has the expected interpretation as a surely possible position and spatial
extension of the contours. The negative part shows the level of indetermination
in the gradient: the gradient could be larger as well, and it could also include
the region between the two components.

Positive part Negative part Positive part Negative part

Original set Dilation

Erosion Gradient

Figure 9: Bipolar morphological gradient using operators on the lattice (B,�p)
and t-representable conjunction and implication derived from min and max.
The structuring element is as in Figure 4.

The choice of the bipolar t-norms and t-conorms used for computing the
dilation and the erosion have an influence on the result, with more or less effect,
resulting from Proposition 25. In the case of Pareto ordering, finer results using
CW and DW will be obtained than when using Cmin and Dmax, or Cprod and
Dsum (see Proposition 27).

The choice of structuring element has also an influence. In the crisp continu-
ous case, it can be shown that the difference between dilation and erosion tends
towards the modulus of the gradient if the size of the structuring element tends
towards 0 [88]. In the discrete case, it is then appropriate to use an elemen-
tary structuring element (according to the discrete connectivity defined on S),
i.e. the central point and its direct neighbors. In the fuzzy and bipolar cases,
the structuring element can be somewhat more extended, in order to represent
the local spatial imprecision and indetermination. This will lead to a larger
gradient.

A direct application of Definition 12 is the computation of the perimeter
of a bipolar fuzzy set, defined as a bipolar fuzzy number2 |∇(µ, ν)| where the

2A bipolar fuzzy number is a pair of fuzzy sets µ and ν such that µ and 1 − ν are fuzzy
numbers and ∀a ∈ R (or N), µ(α) + ν(α) ≤ 1. This definition can be relaxed by allowing 1− ν

be a fuzzy interval (i.e. its core is an interval). If both µ and 1 − ν are fuzzy intervals, then
(µ, ν) will be called bipolar fuzzy interval.
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cardinality |.| is defined as proposed in [23, 25]:

Definition 13. Let (µ, ν) ∈ B. Its cardinality is defined as: ∀n, |(µ, ν)|(n) =
(|µ|(n), 1 − |1 − ν|(n)).

Proposition 40. The cardinality introduced in Definition 13 is a bipolar fuzzy
number on N.

In the spatial domain, the cardinality can be interpreted as the surface (in
2D) or the volume (in 3D) of the considered bipolar fuzzy set.

Definition 14. Let (µ, ν) be a bipolar fuzzy set. Its perimeter (or surface) is
defined as the bipolar fuzzy number |∇(µ, ν)|, where the gradient ∇(µ, ν) is given
in Definition 12 and the cardinality |.| in Definition 13.

An example is shown in Figure 10.
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Perimeter as a bipolar fuzzy number

’obj2ccgrad_cardP’
’obj2ccgrad_cardN’

Figure 10: Perimeter of the bipolar fuzzy set shown in Figure 9 represented as
a bipolar fuzzy number (the negative part is inverted), and computed as the
cardinality of the gradient.

Other geometrical measures have been extended to the bipolar case in [23,
25].

7.2 Conditional operations and reconstruction

Another direct application of the basic operators concerns the notion of con-
ditional dilation (respectively conditional erosion) [88]. These operations are
very useful in mathematical morphology in order to constrain an operation to
provide a result restricted to some region of space. In the digital case, a condi-
tional dilation can be expressed using the intersection of the usual dilation with
an elementary structuring element and the conditioning set. This operation is
iterated in order to provide the conditional dilation with a larger structuring
element. Iterating this operation until convergence leads to the notion of recon-
struction. This operation is typically used in order to gain in robustness in cases
we have a marker of some objects, and we want to recover the whole objects
marked by this marker, and only these objects.
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The extension of these types of operations to the bipolar fuzzy case
is straightforward: given a bipolar fuzzy marker (µM , µN ), the dilation of
(µM , µN ), conditionally to a bipolar fuzzy set (µ, ν) is simply defined as the
conjunction of the dilation of (µM , µN ) and (µ, ν).

