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Abstract

A sequential segmentation framework, where objects in aamgéenare successively segmented,
generally raises some questions about the “best” segnmmtquence to follow and/or how to avoid
error propagation. In this work, we propose original apphas to answer these questions in the case
where the objects to segment are represented by a modelbilegthe spatial relations between objects.
The process is guided by a criterion derived from visualngitt@, and more precisely from a saliency
map, along with some spatial information to focus the aient This criterion is used to optimize
the segmentation sequence. Spatial knowledge is also osedstire the consistency of the results
and to allow backtracking on the segmentation order if néedehe proposed approach was applied
for the segmentation of internal brain structures in magneisonance images. The results show the
relevance of the optimization criteria and the interesthef ibacktracking procedure to guarantee good
and consistent results.

Résune

Le paradigme de la segmentation séquentielle permet deesggr successivement les differents
objets présents dans une image. Mais cette approcheveodds questions : quelle est la meilleure
séquence de segmentation a effectuer ? et comment Evipeopagation d’erreurs ? Nous proposons
ici des approches originales pour répondre a ces questians le cas ol nous disposons d’un modele
décrivant 'agencement spatial entre les structuregeeater dans I'image. Le processus est guidé par
un critere inspiré des travaux sur la modélisation dedigion visuelle et plus précisément d’une carte
de saillance combinée a des informations spatiales pmeine focalisation de I'attention. Ce critere
est utilisé pour optimiser la sequence de segmentatimfotmation spatiale est également utilisee au
cours du processus afin d’en garantir la cohérence et pomegiee au systeme de revenir en arriere
dans la séquence de segmentation si besoin. Lapproclpos@e a été appliquée a la segmentation
des structures internes du cerveau dans des images paamesomagnétique. Les résultats montrent
la pertinence du critere d’optimisation et I'intérétsdestours en arriere au cours du processus afin de
garantir des résultats cohérents.

Keywords: Segmentation, knowledge-based system, spatial relatioagh representations, fuzzy sets,
medical images, MRI.

Mots clés : Segmentation, systtme a base de connaissances, relafiatiales, représentations par
graphe, ensembles flous, images médicales, IRM.



1 Introduction

In this paper, we deal with segmentation and recognitiorbpéais or structures in an image, based on a
generic model of the scene. As a typical example, we focub@mecognition of internal brain structures
in 3D magnetic resonance images (MRI), based on an anatomadel. More specifically, we address
two important problems occurring in sequential approachesetailed below.

In [1, 2], the authors introduced a new paradigm combinirgentation and recognition tasks. We
will refer to this paradigm in the remainder of this paper eguential segmentation and interpretation. It
is defined as a knowledge-based object recognition apprehehe objects are segmented in a predefined
order, starting from the simplest object to segment to thstrdifficult one. The segmentation and recog-
nition of each object are then based on a generic model ot#rgesand rely on the previously recognized
objects. This approach uses a graph which models the gespai@l information about the scene in an
intuitive and explicit way (presented in [3]). This sequahtegmentation framework allows decomposing
the initial problem into several sub-problems easier teesalsing the generic knowledge about the scene.
This approach differs from a regular divide-and-conqugraach since each sub-problem contributes to
improve the resolution of the next subproblems. It also @vaelying on an initial segmentation of the
whole image.

This approach, as pointed out in [2], requires to define tidemoaccording to which the objects have
to be recognized and the choice of the most appropriate @dere of the problems that remains open.
It also lacks a step which could evaluate the quality of thggreentation of a particular object and detect
errors to prevent their propagation.

In this paper, we propose original methods to answer thegeopen questions. Our contribution is
twofold: first, we extend the sequential segmentation fraamk by introducing a pre-attentional mech-
anism, which is used, in combination with spatial relatjciesderive a criterion for the optimization of
the segmentation order. Secondly, we introduce criterihaadata structure which allow us to detect the
potential errors and control the ordering strategy.

The pre-attentional mechanisms were defined in [4, 5, 6] tdeggthe focus of attention in modeling
the visual system such as in feature integration theory. sBggiential segmentation framework may be
viewed as a way to focus attention on a small part of the sceddtas limit the search domain and the
computational load. Among these mechanisms, we proposgetthg notion of saliency to optimize the
sequence of segmentation.

Our approach is applied to the segmentation and the redogrdf internal brain structures in 3D
magnetic resonance images. The intrinsic variability eSthstructures, the lack of clear boundaries and
the insufficient radiometry make this segmentation protaedtifficult one. Some of the difficulties can be
overcome by relying on generic knowledge about the humatoama that will be exploited to derive the
model guiding the whole process.

This article is organized as follows. First we present inti®ac2 a survey of knowledge based-
approaches to the recognition of objects in a scene anddea@n overview of the proposed approach.
Section 3 presents the knowledge representation modeledtich 4 we propose to use some concepts
of the visual attention to optimize the sequential segntemtdramework. Then, the optimization of the
sequential segmentation itself is described in Sectiondbtla@ mechanisms for evaluating each structure
segmentation in Section 6. Experiments on internal braircgire segmentation and results are presented
in Section 7. Finally we draw some conclusions in Section 8.

2 Knowledge-based systems and spatial reasoning

The sequential segmentation framework of [2] relies on arpkhnowledge about the scene and uses inten-
sively this knowledge at each step of the process. Thusfrinisework may be described as a knowledge-
based system using spatial relations. One can find a revi¢hesé systems in [7, 8]. In this section, we
focus on knowledge-based systems using spatial relatindsdcribe the structure of the scene that have
been applied to the recognition of brain structures in madimages.

Spatial relations play a crucial role in model-based imagm®gnition and interpretation due to their
stability compared to many other image appearance chaisttts. They constitute structural information,



which is particularly relevant when the intrinsic featuodghe objects are not sufficient to discriminate
them.

2.1 Knowledge-based approaches for internal brain structtes recognition

The difficulty of segmenting internal brain structures isda the similarity between their grey levels,
the lack of clear boundaries at some places and the partiaineeffect. Their intrinsic features present
a natural variability (in size and shape for example) betwieelividuals, which is further increased in
pathological cases. On the contrary, the spatial arrangeofiéhese structures, i.e., their relative positions,
is stable in healthy cases and even quite stable in pathualiogiises. For all these reasons, structural models
of the internal brain structures have been used to segmdneangnize the internal structures.

Structural model of the brain structures One can find several anatomical descriptions of the brain,
as atlas [9], nomenclature [10] or ontology [11]. These dpsons are often organized as a hierarchy
of structures and provide descriptions of structures atatioas between them. In [3], in collaboration
with a neuro-anatomist, the internal brain structures apgasented as a hierarchical graph where each
vertex corresponds to an anatomical structure and eachczdges spatial relations between anatomical
structures. This representation has been extended as th€I8R[12, 13] to include information about
the structures composition, functional knowledge and athmupathologies.

Segmentation and recognition Several classes of approaches for internal brain strucsagmentation
have been proposed in the literature. The first class of @gpes uses a model graph and the image to
segment is represented as a graph too. The segmentatior@yhition process is then formalized as a
graph matching problem [14]. The authors in [15, 16] propdsdind a fuzzy morphism between a model
graph built from a manual segmentation and an over-segmhémizge represented as a graph. Several
optimization techniques have been proposed for this taskl[8]. Another approach was proposed in [19]
and used an over-segmentation. The matching is viewed amsiramt satisfaction problem, with two
levels of constraints and an ad-hoc algorithm. The latetstnsion [20] proposed a link with an ontology
and adaptation to be able to cope with unexpected stru¢tuel as tumors. For this class of approaches,
the initial graph is usually built from an over-segmentatid the image to segment, and the complexity of
the method increases as the number of regions obtained freaver-segmentation grows.

In the second class of approaches, a sequential segmantédtibe internal brain structures is per-
formed, as proposed in [1, 2]. In these approaches, the segtiom and the recognition are achieved at
the same time. Each segmentation uses the spatial infanmresticoded in the model, and more specifically
the spatial relations to the already segmented structufag information allows restricting the search
domain around the structure. In these approaches, theodngial segmentation of the image, but it raises
some questions like the order of segmentation of the difteobjects or how to avoid the propagation
of potential errors. Our approach belongs to this class amaontribution is an original answer to both
guestions.

