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On the numerical inversion of the Laplace Transform in the

context of physical models with realistic damping

Th. Hélie, D. Matignon and K. Trabelsi

Résumé/Motivation

Ce rapport technique porte sur les recherches menées sous le thème Optimisation numériques de

modèles physiques avec amortissments réalistes pour la synthèse sonore en temps réel et financées

par le projet CONSONNES (CONtrôle de SONs instrumentaux Naturels Et Synthétiques). Le con-

texte de ce travail est la simulation en temps réel des résonateurs d’instruments à vent. Quelques

modèles physiques réalistes comme, par exemple, l’équation des ondes avec pertes visco-thermiques

dans un pavillon (modèle de The Webster-Lokshin, cf. [63]; voir aussi [45], [46] et [37]), exhibent

des fonctions de tranfert non standard avec des poles, des points de branchement et des coupures

dans les demi-plan gauche de Laplace, ce qui a pour effet, dans le domaine temporel, de produire

des réponses impulsionnelles dites à mémoire longue dues à l’ammortissement non purement ex-

ponentiel. Une conséquence directe de ce phénomène est le besoin de simulation pour des temps

longs. De plus, les réponses temporelles pour ce type de système s’obtiennent par inversion de la

transformée de Laplace ce qui rajoute un deuxìeme probl̀eme numérique puisque l’exponentielle est

très oscillante sur la droite de Bromwich.

Au fil des années, des méthodes ont été mises en place pour traiter le probl̀eme de l’inversion

numérique de la transformée de Laplace. L’efficacité de la plupart d’entre elles dépend de cer-

tains paramètres qui sont régĺes heuristiquement. De plus, beaucoup d’entre elles ne sont pas

adaptées aux fonctions de Green non standard qui nous intéressent. A notre connaissance, les

algorithmes les plus efficaces peuvent être classés selon quatre approches. La premìere est basée

sur le développement en séries de Fourier. La seconde utilise des méthodes de collocation. La

troisìeme est fondée sur une idée de Talbot [75] qui consiste à déformer le contour de Bromwich

afin de faciliter l’intégration numérique. La dernìere méthode, plus récente, vient de l’automatique

et du contrôle, et consiste à approximer des représentations intégrales diffusives du système. Les

deux dernìeres approches semblent plus efficaces et adaptées à nos besoins. Ainsi, nous avons suivi

ces deux pistes avec pour but l’obtention de déformations optimales du contour de Bromwich afin

d’impĺementer des algorithmes qui sont au moins aussi performants que l’approche diffusive tout

en ayant l’avantage d’être automatisés, évitant de la sorte tout réglage heuristique de paramètre.

Abstract/Motivation

This technical report sums up the research carried out under the title: Numerical optimisation of

physical models with realistic damping for real-time sound synthesis which was supported by the

CONSONNES (CONtrôle de SONs instrumentaux Naturels Et Synthétiques - in english: Control

of natural and synthetic instrumental sounds) project. The context of this work is the real-time

simulation of wind instrument resonators. Some realistic physical models as, for instance, the

wave equation with viscothermal losses in a flared duct (The Webster-Lokshin model, cf. [63]; see

also [45], [46] and [37]), possess non standard Green (transfer) functions with poles, branchpoints

and cuts in Laplace’s left halfplane, which entails, in the time domain, impulse responses that
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decay slowly due to the non-purely-exponential damping. This accounts for the the long memory

label tagged to such a model. A straightforward consequence to this phenomenon is the need of

simulation for long times. Moreover, the time responses to such systems are obtained through

the inversion of the Laplace transform which adds a second numerical issue, since the exponential

factor is highly oscillatory on the Bromwich line.

Over the years, methods have been devised to deal with the numerical inversion of the Laplace

transform. The efficiency of most of these depends on some parameters that are tuned heuristically.

Furthermore, most of them are not adapted to the nonstandard Green functions we are concerned

with. To our knowledge, the most efficient algorithms may be divided along four directions. The

first one is based on Fourier series expansion. The second one uses collocation methods. A third

procedure is founded on Talbot’s idea [75] which consists in deforming the Bromwich contour

into a curve that allows for a better numerical integration. Last but not least is an approach

that comes from automatic control and which consists in the approximation of diffusive integral

representations of the system. The last two approaches seem more efficient and suitable for our

purposes. Therefore, these were the tracks we investigated with the goal of obtaining optimal

deformations of the Bromwich contour so as to work out algorithms that are at least as good as

the diffusive approach with the advantage of being automatic, i.e., without parameters that have

to be tuned or whatsovever.
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1 How to numerically compute a function defined by a Bromwich

integral?

One way of solving linear ordinary or partial differential equations is by computing its Green function,

that is, the image of the solution in the Laplace domain, because it is easily obtained, then apply

to it the inverse transform to determine the solution to the original equation. Fortunately, in some

cases, the solution in the original time domain may be computed analytically, and such examples

serve as test cases for numerical integration algorithms of this inversion which are necessary to the

approximation of solutions for which no simple representation is known.

The inverse Laplace transform We recall the Laplace transform of a function F : R+ → C
defined in the time domain:

F̂ (s) =

∫ ∞

0

e−s tF (t) dt, <s > −a0, (1)

where F̂ (s) is the image of the time domain solution, F (t), to be inverted, and −a0 is its conver-
gence abscissa. In other words, the singularities of F̂ (s) lie in the halfplane <s ≤ −a0, and the
function is analytical in the remaining halfplane. The above Laplace transform is inverted, at least

theoratically, via the Bromwich formula:

F (t) =
1

2ι̇π

∫ a+ι̇∞

a−ι̇∞
es t F̂ (s) ds, a > −a0, (2)

where s = a+ ι̇y , y ∈ R is the Bromwich line. As already mentioned, the numerical approximation
of the above integral is a tough challenge. Indeed, the exponential factor is highly oscillatory on

the Bromwich line as the imaginary part tends to infinity. Moreover, the Green function F (s) is

nonstandard in the applications we are concerned with, as it has poles, branchpoints and cuts in

the halfplane <s ≤ −a0. Finally, it can hardly pare down the oscillations, since it decays slowly as
|y | → ∞.

Nonstandard Green functions To illustrate what we mean by nonstandard Green functions, we

shall give a concrete example of an equation we are keen on. It is a realistic physical model known

as the Webster-Lokshin1 model and describes the wave equation in a flared duct with visco-thermal

losses:

(∂2t + η∂
3
2
t )w −

1

r2(z)
∂z [r

2(z)∂zw ] = 0, t > 0, z ∈]0, 1[.

to which we add dynamic impedance boundary conditions at z = 0, and observe at z = 1. This

equation may be numerically dealt with in the Laplace domain through a conversion quadripoles

formalism analogous to the waveguide decomposition reserved to the treatment of the wave equa-

tion; see [37]. Note that the equation above is nothing but a perturbation of the wave equation

with small parameter η > 0. The scattering matrix associated with this equation consists of trans-

mission and reflection functions that are made up of more or less singular transfer functions which

we shall not explicit here; we refer the reader to Hélie & Matignon [37] for a full treatment of the

issue. However, as a typical example of the Green functions we are concerned with, here is one

such function:

Hη(s) = e−Γη(s)+s , Γ2η(s) = s
2 + ηs

3
2 +Υ, η > 0, Υ ∈ {−1, 0, 1},

1The name was given after the wave equation in a flared duct without loss due to Webster and the modeling of

the viscothermal losses due to Lokshin [45, 46]; see also Polack [63]
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where Υ depends on the curvature of the duct (1 for a flute, 0 for a trumpet, and −1 at the end of
an English horn); for simulation, the duct is dissected into parts with almost constant curvature.

