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Abstract

A sequential segmentation framework, where objects in an image are successively segmented,
generally raises some questions about the “best” segmentation sequence to follow and/or how to avoid
error propagation. In this work, we propose original approaches to answer these questions in the case
where the objects to segment are represented by a model describing the spatial relations between objects.
The process is guided by a criterion derived from visual attention, and more precisely from a saliency
map, along with some spatial information to focus the attention. This criterion is used to optimize
the segmentation sequence. Spatial knowledge is also used to ensure the consistency of the results
and to allow backtracking on the segmentation order if needed. The proposed approach was applied
for the segmentation of internal brain structures in magnetic resonance images. The results show the
relevance of the optimization criteria and the interest of the backtracking procedure to guarantee good
and consistent results.

Résuḿe

Le paradigme de la segmentation séquentielle permet de segmenter successivement les différents
objets présents dans une image. Mais cette approche soulève des questions : quelle est la meilleure
séquence de segmentation à effectuer ? et comment éviterla propagation d’erreurs ? Nous proposons
ici des approches originales pour répondre à ces questions dans le cas où nous disposons d’un modèle
décrivant l’agencement spatial entre les structures à segmenter dans l’image. Le processus est guidé par
un critère inspiré des travaux sur la modélisation de l’attention visuelle et plus précisément d’une carte
de saillance combinée à des informations spatiales permettant une focalisation de l’attention. Ce critère
est utilisé pour optimiser la séquence de segmentation. L’information spatiale est également utilisée au
cours du processus afin d’en garantir la cohérence et pour permettre au système de revenir en arrière
dans la séquence de segmentation si besoin. L’approche proposée a été appliquée à la segmentation
des structures internes du cerveau dans des images par résonance magnétique. Les résultats montrent
la pertinence du critère d’optimisation et l’intérêt des retours en arrière au cours du processus afin de
garantir des résultats cohérents.

Keywords: Segmentation, knowledge-based system, spatial relations, graph representations, fuzzy sets,
medical images, MRI.
Mots clés : Segmentation, système à base de connaissances, relations spatiales, représentations par
graphe, ensembles flous, images médicales, IRM.



1 Introduction

In this paper, we deal with segmentation and recognition of objects or structures in an image, based on a
generic model of the scene. As a typical example, we focus on the recognition of internal brain structures
in 3D magnetic resonance images (MRI), based on an anatomical model. More specifically, we address
two important problems occurring in sequential approaches, as detailed below.

In [1, 2], the authors introduced a new paradigm combining segmentation and recognition tasks. We
will refer to this paradigm in the remainder of this paper as sequential segmentation and interpretation. It
is defined as a knowledge-based object recognition approachwhere objects are segmented in a predefined
order, starting from the simplest object to segment to the most difficult one. The segmentation and recog-
nition of each object are then based on a generic model of the scene and rely on the previously recognized
objects. This approach uses a graph which models the genericspatial information about the scene in an
intuitive and explicit way (presented in [3]). This sequential segmentation framework allows decomposing
the initial problem into several sub-problems easier to solve, using the generic knowledge about the scene.
This approach differs from a regular divide-and-conquer approach since each sub-problem contributes to
improve the resolution of the next subproblems. It also avoids relying on an initial segmentation of the
whole image.

This approach, as pointed out in [2], requires to define the order according to which the objects have
to be recognized and the choice of the most appropriate orderis one of the problems that remains open.
It also lacks a step which could evaluate the quality of the segmentation of a particular object and detect
errors to prevent their propagation.

In this paper, we propose original methods to answer these two open questions. Our contribution is
twofold: first, we extend the sequential segmentation framework by introducing a pre-attentional mech-
anism, which is used, in combination with spatial relations, to derive a criterion for the optimization of
the segmentation order. Secondly, we introduce criteria and a data structure which allow us to detect the
potential errors and control the ordering strategy.

The pre-attentional mechanisms were defined in [4, 5, 6] to guide the focus of attention in modeling
the visual system such as in feature integration theory. Thesequential segmentation framework may be
viewed as a way to focus attention on a small part of the scene and thus limit the search domain and the
computational load. Among these mechanisms, we propose to use the notion of saliency to optimize the
sequence of segmentation.

Our approach is applied to the segmentation and the recognition of internal brain structures in 3D
magnetic resonance images. The intrinsic variability of these structures, the lack of clear boundaries and
the insufficient radiometry make this segmentation problema difficult one. Some of the difficulties can be
overcome by relying on generic knowledge about the human anatomy, that will be exploited to derive the
model guiding the whole process.

This article is organized as follows. First we present in Section 2 a survey of knowledge based-
approaches to the recognition of objects in a scene and provide an overview of the proposed approach.
Section 3 presents the knowledge representation model. In Section 4 we propose to use some concepts
of the visual attention to optimize the sequential segmentation framework. Then, the optimization of the
sequential segmentation itself is described in Section 5 and the mechanisms for evaluating each structure
segmentation in Section 6. Experiments on internal brain structure segmentation and results are presented
in Section 7. Finally we draw some conclusions in Section 8.

2 Knowledge-based systems and spatial reasoning

The sequential segmentation framework of [2] relies on a priori knowledge about the scene and uses inten-
sively this knowledge at each step of the process. Thus, thisframework may be described as a knowledge-
based system using spatial relations. One can find a review ofthese systems in [7, 8]. In this section, we
focus on knowledge-based systems using spatial relations to describe the structure of the scene that have
been applied to the recognition of brain structures in medical images.

Spatial relations play a crucial role in model-based image recognition and interpretation due to their
stability compared to many other image appearance characteristics. They constitute structural information,
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which is particularly relevant when the intrinsic featuresof the objects are not sufficient to discriminate
them.

2.1 Knowledge-based approaches for internal brain structures recognition

The difficulty of segmenting internal brain structures is due to the similarity between their grey levels,
the lack of clear boundaries at some places and the partial volume effect. Their intrinsic features present
a natural variability (in size and shape for example) between individuals, which is further increased in
pathological cases. On the contrary, the spatial arrangement of these structures, i.e., their relative positions,
is stable in healthy cases and even quite stable in pathological cases. For all these reasons, structural models
of the internal brain structures have been used to segment and recognize the internal structures.

Structural model of the brain structures One can find several anatomical descriptions of the brain,
as atlas [9], nomenclature [10] or ontology [11]. These descriptions are often organized as a hierarchy
of structures and provide descriptions of structures and relations between them. In [3], in collaboration
with a neuro-anatomist, the internal brain structures are represented as a hierarchical graph where each
vertex corresponds to an anatomical structure and each edgecarries spatial relations between anatomical
structures. This representation has been extended as the GRAFIP1 [12, 13] to include information about
the structures composition, functional knowledge and about the pathologies.

Segmentation and recognition Several classes of approaches for internal brain structures segmentation
have been proposed in the literature. The first class of approaches uses a model graph and the image to
segment is represented as a graph too. The segmentation and recognition process is then formalized as a
graph matching problem [14]. The authors in [15, 16] proposed to find a fuzzy morphism between a model
graph built from a manual segmentation and an over-segmented image represented as a graph. Several
optimization techniques have been proposed for this task [17, 18]. Another approach was proposed in [19]
and used an over-segmentation. The matching is viewed as a constraint satisfaction problem, with two
levels of constraints and an ad-hoc algorithm. The latest extension [20] proposed a link with an ontology
and adaptation to be able to cope with unexpected structures, such as tumors. For this class of approaches,
the initial graph is usually built from an over-segmentation of the image to segment, and the complexity of
the method increases as the number of regions obtained from the over-segmentation grows.

In the second class of approaches, a sequential segmentation of the internal brain structures is per-
formed, as proposed in [1, 2]. In these approaches, the segmentation and the recognition are achieved at
the same time. Each segmentation uses the spatial information encoded in the model, and more specifically
the spatial relations to the already segmented structures.This information allows restricting the search
domain around the structure. In these approaches, there is no initial segmentation of the image, but it raises
some questions like the order of segmentation of the different objects or how to avoid the propagation
of potential errors. Our approach belongs to this class and our contribution is an original answer to both
questions.