The authors in [21, 22] proposed a different type of apprpadtich is global and uses a constraint
network. They proposed to link each anatomical structuth wiregion of space which satisfies all con-
straints in the network. Since it is hard to solve this probMirectly, only the bounds of the domain of
each variable (i.e. structure to be segmented) are modifiedebprocess and sequentially reduced using
specifically designed propagators derived from the spatiastraints. Finally, a segmentation is extracted
using a minimal surface algorithm. This approach providesdyesults and does not need an initial seg-
mentation either. However, due to the number of constrairitsquite complex and the computation time
is high, especially in 3D.

2.2 Proposed framework

We propose to extend the sequential segmentation framgwoplosed in [2], where structures are sequen-
tially segmented from the easiest to segment to the mostulifibones. Each structure segmentation uses
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the information provided by the previous segmentationst &tension aims at answering the following
guestions raised by this framework: “in which order shotilel ¢bjects of the scene be segmented?” and
“how to assess the segmentation result in order to deteehpaterrors and avoid their propagation?”.
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Figure 1. General scheme of the sequential segmentatiorefvark. The graph initially represents only
the generic knowledge and the reference structures. At steph a structure is selected according to the
saliency of its localization and to the presented criteriims structure is then segmented and the result is
evaluated. In case of success, the graph is updated andaitespris iterated until the graph is completely
specialized or no more structure can be segmented. In cdadusé, the system is constrained to select
another path to segment and the process is iterated.

The proposed framework has two levels, as depicted in Figgurehe first level is a generic bottom-
up module which allows selecting the next structure to segmehis level does not rely on an initial
segmentation or classification, but instead on a focus ehttin and a map of generic features described
in Section 4. The sequential approach allows this level éotws types of knowledge: generic and domain
independent features in unexplored area of the image toesgigand high-level knowledge such as spatial
relations linked to the already recognized structures. Y@pgse to answer the first question by deriving
a selection criterion from a pre-attentional mechanismal@iscy map. This criterion is used to optimize
the segmentation order and to select the next structurgytoesgt at each step.

The second level achieves recognition and segmentatidreafdlected structure, as well as the evalua-
tion of the segmentation. The recognition of the structsi@hieved at the same time as the segmentation.
This level is composed by the segmentation method define?] iar[d an original evaluation method. It
uses two types of a priori information: the spatial inforiroatwhich allows us to reduce the search area,
and a radiometric estimation of the intensity of the streetherefore, the radiometric estimation needs
to discriminate the intensity of the structure only in tharsé area and not in the whole image. Once
a structure is segmented and recognized, this level aldoatea the quality of the result and proposes a
strategy to guarantee the spatial consistency of the rasdlto potentially backtrack on the segmentation
order. This allows answering the second question.

The two levels rely on graph representations describedeiméxt section.



3 Knowledge representation

Graphs are well adapted to represent generic knowledgk,agispatial relations between the objects of
a scene. In the sequential segmentation framework, theigenedel of the scene is modeled as a graph
where each vertex represents an object and each edge r@prese or more spatial relations between two
objects. We introduce the following notations: Le{, Y. r be the sets of vertex labels and edge labels,
respectively. Lefl” be a finite nonempty set of vertices,, be a vertex interpretek,, : V. — 3y, FE
be a set of ordered pairs of vertices called edges,/ande an edge interpretdr, : £ — Y. Then
G = (V,L,,E,L.) is a labeled graph with directed edges. BoE V ande € V x V, §(v,e) is a
transition function that returns the vertesuch thate = (v,v’). Forv € V', A(v) returns the set of edges
adjacent tav. Finally, p = (vi, v, ..., v,) is a path of lengtln labeled ag, = (vi, e(v1, v2), va, ..., Vp).

A knowledge basés B defines all the spatial relations existing between veriitéise graph:

KB = {v;Rvj, v;,v; €V, Re R}ande = (v1,v2) € E <= 3R € R, (n1Rv2) € KB,

whereR is the set of relations. In the following, we use fuzzy repreations of the spatial relations, since
they are appropriate to model the intrinsic imprecisionedfesal relations (such as “close to”, “behind”,
etc.), their potential variability (evenif it is reducedrinprmal cases) and the necessary flexibility for spatial
reasoning [23]. Here, the representation of a spatialiogléd computed as the region of space in which the
relationR to an objectd is satisfied. The membership degree of each point corresyorille satisfaction
degree of the relation at this point. Figure 2 presents amplaof a structure and the region of space
corresponding to the region “to the right of” this structure

A directed edge between two vertices and v, carries at least one spatial relation between these
objects. An edge interpretor associates to each edge a f&tzy,.;, defined in the spatial domais,
representing the conjunctive merging of all the represimts of the spatial relations carried by this edge
to a reference structure. Each fuzzy set gives an estimatitre localization of an object. By localization,
we mean an approximate region containing the object. A caijon of all these fuzzy sets gives the most
precise estimation of the localization. Since there is astil®ne spatial relation carried by an edgg,;
cannot be empty. Let% , i = 1,...,n. then, relations carried by an edge Thenug,, is expressed as:
Kot = Ti=1.n,(Hg,) With T a t-norm (fuzzy conjunction) [24].

We now briefly describe the modeling of the main relationg the use: distances and directional
relative positions. More details can be found in [23]:

A distancerelation can be defined as a fuzzy interyalf trapezoidal shape dR™. A fuzzy subset:q
of the image spacé can then be derived by combinirfgvith a distance mag 4 to the reference object:

Ve €S, palz) = f(da(z)), whereda(z) = infyea d(z, y).

The relatior‘close to” can be defined as a function of the distance between twosgis: (A, B) =
h(d(A, B)) where d(A, B) denotes the minimal distance between pointsdotnd B: d(A,B) =
infyea yen d(z,y), andh is a decreasing function @f fromRR™ into [0, 1]. We assume that N B = 0.
The relation ofadjacencycan be defined likewise as a “very close to” relation, leading degree of
adjacency instead of a Boolean value, making it more roloustiall errors.

Directional relations are represented using the “fuzzy landscape approach” [5horphological
dilationd,,, by a fuzzy structuring element, representing the semantics of the relation “in directidiis
applied to the reference objedt ., = 6, (A), wherev, is defined, forz in S given in polar coordinates
(p,0), as:v,(x) = g(|0 — «|), whereg is a decreasing function froffi, 7] to [0, 1], and|d — «| is defined
modulox. This definition extends to 3D by using two angles to defineraation. Figure 2 presents an
example of fuzzy landscape representing a directiondioala

Other relations can be modeled in a similar way [23]. Thesdetware generic, but the membership
functions depend on a few parameters that have to be tunedébr application domain according to the
semantics of the relations in that domain. Here we proposeaim these parameters from a database of
segmented images.

Images database A database o%0 brain MRI, manually segmented, is used. This database ipcsetl
by 30 healthy images ang2D images presenting a brain tumor (with different localiaas, types and sizes).
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a) Lateral Ventricle b) Structuring element c) “Left of LVI”

Figure 2: (a) Binary segmentation of a left lateral ven&ith slice of a 3D volume) denoted iy 1.

(b) Structuring element representing the semantic of tlaiaprelation “left of”. (c) Fuzzy landscape
representing the spatial relation “left af/1” (note that the usual convention in medical imaging “left is
right” is used here, and anatomically left means right ondisplayed image).

The set of healthy images is composed by the IBSR datalaasesome images from the OASIS database
(“Open Access Series of Imaging Studi€s’Manual segmentations are available for the IBSR database.
All other images have been manually segmented and tumoresggtions have been validated by experts.
These segmentations are used for learning the parametiies iiflations, and to evaluate the results.

Learning of spatial relations The modeled spatial relations are based on fuzzy intervatsre chosen
of trapezoidal shape for the sake of simplicity. They defirefunctionsf andg introduced above. The
parameters of the fuzzy intervals are learned for eactetripl, R, B) whereA and B are two objects and
R a spatial relation. The learning procedure [26] basicadiysists in defining the kernel of the spatial
relation in a way that all the targeted structures are iredlid this kernel. For example, let us consider the
relation “the putamen is on the left on the caudate nuclelis& objective of the learning procedure is to
ensure that the putamen is localized in the kernel of theioel&on the left of the caudate nucleus”.

learned function FI
& generic function Fg
n

n2/”n3 p
1.0 n'3

0.0 n'lnl nd n'4

Satisfaction

Figure 3: Fuzzy intervals of trapezoidal shape. The learpmocedure consists in defining the parameters
ni, ..., n4 in @ way that the targeted function is included in the kerri¢he representation of the function.
A relation R can be defined in a generic way (red interval) and then spéddigwo structures, andb to
represent the relationRb (blue interval).