The above function is analytic in C+0 , and its analytic continuation involves 3 branchpoints: 0

because of the term s
3
2 and the roots of Γ2η(s). The associated cuts should be accordingly chosen

in C−0 . We will see, in subsequent sections, how the choice of these cuts may influence the quality
of the numerical integration by fixing the diffusive representation to be approximated, or by limiting

the deformations of the Bromwich contours.

Long-time asymptotics Another important feature of the models we aim at simulating is their

long-time asymptotics. Contrarily, to the solution of the wave equation without losses, for instance,

where the response is periodic, we are concerned with realistically damped models, the solutions of

which do not decrease exponentially in time in most cases. These will have an asymptotic behaviour

that will be more like O
(
1
tα

)
, 0 < α < 1, which clearly forbids short-time truncation, more so in

a real-time simulation context. One of our reference test functions is, for instance, the first kind

Bessel function of order 0 whose long-time asymptotic reads as follows:

J0(t)≈∞

√
2

πt
cos

(
t − π
4

)
,

whose image in the frequency domain requires the definition of two cuts starting at ±ι̇:

Ĵ0(s) =
1√
1 + s2

.

In practice, long-time asymptotics are observed in many fields where damping such as hydrody-

namics [27], seismology [29], acoustics [28, 55], and optics [10] to cite just a few. This is also a

feature of models involving fractional derivatives to describe the damping in viscoelatic models as

opposed to multi-modal Maxwell systems; see [42, 35, 54, 51, 52]; see also [81] for an application

in rheological characterization. For an introduction to fractional calculus and related litterature,

we send the reader to [53] and the references therein.

We would like to mention that in no way have we attempted to give, here, an exhaustive account

on the history of the numerical inversion of the Laplace transform. We only hope to have given

some guiding lines that may serve either as a teaser, or as a starting point for the interested reader.

Note that an almost exhaustive list of references may be found here

http://www.pe.tamu.edu/valko/public%5Fhtml/Nil/index.html.

1.1 Optimizing parametrized Bromwich contours

This is not the first strategy devised in order to facilitate the numerical computation of the

Bromwich integral. However, to this day, we may conjecture that this was the most brilliant intu-

ition. Indeed, set off by the observation that the actual impediment to an accurate and efficient

evaluation of the integral (2) are the high oscillations of the exponential term on the Bromwich

line, Talbot [75] suggested that should the contour be deformed into a curve with real part tending

to −∞, the wishful outcome would be a fast decay of the integrand owing to the exponential
term. Accordingly, this should allow a comfortable approximation of the integral by the trapezoidal

rule. Now, Cauchy’s theorem and Jordan’s lemma (for instance, see [83]) ensure that, as long as

singularities are not crossed during the deformation, this is possible if

1. |F̂ (s)| → 0 uniformly as |s | → ∞ with <s ≤ −a0. (C1)

2. ∃K > 0, such that for any singularity ξ of F̂ , we have |=ξ| < K. (C2)
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And the general inversion formula would be

F (t) =
1

2ι̇π

∫

R

eγ(u) t F̂ (γ(u)) γ′(u) du, (3)

with u 7→ γ(u) a parametrization of the smooth curve Γ = γ(R). Ultimately, once the rapid
decay of integrand is achieved owing to the curve Γ, the numerical inversion of the integral should

be easily manageable by the trapezoidal (or midpoint) rule. Thereby, the approximation may be

expressed as follows:

Fh,N(t) =
h

2ι̇π

N∑

n=−N
eγ(nh)t F̂ (γ(nh))γ′(nh). (4)

where N ∈ N is the number of interpolation nodes (points where the integrand shall be evaluated),
and h > 0 is the stepsize (space seperating consecutive nodes).

1.1.1 The Talbot contour

The Bromwich contour Talbot’s original method was based on reads as:

γ(θ) = µ(θ cot θ + λι̇θ) + β, −π < θ ≤ π, (5)

where µ and λ are positive reals, and β must satisfy β + µ > −a0. That said, in [62], it was
remarked that the contour should move to the left without getting too close to the singularities,

since
∣∣F̂ (s)

∣∣ would take large values at those nodes. Therefore, it would be more correct to impose

β + µ > −a0 + ε, (6)

where ε > 0 is yet to be optimized/determined, since, to our knowledge, no work has adressed

this issue be it for this contour or another. Note that [62] provides a Fortran implementation of

the method as devised by Talbot. Numerical results are accordingly reported for Green functions

displaying various kinds of singularities (essential singularities, branchpoints, cuts). They observe

that essential singularities should stay at a certain ”optimal distance” from the contour which

is tuned experimentally. Moreover, they insist on the necessity of the first condition which, if

not fulfilled by the transform, leads to unpredictable results especially for small times. We may

conjecture that small times attenuate the fast decay of the exponential term induced by the contour,

which combined with the proximity of the latter to the singularities neutralizes the design of the

scheme. We shall discuss this issue later on; see paragraph 3.4.

More recently, Weideman [86] obtained almost optimal convergence rates for the Talbot con-

tour (cotangent) by carefully choosing the parameters in order to optimize the convergence rate.

Namely, he has improved the convergence rate from O(e−c
√
N) to O(e−c N), however the opti-

mization is formal. Indeed, no proof of the optimality of the parameters is provided. In addition

to that, the results are ”optimal” at one given time, and no evidence of their efficiency for other

times is raised.

Comparing different methods for the inversion of the LT is an alluring prospect. An interesting

comparison was accomplished by Duffy [24], where Talbot’s method compteted with Weeks’s

method and the direct method. The outcome was that in most cases, Talbot’s algorithm is superior.

However, it is not suitable for transforms with singularities that have an imaginary part growing to

infinity, which is quite predictable, but less predictable is its relative failure to approximate functions

having singularities lying on the Fourier axis (for instance, the Bessel function above). In [86, 68],

the auhtors compared parametrized Bromwich contours to rational approximations; see also [36].

Actually, starting from the observation that any quadrature formula applied to the inversion of the

LT could be viewed as a rational approximation, they compare the Talbot method (using various
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contours: parabola, hyperbola, cotangent) to the method devised by Cody, Meinardus & Varga

[18]. The results are mixed: best rational approximations are twice as fast compared to Talbot

contours, however these are simpler to implement. Moreover, if parameters are to be tuned for

the inversion at a given time, the accuracy of the first method is harder to maintain on an interval

containing that point in time. As a conclusion, the best rational approximations method seems

hardly suitable for an inversion on a whole interval of time.

1.1.2 Hyperbolic contour vs. sinc approximations

As of late, there has been a wealth of litterature dealing with the numerical inversion of the LT

via quadratures using Talbot contours. This interest seems to have have been kicked off with the

master thesis of López-Fernández [47], which was in turn followed by some papers focusing on

the optimization of the quadratures involved for the numerical inversion per se. Indeed, in [48],

López-Fernández & Palencia use a quadrature formula based on the sinc function. In practice, they

use the trapezoidal rule to discretize the integral written on a hyperbolic contour, see Figure 5. The

singularities of the integrand are assumed to lie in an acute sector
∑
δ = {s ∈ C : | arg(−s)| ≤ δ},

see Figure 3. Moreover, the integrand admits a holomorphic extension ∆d = {s ∈ C : |=s | < d}
outside the latter sector. Thence, they set out to obtain an accurate estimate to the quadtrature

error, that is, the absolute difference between the real LT inverse and the truncated trapezoidal

approximation. To do so, they improve an interesting estimate due to Stenger [71, 72]. In effect,

Stenger’s work deals with the approximation of analytical functions derived via Whittaker’s cardinal

function. Namely, if f is a function defined on the real line, the cardinal function is defined by

C(f , h) =

∞∑

k=−∞
f (kh)S(k, h), (7)

whenever the series converges, where h > 0 is the stepsize,

S(k, h)(x) =
sin[(π/h)(x − kh)]
(π/h)(x − kh) .