The authors in [21, 22] proposed a different type of approach, which is global and uses a constraint
network. They proposed to link each anatomical structure with a region of space which satisfies all con-
straints in the network. Since it is hard to solve this problem directly, only the bounds of the domain of
each variable (i.e. structure to be segmented) are modified by the process and sequentially reduced using
specifically designed propagators derived from the spatialconstraints. Finally, a segmentation is extracted
using a minimal surface algorithm. This approach provides good results and does not need an initial seg-
mentation either. However, due to the number of constraints, it is quite complex and the computation time
is high, especially in 3D.

2.2 Proposed framework

We propose to extend the sequential segmentation frameworkproposed in [2], where structures are sequen-
tially segmented from the easiest to segment to the most difficult ones. Each structure segmentation uses

1for “Graph of Representation of Anatomical and Functional data for Individual patients including Pathologies”
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the information provided by the previous segmentations. Our extension aims at answering the following
questions raised by this framework: “in which order should the objects of the scene be segmented?” and
“how to assess the segmentation result in order to detect potential errors and avoid their propagation?”.
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Figure 1: General scheme of the sequential segmentation framework. The graph initially represents only
the generic knowledge and the reference structures. At eachstep, a structure is selected according to the
saliency of its localization and to the presented criterion. This structure is then segmented and the result is
evaluated. In case of success, the graph is updated and the process is iterated until the graph is completely
specialized or no more structure can be segmented. In case offailure, the system is constrained to select
another path to segment and the process is iterated.

The proposed framework has two levels, as depicted in Figure1. The first level is a generic bottom-
up module which allows selecting the next structure to segment. This level does not rely on an initial
segmentation or classification, but instead on a focus of attention and a map of generic features described
in Section 4. The sequential approach allows this level to use two types of knowledge: generic and domain
independent features in unexplored area of the image to segment, and high-level knowledge such as spatial
relations linked to the already recognized structures. We propose to answer the first question by deriving
a selection criterion from a pre-attentional mechanism: a saliency map. This criterion is used to optimize
the segmentation order and to select the next structure to segment at each step.

The second level achieves recognition and segmentation of the selected structure, as well as the evalua-
tion of the segmentation. The recognition of the structure is achieved at the same time as the segmentation.
This level is composed by the segmentation method defined in [2] and an original evaluation method. It
uses two types of a priori information: the spatial information which allows us to reduce the search area,
and a radiometric estimation of the intensity of the structure. Therefore, the radiometric estimation needs
to discriminate the intensity of the structure only in the search area and not in the whole image. Once
a structure is segmented and recognized, this level also evaluates the quality of the result and proposes a
strategy to guarantee the spatial consistency of the resultand to potentially backtrack on the segmentation
order. This allows answering the second question.

The two levels rely on graph representations described in the next section.
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3 Knowledge representation

Graphs are well adapted to represent generic knowledge, such as spatial relations between the objects of
a scene. In the sequential segmentation framework, the generic model of the scene is modeled as a graph
where each vertex represents an object and each edge represents one or more spatial relations between two
objects. We introduce the following notations: LetΣV , ΣE be the sets of vertex labels and edge labels,
respectively. LetV be a finite nonempty set of vertices,Lv be a vertex interpreterLv : V → ΣV , E

be a set of ordered pairs of vertices called edges, andLe be an edge interpreterLe : E → ΣE . Then
G = (V, Lv, E, Le) is a labeled graph with directed edges. Forv ∈ V ande ∈ V × V , δ(v, e) is a
transition function that returns the vertexv′ such thate = (v, v′). Forv ∈ V , A(v) returns the set of edges
adjacent tov. Finally,p = (v1, v2, ..., vn) is a path of lengthn labeled aslp = (v1, e(v1, v2), v2, ..., vn).

A knowledge baseKB defines all the spatial relations existing between verticesin the graph:

KB = {viRvj , vi, vj ∈ V, R ∈ R} ande = (v1, v2) ∈ E ⇐⇒ ∃R ∈ R, (v1Rv2) ∈ KB,

whereR is the set of relations. In the following, we use fuzzy representations of the spatial relations, since
they are appropriate to model the intrinsic imprecision of several relations (such as “close to”, “behind”,
etc.), their potential variability (even if it is reduced innormal cases) and the necessary flexibility for spatial
reasoning [23]. Here, the representation of a spatial relation is computed as the region of space in which the
relationR to an objectA is satisfied. The membership degree of each point corresponds to the satisfaction
degree of the relation at this point. Figure 2 presents an example of a structure and the region of space
corresponding to the region “to the right of” this structure.

A directed edge between two verticesv1 and v2 carries at least one spatial relation between these
objects. An edge interpretor associates to each edge a fuzzysetµRel, defined in the spatial domainS,
representing the conjunctive merging of all the representations of the spatial relations carried by this edge
to a reference structure. Each fuzzy set gives an estimationof the localization of an object. By localization,
we mean an approximate region containing the object. A conjunction of all these fuzzy sets gives the most
precise estimation of the localization. Since there is at least one spatial relation carried by an edge,µRel

cannot be empty. Letµe
Ri

, i = 1, ..., ne thene relations carried by an edgee. Thenµe
Rel is expressed as:

µe
Rel = ⊤i=1..ne

(µe
Ri

) with ⊤ a t-norm (fuzzy conjunction) [24].
We now briefly describe the modeling of the main relations that we use: distances and directional

relative positions. More details can be found in [23]:
A distancerelation can be defined as a fuzzy intervalf of trapezoidal shape onR+. A fuzzy subsetµd

of the image spaceS can then be derived by combiningf with a distance mapdA to the reference objectA:
∀x ∈ S, µd(x) = f(dA(x)), wheredA(x) = infy∈A d(x, y).

The relation“close to” can be defined as a function of the distance between two sets:µclose(A, B) =
h(d(A, B)) where d(A, B) denotes the minimal distance between points ofA and B: d(A, B) =
infx∈A,y∈B d(x, y), andh is a decreasing function ofd, from R+ into [0, 1]. We assume thatA ∩ B = ∅.
The relation ofadjacencycan be defined likewise as a “very close to” relation, leadingto a degree of
adjacency instead of a Boolean value, making it more robust to small errors.

Directional relations are represented using the “fuzzy landscape approach” [25].A morphological
dilationδνα

by a fuzzy structuring elementνα representing the semantics of the relation “in directionα” is
applied to the reference objectA: µα = δνα

(A), whereνα is defined, forx in S given in polar coordinates
(ρ, θ), as:να(x) = g(|θ− α|), whereg is a decreasing function from[0, π] to [0, 1], and|θ− α| is defined
moduloπ. This definition extends to 3D by using two angles to define a direction. Figure 2 presents an
example of fuzzy landscape representing a directional relation.

Other relations can be modeled in a similar way [23]. These models are generic, but the membership
functions depend on a few parameters that have to be tuned foreach application domain according to the
semantics of the relations in that domain. Here we propose tolearn these parameters from a database of
segmented images.

Images database A database of50 brain MRI, manually segmented, is used. This database is composed
by 30 healthy images and20 images presenting a brain tumor (with different localizations, types and sizes).
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a) Lateral Ventricle b) Structuring element c) “Left of LV l”

Figure 2: (a) Binary segmentation of a left lateral ventricle (a slice of a 3D volume) denoted byLV l.
(b) Structuring element representing the semantic of the spatial relation “left of”. (c) Fuzzy landscape
representing the spatial relation “left ofLV l” (note that the usual convention in medical imaging “left is
right” is used here, and anatomically left means right on thedisplayed image).

The set of healthy images is composed by the IBSR database2 and some images from the OASIS database
(“Open Access Series of Imaging Studies”)3. Manual segmentations are available for the IBSR database.
All other images have been manually segmented and tumor segmentations have been validated by experts.
These segmentations are used for learning the parameters ofthe relations, and to evaluate the results.