The learning procedure consists of three steps:

e For each image of the learning database, the relation (“erieht of the caudate nucleus” in our
example) is represented with a generic functigni.e. with generic values for the relation “left of”.
Figure 4 (b) shows an example of a fuzzy subset obtain with satues.

e For each resulting fuzzy subset, we compute the satisfastitues at each point of the targeted
structure and extremal values (minimum and maximum) are kighe targeted structure is included
in the kernel of the relation, the satisfaction value at gamint is 1.00. In our example in Figure 4
(b), the putamen is not completely included in the kernel #tr@dminimum of satisfaction i68.37
(the maximum isl.00).

2Internet Brain Segmentation Repository. The MR brain data and their manual segmentations were provided by thesCent
for Morphometric Analysis at Massachusetts General Hakpiid are available at http://www.cma.mgh.harvard.edu/i

Shttp:/Avww.oasis-brains.org, built thanks to Pubmed @#rsubmissions: P50 AG05681, P01 AG03991, R01 AG021910, P5
MHO071616, U24 RR021382, RO1 MH56584



e The meann,,;, and standard deviatian,,;, of the minimum values (respectivety,.. ando,ax
for the maximum values) are computed and a new fundkibis defined with the following param-
eters:

nl =Mmin — Omin n3 =Mmax
n2 =Mmin n4 =Mmax T Omax

An example of this function is given in Figure 4 (c) and thezZysubset using this function is
displayed in Figure 4 (d). This subset presents a largeikérrhis example.

I
| )

(b) (©)

Caudate Nucleus

Figure 4: Learning the parameters of the trapezoidal fuetyich represents the relation “the caudate
nucleus is on the right of the putamen”. (b) For all images, filzzy set representing the relation is

computed with default parameters. (c) Extremal values ti$fsation at the location of the putamen are
used to computed the parameters of the fuzzy numbers. (djeldon may be computed with the new

set of parameters which shows a larger kernel in this example

Localization of a structure We define the localization of a structure as the conjunctieeging of all
spatial relations targeting a structure. This correspdodsregion of interest defined by the constraints
on a structure. The learning step ensures that an objeatatided in the support of all spatial relations
targeting this object. Therefore, each spatial relatigmesentation provides a rough localization which is
larger than the target object and includes it. Then a comjumof all spatial relations targeting an object
allows us to get a more precise localization. Figure 5 prssdye graph used in our experiments and an
example of localization.

4 Visual attention to optimize a sequence of segmentation

Visual attention is often referred to as a “spotlight” on thsual field, i.e., at a given moment, the visual
attention is restricted to a spatial area (or a number ofa¥ishjects). The exploration of the visual field is
thus sequential. The sequential segmentation framewoylbmaiewed as the progressive exploration of a
scene where the “spotlight” of the visual attention coroeg}s to the consecutive segmentation of objects
of the scene.

Visual attention was first modeled as two sequential steps: attentional step itself and a pre-
attentional step dedicated to guide the “spotlight” of aisattention by selecting the area of space to
visit. The relations between these two steps are in fact wamgplex and both steps are intertwined.

The pre-attentional mechanisms were introduced in [4] &n8,[27] as bottom-up mechanisms, com-
puted on the whole scene and using specific features compintettaneously. The pre-attentional mech-
anisms guide the attentional step by selecting “salierg&aor objects, i.e., regions which have a quality
that thrusts itself into attention. Pre-attentive feasumee characterized by the “pop-out” effect, i.e., the
detection is fast and not correlated to the number of objedtse scene. A description and examples are
presented in [28].
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Figure 5: The graph used in our experiments. Vertices reptesatomical structures and edges represent
spatial relations. Only directional relations have beepldiyed on this graph, but each edge carries other
relations as well. Below, the representation of two spatildtions carried by the edge between the lateral

ventricle (displayed in blue) and the caudate nucleus amdg$ulting localization of the caudate nucleus.

4.1 Saliency and saliency maps

Among the pre-attentional mechanisms, we focus on thersslimap, as defined by Itti and Koch [29, 30]
for 2D images. This mechanism uses three different typesesfiientional features: opposition of colors
(red vs green, blue vs yellow), intensity and orientatioGédoor filter with four different orientations). For
each feature the original image is filtered and a Gaussianpgris built from the filtered image. Basically,
the way of considering each feature is to look at discortiesiwithin each pyramid by comparing “fine
" scale and “coarse” scale. A fine scale is a scale close torijmal image. Each comparison generates
a “feature map” reflecting discontinuities for a specifictéea and with a certain scale factor. All feature
maps issued from the same pyramid are merged after normiatizato a conspicuity map (one per each
type of features, so three maps here). Finally a weightedhraBeonspicuity maps produces the saliency
maps.

The full process is described in [29] and illustrated in Feg6. We describe now the different steps
and the required adaptation to compute saliency maps on &b biRI.

Pre-processing: brain extraction Our application focuses on recognition of internal branucres.
Therefore only the brain is needed in the image. The skudl,eyes and other parts may be discarded.
Thus, the brain is first extracted from the 3D volume usingtie¢hod proposed in [31]. This allows us to
reduce the search domain so as to consider only the mosanglieformation for our task.

Pre-processing: resampling For each feature, a multi-scale analysis is performed. €Sihe original
resolution of 3D MRI is often anisotropic, a resampling toaduwne of 256 cubic voxels allows us to
compute saliency maps on a volume with a fixed size and arjsiotresolution (the choice @56 voxels

is guided by the most frequent size of the images in our datadascribed in Section 3). The chosen
interpolation method is a spline resample interpolatidt,[@vailable for 3D MRI in Brainvish

Features and filtering The original method uses three different types of featuregsensity, oppositions
of colors and orientations. There is no color in MRI. The irsi¢y feature is the same as in the original
method.

4http://brainvisa.info
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Figure 6: The generation of a saliency map proposed in [2%herieft. An image and the corresponding
saliency map on the right. The salient areas correspondetsawith a high contrast with respect to its
environment and / or geometrical structures.

For the orientation, a 3D Gabor filter is used as describe83n34]. The bandwidth parameter is fixed
to B = 0.55 in our experiments. We use the following orientations (es@land¢ in spheric coordinates):

T | | 3x b7 | 3w | Im
ONO | O | F 15| T ™| F |5 |4
0 | x
%xxxxxxxx
s
5 | x| x| x| x

Each filter is symmetric thus only a half sphere is samplee Almber of orientations is limited in order
to reduce memory usage and computation time.

Pyramids generation A dyadic pyramid is built from each filtered image for intensity andl 3 orien-
tations, sol4 pyramids). In the original method, a Gaussian pyramid i# liih 8 levels, but here, due to
the size of resampled brain MR246), we limit our pyramid to5 scales.

For intensity, we build a Gaussian pyramid where the iniakl i = 0 is the original image. At
each level, the size of the image remains the same, but th& widhe Gaussian Filterr{ is adapted:
g; = 1+ 0.5.

For the orientations, instead of a Gaussian pyramid, we &lam advantage of the parameter of the
Gabor filter, to directly produce a pyramid where each leegetesponds to a different filtering by a Gabor
filter in the same orientation. At each level, we adapt thguency of the Gabor filter, starting @y and
adding0.05 at each level. Each resulting image is then smoothed withus§an filter § = 0.5) to remove
noise.

