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Abstract

Object class segmentation (OCS) is a key issue in semantic scene labeling and under-
standing. Its general principle consists of naming object entities into scenes according to
their intrinsic visual features as well as their dependencies. In this paper, we propose a
novel superpixel-based framework for object class segmentation using conditional random
fields (CRFs). The framework proceeds in two steps: (i) superpixel label estimate; and
(ii) CRF label propagation. Step (i) is achieved using multi-scale boosted classifiers over
superpixels and makes it possible to find coarse estimates of initial labels. Fine labeling
is afterward achieved in Step (ii), using an anisotropic contrast sensitive pairwise function
designed in order to characterize the intrinsic interaction potentials between objects accord-
ing to 4-neighborhoods. Finally, a higher-order criterion is applied to enforce region label
consistency of OCS. Experimental results demonstrate the effectiveness of the proposed
framework.

Résumé

La segmentation d’images en objets est une étape importante dans le processus
d’étiquetage et d’annotation d’images. Son principe général consiste à nommer
des entités d’objets dans les scènes en fonction de leurs propriétés visuelles ainsi
que leurs dépendances. Dans cet article, on propose ne nouvelle approche de seg-
mentation et d’annotation d’images basée sur les champs conditionnels aléatoires.
L’approche procède en deux étapes: (i) extraction et étiquetage des superpixels, et
(ii) propagation des étiquettes. L’étape (i) est effectuée en utilisant des classifieurs
multi-échelles boostés, et permet d’obtenir une estimation grossière des étiquettes.
L’étape (ii) permet de raffiner ces étiquettes en utilisant une fonction anisotrope
sensible aux changements de contraste et permet ainsi de caractériser les inter-
actions entre objets selon quatre directions préférées. Enfin, un critère d’ordre
supérieur est appliqué afin de renforcer des étiquetages sur certaines régions plutôt
que d’autres. Les résultats expérimentaux démontrent clairement les bonnes per-
formances de l’approche proposée.

c©2010 Xi Li and Hichem Sahbi.
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1. Introduction

Object class segmentation (OCS) is a fundamental and challenging problem in computer
vision. It has many potential applications including object recognition and image retrieval.

Most of the OCS methods are considered as labelling problems working either on indi-
vidual pixels or on constellations of spatially homogeneous ones, referred to as superpixels.
Accordingly, state of the art methods may be categorized depending on their partitioning
strategies; some of them perform label prediction directly at the pixel level (1) (as the
finest partitioning), while others rely on superpixels (2; 3; 4; 5), and variants of them using
grouping and intersection (6; 7).

The aforementioned two kinds of methods have their own advantages and weaknesses.
In general, pixel-based OCSs are capable of accurately characterizing object boundaries.
However, the limited amount of information (color), contained into pixels, is not enough in
order to determine their corresponding object labels precisely. Furthermore, computational
cost of pixel-based OCS is very expensive. In comparison, superpixel-based OCSs are able
to capture rich shape and texture contextual informations, which are crucial for object la-
bel prediction. Moreover, they are computationally efficient, which is very important for
practical applications. Nevertheless and resulting from their coarseness, superpixel-based
methods are not suitable in order to delimit object boundaries with high precision. In order
to address this issue, existing methods are based on tree-structured graphical models for
multi-scale image segmentation, and make belief propagation reasoning between parent and
child nodes (8).

Considering superpixel-based OCS approaches, two sub-categories of methods may be
found. The first one is based on the use of irregular superpixel lattices (9), while the other
considers instead regular ones(10). Based on spatial location (and also color, and texture
distributions), methods using irregular lattices use unsupervised segmentations (11; 12) as
initialization. However, segmentation performances (11; 12) are known to be highly depen-
dent on the setting of the underlying parameters. In contrast, methods based on regular
lattices consider image patches, generated from uniform image subdivisions. Consequently,
they are very easy-to-set and computationally efficient with no need of a priori segmenta-
tion. Moreover, they are convenient in order to capture multi-scale object informations by
adjusting dimensions of image patches.