Learning of spatial relations The modeled spatial relations are based on fuzzy intervals that are chosen
of trapezoidal shape for the sake of simplicity. They define the functionsf andg introduced above. The
parameters of the fuzzy intervals are learned for each triplet (A, R, B) whereA andB are two objects and
R a spatial relation. The learning procedure [26] basically consists in defining the kernel of the spatial
relation in a way that all the targeted structures are included in this kernel. For example, let us consider the
relation “the putamen is on the left on the caudate nucleus”.The objective of the learning procedure is to
ensure that the putamen is localized in the kernel of the relation “on the left of the caudate nucleus”.

1.0

0.0 n1

n2 n3

n4
Satisfaction

learned function Fl
generic function Fg

n’1

n’2 n’3

n’4

Figure 3: Fuzzy intervals of trapezoidal shape. The learning procedure consists in defining the parameters
n1, ..., n4 in a way that the targeted function is included in the kernel of the representation of the function.
A relationR can be defined in a generic way (red interval) and then specified for two structuresa andb to
represent the relationaRb (blue interval).

The learning procedure consists of three steps:

• For each image of the learning database, the relation (“on the left of the caudate nucleus” in our
example) is represented with a generic functionFg, i.e. with generic values for the relation “left of”.
Figure 4 (b) shows an example of a fuzzy subset obtain with such values.

• For each resulting fuzzy subset, we compute the satisfaction values at each point of the targeted
structure and extremal values (minimum and maximum) are kept. If the targeted structure is included
in the kernel of the relation, the satisfaction value at eachpoint is1.00. In our example in Figure 4
(b), the putamen is not completely included in the kernel andthe minimum of satisfaction is0.37
(the maximum is1.00).

2Internet Brain Segmentation Repository. The MR brain data sets and their manual segmentations were provided by the Center
for Morphometric Analysis at Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/

3http://www.oasis-brains.org, built thanks to Pubmed Central submissions: P50 AG05681, P01 AG03991, R01 AG021910, P50
MH071616, U24 RR021382, R01 MH56584
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• The meanmmin and standard deviationσmin of the minimum values (respectivelymmax andσmax

for the maximum values) are computed and a new functionFl is defined with the following param-
eters:

n1 =mmin − σmin n3 =mmax

n2 =mmin n4 =mmax + σmax

An example of this function is given in Figure 4 (c) and the fuzzy subset using this function is
displayed in Figure 4 (d). This subset presents a larger kernel in this example.

Caudate Nucleus
Putamen

1

0

n2 = 0,45

1.0Satisfaction

n1 = 0,31

(a) (b) (c) (d)

Figure 4: Learning the parameters of the trapezoidal fuzzy set which represents the relation “the caudate
nucleus is on the right of the putamen”. (b) For all images, the fuzzy set representing the relation is
computed with default parameters. (c) Extremal values of satisfaction at the location of the putamen are
used to computed the parameters of the fuzzy numbers. (d) Therelation may be computed with the new
set of parameters which shows a larger kernel in this example.

Localization of a structure We define the localization of a structure as the conjunctive merging of all
spatial relations targeting a structure. This correspondsto a region of interest defined by the constraints
on a structure. The learning step ensures that an object is localized in the support of all spatial relations
targeting this object. Therefore, each spatial relation representation provides a rough localization which is
larger than the target object and includes it. Then a conjunction of all spatial relations targeting an object
allows us to get a more precise localization. Figure 5 presents the graph used in our experiments and an
example of localization.

4 Visual attention to optimize a sequence of segmentation

Visual attention is often referred to as a “spotlight” on thevisual field, i.e., at a given moment, the visual
attention is restricted to a spatial area (or a number of visual objects). The exploration of the visual field is
thus sequential. The sequential segmentation framework may be viewed as the progressive exploration of a
scene where the “spotlight” of the visual attention corresponds to the consecutive segmentation of objects
of the scene.

Visual attention was first modeled as two sequential steps: the attentional step itself and a pre-
attentional step dedicated to guide the “spotlight” of visual attention by selecting the area of space to
visit. The relations between these two steps are in fact morecomplex and both steps are intertwined.

The pre-attentional mechanisms were introduced in [4] and [6, 5, 27] as bottom-up mechanisms, com-
puted on the whole scene and using specific features computedsimultaneously. The pre-attentional mech-
anisms guide the attentional step by selecting “salient” areas or objects, i.e., regions which have a quality
that thrusts itself into attention. Pre-attentive features are characterized by the “pop-out” effect, i.e., the
detection is fast and not correlated to the number of objectsin the scene. A description and examples are
presented in [28].

7



Ventricle
Lateral

Caudate
Nucleus

Ventricle
Lateral

White
Matter

Matter
Gray

Thalamus

Putamen

U: Up
D: Down
I: InFront
B: Behind

L: Left
R: Right

L

R

L

R

L

R

B
D

U D

R
L R

L

D U

L

R

U
D
B

L
R

L

R

U
I

I

V3: Third Ventricle

LV: Lateral Ventricle
CD: Caudate Nucleus
TH: Thalamus
PU: Putamen

V3PUr

CDr

LVr

THr THl

LVl

CDl

PUl

⊤ =

Left of LVl Close to LVl Localization of CDl

Figure 5: The graph used in our experiments. Vertices represent anatomical structures and edges represent
spatial relations. Only directional relations have been displayed on this graph, but each edge carries other
relations as well. Below, the representation of two spatialrelations carried by the edge between the lateral
ventricle (displayed in blue) and the caudate nucleus and the resulting localization of the caudate nucleus.

4.1 Saliency and saliency maps

Among the pre-attentional mechanisms, we focus on the saliency map, as defined by Itti and Koch [29, 30]
for 2D images. This mechanism uses three different types of pre-attentional features: opposition of colors
(red vs green, blue vs yellow), intensity and orientation (aGabor filter with four different orientations). For
each feature the original image is filtered and a Gaussian pyramid is built from the filtered image. Basically,
the way of considering each feature is to look at discontinuities within each pyramid by comparing “fine
” scale and “coarse” scale. A fine scale is a scale close to the original image. Each comparison generates
a “feature map” reflecting discontinuities for a specific feature and with a certain scale factor. All feature
maps issued from the same pyramid are merged after normalization into a conspicuity map (one per each
type of features, so three maps here). Finally a weighted mean of conspicuity maps produces the saliency
maps.

The full process is described in [29] and illustrated in Figure 6. We describe now the different steps
and the required adaptation to compute saliency maps on 3D brain MRI.

Pre-processing: brain extraction Our application focuses on recognition of internal brain structures.
Therefore only the brain is needed in the image. The skull, the eyes and other parts may be discarded.
Thus, the brain is first extracted from the 3D volume using themethod proposed in [31]. This allows us to
reduce the search domain so as to consider only the most relevant information for our task.

Pre-processing: resampling For each feature, a multi-scale analysis is performed. Since the original
resolution of 3D MRI is often anisotropic, a resampling to a volume of256 cubic voxels allows us to
compute saliency maps on a volume with a fixed size and an isotropic resolution (the choice of256 voxels
is guided by the most frequent size of the images in our database described in Section 3). The chosen
interpolation method is a spline resample interpolation [32], available for 3D MRI in Brainvisa4.

Features and filtering The original method uses three different types of features:intensity, oppositions
of colors and orientations. There is no color in MRI. The intensity feature is the same as in the original
method.

4http://brainvisa.info
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Figure 6: The generation of a saliency map proposed in [29] onthe left. An image and the corresponding
saliency map on the right. The salient areas correspond to areas with a high contrast with respect to its
environment and / or geometrical structures.

For the orientation, a 3D Gabor filter is used as described in [33, 34]. The bandwidth parameter is fixed
to B = 0.55 in our experiments. We use the following orientations (anglesθ andφ in spheric coordinates):

θ � φ 0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4

0 ×
π
4 × × × × × × × ×
π
2 × × × ×

Each filter is symmetric thus only a half sphere is sampled. The number of orientations is limited in order
to reduce memory usage and computation time.

Pyramids generation A dyadic pyramid is built from each filtered image (1 for intensity and13 orien-
tations, so14 pyramids). In the original method, a Gaussian pyramid is built with 8 levels, but here, due to
the size of resampled brain MRI (256), we limit our pyramid to5 scales.