Now, the relationship between this function and the numerical inversion of the LT is obvious once

we observe that ∫

R

C(f , h)(t) dt = h

∞∑

k=−∞
f (kh).

In other words, this ”sinc function” expansion of f is closely linked to the trapezoidal approximation

of the integral of f . In short, using the properties of the cardinal function, Stenger proves that if

f decays rapidly, i.e.,

|f | < ce−α|x|,
then

∣∣∣
∫

R

f (x) dx − h
N∑

k=−N
f (kh)

∣∣∣ ≤ ae−
√
−2πdαN ,

where α, a and c are positive reals. The upper estimate was improved in [48] to O(e−γ nln n ). Note
that, in this work as well as Stenger’s the steppsize is fixed in order to minimize the estimate, and

the analyticity strip is chosen to be symmetrical which is not a natural assumption. Ultimately, they

use the trapezoidal rule on a hyperbola branch fixing the pamameters of the hyperbola so as to fit

the sector containing the singularities. The method works for numerical inversions on a bounded

time interval starting at t0 > 0. In a subsequent paper [49], López-Fernández, Palencia & Schädle

yet improve the error estimate and bring it down to O(e−γn). This spectral estimate is yielded by
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other choices in their previous procedure. The rest of the paper is dedicated to the study of error

propagation: a new parameter is introduced in order to halt these. However, the choices made

for the free parameters of the problem in general are not ”optimal” in any well-defined sense. As

a result, one may think that this approach has not been completely understood/exploited at this

point.

To conclude, we send the reader interested in sinc approximations to Stenger [73, 74].

1.1.3 Approximation of the LT inverse on an interval

In [64], Rizzardi modifies Talbot’s original method for a numerical inversion of the LT on an interval.

The underlying principle is to use the same set of values of F (s) on this whole interval, and to

make a most judicious choice for the contour’s parameters as well. In this fashion, the algorithm

may be parallelized. A major drawback of the analysis carried out to optimize the parameters is its

assuption that the transform has a finite number of poles that lie in an interval of the Fourier axis.

Then, a quite involved analysis of the absolute error between the inverse and its approximation,

also invoking the roundoff error, is carried out yielding some optimized contour parameters for an

interval [t0, t1]. The results are quite satisfactory even if error curves display different profiles for

different tests, thereby questioning the very consistency of the procedure. However, the author

manages honorable results with a small number of evaluations of F (s), i.e. N, but then again the

test functions do not display the nonstandard features, such as cuts and branchpoints, actually

encountered in realistic models; see [24].

We think that a major breakthrough in the contour deformation technique was achieved recently

by Weideman & Trefethen [85]. Indeed, these authors propose a procedure of optimization of two

”simple” smooth Bromwich contours (a parabola and a hyperbola) for an approximation of the

inverse function on an interval; see section 2. The incentive behind their paper [85] seems to

be the recent resurgence of interest that this topic has instigated lately; see [77] and the recent

references in the two subsections above as well as the references therein. In fact, the origin to their

result seems to be [86], where the first author addressed the particular problem of solving parabolic

PDEs using Talbot quadratures (see paragraph 1.1.1), and [77] where the authors take a glance at

the stability of the tuned parameters on an interval of time. Still, some issues linger on such as the

complete optimization of the position of the contours, and the related problem of approximating

transforms exhibiting singularities on the Fourier axis. A thourough study of his method was the

subject of this report. We shall also compare it to the approximation of diffusive representations

method.

1.2 Approximating exact diffusive representations

In this paragraph, we shall briefly present another approach to the numerical inversion of the Laplace

transform that is quite efficient at a low cost. For the sake of clarity, we choose to present the

method on an elementary example; we send the reader to [41] for a full treatment of the general

case, see also the refrences therein.

Integral representations on cuts We consider the classical integral operator of fractional order

equal to 12 whose irrational transfer function is:

H(s) =
1√
s
.

This operator cannot be represented by a series of first-order systems, however it may be exactly

respresented by a continuous superposition of first-order systems known as diffusive representation.
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But first, let us note that the above complex function is singular at 0, and in addition, if we

parametrize the Laplace variable s in this fashion

s = ρ eι̇ φ, φ ∈ (θ − 2π, θ],

then √
s =
√
ρ eι̇

φ
2 ,

so that we necessarily have to choose a cut Cθ at the branchpoint s = 0 for continuity reasons.
Now if we choose the cut Cπ, for instance, we obtain the following realization of the function as

Re s

Im
 s θ=π

Figure 1: The thick line represents a cut starting at the origin with an angle θ = π. Dashed lines

represent other possible cuts taken at different angles.

an integral on the cut:

Hπ(s) =

∫

Cπ

µπ(ξ)

s + ξ
d ξ

where

µπ(ξ) = lim
η→0+

Hπ(−ξ + ι̇ η)−Hπ(−ξ − ι̇ η)
2ι̇π

. (8)

Note that a technical well-posedness condition has to be imposed upon the weight µπ, at least

for the integral to make sense. We shall not expose this issue here since this is not our purpose.

Furthermore, this approach has been extensively studied and presented in the litterature. We would

like to mention that the expression (8) above is sometimes referred to as the Henrici formula; see

[20]. Now,

Hπ(s)
L−1−→ h(t),

so that h is the unit impulse function computed as the inverse Laplace transform of Hπ. Hence,

to obtain a time response with respect to an entry signal u one has to convolute with h:

y(t) = h ∗ u(t).

The corresponding operator admits a simple diagonal realization in systems theory as follows:

∂tφ(ξ, t) = −ξφ(ξ, t) + u(t), ξ ∈ R+,

y(t) =

∫ +∞

0

φ(ξ, t)µπ(ξ)dξ,

where the operator is realized through solving the above infinite set of linear PDEs first, followed

by a weighted integration the weight of which depends upon the choice of the cut.
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Numerical approximation The above realization is approximated by a finite-dimensional model:

H̃µ(s) =
1

2

N∑

n=0

[
µn
s − γn

+
µn
s − γn

]
,

where only a finite set of poles (singularities) γn on the cut are considered. Then, weights µn are

optimized through the weighted least-squares criterion below:

Re s

Im
 s

γ
0
=−ε + i

Figure 2: Logarithmic distribution of nodes on the two horizontal cuts starting at branchpoints

−ε± ι̇. Dashed half lines represent alternative cuts.

C(µ) ,
∫

R+

∣∣∣H̃µ(2ι̇πf )−Ĵε(2ι̇πf )
∣∣∣
2
w(f ) df ,

where some choices are made heuristically, but based on psychoacoustics, and audio performance

for our purpose. The advantage of such a method is its effeciency with a very limited number

of poles, i.e., numerically speaking, a small number of nodes. This method seems to have been

first employed in Garcia & Bernussou [32], then put in a more rigorous framework by Dunau &

Montseny. Hélie & Matignon have been doing a lot of testing and have well-tuned the heuristic

over the years; see [39, 37, 38]. We send the reader to section 4 for a more specific presentation

of the procedure.