Definition 15. Let (µ, ν) a bipolar fuzzy set and (µM , νM ) a bipolar fuzzy set
considered as a marker. The conditional dilation is defined as:

δ((µM , νM )|(µ, ν)) =
∧

(δ(µM , νM ), (µ, ν)). (61)

It is easy to show that this defines a bipolar fuzzy set.
In the case of Pareto ordering, this is expressed as:

(min(δ+(µM , µM ), µ),max(δ−(µM , νM ), ν)), where δ+ denotes the posi-
tive part of the dilation and δ− its negative part. Since δ+ can be interpreted
as a fuzzy dilation and δ− as a fuzzy erosion (see Section 5.3), the positive
part of the conditional dilation corresponds to a fuzzy conditional dilation of µ
(positive part of the initial bipolar fuzzy set), and its negative part corresponds
to a fuzzy conditional erosion of ν.

Definition 16. The reconstruction of a bipolar fuzzy set (µ, ν) according to the
marker (µM , νM ) is obtained from the iteration of conditional dilations until
convergence:

R((µ, ν), (µB , νB)) = [δ((µM , νM )|(µ, ν))]∞. (62)

This directly extends the corresponding classical notions in mathematical
morphology [88].

An example is shown in Figure 11, showing that the conditional dilation of
the marker is restricted to only one component (the one including the marker)
of the original object (only the positive parts are shown). Iterating further this
dilation would provide the whole marked component.

Figure 11: Conditioning set, marker and conditional dilation (only the positive
parts are shown), on the lattice (B,�p).

Similar definitions can be given for conditional erosion (disjunction with the
original bipolar fuzzy set) and reconstruction by erosion.

Note that, to be consistent with the geodesic framework, where the condi-
tional dilation can be expressed according to the geodesic distance in the condi-
tioninf set, in the digital case, dilations have to be performed with an elementary
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structuring element [88]. Here, a crisp non bipolar elementary element can be
used as well, but it can be interesting to consider also the smallest bipolar fuzzy
structuring element representing local imprecision and bipolarity. This can be
further investigated for each specific application. By denoting (µB, νB) this ele-
mentary structuring element, the reconstruction is then computed according to
the following sequence:

δ0 =
∧

((µM , νM ), (µ, ν))

δ1 =
∧

(δ(µB ,νB)(δ
0), (µ, ν))

...

δk =
∧

(δ(µB ,νB)(δ
k−1), (µ, ν))

...

and the convergence is achieved for n such that δn+1 = δn (this occurs in a
finite number of steps in a discrete bounded (finite) space).

7.3 Opening, closing, and derived operators

In a general algebraic setting, a filter on a complete lattice is defined as an
idempotent and increasing operator. An opening γ is an anti-extensive filter
and a closing ϕ is an extensive filter [85].

General properties of γ and ϕ hold in the lattice (B,�), as in any complete
lattice, whatever the choice of �, thanks to the strong algebraic framework and
the results of Section 3. In particular we have:

• typical examples of opening and closing are γ = δε and ϕ = εδ where
(ε, δ) is an adjunction;

• if (γi) is a family of openings, then γ = ∨iγi is an opening, and if (ϕi) is
a family of closings, then ϕ = ∧iϕi is a closing;

• by denoting Inv(γ) the invariant elements by γ (i.e. bipolar fuzzy sets
(µ, ν) such that γ((µ, ν)) = (µ, ν)), an opening can be expressed as
γ((µ, ν)) = ∨{(µ′, ν′) ∈ Inv(γ) | (µ′, ν′) � (µ, ν)} [61]. A similar ex-
pression holds for ϕ.

In practice, the morphological forms of erosions and dilations are often used
to derive opening and closing. In (B,�), we have the following monotony prop-
erties, for any dilation δ and erosion ε by the same bipolar fuzzy structuring
element (omitted in the notations).

Proposition 41. For any family of bipolar fuzzy sets (µi, νi), the following
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inequalities hold:

∨iδε(µi, νi) � δε(∨i(µi, νi)) (63)

∨iεδ(µi, νi) � εδ(∨i(µi, νi)) (64)

δε(∧i(µi, νi)) � ∧iδε(µi, νi) (65)

εδ(∧i(µi, νi)) � ∧iεδ(µi, νi) (66)

Proof. These results directly follow from the fact that δ commutes with ∨, ε
commutes with ∧, and from Proposition 18.