Feature maps Feature maps are computed between “fine” scale and “coaca&® ef a pyramid. The
fine scales used to compute maps@end1. The coarse scales are the fine scales plus ajstef2, 3},
ie.,0+2,0+ 3,1+ 2,1+ 3. Afeature map is a point-to-point difference between batiles which,
in this approach, have the same size. The saliency map isutechpvith the size of the second level
(128 x 128 x 128) of the dyadic pyramid. Pyramids and feature maps are iiitestl in Figure 7 for both
intensity and orientations.
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Figure 7: Generation of a saliency map. A slice of a 3D MRI issgnted at the top left of the figure, and
corresponds to the initial level of the Gaussian pyramidt(gr) generated for intensity features. Second
line: corresponding feature maps, computed by applyingcérger-surround operatop] between fine
and coarse scales of the pyramid. Third line: “Gabor” pydhmia selected orientation and corresponding
feature maps (last line) for the same slice on the brain MRI.

Normalization There arel4 pyramids with4 feature maps each. The normalization step is therefore
very important. The normalization operafirwe use is the same operator as in the original method [35].
This operator is designed to promote maps where there arbifgwpeaks, rather than maps where there

is a large number of peaks but with the same v&lu€he normalization is achieved in three steps:

e normalize the map in a intervfll, M| with a fixed M to remove features specifics dynamics,
e compute the average value of all local maxima lower than M,
e multiply each point of the map b§/ — )2
Merging All feature maps belonging to a same pyramid are merged atlipe a “conspicuity map”. All

the conspicuity maps belonging to a same feature are alspamhé@r order to produce a unique conspicuity
map per feature type (intensity and orientation in our case)

5The normalization achieved by the operatdris not a normalization in the common sense.
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For intensity, only one pyramid is built. The conspicuitypria generated as:
Cint = BN Uee © Iep),ce € {1,2},co=ce + 6,6 € {1,2}} ,

with & a point-to-point addition ané a point-to-point difference.
For orientations, an intermediary map is generated for pgcdimid. All these maps are then normal-
ized and merged in the same fashion:

Coo=® {N(Ife’d’ O 1%%), ce € {1,2},co=ce+ 6,0 € {1,2}}

Corient = ZN(CO,qﬁ) .
0,¢

The saliency map is then generated as a weighted mean oficoitgmaps:

N(Cznt) + N(Corient)
2

SaliencyMap =

Figure 8 presents some examples of saliency maps generatedfain MRI.

IBSR 01 IBSR 02 ring

Figure 8: Some images and their corresponding saliency nfdpsomputations are done in 3D but only
one slice is presented here. Parts of the brain MRI presgatingh contrast (like the lateral ventricles,
dark structures in the center) present high saliency in theesponding image. The tumor in the example
on the right also presents high saliency.

4.2 Using focus of saliency maps as a region feature

In a sequential segmentation framework, a usual questitwe isrder of the successive segmentations. The
saliency map is a bottom-up pre-attentional mechanisngdedito guide the attentional step. Therefore,
considering a parallel between the attentional step anddgmentation step in sequential segmentation,
we propose to use a pre-attentional mechanism to guide tiraesgation process, i.e. define the best
sequence of segmentation.

Thanks to the spatial information contained in the graphameable to compute the localizations of all
structures connected to a previously segmented strucasréescribed in Section 3. The selection of the
next structure to segment is achieved by comparing thensslig each localization of candidate structures
(these localizations may overlap each other). An histogoérthe saliency map corresponding to the
localization is generated. Thus, the comparison betwesalifations is a comparison between histograms
of saliency of each region.

The computation of the saliency map described above shatsith saliency information is based on
discontinuities for several pre-attentive features. Kesmce usually a structure is easier to segment if its
border is well defined, we can assume that a structure isréasiegment than another one if its localization
is more salient.
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Comparison of localizations To compare two histograms (previously normalized), we skedbe Earth
mover’s distance (EMD) [36]. This measure gives the trartsgion cost between two distributions. If
p andgq are two probability distribution functions andl the number of bins, then the EMD measure is
defined as:
N N
emd(p,q) = min ZZamc(i,j) ,

a; jEM
o i=1 j=1

whereM = {(a;;);i; > 0,325 iy = plil, 32, i j = ¢[j]} ande(., .) is a distance between bins. For

non-circular 1D histogram, (i, j) = % then the EMD measure may be computed as the difference
between corresponding cumulative histograms [37]:

Tl P - ail "

wherep andg are two probability distributions? and(@ the two corresponding cumulative histograms and
N the number of bins.
In order to define an order between two distributions, we agfhe following criterion:

emd(p,q) =

N
s(p.q) =Y _ Pli] - Qi ,
=1
with the same notations as before. A signed EMD measure teléfvDS, is then defined as:

_Jemd(p,q) if s(p,q) <0,
emds(p,q) = {emd(p, q) if s(p,q) >0 . @

Figure 9 (a) presents cumulative histograms for the loatin of the caudate nucleus (CDI) and the thala-
mus (THI). The EMD measure between these distributionsig(C DI, T Hl) = 0.0084. With the EMDS
measure, we are able to determine which distribution pteglea most salient valuemds(CDI, THI) =
0.0084 andemds(THl,CDIl) = —0.0084. In this example, the localization of the caudate nucleus is
preferred (but both distributions are very close to eackth

A saliency-based criterion The way the localizations are generated ensures that thikdede structure

is included in the localization. However, the support ofldealization may be large (i.e. including several
other objects). For example, if the only spatial relatioaitable to define the localization of a structure is a
directional relation, then the support of the localizati®not bounded. Therefore, the more a localization
includes other parts of the image, the less the saliencyisfidibalization provides relevant information
about the targeted structure.

Since it is difficult to estimate the precision of a given liiation (before segmentation and without
information about a priori structure volume), another nueass used to evaluate the saliency of a local-
ization based on a comparison with a learned saliency bligionmod, for the targeted structur@. This
distribution is computed on the same database as beforecairesponds to the average of all the distri-
butions obtained for the segmentations of the structurkerditabase. The meamd, and the standard
deviationo,,.q, are also computed in order to center and reduce the measheedigtance between the
saliency of the localizatiori¢c,) and the learned saliencyipd,) for an objecb is estimated with a regular
EMD as:

EMD(loc,, mod,) — mod,

Omod,

3)

Figure 9 (b, c) shows the distribution computed from the liaations and the learned distribution for the
left caudate nucleus (CDI) and the left thalamus (THI). Tbkofving comparison values are obtained:
dop; = —0.089, anddrg; = 0.791.

The criterion to select the best localization is then defased

dy(loc,, mod,) =

¢o = |do(locy, mod,)| — Z EM DS (loc,, loc,,) (4)
oreV\{o}
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whereV, is the set of all candidates. The structurminimizing ¢, is selected. In the example illustrated
in Figure 9, the caudate nucleus is selected with a valyg = 0.076.

Saliency around THI

//
/ //
Y. 5
// 2 )/
loccpy VSlocT locopr VSmodepy locT i VSmodr i
(a) (b) (c)

Figure 9: The saliency map of a brain MRI and the saliency @aldbalization of the left caudate nucleus
(CDI) and the left thalamus (THI). (a) The selection amongsthtwo structures takes into account the
comparison between both saliency pdf computed from thedifatn (here the localization of CDI is
the most salient one withmds(C DI, THI) = 0.0084), but also a comparison between the localization
and the model for each structure: (b) the comparison for tBei€dcp; = —0.089, and (c) for THI:
drg; = 0.791. Finally, the CDI is selected in this example amohgtructures with a criterion value
Ccpl — 0.076.

4.3 Saliency in pathological cases

There are different types of tumors, with different visuppaarances and thus different saliency maps.
Figure 10 presents two images with a tumor and their corredipg saliency maps. The tumor in the first
case (on the left) presents a high contrast with respecstsuitrounding and to the necrotic part. The
saliency of this tumor is higher than in most of the other paftthe brain (the necrosis saliency however
is low). On the contrary, the second type of tumor is large lamthogeneous and thus does not present a
high contrast with respect to its surrounding. The saliesfais tumor is lower than the one of the brain.
For several other tumors, the saliency at the location ofuther is not higher or lower than in the brain.

5 Optimization of a sequence of segmentation

The process of sequential recognition is viewed as the sdi@qlispecialization of a generic graph to a
case-specific graph, i.e., where each node representingadonaical structure has been linked with the
corresponding region of the image. If the generic graphuithes only a part of the object represented
by the image, then the segmentation process segments @sly tbjects and parts of the image remain
unexplored.