1.3 Other methods

Over the years, the numerical inversion of the Laplace transform has summoned the attention

of many a mathematician. The approaches have been varied either theoretically or numerically.

Some research attempted finding analytical ways of circumventing the difficulty of approximating

the Bromwich integral. These efforts more often than not concerned very particular problems like

fractional kinetic equations [11], luminescence spectroscopy [12], or the Boltzmann equations in a

very specific framework [14, 13]. Others obtained results for Green functions with a discrete set

of poles (i.e. no cuts or branchpoints) [20, 43].

A more straightforward way of tackling the numerical integration is through a mere approxima-

tion of the integral through the Fourier series of the Laplace transform [21], which amounts more

or less to the straightforward application of the trapezoidal rule to the Bromwich integral; see also

[58].

Another successful approach is known as the Weeks method, and is the paradigm for what is

known as the collocation methods. The general idea underlying these schemes is to approximate

the inverse as an expansion on some special set of functions; namely, Weeks [84, 34] suggested

the Laguerre polynomials because the quadrature formulas are similar to the Laplace transform

10



operator which kicked off probably the most notorious direction of research in this field by trying

other approximation functions with slight variants in the framework ([59]); see also [17, 67].

More exotic attempts have been made. These include the Gaver-Stehfest method [80], the

power method [8, 7], the direct method of Schapery [17, 67]. There are also schemes that combine

several of these ideas [1] without sensitive improvements.

To conclude this paragraph, we shall say that the general drawback in these methods is that

very often costly regularizations ([19]) and accelerations ([3]) are required, and free parameters

have to be heuristically tuned rendering the resulting schemes hardly implementable in an automatic

and cheap fashion. What is more, improving the efficiency of such algorithms is quite involved.

Remark 1.1. Note that despite the fact that some of these algorithms are almost automatic, they

usually compute the value of the inverse at a given time so that these have yet to be optimized for

the computation of the time response at any time, or in a given interval of time.

2 Optimized Bromwich contours

Contours We set to study and implement two parametrized Bromwich contours following Wei-

deman & Trefethen [85]. Indeed, these contours seem to have produced the best results known

for a very quick automatic numerical inversion of the LT on an interval.

The first contour is the parabola:

γ(u) = µ(ι̇ u + 1)2 + β, (9)

and the second one is the hyperbola

γ(u) = µ(1 + sin(ι̇ u − α)) + β, (10)

where u ∈]−∞,∞[, µ > 0 regulates the width of the contours, β determines their foci, and α de-
fines the hyperbola’s asymptotic angle. Note that the motivation for these choices is their simplicity

and suitability for a trapezoidal approximation (4); in both cases, γ is a smooth conformal map. In

particular, the cotangent contour (5) originally proposed by Talbot is quite difficult to analyze; see

[75, 86, 64]. These simpler contours have been introduced most recently. The parabolic contour

(9) first appeared in [33], where the optimization of the contour relied on arguments related to

the sinc quadratures used in their algorithm following [73]; see also paragraph 1.1.2. As for the

hyperbolic contour (10), it was first used in [70] where no explicit mention of an optimization of

the contour is made. Then, [48] the contour is somewhat optimized using arguments from sinc

approximation theory [71, 72]; see paragraph 1.1.2 for more details on this approach.

2.1 Error estimates

Following Weideman & Trefethen [85], the optimization of these contours is founded on a balance

between the truncation error estimate and the asymptotic error estimate for the trapezoidal rule

(4) applied to these contours (9-10).

Truncation error The truncation error is the difference between the infinite series that approxi-

mates the inverse (3):

Fh(t) = Fh,∞(t) =
h

2ι̇π

∞∑

n=−∞
eγ(nh)t F̂ (γ(nh))γ′(nh) ≈ F (t), (11)

11



and the truncated sum (4). Namely,

EN(t) = |Fh(t)− Fh,N(t)|.

Now, if
∣∣∣F̂ (γ(s))

∣∣∣ decays rapidly as |s | → ∞, the truncation error may be assumed to behave like
the magnitude of the last term in the sum (4), i.e.,

EN(t) = O(| heγ(Nh)t F̂ (γ(Nh)) γ′(Nh) |), (12)

since the next terms are

Asymptotic error Also called dicretization error, it is the difference between the inverse LT F (t)

and the infinite trapezoidal approximation (11), i.e., Eh(t) = |F (t) − Fh(t)|. To obtain quite a
sharp estimate of this error, some complex analysis is needed. Indeed, here is the fundamental

result, almost as stated in Theorem 2.1. in [85], we shall use to accurately assess this error.

Theorem 2.1. Let f : R → R be a function analytic in U = {s ∈ C : −c− < =(s) < c+}, where
c± ≥ 0, and f (s)→ 0 uniformly as |s | → ∞ in U . Furthermore, assume that f (s) satisfies

∫ ∞

−∞
|f (u + iv)|du ≤ M+ and

∫ ∞

−∞
|f (u − iw)|du ≤ M−, ∀ 0 < v < c+, 0 < w < c−,

where M± > 0. Then

∣∣∣
∫ ∞

−∞
f (u)du − h

∞∑

k=−∞
f (kh)

∣∣∣ ≤ E+h + E−h , E±h =
M±

e2πc
±/h − 1 . (13)

Remark 2.1. A few remarks regarding this result have to be made:

1. The function f (u) is real and admits a holomorphic extension to U . In practice, if we consider

Figure 3: Strip of analyticity

the hyperbola, for instance,

γ(v) = µ(1 + sin(ι̇ v − α)),

for the inversion of a function whose singularities lie in a sector defined by the angle δ, see

Figure 3, and take

v = u + ι̇ c, u ∈ R,
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then as c spans the interval [−c−, c+], the hyperbolic contour sweeps the grey area that goes
from the hyperbola embracing the sector in the left halfplane to the vertical line in the right

halfplane.

2. For our purpose, the function f will be of the form

f (u) =
1

ι̇2π
eγ(u)t F̂ (γ(u))γ′(u)

so that the estimated truncation/asymptotic errors will depend on both: the chosen contour

γ(C), the instant t, and, consequently the time interval [t0, t1] if need be.

3. Classically, in the litterature [40, 69], the analyticity strip is taken to be symmetric c+ = c−,
which reduces the estimate (13) to the more familiar inequality known in numerical analysis

when f is real-valued.

4. Weideman & Trefethen omitted the proof to this theorem mentioning that ”the standard

proofs remain essentially the same”. However, we do not think that the standard proofs are

easy to find or even intuitive. Therefore, we try to give a self-contained proof in the appendix.

2.2 Optimization procedure

The process of the numerical inversion of the LT is done in several steps. First, the appropriate

type of contour has to be chosen in accordance with the locus of the singularities of the LT. The

parabolic contour (9) is suitable for Laplace transforms with singularities lying on a horizontal half

line with real part going to negative infinity as is shown in Figure 4. Whereas the hyperbolic con-

Re s

Im
 s

(a) Parabola

−ε+i

−ε−i

Figure 4: Two parabolic contours optimized for the numerical inversion of the function ĵε± =
1√

s + ε∓ ι̇ .

tour (10) is superior in the sense that it is fit for any Laplace transform with singularities lying in

a sector in the left halfplane with real part going to negative infinity; see Figure 5. Having chosen

the contour, the next move is to obtain the best estimates (12-13) for this particular contour.