As an example, we consider the lattice (B,�p). The closing (obtained using
Lukasiewicz operators) of the bipolar fuzzy object shown in Figure 9 is displayed
in Figure 12. The small region between the two components in the positive part
has been included in this positive part (to some degree) by the closing, which
is the expected result.

Positive part Negative part

Figure 12: Bipolar fuzzy closing. The fuzzy bipolar structuring element (µB , νB)
of Figure 4 was used here.

Another example is shown in Figure 13, where some small parts have been
introduced in the bipolar fuzzy set (indicated by circles in the figure). The
opening successfully removes these small parts (i.e. small regions with high
µ values and small regions with low ν values are removed from the positive
part and the negative part, respectively). A typical use of this operation is
for situations where the initial bipolar fuzzy set represents possible/forbidden
regions for an object. If we have some additional information on the size of the
object, so that it is sure that it cannot fit into small parts, then opening can
be used to remove possible small places, and to add to the negative part such
small regions.

These operations have simpler expressions if the structuring element is not
bipolar (i.e. νB = 1 − µB). The positive part of the opening is then the fuzzy
opening, using Lukasiewicz operators, of µ by µB and its negative part is the
fuzzy closing of ν by µB. Similar equivalences hold for closing.

From these new operators, a lot of other ones can be derived, extending the
classical ones to the bipolar case. For instance, several filters can be deduced
from opening and closing, such as alternate sequential filters [88], by applying
alternatively opening and closing, with structuring elements of increasing size.
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Positive part Negative part Positive part Negative part

Bipolar fuzzy sets with small regions Result of the opening

Figure 13: Bipolar fuzzy opening. Circles indicate small regions that are re-
moved by the opening (see text). The bipolar fuzzy structuring element (µB , νB)
of Figure 4 was used in this example.

Another example is the top-hat transform [88], which allows extracting bright
structures having a given approximative shape, using the difference between the
original image and the result of an opening using this shape as a structuring
element. Such operators can be directly extended to the bipolar case using the
proposed framework.

7.4 Distance from a point to a bipolar fuzzy set

While there is a lot of work on distances and similarity between interval-valued
fuzzy sets or between intuitionistic fuzzy sets (see e.g. [93, 97]), none of the
existing definitions addresses the question of the distance from a point to a
bipolar fuzzy set, nor includes the spatial distance in the proposed definitions,
although this is very useful for handling spatial information and for spatial
reasoning. As in the fuzzy case [14], we propose to define the distance from a
point to a bipolar fuzzy set using a morphological approach. In the crisp case,
the distance from a point x to a set X is equal to n iff x belongs to the dilation
of size n of X (the dilation of size 0 being the identity), but not to dilations
of smaller size (it is sufficient to test this condition for n − 1 in the discrete
case). The transposition of this property to the bipolar fuzzy case leads to the
following novel definition, using bipolar fuzzy dilations introduced in [23].

Definition 17. The distance from a point x of S to a bipolar fuzzy set (µ, ν)
(∈ B) is defined as:

d(x, (µ, ν))(0) = (µ(x), ν(x)), (67)

and
∀n ∈ N

∗, d(x, (µ, ν))(n) = δn
(µB ,νB)(x) ∧N(δn−1

(µB ,νB)(x)), (68)

where N is a complementation (typically the standard negation N(a, b) = (b, a)
when Pareto ordering is used, or n�L

for lexicographic ordering) and δn
(µB ,νB)

denotes n iterations of the dilation, using the bipolar fuzzy set (µB, νB) as struc-
turing element.
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In order to clarify the meaning of this definition, let us consider operations
on the lattice (B,�p) and the case where the structuring element is not bipolar,
i.e. νB = 1−µB. Then the dilation writes: δ(µB ,1−µB)(µ, ν) = (δµB