The process is viewed as the progressive exploration ofrtfagé, starting from a reference object.
For instance, the ventricles of the brain are the referemuaetsres for the recognition of the internal brain
structures. These structures present a high contrast @sfect to the grey and white matter and may be
easily segmented in most of the cases. Furthermore, theypedsent a high saliency. Their choice as a
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Tumor Tumor
Necrosis

Salient Tumor Not-salient Tumor

Figure 10: Two pathological cases and the corresponditgnegl maps. The saliency of the tumor highly
depends of the tumor type and aspect. The tumor on the lefepte a high-saliency corresponding to the
high contrast between the tumor and its surrounding (oetsid tumor and the necrosis). The tumor on
the right is large and homogeneous. The saliency of the latteery low.

starting point for the exploration of the image is then cstgsit with an exploration of the image like the
visual system would do.

The exploration is achieved using the available spatialrmftion in the graph. The spatial relations
representations allow us to answer the following questifsom a reference object, which are the locations
in the image space where the spatial relation is satisfiedjiceam degree”. Therefore, only the spatial rela-
tions with an available (i.e. segmented) reference objectepresentable, and only the objects connected
by an edge to a segmented object have a localization thatecaotbally computed.

At each step of the process, the graph is filtered to keep teears information: two sets of vertices
and the set of edges between these two sets are defined. Tiseflr$, is the set of vertices which are
already segmented and connected to a non-segmented vidttesecond séty, is the set of vertices which
are not segmented and connected to the first set. This setieshll vertices which may be segmented at
this step of the process. The set of edgggepresents all spatial relations representable at thpsostine
process and which target a non-segmented structure. Fldupeesents the initial graph and the filtered
graph at the first step of the process.

Once the graph is filtered and thus the candidate structdeasified, their localization is computed as
the conjunction of the representations of all spatial refet targeting this structure, as presented in Section
3. The selection of the next structure to segment is achiacedrding to the criterion, presented in
Section 4.2.

Segmentation of a structure The segmentation method we use has been proposed in [2] antpsirt
of our work. We briefly present this approach here to undedsita influence on the segmentation results.

This segmentation approach uses two knowledge sourcesdi@metric estimation of the intensity
of the structure and the spatial relations targeting thacsire. These two sources of information are
heavily correlated: the radiometric estimation for thislgem is not enough to segment a structure and is
necessarily combined with spatial information, which reskithe search domain. Furthermore, the spatial
relations are used to guide and constrain the segmentatioa$s. This approach is composed of two steps.
The first step combines the knowledge to recognize the sireieind provides a rough segmentation. In the
second step, the segmentation is refined by a deformablel metteod which also uses spatial information
as an additional energy term to guide the process.

Figure 12 presents the procedure. A map corresponding teetirehed structure (here a thalamus) is
generated by thresholding the original image with the nagivic estimation. This estimation is composed
by two parameters andj which express the averageé,j and the standard deviation,( ) of the intensity
of a structureD as a function of the white matter (wm) and the grey matter (ghthis particular image:
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Initial Graph Filtered graph

Figure 11: Initial graph (for the left hemisphere only) ahd torresponding filtered graph at the first step
of the process. The reference structures (lateral veataictl third ventricle) are in the sgf, of vertices
already segmented. The caudate nucleus and the thalamimstheeset of vertices not segmenteg,.
The putamen is not connected®, and therefore is not ifvy,. The set of edge&’; includes all edges
oriented from a vertex of’;, to a vertex ofl/¢,.

Zo = Qoym + (1 — @o)Egm ando, = 50“'1“’"2#”) , as proposed in [38]. The resulting map is masked
by the spatial information, i.e., the localization of theusture as defined in Section 3, and filtered using
morphological operations, in order to reduce the searchaitoaround the structure. The largest connected
component is then identified as the structure and corresptnthe initial segmentation. A deformable
model guided by the spatial information (fully describeddi) produces the final segmentation.

. . . . Morphological Initial Final
Radiometric Map Region of interest . . .
opening segmentation segmentation

Figure 12: The process to segment a single structure prdpog2]. The first step combines knowledge
to identify the component corresponding to the structutee 3econd step refines the segmentation with a
deformable model approach guided by the spatial informatio

Both sources of information, spatial and radiometric, atecial for this approach and mutually de-
pendent: the restriction of the search domain thanks to plagiad information allows the radiometric
information to be only used to discriminate the targetedcstire and its surrounding, and not the whole
image. Errors may occur when the spatial information doé¢sahow us to reduce the search domain in
a way that the radiometric information is relevant, or whiea tadiometry of a structure does not allow
discriminating it from its immediate surrounding.

Since the intensity of a MRI changes in function of the actjois parameters, radiometric estimation
for the internal brain structure have been proposed in [88) function of the intensity of the white and
grey matter in the same image. For each structure, the radimnestimation is expressed as a couple of
parameters$a, 5) which give the mean and the standard deviation of the intedistribution of the brain
structures. For each image in our learning database, we wentipe exact parametefs, 5) plotted in
Figure 13 (on the left). In this plot, the parametepresents a large dynamic and therefore the estimation
(a mean) is inexact for several images. In order to reduceligtance between the estimation and the
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images, three different estimations have been computetiree sets of images composing our database
(IBSR, OASIS and pathological images). The obtained valaesach set, used in our experiments, are

presented in Figure 13 (on the right).

. [38] IBSR

1 « I6] «@ I6]

. CD | 0.305| 1.328 | 0.216 | 1.208
‘ TH | 0.633| 1.374 | 0.557 | 1.586
Eoe PU | 0.508 | 1.072 | 0.545 | 0.976
%t OASIS Patho. cases
os ER a 8 @ 8

o CD | 0.278| 1.398 | 0.303 | 1.693
8 TH | 0.606 | 1.152 | 0.592 | 1.483
e e e PU | 0.505| 1.024 | 0.485 | 1.341

Figure 13: Radiometric estimations for different struetiexpressed as a function of the intensity of white
and grey matters. Comparison between the values of [38]l@tetirned values on different sets of our
database.

When the radiometric estimation is not correct, the stngctaay be incomplete (a missing part), or
include its surrounding or other parts of the image. In adisthcases, an erroneous segmentation is pro-
duced and propagates through the representation of thialgddtions using this structure as a reference.
Therefore, the segmentation of a particular structure bi&® tevaluated and the process may incriminate
the previous steps when errors occur.

In the next section, we present how to assess the segmeritaticder to detect possible errors.

6 Segmentation assessment

As mentioned, during the segmentation of a particular sfire¢ errors may occur and propagate. There-
fore, the process must be able to detect errors immediatedyposteriori and to update its strategy, i.e.

backtrack and change the sequence of segmentation evéniihflies to discard previous structures seg-
mentations. To this end, two criteria are proposed here dsawa structure of control, which consists of

a tree of all current and past segmentations, used to ugdagtrategy during the process.

6.1 Criteria for segmentation evaluation

The first criterion concerns the spatial information andtrula the consistency of the structural model.
The parameters of each spatial relation are learned in a ledythe targeted structure is included in the
kernel of the relation as described in Section 3. The speiasistency criterion evaluates if this assertion
is still true once a new structure segmentation has beerdanttethe graph. The spatial consistency is not
evaluated in the whole graph at each step, but only on théaspealations using the recently segmented
structures as reference. Figure 14 illustrates how théadgainsistency is evaluated for a small graph. A
structure 8) of the graph is segmented using the spatial informatiomfsegmented structurésand?2.
The spatial relations issued from struct@r@nd targeting segmented structures are represented efianit
(presented below) allows us to compare the resulting fuabget and the segmentation, which has to be
localized in the kernel of the relation.