For intensity, we build a Gaussian pyramid where the initiallevel i = 0 is the original image. At
each level, the size of the image remains the same, but the width of the Gaussian Filter (σ) is adapted:
σi = i + 0.5.

For the orientations, instead of a Gaussian pyramid, we can take advantage of the parameter of the
Gabor filter, to directly produce a pyramid where each level corresponds to a different filtering by a Gabor
filter in the same orientation. At each level, we adapt the frequency of the Gabor filter, starting at0.4 and
adding0.05 at each level. Each resulting image is then smoothed with a Gaussian filter (σ = 0.5) to remove
noise.

Feature maps Feature maps are computed between “fine” scale and “coarse” scale of a pyramid. The
fine scales used to compute maps are0 and1. The coarse scales are the fine scales plus a stepδ ∈ {2, 3},
i.e., 0 + 2, 0 + 3, 1 + 2, 1 + 3. A feature map is a point-to-point difference between both scales which,
in this approach, have the same size. The saliency map is computed with the size of the second level
(128× 128 × 128) of the dyadic pyramid. Pyramids and feature maps are illustrated in Figure 7 for both
intensity and orientations.
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Intensity: Gaussian pyramid

0: original 1: σ = 1, 5 2: σ = 2, 5 3: σ = 3, 5 4: σ = 4, 5

Intensity: feature maps

1 ⊖ 2 1 ⊖ 3 2 ⊖ 3 2 ⊖ 4

Orientation: “Gabor” pyramid ( θ = π
2 et φ = 0)

0: freq = 0.40 1: freq = 0.35 2: freq = 0.30 3: freq = 0.25 4: freq = 0.20

Orientation: feature maps (θ = π
2 et φ = 0)

1 ⊖ 2 1 ⊖ 3 2 ⊖ 3 2 ⊖ 4

Figure 7: Generation of a saliency map. A slice of a 3D MRI is presented at the top left of the figure, and
corresponds to the initial level of the Gaussian pyramid (ontop) generated for intensity features. Second
line: corresponding feature maps, computed by applying thecenter-surround operator (⊖) between fine
and coarse scales of the pyramid. Third line: “Gabor” pyramid in a selected orientation and corresponding
feature maps (last line) for the same slice on the brain MRI.

Normalization There are14 pyramids with4 feature maps each. The normalization step is therefore
very important. The normalization operatorN we use is the same operator as in the original method [35].
This operator is designed to promote maps where there are fewhigh peaks, rather than maps where there
is a large number of peaks but with the same values5. The normalization is achieved in three steps:

• normalize the map in a interval[0, M ] with a fixedM to remove features specifics dynamics,

• compute the average valuêm of all local maxima lower than M,

• multiply each point of the map by(M − m̂)2.

Merging All feature maps belonging to a same pyramid are merged and produce a “conspicuity map”. All
the conspicuity maps belonging to a same feature are also merged in order to produce a unique conspicuity
map per feature type (intensity and orientation in our case).

5The normalization achieved by the operatorN is not a normalization in the common sense.
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For intensity, only one pyramid is built. The conspicuity map is generated as:

Cint = ⊕{N (Ice ⊖ Ico), ce ∈ {1, 2}, co = ce + δ, δ ∈ {1, 2}} ,

with ⊕ a point-to-point addition and⊖ a point-to-point difference.
For orientations, an intermediary map is generated for eachpyramid. All these maps are then normal-

ized and merged in the same fashion:

Cθ,φ = ⊕
{

N (Iθ,φ
ce ⊖ Iθ,φ

co ), ce ∈ {1, 2}, co = ce + δ, δ ∈ {1, 2}
}

Corient =
∑

θ,φ

N (Cθ,φ) .

The saliency map is then generated as a weighted mean of conspicuity maps:

SaliencyMap =
N (Cint) +N (Corient)

2

Figure 8 presents some examples of saliency maps generated from brain MRI.

IBSR 01 IBSR 02 ring

Figure 8: Some images and their corresponding saliency maps. All computations are done in 3D but only
one slice is presented here. Parts of the brain MRI presenting a high contrast (like the lateral ventricles,
dark structures in the center) present high saliency in the corresponding image. The tumor in the example
on the right also presents high saliency.

4.2 Using focus of saliency maps as a region feature

In a sequential segmentation framework, a usual question isthe order of the successive segmentations. The
saliency map is a bottom-up pre-attentional mechanism designed to guide the attentional step. Therefore,
considering a parallel between the attentional step and thesegmentation step in sequential segmentation,
we propose to use a pre-attentional mechanism to guide the segmentation process, i.e. define the best
sequence of segmentation.

Thanks to the spatial information contained in the graph, weare able to compute the localizations of all
structures connected to a previously segmented structure,as described in Section 3. The selection of the
next structure to segment is achieved by comparing the saliency at each localization of candidate structures
(these localizations may overlap each other). An histogramof the saliency map corresponding to the
localization is generated. Thus, the comparison between localizations is a comparison between histograms
of saliency of each region.

The computation of the saliency map described above shows that the saliency information is based on
discontinuities for several pre-attentive features. Hence, since usually a structure is easier to segment if its
border is well defined, we can assume that a structure is easier to segment than another one if its localization
is more salient.
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Comparison of localizations To compare two histograms (previously normalized), we choose the Earth
mover’s distance (EMD) [36]. This measure gives the transportation cost between two distributions. If
p andq are two probability distribution functions andN the number of bins, then the EMD measure is
defined as:

emd(p, q) = min
αi,j∈M

N
∑

i=1

N
∑

j=1

αi,jc(i, j) ,

whereM = {(αi,j); αi,j ≥ 0,
∑

j αi,j = p[i],
∑

i αi,j = q[j]} andc(., .) is a distance between bins. For

non-circular 1D histogram, ifc(i, j) = |i−j|
N

, then the EMD measure may be computed as the difference
between corresponding cumulative histograms [37]:

emd(p, q) =

∑N
i=1 |P [i]−Q[i]|

N
, (1)

wherep andq are two probability distributions,P andQ the two corresponding cumulative histograms and
N the number of bins.

In order to define an order between two distributions, we compute the following criterion:

s(p, q) =

N
∑

i=1

P [i]−Q[i] ,

with the same notations as before. A signed EMD measure, denoted EMDS, is then defined as:

emds(p, q) =

{

emd(p, q) if s(p, q) < 0 ,

−emd(p, q) if s(p, q) ≥ 0 .
(2)

Figure 9 (a) presents cumulative histograms for the localization of the caudate nucleus (CDl) and the thala-
mus (THl). The EMD measure between these distributions isemd(CDl, THl) = 0.0084. With the EMDS
measure, we are able to determine which distribution presents the most salient value:emds(CDl, THl) =
0.0084 andemds(THl, CDl) = −0.0084. In this example, the localization of the caudate nucleus is
preferred (but both distributions are very close to each other).

A saliency-based criterion The way the localizations are generated ensures that the candidate structure
is included in the localization. However, the support of thelocalization may be large (i.e. including several
other objects). For example, if the only spatial relation available to define the localization of a structure is a
directional relation, then the support of the localizationis not bounded. Therefore, the more a localization
includes other parts of the image, the less the saliency of this localization provides relevant information
about the targeted structure.

Since it is difficult to estimate the precision of a given localization (before segmentation and without
information about a priori structure volume), another measure is used to evaluate the saliency of a local-
ization based on a comparison with a learned saliency distributionmodo for the targeted structureO. This
distribution is computed on the same database as before and corresponds to the average of all the distri-
butions obtained for the segmentations of the structure in the database. The mean̂modo and the standard
deviationσmodo

are also computed in order to center and reduce the measure. The distance between the
saliency of the localization (loco) and the learned saliency (modo) for an objecto is estimated with a regular
EMD as:

do(loco, modo) =
EMD(loco, modo)− ˆmodo

σmodo

. (3)

Figure 9 (b, c) shows the distribution computed from the localizations and the learned distribution for the
left caudate nucleus (CDl) and the left thalamus (THl). The following comparison values are obtained:
dCDl = −0.089, anddTHl = 0.791.

