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Abstract

We contribute through this work to the design of a novel variational framework able to
match and recognize multiple instances of multiple reference logos in large scale images.
Reference logos as well as test images, are seen as constellations of local features (interest
points, regions, etc.) and matched by minimizing an energy function mixing (i) a fidelity
term that measures the quality of feature matching (ii) a neighborhood criterion which
captures feature co-occurrence/geometry and (iii) a regularization term that controls the
smoothness of the matching solution. We also introduce a detection/recognition proce-
dure and we study its theoretical consistency. Finally, we show the validity of our method
through extensive experiments on the challenging ”Trademark-720” logo database overtak-
ing, by 20%, baseline as well as standard matching/recognition procedures; furthermore,
our method is able to process images of 1500× 1500 pixels and checks for the existence of
13 reference logos in less than 1(s) using a standard 2 GHz PC.

Résumé

On introduit dans cet article, une nouvelle approche d’appariement et détection des logos
basée sur une classe de fonctions de similarités dites dépendantes du contexte (CDS). Cette
approche permet de construire ces fonctions de similarités, impliquant des points d’intérêts,
en prenant en compte leurs propriétés intrinsèques visuelles ainsi que leurs contextes et
configurations spatiales.

Les contributions de ce travail incluent : (i) une approche variationnelle permettant de
construire CDS comme étant le point fixe d’une énergie comportant un terme “d’attache aux
données”, un critère de “contexte” et un terme de “régularisation” (ii) ainsi qu’une étude
théorique de la consistance du processus d’appariement/détection des logos et ses propriétés
d’invariance aux différentes transformations notamment la similitude et l’occultation. Enfin,
la validité de la méthode est montrée à travers une évaluation sur des images réelles de logos.
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1. Introduction

Automatic image and video annotation has received an increasing attention from the re-
search and industrial community in the recent years (Datta et al., 2008). This is mainly due
to the growing request for content based search and retrieval of interesting visual elements,
resulting from the exponential growth of multimedia sharing systems such as Flickr and
YouTube. In particular, a really challenging task is the detection and recognition of adver-
tising trademarks/logos, which are of great interest for several real world applications. In
fact, logos are key elements for companies1 and play essential role in industry and commerce;
they also recall the expectations associated with a particular product or service.

The early work on trademark detection and recognition addressed the problem of as-
sisting the registration process. Since a trademark has to be formally registered, the idea
of these approaches is to compare a newly designed trademark with archives of already reg-
istered ones, in order to ensure that it is sufficiently distinctive and avoid confusion (Kim
and Kim, 1997; Schietse et al., 2007). Historically, the earliest approach was Kato’s Trade-
mark system (Kato, 1992). Its idea is to map normalized trademark images to an 8 × 8
pixel grid, and calculate a GF-vector for each image from frequency distributions of black
and edge pixels appearing in each cell of the grid. Matching between logos was performed
by comparing the GF-vectors. An other notable system was Artisan (Eakins et al., 1998)
that achieves trademark retrieval using shape similarity. In this approach Gestalt principles
were used in order to derive rules allowing individual image components to be grouped into
perceptually significant parts. More recently, Wei et al. (2009) proposed a system that
combines global Zernike moments and local curvature and distance to centroid features in
order to describe logos. All these methods use synthetic images and rely on global logo
descriptions, usually related to their contours or to particular shape descriptors (such as
shape context) (Belongie et al., 2002; Rodriguez et al., 2008), so they require logos to be
fully visible.