To evaluate the spatial consistency of a spatial relagtign targeting a structurgoy;, we compute a
fuzzy satisfiability [39] between the fuzzy subset repréisgrthe relation and the targeted structure:

Y wes Min(prer (), pov; ()

fs(Rel, Obj) = . s on (@)

; (5)

whereS denotes the image space. The fuzzy satisfiability is maxiihtlaé targeted structure is included
in the kernel of the fuzzy subset representing the relation.
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Graph at step i Generation of localizations ~ Segmentation and update Evaluation of spatial consistency

—» Representable Localization of 3 —» Representable not consistent -
- - = Not representable (from 1 and 2) - - = Not representable @ Localizati%? of 1
- - rom
QO segmented L°°f}'r'§ﬁ}'2')‘ of 4 O segmented Loca}lizati%n of 2
rom
() Not segmented (O Not segmented ( )

Figure 14: Evaluation of spatial consistency. At a stegf the process, two structure8 &nd4) are
candidate for segmentation. The localizations of bothcstines are computed using the available spatial
information (edge issuing from segmented structiraad2). The structure is segmented and the graph
is updated. The spatial relations issued from the structuee representable now, particularly relations
targeting segmented structureand2. The fuzzy satisfiability is computed between these ratatiand
the segmentation of the targeted structure. The strudtigéocalized in the kernel of the relation, so it is
spatially consistent. The structuzes outside the kernel of the relation and this is not constste

The second criterion is an intrinsic criterion which comgsthe segmentation result to a model. In fact,
due to the intrinsic variability in shape and size of theiing brain structures, this criterion compares the
learned pdf of saliency, i.e., compares if the “visual agpecthe appearance against the surrounding of
the structure is the expected one. The criterion is the EMiadce between the pdf of saliency computed
with the segmentation and the pdf learned for this strucasén Equation 3:

EM D(seg,, mod,) — mod,

Omod,

(6)

do(sego, mod,) =

whereseg, represents the saliency pdf computed from the segmentatiod, the saliency pdf learned
for this structuremmod, the mean EMD distance between each case in the databasededrtted pdf and
omod, the standard deviation of this measure.

These two criteria are used to update the strategy of chascéescribed below. We first introduce the
data structure used to keep information about the stepegdrbcess.

6.2 Segmentation tree

The previous criteria allow us to detect an erroneous stractegmentation. These errors may happen
because of the intrinsic difficulty of segmenting a struetar because of the radiometric estimation. The
error may also be caused by the propagation of previous tecigel) error. Typically, a wrong segmenta-
tion propagates because the spatial relation using thistste as a reference will be wrong too. Therefore,
we need to keep track of the history of the previous stepseoptbcess to be able to backtrack.

A tree structure, which contains information about all tagreentations done by the process, is used as
a journal of each realized sequence (even sequences fopishiiilure). The root of the tree is composed
by all the reference structures. Each node correspondsdgraentation of a particular structure (i.e. a
same structure may appear in different sequences, but nalis@egmented at a given step). The success or
failure of the segmentation is encoded in the node. Segsemitieout failure are called “active sequences”.

For each segmented structure, its localization is gergtteiag all spatial relations targeting this struc-
ture and these spatial relations use one or more referencd@wses (already segmented). Among these
structures, we denote as the “parent structure” the moshtlcsegmented structure. When a structure is
segmented, it is attached in the segmentation tree to inpatructure in the active sequence. If there is
no parent structure, then the node is attached to the robedfée.

This tree structure allows us to know during the process lwk&quence of segmentation is already
tested and therefore to avoid loops (if two sequences amalively tested with failure). It is also possible
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to easily find the untested sequences and eventually to Istoprocess without finishing if all sequences
lead to a failure.

6.3 Backtrack and path selection

In case of an error occurring during the segmentation of ectire and detected thanks to the previous
criteria, the strategy of control of the process is simpieonsists in preventing the system of trying the
same sequence, which is immediate thanks to the segmenitiege

The evaluation procedure is presented as pseudo sourcéncbigire 15. When the evaluation indi-
cates an error, the following cases are considered:

o if there is no segmentation produced (i.e. the resultingdyimap is empty), the parent segmentation
(if there is one) is discarded;

o if there is a segmentation, then the spatial consistentgrizm is tested. The fuzzy satisfiability is a
value in the interval0, 1] and a threshold is fixed 8t8. In case of failure, the parent segmentation
(if it exists) is discarded as well as the current segmeamatitherwise only the current segmentation
is discarded,;

¢ the saliency criterion is then tested. A threshold has beed &tI" = 20,,,4,. The current segmen-
tation is discarded in case of failure;

e if both criteria are satisfied, then the segmentation isjateckand the graph is updated.

STRUCTURESEGMENTATIONEVALUATION (currentStructure)

1 parent— findParent(currentStructure)
2 if (SEGMENTATIONEXIST(currentStructure)

3 then
4 evalSpaCons- EVALUATE SPATIAL CONSISTENCY(currentStructure, parent)
5 evalSaliency— EVALUATE SALIENCY CRITERIA(current Structure, model)
6 if (evalSpaCons > thresholdspacons)
7 then
8 if (evalSaliency < thresholdsaiiency)
9 then
10 ACCEPTSEGMENTATION( currentStructure)
11 else
12 DISCARDSEGMENTATION(currentStructure)
13 else
14 if (PARENTEXIST(parent))
15 then
16 DISCARDSEGMENTATION(parent)
17 DISCARDSEGMENTATION(currentStructure)
18 else
19 if (PARENTEXIST(parent))
20 then
21 DISCARDSEGMENTATION(parent)

Figure 15: Pseudo-source code of the evaluation procesls tB®current structure and its parent structure
are concerned during this procedure. The values of botriiallow to separate different cases where the
segmentation is accepted or discarded, and eventuallyatlempsegmentation is discarded too.

Figure 16 presents an example of the segmentation tredertedtif steps of the process. The right cau-
date nucleus is segmented first, followed by the right thakawith a failure. This failure discards the first
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segmentation. After successfully segmenting two streston the left (CDI and THI), the right thalamus
is segmented (but in first position this time) and then thalatainucleus, with a failure which discards the
thalamus segmentation. The segmentation tree allows sty &ind the untested configurations, and the
segmentation is finally achieved by restoring the initiglmentation of the right caudate nucleus and then
by segmenting the putamen before the thalamus.

AR/ N/ VANAN

CDr CDr CDI CDr CDI THr CDr CDI THr CDr CDI TF{\
THr THr  THI THr THI  cor/  THr  THI cDr THr PUr THL  CPr
X X
PUI THr PUI

© o ® ® ®

Figure 16: Structure of control of the segmentation resatid configuration of the process. This struc-
ture keeps information about past segmentations of stregtith different configurations to prevent the
process of trying an already known configuration and to gdisitl remaining not-tested configurations.

In the worst case, the complexity of this procedure can ba,hmce potentially the whole tree of
possible paths could be explored. However, in practice,ave lobserved that only few backtracking steps
are actually performed (see Section 7), which makes theoapprtractable.

7 Experiments on MRI images for internal brain structures segmen-
tation

In this section, we present the experiments conducted amiiges of the database described in Section 3.
The proposed method is applied on each image by computinggttaeneters of the spatial relations using
a leave-one-out procedure. We first illustrate step by $tegeégmentation process on one example. Then,
the results on the whole database are presented and contpdhede obtained with a segmentation path
defined a priori by an expert. Quantitative evaluations aowigded and the influence of the radiometric
estimations as well as of the parameters of the spatialoakis discussed. The test data base is composed
by 30 healthy cases anti pathological ones and comparisons are performed on theewdadh, except

for the comparison between structures presented in Talblbith are evaluated only on the healthy cases
(this avoids including the potential impact of a pathologytlee normal structures in this evaluation).x

7.1 Segmentation of an image step by step

As an example, we illustrate the segmentation process amage of the OASIS database depicted in Fig-
ure 17. The parameters of the spatial relations are leaméukonvhole database (healthy and pathological
cases following a leave-one-out procedure, i.e., withoasaering the processed example in the learning
step). For this experiment, the radiometric estimatiorsthie parameters proposed in [38]. In the follow-
ing figures, each illustration presents the same slice o8Me&olume (but the whole process is actually
applied in 3D). The path derived from the optimization mettamd followed during the segmentation is
the following: right caudate nucleus, right thalamus, tigltamen, left thalamus, left caudate nucleus and
left putamen. Note that the path is not the same on both sidég brain.

Figure 17 illustrates the first step of the process. For tke sasimplicity, only the structures of the
right hemisphere (i.e. on the left on the displayed imagesyepresented. For visualization purpose, and
to show the relevance of the computed localizations, thdidate structures are drawn on the localizations
in green. The localizations are computed using the spatlations to the reference structures and the
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Initial graph:
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. Candidats

Figure 17: Initial step of the process. Only the referenoacstires (lateral ventricles and third ventricle)
are segmented and represented in blue in the graph. Foctustrs are candidates for the next segmentation
step (left and right caudate nucleus and thalamus, repezsengreen in the graph). The localizations of
these structures are computed using the spatial relatidhe teference structures (only two are represented
here, as white regions, in the right hemisphere). A striedsithen selected (here the right caudate nucleus),
according to the criteria,, and segmented.