The criterion to select the best localization is then definedas:

co = |do(loco, modo)| −
∑

o′∈Vc�{o}

EMDS(loco, loco′
) (4)
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whereVc is the set of all candidates. The structureo minimizing co is selected. In the example illustrated
in Figure 9, the caudate nucleus is selected with a valuecCDl = 0.076.

Saliency map Saliency around CDl Saliency around THl
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Figure 9: The saliency map of a brain MRI and the saliency at the localization of the left caudate nucleus
(CDl) and the left thalamus (THl). (a) The selection among these two structures takes into account the
comparison between both saliency pdf computed from the localization (here the localization of CDl is
the most salient one withemds(CDl, THl) = 0.0084), but also a comparison between the localization
and the model for each structure: (b) the comparison for the CDl is dCDl = −0.089, and (c) for THl:
dTHl = 0.791. Finally, the CDl is selected in this example among4 structures with a criterion value
cCDl = 0.076.

4.3 Saliency in pathological cases

There are different types of tumors, with different visual appearances and thus different saliency maps.
Figure 10 presents two images with a tumor and their corresponding saliency maps. The tumor in the first
case (on the left) presents a high contrast with respect to its surrounding and to the necrotic part. The
saliency of this tumor is higher than in most of the other parts of the brain (the necrosis saliency however
is low). On the contrary, the second type of tumor is large andhomogeneous and thus does not present a
high contrast with respect to its surrounding. The saliencyof this tumor is lower than the one of the brain.
For several other tumors, the saliency at the location of thetumor is not higher or lower than in the brain.

5 Optimization of a sequence of segmentation

The process of sequential recognition is viewed as the sequential specialization of a generic graph to a
case-specific graph, i.e., where each node representing an anatomical structure has been linked with the
corresponding region of the image. If the generic graph includes only a part of the object represented
by the image, then the segmentation process segments only these objects and parts of the image remain
unexplored.

The process is viewed as the progressive exploration of the image, starting from a reference object.
For instance, the ventricles of the brain are the reference structures for the recognition of the internal brain
structures. These structures present a high contrast with respect to the grey and white matter and may be
easily segmented in most of the cases. Furthermore, they also present a high saliency. Their choice as a
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Salient Tumor Not−salient Tumor

Tumor
Necrosis

Tumor

Figure 10: Two pathological cases and the corresponding saliency maps. The saliency of the tumor highly
depends of the tumor type and aspect. The tumor on the left presents a high-saliency corresponding to the
high contrast between the tumor and its surrounding (outside the tumor and the necrosis). The tumor on
the right is large and homogeneous. The saliency of the latter is very low.

starting point for the exploration of the image is then consistent with an exploration of the image like the
visual system would do.

The exploration is achieved using the available spatial information in the graph. The spatial relations
representations allow us to answer the following question:“from a reference object, which are the locations
in the image space where the spatial relation is satisfied to agiven degree”. Therefore, only the spatial rela-
tions with an available (i.e. segmented) reference object are representable, and only the objects connected
by an edge to a segmented object have a localization that can be actually computed.

At each step of the process, the graph is filtered to keep the relevant information: two sets of vertices
and the set of edges between these two sets are defined. The first setVfs is the set of vertices which are
already segmented and connected to a non-segmented vertex.The second setVfo is the set of vertices which
are not segmented and connected to the first set. This set includes all vertices which may be segmented at
this step of the process. The set of edgesEf represents all spatial relations representable at this step of the
process and which target a non-segmented structure. Figure11 presents the initial graph and the filtered
graph at the first step of the process.

Once the graph is filtered and thus the candidate structures identified, their localization is computed as
the conjunction of the representations of all spatial relations targeting this structure, as presented in Section
3. The selection of the next structure to segment is achievedaccording to the criterionco presented in
Section 4.2.

Segmentation of a structure The segmentation method we use has been proposed in [2] and isnot part
of our work. We briefly present this approach here to understand its influence on the segmentation results.

This segmentation approach uses two knowledge sources: a radiometric estimation of the intensity
of the structure and the spatial relations targeting the structure. These two sources of information are
heavily correlated: the radiometric estimation for this problem is not enough to segment a structure and is
necessarily combined with spatial information, which reduces the search domain. Furthermore, the spatial
relations are used to guide and constrain the segmentation process. This approach is composed of two steps.
The first step combines the knowledge to recognize the structure and provides a rough segmentation. In the
second step, the segmentation is refined by a deformable model method which also uses spatial information
as an additional energy term to guide the process.

Figure 12 presents the procedure. A map corresponding to thesearched structure (here a thalamus) is
generated by thresholding the original image with the radiometric estimation. This estimation is composed
by two parametersα andβ which express the average (x̂o) and the standard deviation (σxo

) of the intensity
of a structureO as a function of the white matter (wm) and the grey matter (gm)of this particular image:
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Figure 11: Initial graph (for the left hemisphere only) and the corresponding filtered graph at the first step
of the process. The reference structures (lateral ventricle and third ventricle) are in the setVfs of vertices
already segmented. The caudate nucleus and the thalamus arein the set of vertices not segmentedVfo.
The putamen is not connected toVfs and therefore is not inVfo. The set of edgesEf includes all edges
oriented from a vertex ofVfs to a vertex ofVfo.

x̂o = αox̂wm +(1−αo)x̂gm andσo = βo
(σwm+σgm)

2 , as proposed in [38]. The resulting map is masked
by the spatial information, i.e., the localization of the structure as defined in Section 3, and filtered using
morphological operations, in order to reduce the search domain around the structure. The largest connected
component is then identified as the structure and corresponds to the initial segmentation. A deformable
model guided by the spatial information (fully described in[2]) produces the final segmentation.

Radiometric Map Region of interest
Morphological

opening
Initial

segmentation
Final

segmentation

Figure 12: The process to segment a single structure proposed in [2]. The first step combines knowledge
to identify the component corresponding to the structure. The second step refines the segmentation with a
deformable model approach guided by the spatial information.

Both sources of information, spatial and radiometric, are crucial for this approach and mutually de-
pendent: the restriction of the search domain thanks to the spatial information allows the radiometric
information to be only used to discriminate the targeted structure and its surrounding, and not the whole
image. Errors may occur when the spatial information does not allow us to reduce the search domain in
a way that the radiometric information is relevant, or when the radiometry of a structure does not allow
discriminating it from its immediate surrounding.

Since the intensity of a MRI changes in function of the acquisition parameters, radiometric estimation
for the internal brain structure have been proposed in [38] as a function of the intensity of the white and
grey matter in the same image. For each structure, the radiometric estimation is expressed as a couple of
parameters(α, β) which give the mean and the standard deviation of the intensity distribution of the brain
structures. For each image in our learning database, we compute the exact parameters(α, β) plotted in
Figure 13 (on the left). In this plot, the parameterα presents a large dynamic and therefore the estimation
(a mean) is inexact for several images. In order to reduce thedistance between the estimation and the
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images, three different estimations have been computed on three sets of images composing our database
(IBSR, OASIS and pathological images). The obtained valuesfor each set, used in our experiments, are
presented in Figure 13 (on the right).
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α β α β

CD 0.305 1.328 0.216 1.208
TH 0.633 1.374 0.557 1.586
PU 0.508 1.072 0.545 0.976

OASIS Patho. cases
α β α β

CD 0.278 1.398 0.303 1.693
TH 0.606 1.152 0.592 1.483
PU 0.505 1.024 0.485 1.341

Figure 13: Radiometric estimations for different structures expressed as a function of the intensity of white
and grey matters. Comparison between the values of [38] and the learned values on different sets of our
database.

When the radiometric estimation is not correct, the structure may be incomplete (a missing part), or
include its surrounding or other parts of the image. In all these cases, an erroneous segmentation is pro-
duced and propagates through the representation of the spatial relations using this structure as a reference.
Therefore, the segmentation of a particular structure has to be evaluated and the process may incriminate
the previous steps when errors occur.

In the next section, we present how to assess the segmentation in order to detect possible errors.

6 Segmentation assessment

As mentioned, during the segmentation of a particular structure, errors may occur and propagate. There-
fore, the process must be able to detect errors immediately or a posteriori and to update its strategy, i.e.
backtrack and change the sequence of segmentation even if this implies to discard previous structures seg-
mentations. To this end, two criteria are proposed here as well as a structure of control, which consists of
a tree of all current and past segmentations, used to update the strategy during the process.