In the last years, other work on logo detection and recognition, in real world im-
ages/videos, has emerged and is targeted to automatically identify products (such as gro-
ceries in stores for assisting the blind) (Merler et al., 2007; Jing and Baluja, 2008) or to
verify the visibility of advertising trademarks (e.g. billboards or banners) in sports events
(Bagdanov et al., 2007; Watve and Sural, 2008). This problem is much harder, due to
the relatively low resolution and quality of images (e.g. compression artifacts, color sub-
sampling, motion blur, etc.) and also to the fact that trademarks are often small and may
contain few information. Moreover their appearance is often characterized by occlusions,
perspective transformations and deformations (see the examples in Fig. 1). Interest points
and local descriptors have been successfully used in order to describe logos and obtain
flexible matching techniques that are robust to partial occlusions as well as liner and non
linear transformations. In Bagdanov et al. (2007), the authors provided a good evidence of

1. Companies are for instance interested in getting statistics about their logos in social media.
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Figure 1: Realistic examples of trademark images characterized respectively by a bad light
condition (Coca-Cola), occlusions (McDonald’s), a deformation (Starbucks) and
a small size (Ferrari).

trademark detection and localization in sport video; in their approach, each trademark is
described as a bag of SIFT points (Lowe, 2004) which are classified and matched with the
bags of SIFT features in video frames; localization is performed through robust clustering
of matched SIFT features. Following the same approach, Joly and Buisson (2009) exploit
SIFT point representation in order to detect logos in natural images. In order to refine
their detection results, they also include geometric consistency constraints by estimating
affine transformations between queries and retrieved images. Furthermore, they use a con-
trario adaptive thresholding in order to improve the accuracy of visual query expansion.
From a more general point of view, Sivic and Zisserman (2003, 2008) proposed a text re-
trieval approach to object matching in videos, called ”Video Google”. They applied the
traditional bag-of-words model in the visual domain by generating a codebook of affine
covariant features, represented as SIFT descriptors, and using the tf-idf weighting scheme
for indexing and retrieval. They also proposed a spacial consistency test by analyzing the
15 nearest neighbors of each match in order to improve scores of local features that share
a similar neighborhood structure. The approach is proved to be effective in recognizing
several kinds of objects (including logos) for very large scale retrieval tasks, but like other
bag-of-visual-words approaches, it often suffers from poor recall. Improvements on this kind
of approaches have been recently obtained by Chum et al. (2009), by introducing geometric
hashing, and Wu et al. (2009) for the task of large-scale partial duplicate detection in web
images.

Furthermore, few other interesting work includes spatial informations into object or logo
representations in order to improve the detection performances. First, Carneiro and Jepson
(2004) introduced the idea of grouping local image features in flexible spatial models to
improve matching accuracy between images. Pantofaru et al. (2006) defined region-based
context features (RCF) by combining image regions - obtained through image segmentation
- with local patches such as SIFT descriptors. Similarly, Mortensen et al. (2005) modelled a
global context by integrating Shape Context with SIFT local descriptors. Quack et al. (2006,
2007) then introduced the idea of employing association rules that capture frequent spatial
configuration of quantized SIFT features at multiple resolutions, for object categorization
and retrieval. These configurations are indexed in order to retrieve representative training
templates for matching, nevertheless image resolution is a major limitation. This idea
was followed later also by Kleban et al. (2008) for the specific case of logo detection in
natural images. Gao et al. (2009) presented a two-stage logo detection algorithm which also
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achieves localization by adapting a spatial-spectral saliency in order to improve the matching
precision. They proposed a spatial context descriptor in order to estimate the spatial
distribution of the set of matching points. In particular, they find minimum boundary round
of matched points and partition it into nine areas. Finally, they describe the distribution of
these points using a nine-dimensional histogram. However, this global logo representation
is sensitive to occlusion.

Following the above discussed work, logo detection algorithms, based on interest points,
are known to be very effective and also flexible in order to handle invariance (including
occlusion and affine transformations). Nevertheless, their success strongly depends on the
quality of matching (also referred to as alignment) mainly when images contain repeatable
and redundant structures. On the one hand, a naive matching strategy, which given two
images (a reference logo and a test image), looks for all pairs of interest point matches,
using a context2-free similarity, such as the laplacian or the Gaussian, might result into
many false matches. Figure (3, Top, Middle left) illustrates the deficiency of such naive
approach when used between two groups of interest points; any slight perturbation of the
values of the underlying features will result into unstable matching results if no context is
taken into account. On the other hand, putting strong model assumptions about possible
transformations (homography, affine, etc.) between reference logos and test images, might
not capture the actual inter-logo transformations; for instance when logos deform.