Namely, the analyticity strip defined in Theorem 2.1 has to be identified. In the cases of interest,

the singularities lie in the left halfplane so that c− is generally finite, whereas c+ may be infinite. As

13



Re s

Im
 s

(b) Hyperbola

 

 

δ

α

−ε+i

−ε−i

contour
node in Re(s)≤0
node in Re(s)>0
cut
singularity

Figure 5: Hyperbolic contour optimized for the numerical inversion of the function Ĵε =
1

(s + ε)2 + 1
. The sector is determined by the angle δ that depends on the position of the singu-

larities −ε∓ ι̇.

it happens, c+ is infinite for the hyperbolic contour (10) so that the contribution of the exponential

term has to be taken into account in order to fix the best strip of analyticity.

Once error estimates for the truncation and discretization have been established, we get an

estimate of the absolute error:

E(t) = |F (t) − Fh,N(t)| ≤ EN(t) + Eh(t).

The optimization procedure is quite natural. It consists in choosing to match the estimates at hand

(12-13):

EN(t) = E
+
h (t) = E

−
h (t), (14)

which yields two equations that should determine an optimal choice of the free parameters µ and

h to which we shall refer as µ∗ and h∗. One may consider other choices. We shall discuss this issue
in the sequel.

Now, equations (14) will optimize the parameters for the time t, and our solutions are to be

computed on an interval [t0, t1], with t1 = Λt0. Therefore, Weideman & Trefethen [85] adapt (14)

to the interval by taking:

EN(t0) = E
+ = E−h (t1). (15)

The legitimacy of the above condition lies in the expression of these quantities. In fact, the

truncation error EN depends linearly on time, E
+
h is independent of time, and E

−
h depends linearly

on
1

t
for the parabola. Hence the above choice seems sensible to keep these three quantites

matched as is the case at one instant t. A similar argument holds for the hyperbolic contour as

well.

Indeed, they limit their analysis to the case β = 0, i.e., the horizontal distance between the

contour and the first singularity (6) is not fully optimized (cf. this distance is partly regulated by

µ too). The authors give no hint as to a preferential choice of <(β); we shall investigate certain
choices in section 3.4. For now, we shall focus on the convergence rates obtained in the above

fashion.
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Theoretical convergence rates A quite extraordinary occurrence is that the choices made above

for an automatic tuning of the contours yield in both cases (parabola and hyperbola) a system

of two equations with two unknwons that is analytically resolved in a most simple way. We shall

attempt at shedding some light on the sensitivity of the process as well as the sensitivity of the

contours themselves through simulations.

The optimal contour parameters for the parabola read:

h∗ =

√
8Λ + 1

N
, µ∗ =

π

4

N

t1
√
8Λ + 1

(16)

which entails the convergence rate

EΛN = O
(
e(−2π/

√
8Λ+1)N

)
. (17)

As for the hyperbolic contour, the optimal contour parameters read:

h(α) =
A(α)

N
, µ(α) =

4πα− π2 + 2πδ
A(α)

N

t1
, (18)

A(α) = cosh−1
(π − 2α− 2δ)Λ + 4α− π + 2δ

(4α− π + 2δ) sinα , (19)

where δ ∈ [0, π2 ] is the angle of the sector defined by the singularities and α ∈ [0, π2 ] is the
asymptotic angle of the hyperbola, see Figure 5. The resolution of system (15) imposes that the

asymptotic angle belongs to a range α ∈ [α0, α1]:
1

2

(π
2
− δ

)
≤ α ≤ π

2
− δ. (20)

Accordingly the convergence rate depends on the asymptotic angle:

EΛN(α) = O
(
e−B(α)N

)
, B(α) =

π2 − 2πα− 2πδ
A(α)

. (21)

Ultimately, the decay rate is maximized (function B posesses a unique local ᾱ, see Figure (??))

so that

h∗ = h(ᾱ), µ∗ = µ(ᾱ), B(ᾱ) = max
α∈[α0,α1]

B(α).

Remark 2.2. 1. The first observation is that we can neither consider t0 = 0, nor t1 = ∞.
These values either explode the paramters h∗ and µ∗, or reduce them to zero.

2. Another preliminary remark is that convergence rates are of the form

EΛN = O
(
e−BN

)
, B > 0.

However, for Λ large we have:

Bpara = O
( 1√
Λ

)
, Bhyper = O

( 1
ln Λ

)
.

Hence, the supposedly exponential decay may be very costly to maintain on large intervals of

time or on intervals. In consequence, if the computation is initiated near zero, it will be hard

to have a good convergence rate for large values of time.

3. From the estimates above, one may predict that hyperbolic contours yield more efficient

numerical inversions.
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0

0.1

0.2

0.3

Λ=50 and δ=π/4

↓

↑

10−1

α ∈  [α
0
,α

1
]

B

Figure 6: The maximization of function B with respect to asymptotic angle α improves by 10−1

the error estimate with respect to B(α0). We may choose to dispense with this optimization when

the rate is already exponential.

3 Numerical results

Numerical simulations have been carried out to compare and outline the limitations of these opti-

mized contours. The test functions are chosen to cover the families of LT that are of interest to

our applications. Moreover, the choice is limited to LT the inverse of which is analytically known

to be able to compute the numerical error.

Test functions The test functions we have considered for this contour are

F̂ 1(s) =
1

s − s0
, <(s0) < 0, F 1(t) = es0t , (22)

F̂ 2(s) = e−
√
s , F 2(t) =

e−
1
4t

2
√
πt3
, (23)

F̂ 3(s) =
1

s
1
2 − s0

, <(s0) < 0, F 3(t) =
1√
πt
+ s0e

s20 t erfc(−s0
√
t), (24)

F̂ 4(s) =
F2(s)√
s
=
e−
√
s

√
s
, F 4(t) =

1√
πt
e−

1
4t , (25)

F̂ 5(s) =
tanh(

√
s)√
s

=
∑

n∈N

2

s + (n + 1/2)2π2
, F 5(t) = 2

∑

n∈N
e−n

2π2t , (26)

F̂ 6(s) =
1√
s + i

, F 6(t) =
e−ι̇t√
πt
. (27)

We have tried to span all the types of LT that the parabolic contour may have to deal with. Indeed,

this contour is suitable for inverting functions having singularities that lie along a horizontal halfline

in the left halfplane. Thence, the choice was motivated by the qualitative differences that may

exist. The first function F̂ 1 has one singularity at s = −s0. The second one F̂ 2 has a branchpoint
that shall be chosen equal to R−. The third and fourth functions F 3 and F 4 have a pole and a
branchpoint each, so cuts have to be chosen. The fifth function F5 has the same features as the

one before; it may be simply represented by a series of first-order systems. The last function F 6

exhibits a branchpoint and a singularity that are not on the negative real axis but on (ι̇R−).
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3.1 Parabola vs. hyperbola

We have tested the functions above on the same time interval [t0, t1] = [1, 50] using the parabolic

and hyperbolic contour with β = 0, as this parameter has not been optimized yet. The results are

displayed hereafter where we have plotted the absolute error:

sup
t∈[t0,t1]

|F (t) − Fh,N(t)|, (28)

as well as the theoretical error estimates obtained above. On each plot of figures 3.1-3.1, we

represented these errors for both contours.

The first observation is that for the six tests the estimated errors are guaranteed, therefore the

hyperbolic contour yields better convergence rates. Moreover, for both contours, increasing the

number of nodes N beyond a certain point is useless. Indeed, for Λ = 50, we notice that the error

does not decrease beyond N = 50 for the hyperbolic contour, and N = 100 for the parabolic one.