6.1 Criteria for segmentation evaluation

The first criterion concerns the spatial information and controls the consistency of the structural model.
The parameters of each spatial relation are learned in a way that the targeted structure is included in the
kernel of the relation as described in Section 3. The spatialconsistency criterion evaluates if this assertion
is still true once a new structure segmentation has been added into the graph. The spatial consistency is not
evaluated in the whole graph at each step, but only on the spatial relations using the recently segmented
structures as reference. Figure 14 illustrates how the spatial consistency is evaluated for a small graph. A
structure (3) of the graph is segmented using the spatial information from segmented structures1 and2.
The spatial relations issued from structure3 and targeting segmented structures are represented. A criterion
(presented below) allows us to compare the resulting fuzzy subset and the segmentation, which has to be
localized in the kernel of the relation.

To evaluate the spatial consistency of a spatial relationµRel targeting a structureµObj , we compute a
fuzzy satisfiability [39] between the fuzzy subset representing the relation and the targeted structure:

fs(Rel, Obj) =

∑

x∈S min(µRel(x), µObj(x))
∑

x∈S µObj(x)
, (5)

whereS denotes the image space. The fuzzy satisfiability is maximalif the targeted structure is included
in the kernel of the fuzzy subset representing the relation.
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Figure 14: Evaluation of spatial consistency. At a stepi of the process, two structures (3 and 4) are
candidate for segmentation. The localizations of both structures are computed using the available spatial
information (edge issuing from segmented structures1 and2). The structure3 is segmented and the graph
is updated. The spatial relations issued from the structure3 are representable now, particularly relations
targeting segmented structure1 and2. The fuzzy satisfiability is computed between these relations and
the segmentation of the targeted structure. The structure1 is localized in the kernel of the relation, so it is
spatially consistent. The structure2 is outside the kernel of the relation and this is not consistent.

The second criterion is an intrinsic criterion which compares the segmentation result to a model. In fact,
due to the intrinsic variability in shape and size of the internal brain structures, this criterion compares the
learned pdf of saliency, i.e., compares if the “visual aspect” or the appearance against the surrounding of
the structure is the expected one. The criterion is the EMD distance between the pdf of saliency computed
with the segmentation and the pdf learned for this structure, as in Equation 3:

do(sego, modo) =
EMD(sego, modo)− ˆmodo

σmodo

. (6)

wheresego represents the saliency pdf computed from the segmentation, modo the saliency pdf learned
for this structure, ˆmodo the mean EMD distance between each case in the database and the learned pdf and
σmodo

the standard deviation of this measure.
These two criteria are used to update the strategy of choice,as described below. We first introduce the

data structure used to keep information about the steps of the process.

6.2 Segmentation tree

The previous criteria allow us to detect an erroneous structure segmentation. These errors may happen
because of the intrinsic difficulty of segmenting a structure or because of the radiometric estimation. The
error may also be caused by the propagation of previous (undetected) error. Typically, a wrong segmenta-
tion propagates because the spatial relation using this structure as a reference will be wrong too. Therefore,
we need to keep track of the history of the previous steps of the process to be able to backtrack.

A tree structure, which contains information about all the segmentations done by the process, is used as
a journal of each realized sequence (even sequences finishing by failure). The root of the tree is composed
by all the reference structures. Each node corresponds to a segmentation of a particular structure (i.e. a
same structure may appear in different sequences, but only one is segmented at a given step). The success or
failure of the segmentation is encoded in the node. Sequences without failure are called “active sequences”.

For each segmented structure, its localization is generated using all spatial relations targeting this struc-
ture and these spatial relations use one or more reference structures (already segmented). Among these
structures, we denote as the “parent structure” the most recently segmented structure. When a structure is
segmented, it is attached in the segmentation tree to its parent structure in the active sequence. If there is
no parent structure, then the node is attached to the root of the tree.

This tree structure allows us to know during the process which sequence of segmentation is already
tested and therefore to avoid loops (if two sequences are alternatively tested with failure). It is also possible
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to easily find the untested sequences and eventually to stop the process without finishing if all sequences
lead to a failure.

6.3 Backtrack and path selection

In case of an error occurring during the segmentation of a structure and detected thanks to the previous
criteria, the strategy of control of the process is simple: it consists in preventing the system of trying the
same sequence, which is immediate thanks to the segmentation tree.

The evaluation procedure is presented as pseudo source codein Figure 15. When the evaluation indi-
cates an error, the following cases are considered:

• if there is no segmentation produced (i.e. the resulting binary map is empty), the parent segmentation
(if there is one) is discarded;

• if there is a segmentation, then the spatial consistency criterion is tested. The fuzzy satisfiability is a
value in the interval[0, 1] and a threshold is fixed at0.8. In case of failure, the parent segmentation
(if it exists) is discarded as well as the current segmentation, otherwise only the current segmentation
is discarded;

• the saliency criterion is then tested. A threshold has been fixed atT = 2σmodo
. The current segmen-

tation is discarded in case of failure;

• if both criteria are satisfied, then the segmentation is accepted and the graph is updated.

STRUCTURESEGMENTATIONEVALUATION (currentStructure)

1 parent← findParent(currentStructure)
2 if (SEGMENTATIONEXIST(currentStructure)
3 then
4 evalSpaCons← EVALUATE SPATIAL CONSISTENCY(currentStructure, parent)
5 evalSaliency← EVALUATE SALIENCY CRITERIA(currentStructure, model)
6 if (evalSpaCons > thresholdSpaCons)
7 then
8 if (evalSaliency < thresholdSaliency)
9 then

10 ACCEPTSEGMENTATION(currentStructure)
11 else
12 DISCARDSEGMENTATION(currentStructure)
13 else
14 if (PARENTEXIST(parent))
15 then
16 DISCARDSEGMENTATION(parent)
17 DISCARDSEGMENTATION(currentStructure)
18 else
19 if (PARENTEXIST(parent))
20 then
21 DISCARDSEGMENTATION(parent)

Figure 15: Pseudo-source code of the evaluation process. Both the current structure and its parent structure
are concerned during this procedure. The values of both criteria allow to separate different cases where the
segmentation is accepted or discarded, and eventually the parent segmentation is discarded too.

Figure 16 presents an example of the segmentation tree at different steps of the process. The right cau-
date nucleus is segmented first, followed by the right thalamus with a failure. This failure discards the first
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segmentation. After successfully segmenting two structures on the left (CDl and THl), the right thalamus
is segmented (but in first position this time) and then the caudate nucleus, with a failure which discards the
thalamus segmentation. The segmentation tree allows us to easily find the untested configurations, and the
segmentation is finally achieved by restoring the initial segmentation of the right caudate nucleus and then
by segmenting the putamen before the thalamus.
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Figure 16: Structure of control of the segmentation resultsand configuration of the process. This struc-
ture keeps information about past segmentations of structures with different configurations to prevent the
process of trying an already known configuration and to easily find remaining not-tested configurations.

In the worst case, the complexity of this procedure can be high, since potentially the whole tree of
possible paths could be explored. However, in practice, we have observed that only few backtracking steps
are actually performed (see Section 7), which makes the approach tractable.

7 Experiments on MRI images for internal brain structures segmen-
tation

In this section, we present the experiments conducted on theimages of the database described in Section 3.
The proposed method is applied on each image by computing theparameters of the spatial relations using
a leave-one-out procedure. We first illustrate step by step the segmentation process on one example. Then,
the results on the whole database are presented and comparedto those obtained with a segmentation path
defined a priori by an expert. Quantitative evaluations are provided and the influence of the radiometric
estimations as well as of the parameters of the spatial relations is discussed. The test data base is composed
by 30 healthy cases and14 pathological ones and comparisons are performed on the whole data, except
for the comparison between structures presented in Table 1,which are evaluated only on the healthy cases
(this avoids including the potential impact of a pathology on the normal structures in this evaluation).x

7.1 Segmentation of an image step by step

As an example, we illustrate the segmentation process on an image of the OASIS database depicted in Fig-
ure 17. The parameters of the spatial relations are learned on the whole database (healthy and pathological
cases following a leave-one-out procedure, i.e., without considering the processed example in the learning
step). For this experiment, the radiometric estimations use the parameters proposed in [38]. In the follow-
ing figures, each illustration presents the same slice of the3D volume (but the whole process is actually
applied in 3D). The path derived from the optimization method and followed during the segmentation is
the following: right caudate nucleus, right thalamus, right putamen, left thalamus, left caudate nucleus and
left putamen. Note that the path is not the same on both sides of the brain.