In this paper, we introduce an alternative matching framework, for logo detection, based
on a new class of similarity functions, called “context-dependent similarities” (“CDS”)
and defined as the fixed-point of an energy function which balances a “fidelity” term, a
“context” criterion and an ”entropy” term. The fidelity term is inversely proportional to
the expectation of the Euclidean distance between the most likely aligned interest points
while the context criterion measures the spatial coherence of the alignments, i.e., how good
two interest points, with close geometric context, match. Given a pair of interest points
(fp, fq) with a high alignment score (defined by our “CDS” values), the context criterion is
proportional to the alignment scores of all the pairs close to (fp, fq) but with a given spatial
configuration. The “entropy” term, as a key smoothing factor, considers that without any
a priori knowledge about the alignment scores between pairs of interest points, the joint
probability distribution related to these scores should be as flat as possible so this term
acts as a regularizer that controls the entropy of the conditional probability of matching,
hence the uncertainty and decision thresholds; furthermore this term helps finding a direct
analytic solution, otherwise, the variational problem will be difficult to solve. In a second
major part of this work, we introduce a matching, detection and recognition procedure
based on our similarity measure and we show, under the hypothesis of the existence of
reference logos into test images, that the probability of success of this procedure is high,
which is also corroborated through experiments. Moreover, we will show through this
theoretical analysis, that our context dependent logo detection has more easy to set decision
thresholds, than context free approaches. Finally, note also that the proposed alignment
and logo detection method is model-free, i.e., it is not based on any a priori alignment model
such as homography which might not capture the actual inter-logo transformations.

2. Given a set of interest points X , the context of x ∈ X is defined as the set of points spatially close to x
and with some particular geometrical constraints (see section 2.1 for a detailed and a formal definition
of the context.)
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The paper is organized as follows: we first discuss in Section 2, our energy function which
makes it possible to design our context-dependent similarity, then we show in Section 3, the
application of this similarity in order to align interest points and perform logo detection.
We will also show some theoretical properties about our alignment procedure mainly its
probability of success even in challenging conditions such as presence of partial occlusion
and its rotation, scale and translation invariance. In Section 4, we show logo detection
results and comparison on challenging logo images, and we conclude in Section 5 while
providing possible extensions for a future work.

2. Context-Dependent Similarity

Let Sp = {xp1, . . . , x
p
n}, Sq = {xq1, . . . , x

q
m} be the list of interest points taken respectively

from a reference logo and a test image (n � m and the value of n, m may vary with the
objects p, q).

2.1 Context

In order to take into account contextual information, an interest point x is formally defined
as x = (ψg(x), ψf (x), ψo(x), ω(x)) where the symbol ψg(x) ∈ R2 stands for the 2D coordi-
nates of x while ψf (x) ∈ Rs corresponds to the feature of x (in practice the 128 coefficients
of the SIFT; (Lowe, 2004)). We have an extra information about the orientation of x (de-
noted ψo(x) ∈ [−π,+π]) which is provided by the SIFT gradient. Finally, we use ω(x) to
denote the object from which the interest point comes from, so that two interest points
with the same location, feature and orientation are considered different when they are not
in the same image (this is not surprising since we want to take into account the context of
the interest point in the image it belongs to).