In addition, these best rates are comparable which makes the hyperbolic contour twice as fast.

These two observations make it quite clear that the hyperbolic contour is to be preferred to the

parabolic one.

However, we should mention that the approximation of the first five test functions required only

N nodes owing to the hermitian symmetry that reduces the discretization formula to

Fh,N(t) = <
[ h
ι̇π

N∑

n=0

eγ(nh)t F̂ (γ(nh))γ′(nh)
]
, (29)

as opposed to (4) for the last test function F 6 which actively required 2N estimations of the

integrand. This is due to the fact that F 6(t) is a complex function whereas the other five inverses

are real-valued. In other words, the difference between this function and the others is that the

singularities lie on a half line parallel to the negative real axis but distinct from it; see Figure 9.

Therefore, the use of the whole contour is hardly avoidable.

For a closer investigation, we plot the evolution of the error in time for a fixed number of nodes

N = 50. We notice that the approximation starts badly and improves very quickly. More precisely,

if we neglect the first 5% of the samples, say [t0, t
′
0] = [1, 4], the error is matched everywhere else,

i.e., in [t ′0, t1]. This can be viewed in Figure 9.

Remark 3.1. These first computations confirm the superiority of the hyperbolic contour conver-

gence rate wise. Moreover, the flexibility of this contour to fit the singularties thanks to the

parameter α which controls the aperture of the branches (10), especially when these have positive

and negative imaginary parts as is the case for the Bessel function, make the hyperbolic contour

more recommendable for an automatic treatment of the numerical inversion of the LT. Add to this

the lower cost of the simulation, and the choice of the hyperbola becomes inevitable. Hence, we

shall persue our investigations with the hyperbolic contour.

As further evidence for this choice, we have plot the evolution of the profiles of the errors on

the time interval [1, 50] for each contour and each test function. This is displayed in Figures 10

and 11. Note that for each contour, the profiles for each test function seem to globally match.

Now, a common feature to both contours is a deterioration of the convergence rate at the end of

the interval. However, this phenomenon is progressive over the whole interval and quite relative for

the hyperbola. Whereas, the parabolic profile starts with a relatively low convergence rate which

improves very quickly, remains stable on half the interval before decreasing as quickly as it has

decreased. This is another argument for sticking to the hyperbolic contour.
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Approximating F3(t), t∈ [1,50]

Figure 7: Testing both contours by computing F 1−F 6: The dash-dot line represents the theoretical
error using the parabola, while the plus line represents the approximation error ofr the same contour.

The full line represents the theoretical error using the hyperbola, and thecircle line the approximation

error for this contour.
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Figure 8: See caption in Figure 3.1.

3.2 Time stability

The issue of time stability is central to the type of problems we are interested in. Actually, long-time

decay solutions coming from physical models with realistic damping need time stable methods in

19



10 20 30 40 50 60 70 80 90 100
10

−15

10
−10

10
−5

10
0

N

A
bs

ol
ut

e 
er

ro
r

 

 

error on [4,50]

error on [1,50]

Figure 9: We plot the real and imaginary parts numerical errors in the approximation of f 6. These

are computed first on the whole interval of approximation [t0, t1] = [1, 50] and are represented

by the dashed line and the asterisk respectively, then on a truncated interval ignoring the first 5%

samples [t ′0, t1] = [4, 50] by the points and the dash-point line respectively. Note that computations
effectively involve the number of nodes N indicated, as the lack of hermitian symmetry does not

allow to double the number of nodes, see formula (29).
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Figure 10: Profile of the error evolution on the time interval [1, 50] in the numerical Laplace

inversion of all test functions using a parabolic contour.

order to be simulated over very long time intervals. As for the Talbot contours, the time stability

is issue due to the convergence rate which depends in a non trivial fashion on the time interval’s

diameter Λ; see Remark 2.2. In [85], the question was illustrated for computing the exponential

function, i.e., the inverse LT of function F̂1; see (22), and the convergence rate decreases as

expected.

Here we illustrate this with two test functions displaying cuts. The first function is either one
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Figure 11: Profile of the error evolution on the time interval [1, 50] in the numercial Laplace

inversion of all test functions using a hyperbolic contour.

of the two following functions that are conjugate (and consequently yield identical results):

ĵε±(s) =
1√

s + ε∓ ι̇ , jε±(t) =
e−εt√
πt
e±ι̇t , (30)

which have one cut chosen to be (±ι̇ − εR+). The second function is a LT of a delayed Bessel
function (see Figure 3.2):

Ĵε(s) =
1√

(s + ε)2 + 1
, Jε(t) = e−ε t J0(t), (31)

which has two branchpoints −ε± ι̇ at which we choose the cuts to be (±ι̇− εR+). Several tests
are carried out to differentiate between the effects: time interval diameter Λ versus cuts.
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−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t = time

 

 

J
0

J0,1

Figure 12: Note that ε > 0 increases the damping.

We first focus on the time stability so that we choose ε = 5: a quite random choice that sends

the cuts well into the left Laplace halfplane thereby causing the contours as well to have a negative

21



real part which makes for a better/more confortable approximation of the integral. We start by a

fixed time interval Λ = 10 as well as a fixed number of nodes N = 50 for different starting instants

t0 ∈ {.1, 1, 10}. This is produced in Figure 13. The first observation is that the numerical error
matches the theoretical one in the inversion of ĵε, which is not the case for Ĵε when t0 ∈ {.1, 1}.
The reason for this difference is without a shadow of a doubt to be imputed to the position of the

branchpoints on either side of the negative real axis. In what way? is another question. All we

can conclude is that for small times, the tuning of the aperture of the hyperbolic contour is very

sensitive.

Remark 3.2. Note that the convergence rate, even for the computation of the exponential (see

[85]), cannot be improved infinitely by increasing the number of nodes. The problem is ill-

conditioned so that the actual error saturates at 30 nodes for ĵε on a time span equal to 10.

Hence, in practice, long time spans should be split into adjacent intervals of equal diameter in order

to maintain the desired convergence rate:

[t0, t1] = [t0,Λt0] ∪ [Λt0,Λ2t0] ∪ · · · ∪ [Λnt0, t1].

This is not so costly as the parameters are optimized once for all for a fixed time interval diameter

Λ. However, this may not be the ideal solution for real-time sound synthesis.

3.3 Position of the contour with respect to the Fourier axis

As we have observed in the previous simulations, the presence of singularities on both sides of

the negative real axis seems to seriously perturb the procedure. This is emphasized in Figure 14

where we test the same inversions with t0 = 10 (this eliminates the sensitivity to the small time

initialization), and ε ∈ {0, 1, 3}. Again, a singularity on the negative real axis, even if it is on the
Fourier axis, does not perturb the procedure as for all positions ĵε is inverted matching the error

estimate. However, such is not the case for the inversion of Ĵε which is very sensitive to proximity

of the singularities to the Fourier axis. Actually, for ε = 0, even the error estimate is not good.

This is due to the fact that the hyperbola is too wide open so that a lot of nodes have a positive

real part on one hand; see Figure ??. On the other hand, these nodes have large imaginary parts

which increase the oscillations of the integrand. This is exactly the opposite of Talbot’s intention.

To conclude, from ε = 0 to ε = 5 (see Figure 13 and 14), the error estimate improves and the

actual error gradually matches the estimated one once the sector the singularities lie in becomes

quite acute.