Localizations

Step 2

Step 3 —

Figure 18: Second step (top) and third step (bottom). Aftersegmentation of the right caudate nucleus in
the first step, the putamen becomes a candidate. The |aiatizd the thalamus now benefits from spatial

information related to three structures and is more pretiae in the previous step (the white region is

reduced). In the third step, the right putamen is segmented.

selection is achieved using the localization, the salienap and the criterion, defined in Equation 4. In
this example, the right caudate nucleus is selected andesggrh The graph is then updated. In the second
step (Figure 18), the putamen is now a candidate, sincednisected to a segmented structure, the caudate
nucleus. The localizations of the candidates are compitaellocalization of the thalamus is not the same
as in the previous step since it now benefits from the spatiations to the caudate nucleus, which leads to
a more precise localization. It is selected as the nextsireto be segmented. After its segmentation, the
localization of the putamen is recomputed and also benefita iew spatial relations (to the thalamus).
The putamen is then selected and segmented. At each stepgimested structure is labeled as such in
the graph (in blue in the figures) and the graph is updatedtwémew candidate structures. The process
then goes on with the other structures. The whole segmentaéquence is finally the following: CDr,

Figure 19: Final segmentation after six steps of the profass axial slice and one coronal slice are
displayed): all structures have been successfully reeegrand segmented.
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THr, PUr, THI, CDI, PUI. The flexibility of the path optimizan and its adaptive feature depending on the
data are clear here, since the optimized sequence is theasatime one used in [2] in the right hemisphere,
while it is different in the left one. The final results are ggated in Figure 19, showing that all structures
are well recognized and segmented.

7.2 Comparison with a fixed path

In this section, we compare the results obtained with thiféerdnt approaches, on the healthy cases of the
database:

1. a priori defined path, called “expert path”, where the e@ducleus is segmented first, then the
thalamus and finally the putamen in both hemispheres, ag.iitlfis path is used for all images and
not adapted to each case. Note that with this method, if ar eocurs, it may prevent the correct
segmentation of other structures in the same hemisphere;

2. proposed optimized path, computed for each individusg cand therefore potentially different from
one image to another one. Note that the only difference vaighfitst method is the order in which
structures are segmented and the possibility to backtrack;

3. proposed optimized path and modified segmentation scheimga simple “belief revision” scheme:
when a structure is segmented and accepted, the resultjngeseation is used to recompute the
parametersr and 5 (see equations in Section 5) used for the radiometric estin® A new seg-
mentation of the same structure is achieved and if the nemaetation improves both evaluation
criteria, it replaces the previous segmentation.

Figure 20 presents a comparison between the three methedsergtial segmentation following an
expert path, an optimized sequence and the optimized segueéth belief revision. In the left hemisphere,
the path followed is the same for all approaches and resrtdt&dantical for the expert path and for the
optimized one. With an additional belief revision approdtie numerical evaluations are better for the
segmentation of two structures. In the right hemisphere,ségmentation according to the expert path
fails to segment the caudate nucleus: the procedure predusegmentation, but it is not correct and the
structure is mis-recognized (with a part of its tail and tlelpart of the thalamus) and thus the other
structures cannot be segmented. With an optimized paththtlamus is first segmented and then the
caudate nucleus is segmented with success. Finally thenpatés segmented. As shown in this example,
our approach allows detecting the mis-recognition of tigatrcaudate nucleus and adapting the path by
backtracking on the segmentation ordering, in order toamhy recognize and segment all structures.

7.3 Segmentation evaluations

In order to provide a quantitative evaluation of the resulie mean distance between the obtained seg-
mentation and a manual segmentation is computed for eagttigte. An average value is then computed
for each structure over all healthy images in the databas®eT. presents the obtained values. The results
show that the mean distance for the caudate nucleus is béttean optimized path. An explanation is
that with the expert path, the caudate nucleus is always aetg in first place and thus with less spatial
information than a structure segmented later on in the sesuéOn the contrary, in the proposed approach,
the caudate nucleus may be segmented later on in the optireézpience, and is then likely to be better
segmented. The mean distances obtained for the othenseaetre similar for all paths, with no significant
difference.

Table 1 also presents the total number of segmentationdmpetige over the 30 healthy cases of the
database. There is a similar number of caudate nucleus séggioas for all paths. However, there are
more thalamus and putamen segmentations (and particolathe right side without any evident reason).
The number of caudate nucleus segmentations is relatee tordler followed by the expert path, i.e. the
caudate nucleus is always segmented in first position. mdase, there is no backtrack of the process,
thus an erroneous segmentation of the caudate nucleusnpsdlie segmentation of the other structures
but cannot be discarded (note that in the latter case, tbe@wsus segmentation appears in the number of
segmentations of the caudate nucleus). Figure 20 preseetsample of an erroneous segmentation.
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(a) Expert path:

V fi Lvr M
. =
" ‘ V3

Segmentation path: CDI CDr THI PUI

(b) Optimized path:

Segmentation path: THr CDr CDI THI PUr PUI

(c) Optimized path with belief revision:

Segmentation path: THr CDr CDI THI PUI PUr

Numerical evaluation of structure segmentations (mean dtance):
CDI | THI | PUl | CDr | THr | PUr
expert path | 4.13| 0.95| 2.62| 26.9| NS | NS
optimized path | 4.13| 0.95| 2.62| 0.63 | 2.34 | 2.87
w. belief revision | 0.94 | 1.01| 2.49| 0.64 | 2.34 | 2.91

Figure 20: Comparison between sequential segmentatilos/fiog an expert path (a), our approach (b),
and our approach with belief revision (c). Values of the twitecia are given in the graph (spatial consis-
tency on edges and saliency on vertices). In the left hersigplthe same path is followed in (a) and (b)
and thus the numerical evaluations of each structure segtimmare the same. With belief revision, the
numerical evaluations of the CDI and the PUI are better, #ightsy higher for the thalamus. In the right
hemisphere, different paths are followed. The expert pagiments the caudate nucleus (with errors) and
fails to segment two structures, while the other approaskgment all structures correctly. The numerical
evaluation of the caudate nucleus is significantly better.

For each image the average value of the mean distances cednfjoutall structure segmentations is
calculated. The mean of these values overdthénages of the database is presented in Figure 21 for the
three methods. On the left, the average mean distancespaeseated with box plots (1: expert path, 2:
optimized path, 3: optimized path with belief revision). eTapper quartile and largest observation are
higher, while the lower quartile and the median values arglai. Extremal values are also higher with
the expert path. This indicates that the segmentation withpimized path allows us to correct the largest
errors of segmentation but does notimprove the other seti@ms. The optimized path allows us to detect
recognition errors and inconsistencies and to proposetegir to avoid errors. Note that the precision of
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Table 1: Numerical evaluations of segmentation results.each structure, a comparison with a manual
segmentation is realized and the mean distance is compAtedverage of these distances is computed
for each structure over all healthy cases in the database.s&fpmentation scheme is the same for each
structure segmentation. The differences consist of thgadjraformation used as an input to the segmen-
tation method. The average mean distance (AMD) for the daudzcleus is higher with the expert path,
since it is always segmented first and thus with less spafiefmation. The mean distances of the other
segmentations are similar for all methods.

Struct Expert path Optimized path | Optim. path + belief revisiorn
#segm.| AMD | #segm.| AMD | # segm. AMD
CDI 30 1.69 30 1.64 28 1.30
CDr 30 4.63 29 2.20 29 1.49
THI 27 1.90 27 2.25 28 2.39
THr 23 2.36 27 2.71 27 2.30
PUI 26 3.21 27 3.11 27 3.03
PUr 22 3.28 26 3.43 27 3.42
o + ' expert | saliency| belief
F. - ) #images| 44 44 44
. AMD 5.024 | 3.545 | 3.514

T
: ‘ | ==

Figure 21: Numerical evaluations of segmentation resattexpert path, 2: optimized path, 3: optimized
path with belief revision). The table on the right presetis &verage of all numerical evaluations of
segmented structures in all images. The average meanaigtAiD) is lower for an optimized path than
for the expert path.

the segmentation of a structure mainly depends on the claggepach for the final segmentation (here the
deformable model proposed in [2]). On the right of FiguretB#&,results show a better average numerical
evaluation when the segmentation is performed with an apgidpath than with an expert path. The belief
revision step further improves the results, but only sligit average.