Figure 17 illustrates the first step of the process. For the sake of simplicity, only the structures of the
right hemisphere (i.e. on the left on the displayed images) are represented. For visualization purpose, and
to show the relevance of the computed localizations, the candidate structures are drawn on the localizations
in green. The localizations are computed using the spatial relations to the reference structures and the
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Figure 17: Initial step of the process. Only the reference structures (lateral ventricles and third ventricle)
are segmented and represented in blue in the graph. Four structures are candidates for the next segmentation
step (left and right caudate nucleus and thalamus, represented in green in the graph). The localizations of
these structures are computed using the spatial relations to the reference structures (only two are represented
here, as white regions, in the right hemisphere). A structure is then selected (here the right caudate nucleus),
according to the criteriaco, and segmented.
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Figure 18: Second step (top) and third step (bottom). After the segmentation of the right caudate nucleus in
the first step, the putamen becomes a candidate. The localization of the thalamus now benefits from spatial
information related to three structures and is more precisethan in the previous step (the white region is
reduced). In the third step, the right putamen is segmented.

selection is achieved using the localization, the saliencymap and the criterionco defined in Equation 4. In
this example, the right caudate nucleus is selected and segmented. The graph is then updated. In the second
step (Figure 18), the putamen is now a candidate, since it is connected to a segmented structure, the caudate
nucleus. The localizations of the candidates are computed.The localization of the thalamus is not the same
as in the previous step since it now benefits from the spatial relations to the caudate nucleus, which leads to
a more precise localization. It is selected as the next structure to be segmented. After its segmentation, the
localization of the putamen is recomputed and also benefits from new spatial relations (to the thalamus).
The putamen is then selected and segmented. At each step the segmented structure is labeled as such in
the graph (in blue in the figures) and the graph is updated withthe new candidate structures. The process
then goes on with the other structures. The whole segmentation sequence is finally the following: CDr,

Figure 19: Final segmentation after six steps of the process(one axial slice and one coronal slice are
displayed): all structures have been successfully recognized and segmented.
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THr, PUr, THl, CDl, PUl. The flexibility of the path optimization and its adaptive feature depending on the
data are clear here, since the optimized sequence is the sameas the one used in [2] in the right hemisphere,
while it is different in the left one. The final results are presented in Figure 19, showing that all structures
are well recognized and segmented.

7.2 Comparison with a fixed path

In this section, we compare the results obtained with three different approaches, on the healthy cases of the
database:

1. a priori defined path, called “expert path”, where the caudate nucleus is segmented first, then the
thalamus and finally the putamen in both hemispheres, as in [2]. This path is used for all images and
not adapted to each case. Note that with this method, if an error occurs, it may prevent the correct
segmentation of other structures in the same hemisphere;

2. proposed optimized path, computed for each individual case, and therefore potentially different from
one image to another one. Note that the only difference with the first method is the order in which
structures are segmented and the possibility to backtrack;

3. proposed optimized path and modified segmentation schemeusing a simple “belief revision” scheme:
when a structure is segmented and accepted, the resulting segmentation is used to recompute the
parametersα andβ (see equations in Section 5) used for the radiometric estimations. A new seg-
mentation of the same structure is achieved and if the new segmentation improves both evaluation
criteria, it replaces the previous segmentation.

Figure 20 presents a comparison between the three methods: sequential segmentation following an
expert path, an optimized sequence and the optimized sequence with belief revision. In the left hemisphere,
the path followed is the same for all approaches and results are identical for the expert path and for the
optimized one. With an additional belief revision approach, the numerical evaluations are better for the
segmentation of two structures. In the right hemisphere, the segmentation according to the expert path
fails to segment the caudate nucleus: the procedure produces a segmentation, but it is not correct and the
structure is mis-recognized (with a part of its tail and the back part of the thalamus) and thus the other
structures cannot be segmented. With an optimized path, thethalamus is first segmented and then the
caudate nucleus is segmented with success. Finally the putamen is segmented. As shown in this example,
our approach allows detecting the mis-recognition of the right caudate nucleus and adapting the path by
backtracking on the segmentation ordering, in order to correctly recognize and segment all structures.

7.3 Segmentation evaluations

In order to provide a quantitative evaluation of the results, the mean distance between the obtained seg-
mentation and a manual segmentation is computed for each structure. An average value is then computed
for each structure over all healthy images in the database. Table 1 presents the obtained values. The results
show that the mean distance for the caudate nucleus is betterwith an optimized path. An explanation is
that with the expert path, the caudate nucleus is always segmented in first place and thus with less spatial
information than a structure segmented later on in the sequence. On the contrary, in the proposed approach,
the caudate nucleus may be segmented later on in the optimized sequence, and is then likely to be better
segmented. The mean distances obtained for the other structures are similar for all paths, with no significant
difference.

Table 1 also presents the total number of segmentations per structure over the 30 healthy cases of the
database. There is a similar number of caudate nucleus segmentations for all paths. However, there are
more thalamus and putamen segmentations (and particularlyon the right side without any evident reason).
The number of caudate nucleus segmentations is related to the order followed by the expert path, i.e. the
caudate nucleus is always segmented in first position. In this case, there is no backtrack of the process,
thus an erroneous segmentation of the caudate nucleus prevents the segmentation of the other structures
but cannot be discarded (note that in the latter case, the erroneous segmentation appears in the number of
segmentations of the caudate nucleus). Figure 20 presents an example of an erroneous segmentation.
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Numerical evaluation of structure segmentations (mean distance):
CDl THl PUl CDr THr PUr

expert path 4.13 0.95 2.62 26.9 NS NS
optimized path 4.13 0.95 2.62 0.63 2.34 2.87

w. belief revision 0.94 1.01 2.49 0.64 2.34 2.91

Figure 20: Comparison between sequential segmentations following an expert path (a), our approach (b),
and our approach with belief revision (c). Values of the two criteria are given in the graph (spatial consis-
tency on edges and saliency on vertices). In the left hemisphere, the same path is followed in (a) and (b)
and thus the numerical evaluations of each structure segmentation are the same. With belief revision, the
numerical evaluations of the CDl and the PUl are better, and slightly higher for the thalamus. In the right
hemisphere, different paths are followed. The expert path segments the caudate nucleus (with errors) and
fails to segment two structures, while the other approachessegment all structures correctly. The numerical
evaluation of the caudate nucleus is significantly better.

For each image the average value of the mean distances computed for all structure segmentations is
calculated. The mean of these values over the44 images of the database is presented in Figure 21 for the
three methods. On the left, the average mean distances are represented with box plots (1: expert path, 2:
optimized path, 3: optimized path with belief revision). The upper quartile and largest observation are
higher, while the lower quartile and the median values are similar. Extremal values are also higher with
the expert path. This indicates that the segmentation with an optimized path allows us to correct the largest
errors of segmentation but does not improve the other segmentations. The optimized path allows us to detect
recognition errors and inconsistencies and to propose a strategy to avoid errors. Note that the precision of
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Table 1: Numerical evaluations of segmentation results. For each structure, a comparison with a manual
segmentation is realized and the mean distance is computed.An average of these distances is computed
for each structure over all healthy cases in the database. The segmentation scheme is the same for each
structure segmentation. The differences consist of the spatial information used as an input to the segmen-
tation method. The average mean distance (AMD) for the caudate nucleus is higher with the expert path,
since it is always segmented first and thus with less spatial information. The mean distances of the other
segmentations are similar for all methods.