Remark 3.3. One might be tempted to introduce a parameter λ > 0 in the optimization (15) to

try a different match between the asymptotic error and the truncation error. More specifically, for

the hyperbola we may choose

λEN(t0) = E
+ = E−h (t1). (32)

Hence, we obtain the following optimized parameters

h(α) =
A(α, λ)

N
, µ(α) =

4πα− π2 + 2πδ
A(α, λ)

N

t1
, (33)

A(α, λ) = cosh−1
(π − 2α− 2δ)λΛ + 4α− π + 2δ

(4α− π + 2δ) sinα , (34)

yielding the following theoretical error estimate

EΛN(α, λ) = O
(
e−B(α,λ)N

)
, B(α, λ) =

π2 − 2πα− 2πδ
A(α, λ)

. (35)
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Now, inspecting the expressions above, function A(., λ) is increasing in terms of λ so that for λ < 1

the value of A decreases. However, and consequently B increases. However as B is maximized

with respect to the asymptotic angle, the maximum of B is not necessarily increased to improve

the theoretical error estimate EΛN above. Numerical computations have not risen probing evidence

as to the efficiency of such a parameter. If λ is very small or very large, the results deteriorate,

whereas for values close to 1, we have not observed any significant pattern. We have also tried

another match:

EN(t0) = λ
′E+ = λ′E−h (t1), (36)

with the same results. We shall address this issue in the future.

3.4 Delaying the functions for a better approximation

At this point, it seems that the proximity of the singularities to the Fourier axis is an important

issue. Therefore, we shall eliminate this problem by a mere translation of the singularities farther

into the left halfplane in order to minimize their effect on the position and shape of the contour.

Practically, a translation of the singularities in the frequency domain by −ε, that we call τε, into
the left halfplane induces a delay in the time response in the form of an exponential damping by

exactly e−εt . Hence, one might be tempted to make the inversion after the translation, and restore
the initial time domain response by multiplying the approximation by eεt . The idea being that if at

the instant t > 0,

|(τεF )h,N(t)− τεF (t)| = O(e−BN),
then ∣∣eεt(τεF )h,N(t)− F (t)

∣∣ = O(e(−B+ε)N),
since

F (t) = eεtL−1[τεF̂ (s)](t).
And we expect the rate −B + ε to be better than the one we would have by inverting directly
F̂ instead of τεF̂ . Globally, this procedure should improve the ill-conditioning of the numerical

integration. As a test, we shall deduce the first kind Bessel function of order 0, J0, from the

numerical approximation of Ĵε. We recall that, in the previous section, the Bessel function was

difficult to approximate accurately, whereas the delayed function was approximated with very low

numerical errors; see Figure 14.

As an illustration of this ”trick”, we have computed the Bessel function J0 and the functions

j0± on the time interval [.1, 100], i.e., Λ = 100 by deducing them from the approximations obtained

for Ĵε and ĵε, ε ∈ {102, 103, 104}: see Figure 15. The improvement of the numerical error is not
significant if the singularities are sent farther.

The result is very satisfying: we have clearly solved the problem of the proximity of the singularity

to the Fourier axis. Now, all error estimates are matched by tha approximations. What is more,

we have even managed to treat large time intervals. Actually, the interesting feature is that we do

not really improve the error estimate for j0±, whereas not only the error is matched for the Bessel
function but it is even slightly improved for large values of ε!

The effect of the parameter β Note that Weideman & Trefethen [85] are very expeditious about

the subject. While it is clear that the error is expected to be multiplied by O(e<βt) at any given
time t, the effect of such a translation of the contour is not explicit. In practice, if <β > 0, the
approximation rapidly degenerates as a larger number of nodes has positive real parts, even if the

effect is not so direct: <β > 0 means that the hyperbolic contour is moved away from the eventual
singularities which has the effect of reducing the angle of the sector where these are enclosed. In

turn, this will not decrease the number of nodes in the right halfplane, however the imaginary part
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of these nodes will be reduced tempering the oscillations of the integrand. This effect is numerically

observed in the approximation of the exponential:

Absolute error β Nodes in <(s) > 0
10−16 0.5 17

10−10 0.25 13

where, despite a larger number of nodes with positive real part for β = 1
2 , the absolute error is

sensitively better than in the contrary the other case.

Now, as already emphasized in this section, a problematic approximation is due to the proximity

of the singularities to the Fourier axis. In this case, moving the hyperbola to the right of the

imaginary axis won’t solve the problem. Hence, we have decided to optimize the approximation

procedure described above by taking <β < 0 in the approximation of the delayed function as the
singularities have large negative real parts. Practically, we have computed J0 and j

0
± again on the

time interval [.1, 100] by, first, moving far away the singularities by taking ε = 105 and testing

<β ∈ {0,−102,−103}. The results are explicit: it is very interesting to move the contour to the
left whenever possible, i.e., whenever this action does not bring it too close to the singularities.

4 Parametrized contours vs. optimal integral representations

The transfer function Ĵε(s) is analytic in the Laplace domain <e(s) > −ε. In this section, we
consider analytic continuations Ĵεθ of Ĵ

ε over C \ (Cθ ∪Cθ), with the cuts Cθ =
(
ι̇− ε+eι̇θR+

)
and

Cθ, and Ĵεθ defined by:

Ĵεθ(s) =
1

(θ)
√
s + ε− ι̇ (2π−θ)√s + ε+ ι̇ , (37)

(θ)
√
ρ eι̇φ =

√
ρ eι̇φ/2, if ρ ≥ 0, φ ∈]θ − 2π, θ[.

4.1 Principle

For u ≥ 0, let γu = ι̇−ε+eι̇θu be a parametrization of Cθ. Function Ĵεθ(s) has hermitian symmetric
decomposition

(
Ĵε
+

θ (s) + Ĵ
ε+
θ (s)

)
/2, with integral representation:

Ĵε
+

θ (s) =

∫

Cθ

µθ(γ)

s − γ dγ =
∫

R+

µθ(γ(u))

s − γ(u) γ
′(u) du,

µθ
(
γu

)
= lim

η→0+
Hθ

(
γu + ι̇γ

′
uη

)
−Hθ

(
γu − ι̇γ′uη

)

2ι̇π

=
[
π
√
u
(θ)
√
2ι̇+ eι̇θu

]−1
eι̇
π−θ
2 (38)

which fulfills the well-posedness criterion (see e.g. [?]):

∫

Cθ

∣∣∣∣
µ(γ) dγ

1− γ

∣∣∣∣ ,
∫

R+

∣∣∣∣
µ(γu)

1− γu
γ′u

∣∣∣∣ du <∞.

These systems are approximated by the finite-dimensional models:

H̃µ(s) =
1

2

K∑

k=0

[
µk
s − γk

+
µk
s − γk

]
, (39)
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where γk are a finite set of poles located on the cut Cθ. For a given location (so far, only a heuristic
approach based on Bode diagrams is being used), the weights µk are optimized for the weighted

least-squares criterion:

C(µ) ,
∫

R+

∣∣∣H̃µ(2ι̇πf )−Ĵε(2ι̇πf )
∣∣∣
2
w(f ) df , (40)

with the weight w(f ) = 1[f −,f +](f )/(f |Ĵε(2ι̇πf )|2). The latter takes into account a bounded
frequency range, a logarithmic frequency scale, and a relative error measurement (see [?] for

details). Note that the Laplace transform of (4) is of the form (39) with γk = γ(kh) and µk =

2h γ′(kh) Ĵε
(
γ(kh)

)
for 0 ≤ k ≤ K=N.