In addition, another key issue of OCS is how to model pixel dependencies. Previous work
on this aspect mainly uses Conditional Random Field (CRF) models in order to learn the
conditional distribution over the class labeling. In general, the CRF model can be decom-
posed into unary and interaction potential functions. The former measures the likelihood
of a pixel belonging to a particular class, while the latter encodes the dependency informa-
tion which enforces label consistency among neighboring pixels, resulting into a shrinkage
bias (9). The most widely used interaction potential function is formulated as a pairwise
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Figure 1: Illustration of superpixel classification.

one (1). But the pairwise CRF formulation suffers from its weakness in characterizing
high-order dependencies between pixels. To address this problem, Kohli et al. (9) propose
a robust PN model, which is a novel family of higher-order potentials containing the Pn

Potts model as well as its robust variants. However, the robust PN model heavily relies on
a priori mean shift-based object segmentation whose computational cost is known to be ex-
pensive, especially for high-resolution images. Besides, different parameter configurations,
for the used kernels in the mean shift algorithm, may produce different segmentation re-
sults. Following the previous statements, it is impractical to directly use pixel-based object
segmentations in order to construct higher-order interaction potential functions. Instead,
simple and efficient superpixel-based segmentation turns to be more feasible.

In this paper, we propose a novel framework for object-driven image segmentation and
labeling. The framework takes advantage of a higher-order conditional random field (CRF)
in order to capture the spatial contextual informations of superpixels. The main contribu-
tion of the method is three-fold. First, an anisotropic contrast sensitive pairwise potential
function is designed in order to characterize dependencies between superpixels in the 4-
neighboring directions, resulting into a more accurate segmentation. Second, a higher-order
region consistency criterion is introduced in order to produce smooth segmentations. Fi-
nally, further post-processing operations (including region merging) are also considered in
order to refine segmentation results.
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2. Conditional random field

Given N lattice points V = {1, . . . , N}, a discrete random field X = {X1, . . . , XN} is defined
as a set of random variables. Each lattice point i ∈ V corresponds to the random variable Xi

which takes a value from the label set L = {1, . . . ,K}. A clique c is defined as a collection
of conditionally independent random variables, indexed by c as Xc. Let x = {x1, . . . , xN}
denote a possible label assignment for X (i.e., Xi= xi ∈ L), and y={y1, . . . , yN} denote
the observation data (superpixels). A conditional random field (CRF) is associated with
the posterior distribution Pr(x|y) (13), which can be expressed in the form of a Gibbs
distribution: Pr(x|y) = 1

Z exp(−
∑

c∈C ψc(xc)), where Z is the partition function, C denotes
the clique set, and ψc(xc) stands for the potential function associated with the clique c, s.t.
xc = {xi|i ∈ c}. Consequently, we have the following Gibbs energy function:

E(x) = −log Pr(x|y) =
∑
c∈C

ψc(xc) + logZ. (1)

The optimal solution x∗ can be computed by: x∗ = arg max
x∈LN

Pr(x|y) = arg min
x∈LN

E(x).

3. The segmentation framework

3.1 Superpixel classification

In our framework, we first generate multiple superpixels (also named patches) at different
resolutions by uniform image subdivisions. Each patch corresponds to a particular scale
denoted as s×s where s ∈ {5, 10, 15, 20, 25} in practice. Let ys = {ysi } be the observation
set at scale s, and xs = {xsi} denote the corresponding label set (each xsi belongs to L).
Adaboost classifiers are trained in order to evaluate the likelihood of a superpixel belonging
to a given object class. For convenience, let Hs(k|ysi ) denote the output score of the learned
k-th class Adaboost strong classifier making an additive combination of several decision
stump-based weak learners. As a result, we have a tree-structured classification model
which allows passing messages between parent and child nodes. The topology of the tree-
structured classification model depends on the locations of superpixels. Namely, a child
superpixel is connected to a parent one which contain it (i.e., maximal pixel overlap). For
instance, given an observation y5 and its label x5 at the finest resolution, its corresponding
parent nodes are denoted as y10 , y15 , y20 , and y25. Namely, y5 inherits y10, y15 , y20 , and
y25. In this way, the posterior distribution over x5 is defined as:

h(x5) = Pr(x5|Y) =
∑
s

(
ωsexp

(
Hs(x5|ys)