Struct Expert path Optimized path Optim. path + belief revision
# segm. AMD # segm. AMD # segm. AMD

CDl 30 1.69 30 1.64 28 1.30
CDr 30 4.63 29 2.20 29 1.49
THl 27 1.90 27 2.25 28 2.39
THr 23 2.36 27 2.71 27 2.30
PUl 26 3.21 27 3.11 27 3.03
PUr 22 3.28 26 3.43 27 3.42
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Figure 21: Numerical evaluations of segmentation results (1: expert path, 2: optimized path, 3: optimized
path with belief revision). The table on the right presents the average of all numerical evaluations of
segmented structures in all images. The average mean distance (AMD) is lower for an optimized path than
for the expert path.

the segmentation of a structure mainly depends on the chosenapproach for the final segmentation (here the
deformable model proposed in [2]). On the right of Figure 21,the results show a better average numerical
evaluation when the segmentation is performed with an optimized path than with an expert path. The belief
revision step further improves the results, but only slightly in average.

Considering the whole data base (healthy and pathological cases), the number of segmented structures
is larger with our sequential segmentation framework with an optimized sequence than with the same
framework but following an expert path. This result shows that the dynamic path selection allows us to
recognize and segment more structures. Table 2 presents these values as well as the number of path changes
needed to achieve the segmentation. The criterion evaluating the spatial consistency is more often used than
the other criteria. This shows the relevance of this criterion. On the one hand, this result is consistent with
the important usage of spatial information to guide the process of each structure’s segmentation. On the
other hand, we choose not to rely on intrinsic features of thestructure to segment and thus the saliency
criterion used to evaluate the segmentation result is less relevant.

Figure 22 presents the different sequences of segmentationwith the number of occurrences of each
sequence, at the end of the segmentation process, i.e. the final path, after potential backtracking, on healthy
and pathological cases. The repartition shows that the mostfrequent path is the expert path, but other paths
are also used. This is an expected result for our approach.
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Table 2: Quantitative evaluation of segmentation results on the44 images of the database (30 healthy and14
pathological ones). Values on top represent the final total number of segmentations realized by the process.
There are264 structures in total and our approach allows us to segment more structures than a sequential
segmentation following an expert path (there are less failures). The spatial consistency criterion is more
often used than the saliency criterion. In the bottom part ofthe table, the number of accepted segmentations
against the final number of segmentations shows the number ofadaptations of the path needed to achieve
the segmentations.

expert saliency belief

# segmentations
correctly segmented structures 209 224 233

failures 55 40 31

Criteria
saliency 2 6 13

spatial consistency 21 79 65
both 2 3 3

Segm stats

accepted 209 309 309
failed (no result image produced) 10 12 16

discarded (itself) 2 6 13
discarded (as parent) 0 85 76
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Figure 22: Distribution of the segmentation sequences. Theexpert path (CD, TH, and then PU) is the most
frequent path, but other paths are followed when needed. This is consistent with what is expected from
the optimization procedure, which adapts the path when needed, according to the data. There are also less
unfinished paths with one or two missing structures, which indicates that the followed path allows a better
segmentation based on this criterion.

7.4 Influence of radiometric estimation

In order to estimate the influence of the radiometric estimation on the segmentation, experiments have
been conducted with parameters estimated on different setsof images. The first couple of parameters
(α, β), called “exact”, is computed on the same image with a manual segmentation. The second experi-
ment is achieved with the values presented in Section 5, where the learning database is separated in three
sets: IBSR, OASIS and pathological cases. The third experiment uses the parameters described in [38].
Remember that the parameterα corresponds to the average intensity value of a structure and the parameter
β corresponds to the standard deviation. Both parameters areexpressed as function of the intensity of white
and grey matter.

Examples from the resulting segmentations are presented inFigure 23. The segmentations achieved
with the “exact” parameters are not the best segmentations.The parameters learned on three subsets of
our database (following a leave-one-out procedure) give the best results for the four cases presented here.
However, the differences between segmentations of the sameimage with different radiometric estimations
show the influence of these parameters.
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OASIS 01 OASIS 02 IBSR 2 ring

(a) Exact

(b) Three
learning sets

(c) Poupon’s
values [38]

Figure 23: Comparison of sequential segmentations with radiometric estimation learned on different sets
of images (two examples of the IBSR data base, two of the OASISdatabase and one pathological case,
with a ring-shaped tumor). (a) Segmentation results obtained with “exact” parameters. (b) Results using
parameters computed on a clustered database and used in our other experiments. (c) Sequential segmen-
tation using the parameters proposed in [38]. The “exact” parameters do not give the best results. Theα

parameter is a mean of the intensity values and it is important that this estimation reflects the intensity of
the structure but also discriminates it from the other structures.

7.5 Influence of the learning of spatial relation parameters

Finally, we propose to analyze the influence of the parameters of the spatial relations by applying the
proposed approach to the same image and using the same segmentation scheme (with an optimized path
without belief revision), but with different parameters for the spatial relations. The purpose of this experi-
ment is to establish whether the results are improved when the spatial relations are more precise, or if the
imprecision of the spatial relation does not impact the result.

Three experiments are carried out with parameters learned on different sets of images. The default
set (denoted byall) is the whole learning database (50 images) including both healthy and pathological
cases (with a leave-one-out procedure). A smaller and more homogeneous set (denoted byhealthy) is
composed by the30 healthy images only (with a leave-one-out procedure too). Finally, an experiment
denoted byexact is achieved with parameters derived from the manual segmentation of the image, i.e.
exact parameters for this image.

Slices from the resulting segmentations are presented in Figure 24. The first row presents the seg-
mentation obtained withexact parameters and these segmentations are sometimes improvedin the other
experiments. The segmentation results are not improved when using more precise spatial relations. On
the contrary, the larger learning set, which allows a more flexible spatial reasoning, provides the best re-
sults. This is a very encouraging result, since it shows thatthe variability is well taken into account by the
proposed approach.
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(c) All

Figure 24: Comparison of sequential segmentations with learning of the spatial relation parameters on
different sets of images. (a) The parameters are “exact”, i.e. learned on the segmented image only. (b)
The parameters are learned on all healthy cases of the database (homogeneous set). (c) The parameters are
learned on the whole database (healthy and pathological cases). This experiment shows that more precise
spatial information does not necessarily provide better results, and even sometimes worse. The intrinsic
imprecision of the spatial relations provides the necessary flexibility for spatial reasoning.

8 Conclusion

In this paper we addressed two important problems in sequential segmentation. The first one is related
to the choice of the order in which structures are segmented.To solve this problem, we proposed to
optimize a criterion combining saliency information computed in each image to be processed and generic
structural information about the spatial relations between structures, derived from an anatomical model.
This contribution extends the framework developed in [2], where the segmentation order was fixed in an
ad-hoc way and was the same for all processed cases. The proposed optimization procedure allows reducing
the number of segmentation failures by adapting the segmentation order to the specificities of each image.

Furthermore, the proposed criterion involves a number of parameters, related to the definition of spa-
tial relations and to radiometric information. We have proposed a learning procedure to estimate these
parameters, thus avoiding tedious manual fine tuning.

The second problem related to sequential segmentation is the influence of a potential error on the
subsequent steps of the process. We proposed an original method to control the result obtained at each
step, and its consistency with respect to the model. Additionally, we developed a backtracking procedure,
which allows, in case an error is detected, to change the segmentation order and to choose another strategy.
From an algorithmic point of view, the efficiency of the proposed method is ensured by a tree structure
which keeps trace of all segmentations and already exploredpaths. The experiments have shown that
this control and backtracking process is efficient and allows segmenting more structures in a correct and
consistent way.

In the proposed method, some steps could be easily replaced by other ones. For instance the final
segmentation, which follows the approach in [2], could be replaced by another method such as minimal
surface or level sets for instance. Similarly, the computation of saliency could include other features.

The proposed approach shows that image analysis and interpretation can benefit from visual attention
models. The proposed optimization relies on a structural model involving spatial relations, which implies
that some expert prior knowledge is available to build this model. This is the case for the considered
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example in brain imaging. Further work could investigate this type of approaches in the case of imprecise
and/or incomplete knowledge description of the scene.
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