(µ), εµB
(ν)),

where δµB
(µ) is the fuzzy dilation of µ by µB and εµB

(ν) is the fuzzy erosion of
ν by µB (see [30] for fuzzy mathematical morphology). The bipolar degree to
which the distance from x to (µ, ν) is equal to n then writes: d(x, (µ, ν))(n) =
(δn

µB
(µ)∧ εn−1

µB
(ν), εn

µB
(ν)∨ δn−1

µB
(µ)), i.e. the positive part is the conjunction of

the positive part of the dilation of size n (i.e. a dilation of the positive part of
the bipolar fuzzy object) and the negative part of the dilation of size n− 1 (i.e.
an erosion of the negative part of the bipolar fuzzy object), and the negative
part is the disjunction of the negative part of the dilation of size n (erosion of
ν) and the positive part of the dilation of size n− 1 (dilation of µ).

Proposition 42. The distance introduced in Definition 17 has the following
properties:

• it is a bipolar fuzzy set on N;

• it reduces to the distance from a point to a fuzzy set, as defined in [14], if
(µ, ν) and (µB, νB) are not bipolar (hence the consistency with the classical
definition of the distance from a point to a set is achieved as well);

• the distance is strictly equal to 0 (i.e. d(x, (µ, ν))(0) = 1L and ∀n 6=
0, d(x, (µ, ν))(n) = 0L) iff (µ, ν)(x) = 1L, i.e. x completely belongs to the
bipolar fuzzy set.

An example is shown in Figure 14. The results are in agreement with what
would be intuitively expected. The positive part of the bipolar fuzzy number
is put towards higher values of distances when the point is moved to the right
of the object. After a number n of dilations, the point completely belongs to
the dilated object, and the value to which the distance is equal to n′, with
n′ > n, becomes 0L = (0, 1). Note that the indetermination in the membership
or non-membership to the object (which is truly bipolar in this example) is also
reflected in the distances.

These distances can be easily compared using the extension principle3, pro-
viding a bipolar degree d≤ to which a distance is less than another one. For the
examples in Figure 14, we obtain for instance : d≤[d(x1, (µ, ν)) ≤ d(x2, (µ, ν))] =
[0.69, 0.20] where xi denotes the ith point from left to right in the figure. In this
case, since x1 completely belongs to (µ, ν), the degree to which its distance is
less than the distance from x2 to (µ, ν) is equal to [supa d

+(a), infa d
−(a)], where

d+ and d− denote the positive and negative parts of d(x2, (µ, ν)). As another
example, we have d≤[d(x5, (µ, ν)) ≤ d(x2, (µ, ν))] = [0.03, 0.85], reflecting that
x5 is clearly not closer to the bipolar fuzzy set (µ, ν) than x2.

3An equivalent of the extension principle writes [63, 98] ((µ1, ν1) � (µ2, ν2))(γ) =
∨γ=α�β(µ1, ν1)(α) ∧ (µ2, ν2)(β), where � denotes any operation. This principle can in par-
ticular be applied to define operations on bipolar fuzzy numbers or intervals.
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Figure 14: A bipolar fuzzy set and the distances from 5 different points to it,
represented as bipolar fuzzy numbers (the positive part is shown in red and the
negative part in green).
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8 Conclusion

In this paper, we introduced a general algebraic framework for handling bipo-
lar information using mathematical morphology operators. The case of bipolar
fuzzy sets has been detailed, since it is general enough to cover several other
settings. The general setting applies for any partial ordering inducing a com-
plete lattice, and we have shown that strong properties can be derived in the
general case. Two particular orderings have been detailed: Pareto ordering
and lexicographic ordering. Other ones could be considered as well, and their
choice should depend on their properties and their adequation with the domain
of application and the associated semantics.

Examples on the potential use of the new reasoning tools provided by mor-
phological operations have been sketched for both spatial reasoning and pref-
erences modeling. Developing further these applications, along with a deeper
investigation of derived operators, with appropriate choices of partial ordering,
is the aim of our future work. Extensions to semi-lattices or general posets could
be interestingly considered as well.
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