)∑
k exp (Hs(k|ys))

)
, (2)

where Y = {y5, y10, y15, y20, y25} and
∑

s ωs = 1 (s.t.
∑

s ωs=1 and ωs ≥ 0). Consequently,
the initial labels of superpixels may be determined by maximizing h(x5). Fig. 1 gives an
intuitive illustration of superpixel classification. In what follows, x5 = {x5

i } and y5 = {y5
i }

are referred to as x = {xi} and y = {yi} respectively.
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3.2 Higher-order CRF model

A conditional random field (CRF) model with higher-order potential functions is applied to
model the spatial contextual dependencies of superpixels. It consists of three terms: 1) a
unary potential term; 2) a pairwise potential function; and 3) a higher-order criterion. The
unary potential function (denoted as ψi) is defined as a linear combination of classification
scores referred to in Eq. (2):

ψi
(
k
)

= uTk hi, (3)

where hi = [h(1) . . . h(K) 1]T , uk denotes a vector of parameters, and uTk is the transpose of
uk. The pairwise potential function ψij(xi, xj) is composed of four contrast sensitive Potts
models in the corresponding 4-neighboring directions:

ψij(xi, xj) =
{

wT
npij if xi 6= xj and ξij = n

0 otherwise,
(4)

where pij = [S(yi, yj) 1]T with S(·, ·) being a function for evaluating the similarity be-
tween two feature observations (see Eq. (10)), ξij is an indicator variable determining
the neighboring relationship of superpixels i and j, n ∈ {0, 1, 2, 3} corresponding to the
{up, right, down, left} neighboring directions, and wn is the model parameter vector in the
neighboring direction n. Let g denote a group of superpixels. We define our higher-order
potential function ψg(xg) as:

ψg(xg) =

{
γ if F(xi)

|g| > 0.9
0 otherwise,

(5)

where i ∈ g, γ is a pre-defined constant, F(xi) denotes the number of superpixels whose
labels are xi in g, and |g| represents cardinality of g. Note that g belongs to a partition of
superpixel groups generated by applying the unsupervised segmentation algorithm (14) to
the superpixels of the input image (each superpixel is represented by its mean RGB color).
Now, we define our CRF energy function E(x) as:

E(x) =
∑
i∈V

(µ(xi,xNi |y) + logZi) , (6)

where Ni denotes the 4-neighboring clique of i, µ(xi,xNi |y) integrates the aforementioned
three terms of our CRF model:

µ(xi,xNi |y) = ψi(xi) +
∑
j∈Ni

ψij(xi, xj) + ψg(xg), (7)

and Zi is a normalizing constant formulated as:

Zi =
∑
xi∈L

∑
j∈Ni

∑
xj∈L

exp (−µ(xi,xNi |y)) .

In our CRF model, the model parameters uk and wn need to be learned using training
data. A simple gradient descent method can be used to minimize E(x):

∂E(x)
∂uk

=
∑
i∈V

∑
xi=k

(
1−

P
j∈Ni

P
xj∈L

exp(−µ)

Zi

)
hi, (8)
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Figure 2: Illustration of region merging for segmentation refining.

∂E(x)
∂wn

=
∑
i∈V

∑
j∈Ni
ξij=n

(
1−

P
xi∈L

P
xj∈L

exp(−µ)

Zi

)
pij , (9)

where µ is the shorthand form of µ(xi,xNi |y).
As for maximum a posterior (MAP) inference in our CRF model, an algorithm called

Iterated Conditional Modes (ICM) (15) is used to iteratively maximize the local condi-
tional posterior given an initial label configuration (obtained by superpixel classification
in Sec. 3.1). If the segmentation performance is still dissatisfactory, we can resort to re-
gion merging for segmentation refining. For example, considering a region R containing
M superpixels (i.e., R = {yi}Mi=1), there is another region R′

containing Q superpixels
(i.e., R′

= {y ′j}
Q
j=1). R is merged into R′

if the following three conditions are satis-
fied: 1) R is adjacent to R′

; 2) the cardinality of R is smaller than that of R′
; and 3)

1
M

∑M
i=1

(
max

1≤j≤Q
S(yi, y

′
j )
)
> τ where τ is a threshold, and S(·, ·) is a similarity function of

any two superpixels (referred to in Eq. (10)). Fig. 2 gives an intuitive illustration of region
merging in order to refine segmentation.