4.2 Numerical results

We consider four cases: (C1) J0 with θ = π, (C2) J1 with θ = π, (C3) J0 with θ = π
2 , (C4) J

1

with θ = α + π2 ; see Figure 17. Results are presented on Fig. ?? for poles (1 ≤ K ≤ 8) on Cθ
with log-spaced u from umin = 5.10

−4 to umax = 5.103. Note that horizontal cuts (i.e. θ = π)
improve the approximations significantly. In a certain sense, we may think that this improves the

approximation of the integral in the same fashion devised by Talbot. Another important remark is

that these approximations are time stable.

Comapring with the results obtained for hyperbolic contours, one might first of all remark

that singularities on the Fourier axis are an issue for this method too. With more nodes, the

parametrized contours manage a slightly better result. Whereas, for the approximation of J1, this

method seems more successful, requiring less nodes N = 8, instead of N = 40 for the hyperbolic

contour, to produce an error of 10−4; see Figure 19. However, once we use the trick of moving
the singularities away to the left, the hyperbolic contour becomes significantly more efficient even

with a very small number of nodes.

5 Conclusion

From the testing of the parametrized contours carried out here, we first incur that their optimization

has not been as yet completely understood. As already observed, there seems to be a minimal

distance to the singularities that the contour cannot go beyond without degenerating the scheme.

A solution would be to move away the singularities into the left halfplane as we did, which, the

least we can say, works pretty well. Still, even if we minimize the cost of the method nodes wise,

the lack of time stability is a serious drawback for real-time sound synthesis. As for the optimal

integral representations, despite being time stable, they do not provide convergence rates as fast

as those obtained by a hyperbolic contour. This is a serious limitation due to the very nature of

the method. In addition, no error estimates are available so far.
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ter’s thesis, LASS/CNRS - DEA Systèmes Automatiques, Toulouse, France, 2000. Supervisor:

Gérard Montseny.

[27] Mario Durán, Ignacio Muga, and Jean-Claude Nédélec. The Helmholtz equation with
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différentiels fractionnaires, volume 5 of ESAIM Proc., pages 145–158, Paris, France, 1998.

Soc. Math. Appl. Indust.
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A Proof of theorem 2.1

In this section we shall give a quick proof of this interesting theorem which provides an accurate

asymptotic error for the approximation of the integral of a function admitting a holomorphic ex-

tension in a strip. Indeed, the boundaries of this strip of analyticity determine this upper bound.

We shall follow Henrici [40] and Schwarz [69]

Let us first recall the data:

(i) f is analytic in U = {s ∈ C : −c− < =(s) < c+}, where c± ≥ 0;

(ii) f (s)→ 0 uniformly as |s | → ∞ in U .

(iii) ∫ ∞

−∞
|f (u + iv)|du ≤ M+ ∀ 0 < v < c+;

(iv) ∫ ∞

−∞
|f (u − iw)|du ≤ M−, ∀ 0 < w < c−,

where M± > 0.
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The first step is to establish a Poisson formula. We define a periodic analytic function in this

fashion:

Tε(s) = ε

∞∑

j=−∞
f (jε+ s), (41)

Indeed, condition (ii) ensures that this sum converges uniformly for 0 ≤ s ≤ ε. Now, Tε is
ε-periodic. Hence, we define its Fourier coefficients:

tεk =
1

ε

∫ ε

0

Tε(s)e
−ι̇2kπ s

εds, (42)

so that we have:

Tε(s) =

∞∑

k=−∞
tεke
ι̇2kπ s

ε . (43)

Injecting equation (41) in (42), and inverting summation and integration, we yield

tεk =

∞∑

j=−∞

∫ ε

0

f (jε+ s)e−ι̇2kπ
s
ε ds =

∫

R

f (u)e−ι̇2kπ
u
ε du = f̂

(2kπ
ε

)
, (44)

wherefrom we infer

Tε(s) =

∞∑

k=−∞
f̂
(2kπ
ε

)
eι̇2kπ

s
ε ,

i.e.,

Tε(s)−
∫

R

f (u)du =
∑

k 6=0
f̂
(2kπ
ε

)
eι̇2kπ

s
ε . (45)

Note that the above identity is valid for all real s thanks to condition (i) according to Theorem

10.6e in Henrici [40].

The next step uses the holomorphic extension to infer the estimate from the above Poisson formula.

To do so, we write the Fourier Transform (introduced in (44)) of function f :

f̂ (ξ) =

∫ ∞

−∞
f (t)e−ι̇ξtdt,

then perform the change of variable t = u+ ι̇v with 0 < v < c+ thanks to condition (iii) to obtain:

f̂ (ξ) = eξv
∫ ∞

−∞
f (u + iv)e−ι̇ξudu,

so that ∣∣∣f̂
(2kπ
ε

)∣∣∣ ≤ e 2kπε vM+, ∀ 0 < v < c+.
In the same fashion, using the holomorphic extension in the remaining part of the strip, we yield

∣∣∣f̂
(2kπ
ε

)∣∣∣ ≤ e− 2kπε wM−, ∀ 0 < w < c−.

Now, formula (45) can be written as follows:

Tε(s)−
∫

R

f (u)du =
∑

k∈N∗
f̂
(−2kπ
ε

)
e−ι̇2kπ

s
ε + f̂

(2kπ
ε

)
eι̇2kπ

s
ε .

Therefore, using the two estimates obtained above at the limit points v = c+ and w = c−, we get
∣∣∣Tε(s)−

∫

R

f (u)du
∣∣∣ ≤

∑

k∈N∗
M+e−

2kπ
ε
c+ +M−e−

2kπ
ε
c−.

Computing the sums in the expression above establishes the estimate announced in the theorem.
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Figure 13: All three figures display the absolute error in terms of the number of nodes. The

continuous (resp. dashed) line is the theoretical error for the inversion of function Ĵ5 (resp. ĵ5),

and the circle (resp. plus) line indicates the numerical error. The time interval’s diameter is fixed

Λ = 10. The first figure is initialized at t0 = .1, the second at t0 = 1 and the third at t0 = 10.
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Figure 14: All three figures display the absolute error in terms of the number of nodes. The

continuous (resp. dashed) line is the theoretical error for the inversion of function Ĵε (resp. ĵε),

and the circle (resp. plus) line indicates the numerical error. This is computed on the time interval

[10, 100]. The first figure displays an inversion for ε = 0, the second for ε = 1 and the last one for

ε = 2.
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Figure 15: All three figures display the absolute error in terms of the number of nodes. The

continuous line is the theoretical error for the inversion of function J0 (resp. j
0
±), and the circle

(resp. plus) line indicates the numerical error. This is computed on the time interval [.1, 100].

The approximations are deduced from approximations of Ĵε and ĵε with ε = 102 on the first plot,

ε = 103 on the second, and ε = 104 on the third.
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Figure 16: All three figures display the absolute error in terms of the number of nodes. The

continuous line is the theoretical error for the inversion of function J0 (resp. j
0
±), and the circle

(resp. plus) line indicates the numerical error. This is computed on the time interval [.1, 100].

The approximations are deduced from approximations of Ĵε and ĵε with ε = 105: on the first plot

β = 0, on the second β = −102, and on the third β = −103.
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Figure 18: Approximations of J0 and J1 for various cuts (θ ≈ π
2 and θ = π). Numerical errors.
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Figure 19: Different approximations of: J0(t), t ∈ [1, 5], J .1(t), t ∈ [.1, 5], J1(t), t ∈ [.1, 50].
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