Let d(x, x′) = ‖ψf (x) − ψf (x′)‖2 measure the dissimilarity between two interest point
features, ‖ · ‖2 is the “entrywise” L2-norm (i.e., the sum of the square values of vector
coefficients). Introduce the context of x

N θ,ρ(x) = {x′ : ω(x′) = ω(x), x′ 6= x s.t. (i) and (ii) hold},

with
ρ− 1
Nr

εp ≤ ‖ψg(x)− ψg(x′)‖2 ≤
ρ

Nr
εp, (i)

and
θ − 1
Na

π ≤ ∠
(
ψo(x), ψg(x′)− ψg(x)

)
≤ θ

Na
π. (ii)

Here εp is the radius of a neighborhood disk surrounding x and θ = 1, ..., Na, ρ = 1, ..., Nr

correspond to indices of different parts of that disk (see Fig. 2). In practice, Na and Nr

correspond to 8 sectors and 8 bands. The definition of neighborhoods {N θ,ρ(x)}θ,ρ reflects
the co-occurrence of different interest points with particular spatial geometric constraints
(see again Fig. 2).
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Figure 2: This figure shows a collection of SIFT interest points (with their locations, ori-
entations and scales) (left) and the partitioning of the context (also referred to
as neighborhood) of an interest point into different sectors for orientations and
bands for locations (right).

2.2 Similarity Design

The set X of all possible interest points is the union over all possible objects Sp, Sq:

X =
{
∪p Sp

}
∪
{
∪q Sq

}
.

We consider k : Sp×Sq → R as a function which, given two interest points (xpi , x
q
j), provides

a similarity measure between them.
For a finite collection of interest points, the sets Sp, Sq are finite. Provided that we

put some (arbitrary) order on Sp, Sq, we can view function k as a matrix K in which
the “(x, x′)−element” is the similarity between x and x′: Kx,x′ = k(x, x′). Let Pθ,ρ be
the intrinsic adjacency matrices respectively defined as Pθ,ρ,x,x′ = gθ,ρ(x, x′), where g is a
decreasing function of any (pseudo) distance involving (x, x′), not necessarily symmetric.
In practice, we consider gθ,ρ(x, x′) = 1{ω(x)=ω(x′)} × 1{x′∈N θ,ρ(x)}. Let Dx,x′ = d(x, x′).
We propose to use the function on Sp × Sq defined by solving

min
K ≥ 0,
‖K‖1 = 1

Tr
(
K D

′)
+ β Tr

(
K log K

′) − α
∑
θ,ρ

Tr
(
K Pθ,ρ K′ P′θ,ρ

)
(1)

Here α, β ≥ 0 and the operations log and ≥ are applied individually to every entry of
the matrix (for instance, log K is the matrix with (log K)x,x′ = log k(x, x′)), ‖ · ‖1 is the
“entrywise” L1-norm (i.e., the sum of the absolute values of the matrix coefficients) and
Tr denotes matrix trace. The first term, in the above constrained minimization problem,
measures the quality of matching two features ψf (x), ψf (x′). In the case of SIFT, this is
considered as the distance, d(x, x′), between the 128 SIFT coefficients of x and x′. A high
value of d(x, x′) should result into a small value of k(x, x′) and vice-versa.
The second term is a regularization criterion which considers that without any a priori
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knowledge about the aligned interest points, the probability distribution {k(x, x′)} should
be flat so the negative of the entropy is minimized. This term also helps defining a direct
analytic solution of the constrained minimization problem (1). The third term is a neigh-
borhood criterion which considers that a high value of k(x, x′) should imply high values in
the neighborhoods N θ,ρ(x) and N θ,ρ(x′). This criterion also makes it possible to consider
the spatial configuration of the neighborhood of each interest point in the matching process.
We formulate the minimization problem by adding an equality constraint and bounds which
ensure a normalization of the similarity values and allow to see {k(x, x′)} as a probability
distribution on Sp × Sq.