Considering the whole data base (healthy and pathologisas), the number of segmented structures
is larger with our sequential segmentation framework withoptimized sequence than with the same
framework but following an expert path. This result showat tthe dynamic path selection allows us to
recognize and segment more structures. Table 2 presesésvaleles as well as the number of path changes
needed to achieve the segmentation. The criterion evafytité spatial consistency is more often used than
the other criteria. This shows the relevance of this cioteriOn the one hand, this result is consistent with
the important usage of spatial information to guide the pssmf each structure’'s segmentation. On the
other hand, we choose not to rely on intrinsic features ofsthecture to segment and thus the saliency
criterion used to evaluate the segmentation result is iegant.

Figure 22 presents the different sequences of segmentatibrthe number of occurrences of each
sequence, at the end of the segmentation process, i.e. dhpdih, after potential backtracking, on healthy
and pathological cases. The repartition shows that the frezgient path is the expert path, but other paths
are also used. This is an expected result for our approach.
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Table 2: Quantitative evaluation of segmentation resultfie44 images of the databasg)(healthy and 4
pathological ones). Values on top represent the final tatailrer of segmentations realized by the process.
There are264 structures in total and our approach allows us to segmeng stanctures than a sequential
segmentation following an expert path (there are lessrilu The spatial consistency criterion is more
often used than the saliency criterion. In the bottom pattietable, the number of accepted segmentations
against the final number of segmentations shows the numizetagitations of the path needed to achieve
the segmentations.

expert| saliency| belief
# segmentations correctly segmented structures 209 224 233
failures 55 40 31
saliency 2 6 13
Criteria spatial consistency 21 79 65
both 2 3 3
accepted 209 309 309
failed (no result image produced) 10 12 16
Segm statg discarded (itself) 2 6 13
discarded (as parent) 0 85 76

R R
15/ \ 3 19 / \ 3
iOCDI THI 2 g CDr THr 3
1 expert

2/ }« )/1\ 3/ \1\ /1\ 1 saliency
THI  PUICDI PUl  THr “PUICDr  PUr 1 belief
32¢ 3 27 6
15PUl TOTHIPUIS CDIZ 13PUr  gTHIPUr; CDrg
22 17

Left Right

Figure 22: Distribution of the segmentation sequences.ekpert path (CD, TH, and then PU) is the most
frequent path, but other paths are followed when neededs iShionsistent with what is expected from
the optimization procedure, which adapts the path whenawextcording to the data. There are also less
unfinished paths with one or two missing structures, whidhiciates that the followed path allows a better
segmentation based on this criterion.

7.4 Influence of radiometric estimation

In order to estimate the influence of the radiometric esimnadbn the segmentation, experiments have
been conducted with parameters estimated on differentoféteages. The first couple of parameters
(o, B), called “exact”, is computed on the same image with a maregthentation. The second experi-
ment is achieved with the values presented in Section 5,enherlearning database is separated in three
sets: IBSR, OASIS and pathological cases. The third exmaimses the parameters described in [38].
Remember that the parametecorresponds to the average intensity value of a structut¢henparameter

[ corresponds to the standard deviation. Both parameteexpressed as function of the intensity of white
and grey matter.

Examples from the resulting segmentations are presentEdjure 23. The segmentations achieved
with the “exact” parameters are not the best segmentatidhs. parameters learned on three subsets of
our database (following a leave-one-out procedure) gigebtkst results for the four cases presented here.
However, the differences between segmentations of the saage with different radiometric estimations
show the influence of these parameters.
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OASIS 01 OASIS 02 IBSR 2

(a) Exact

(b) Three
learning sets

(c) Poupon’s
values [38]

Figure 23: Comparison of sequential segmentations witlonaeltric estimation learned on different sets
of images (two examples of the IBSR data base, two of the OAlat8base and one pathological case,
with a ring-shaped tumor). (a) Segmentation results obthimith “exact” parameters. (b) Results using
parameters computed on a clustered database and used itheuexperiments. (c) Sequential segmen-
tation using the parameters proposed in [38]. The “exaatap&ters do not give the best results. Tthe
parameter is a mean of the intensity values and it is impbttet this estimation reflects the intensity of
the structure but also discriminates it from the other stmes.

7.5 Influence of the learning of spatial relation parameters

Finally, we propose to analyze the influence of the pararaaitthe spatial relations by applying the
proposed approach to the same image and using the same s$atiomescheme (with an optimized path
without belief revision), but with different parameters the spatial relations. The purpose of this experi-
ment is to establish whether the results are improved whesghtial relations are more precise, or if the
imprecision of the spatial relation does not impact theltesu

Three experiments are carried out with parameters learnatifferent sets of images. The default
set (denoted bwil) is the whole learning databasgd(images) including both healthy and pathological
cases (with a leave-one-out procedure). A smaller and mamgobeneous set (denoted hyalthy) is
composed by th&0 healthy images only (with a leave-one-out procedure todhally, an experiment
denoted byezact is achieved with parameters derived from the manual segtientof the image, i.e.
exact parameters for this image.

Slices from the resulting segmentations are presentedgar&i24. The first row presents the seg-
mentation obtained withxact parameters and these segmentations are sometimes imnabedother
experiments. The segmentation results are not improvea whkiemg more precise spatial relations. On
the contrary, the larger learning set, which allows a mondlfle spatial reasoning, provides the best re-
sults. This is a very encouraging result, since it showstti@variability is well taken into account by the
proposed approach.
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(a) Exact

(b) Healthy

(c) All

Figure 24: Comparison of sequential segmentations witmieg of the spatial relation parameters on
different sets of images. (a) The parameters are “exa€t’,learned on the segmented image only. (b)
The parameters are learned on all healthy cases of the datéimamogeneous set). (c) The parameters are
learned on the whole database (healthy and pathologica$)ashis experiment shows that more precise
spatial information does not necessarily provide bettsulte, and even sometimes worse. The intrinsic
imprecision of the spatial relations provides the necgsexibility for spatial reasoning.

8 Conclusion

In this paper we addressed two important problems in se@legigmentation. The first one is related
to the choice of the order in which structures are segmenifi@dsolve this problem, we proposed to
optimize a criterion combining saliency information cortgmliin each image to be processed and generic
structural information about the spatial relations betwsguctures, derived from an anatomical model.
This contribution extends the framework developed in [Zheve the segmentation order was fixed in an
ad-hoc way and was the same for all processed cases. Thesprbpgatimization procedure allows reducing
the number of segmentation failures by adapting the segtientorder to the specificities of each image.

Furthermore, the proposed criterion involves a number cdpaters, related to the definition of spa-
tial relations and to radiometric information. We have megd a learning procedure to estimate these
parameters, thus avoiding tedious manual fine tuning.

The second problem related to sequential segmentatioreisnfluence of a potential error on the
subsequent steps of the process. We proposed an originabdhtet control the result obtained at each
step, and its consistency with respect to the model. Aduillyg, we developed a backtracking procedure,
which allows, in case an error is detected, to change theeeigtion order and to choose another strategy.
From an algorithmic point of view, the efficiency of the prepd method is ensured by a tree structure
which keeps trace of all segmentations and already explpatids. The experiments have shown that
this control and backtracking process is efficient and adleeagmenting more structures in a correct and
consistent way.

In the proposed method, some steps could be easily replacethbr ones. For instance the final
segmentation, which follows the approach in [2], could b@laeed by another method such as minimal
surface or level sets for instance. Similarly, the compaoredf saliency could include other features.

The proposed approach shows that image analysis and iatatipn can benefit from visual attention
models. The proposed optimization relies on a structuralehimvolving spatial relations, which implies
that some expert prior knowledge is available to build thsdel. This is the case for the considered
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example in brain imaging. Further work could investigaie tiipe of approaches in the case of imprecise
and/or incomplete knowledge description of the scene.
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