4. Experiments

Data set and representation. we evaluate the performance of our method using the
Microsoft Research Cambridge (MSRC) database1, including 240 images of 9 object classes.
We consider uniform image subdivisions at multiple scales, resulting in a regular grid of s×s
superpixels per scale (s ∈ {5, 10, 15, 20, 25}). Given a scale s, for each superpixel, we extract
basic image features, including color, texture, and shape. More specifically, the color feature
fCs ∈ R39 is the concatenation of a mean RGB vector and a 36-bin histogram which measures

1. http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Figure 3: Segmentation performances of three different methods.

the distribution of the hue component of HSV colors in the superpixel. The texture feature
fTs ∈ R40 is the mean of the Gabor filter response at 8 orientations and 5 scales, estimated
on all the locations of the superpixel. The shape feature fSs ∈ R24 is the mean of the 2D
log-polar shape contextual histograms (at 8 orientations and 3 scales), taken from different
locations in the superpixel.

We denote the global superpixel feature as fs =
(
fCs f

T
s f

S
s

)
∈ R103 and we define the

similarity function S(fs, f
′
s) as:

exp
(
− α‖fCs − fC

′

s ‖2 − βHI2(fSs , f
S′

s )− λ‖fTs − fT
′

s ‖2
)
, (10)

here HI(·, ·) denotes histogram intersection and (α, β, λ) are respectively set to (0.01, 0.5, 2.0).
In Eq. (2), ωs is set to 0.2. The threshold γ (referred to in Eq. (5)) is set to a very small
value (γ = −105 in practice) while the merging criterion threshold τ is set to 0.6.

Comparison. we compare our CRF model with two baseline ones: 1) an orientation-
driven CRF model (OCRFM); and 2) a basic CRF model (BCRFM). OCRFM’s energy func-
tion contains the unary and the pairwise potential functions (i.e., Eqs. (3)-(4)). BCRFM,
commonly used for object segmentation, is characterized by its energy function also defined
on unary and pairwise superpixel cliques. Its unary potential function has the same form
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as OCRFM. But its pairwise potential function does not consider directional information
between neighboring superpixels while OCRFM does.

Performance on MSRC. MSRC dataset is randomly split into 70% for training and
30% for testing. Fig. 3 shows segmentation (and annotation) results for different methods.
Intuitively, Fig. 3 shows that our method performs a more accurate segmentation. Fig. 4
reports false negative (FN) and false positive (FP) rates for different methods, and for each
class. Quantitatively, the average FN rates of BCRFM, OCRFM, and our CRF model are
0.1187, 0.1149, and 0.0797, respectively, while the average FP rates of BCRFM, OCRFM,
and our CRF model are 0.2995, 0.2485, and 0.2507, respectively. As is known to us, balanc-
ing FN and FP is an important criterion for segmentation performance evaluations. Thus,
we introduce a quantitative evaluation criterion: F = FN/(1−FP). The smaller the value
of F , the better the segmentation performance. According to this criterion, the average
F s of BCRFM, OCRFM, and our CRF model are computed as 0.1752, 0.1521, and 0.1079,
respectively. Consequently, our CRF model achieves the best segmentation performance.

5. Conclusion

In this paper, we introduced a framework for object segmentation and annotation based on
a high-order CRF model in order to capture spatial contextual dependencies of superpix-
els. First, unary potential functions are trained, at multiple scales, using Adaboost; these
functions measure the likelihood of superpixels given object classes. Then, an anisotropic
pairwise potential function is introduced and makes it possible to capture superpixel depen-
dencies at 4 different neighboring directions. Finally, region label consistency is enforced us-
ing a higher-order potential function based on superpixel grouping. Experiments conducted
on the standard MSRC database, clearly show the good performance and the substantial
gain of our framework.
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