2.3 Solution

The above stated minimization problem admits one solution under some constraints

Proposition 1 Let u denote the matrix of ones and introduce

ζ =
α

β

∑
θ,ρ

‖Pθ,ρuP′θ,ρ + P′θ,ρuPθ,ρ‖∞,

where ‖ · ‖∞ is the “entrywise” L∞-norm. Provided that the following two inequalities hold

ζ exp(ζ) < 1 (2)
‖ exp(−D/β)‖1 ≥ 2 (3)

the optimization problem (1) admits a unique solution K̃, which is the limit of

K(t) =
G(K(t−1))
‖G(K(t−1))‖1

, (4)

with

G(K) = exp
{
− D
β

+
α

β

∑
θ,ρ

(
Pθ,ρKP′θ,ρ + P′θ,ρKPθ,ρ

)}
, (5)

and

K(0) =
exp(−D/β)
‖ exp(−D/β)‖1

Besides K(t) satisfy the convergence property:

‖K(t) − K̃‖1 ≤ Lt‖K(0) − K̃‖1. (6)

with L = ζ exp(ζ).

Proof the proof is omitted and may be found in Sahbi et al. (2009).

By taking not too large β, one can ensure that (3) holds. Then by taking small enough
α, Inequality (2) can also be satisfied. Note that α = 0 corresponds to a similarity which
is not context-dependent: the similarities between neighbors are not taken into account to
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assess the similarity between two interest points. Besides our choice of K(0) is exactly the
optimum (and fixed point) for α = 0.

To have partitioned the neighborhood into several cells corresponding to different degrees
of proximity (as shown in Fig. 2) has lead to significant improvements of our experimental
results. On the one hand, the constraint (2) becomes easier to satisfy, for larger α with
partitioned neighborhood, compared to Sahbi et al. (2008). On the other hand, when the
context is split into different parts, we end up with a context term, in the right-hand side
of the exponential (5), which grows slowly compared to the one presented in our previous
work (Sahbi et al., 2008) and grows only if similar spatial configurations of interest points
have high similarity values. Therefore, numerically, the evaluation of that term is still
tractable for large values of α which apparently produces a more positively influencing (and
precise) context-dependent term, i.e., last term in (1) (see also equation (9) and discussion
in Section 3.1). Finally, notice that at the convergence stage, we omit t in all K(t) so the
latter will simply be denoted as K.

3. Logo Detection and Consistency

Let X, Y be two random variables standing respectively for interest points in Sp, Sq, and
{X1, . . . , Xn} (resp. {Y1, . . . , Ym}) as n (resp. m) realizations with the same distribution
as X (resp. Y ). Define also H1 (resp. H0) as the set of all possible matching points (resp.
non matching points) taken from {Sp} × {Sq} according to a well defined ground truth.

3.1 Matching

Given X, a good matching strategy consists in declaring YJ as a match iff the conditional
probability on (X,YJ) is larger than the sum of the conditional probabilities on {(X,Yj), j 6=
J}; leading to

KYJ |X >
m∑
j 6=J

KYj |X , (7)

being KY |X = KX,Y /
(∑m

j=1 KX,Yj

)
; the intuition behind the above criterion comes from

the fact that when KYJ |X �
∑m

j 6=J KYj |X , the entropy of the conditional probability
distribution K.|X will be close to 0, so given X, the uncertainty about its possible matches
will be reduced.
Considering (7), we define its probability of success

ps = P

(
KYJ |X >

m∑
j 6=J

KYj |X

)
, (8)

this probability is with respect to {X,X1, . . . , Xn}, {Y1, . . . , Ym}. In the remainder of this
section, we will discuss the consistency of the matching criterion (7), mainly its probability
of success under H1 and H0.

Proposition 2 fix Q = NrNa (see (i),(ii)) and consider X. Under the hypothesis of ex-
istence of a reference logo into a test image (i.e. ∃YJ : (X,YJ) ∈ H1), the probability of
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success ps (in 8 also denoted P1 under H1) is at least

exp
(
n(1− 1/Q)

)
exp

(
n(1− 1/Q)

)
+ (m− 1)

, (9)

and if Q > 1, ps will be exponentially-convergent to 1 with respect to n and decreasing with
respect to m. Whereas, under the hypothesis of non existence of a reference logo into a test
image (i.e. @YJ : (X,YJ) ∈ H1), the probability of success ps (also denoted P0 under H0) is
1/m −→

m→+∞
0.

Proof see appendix.

It results from the above proposition, that under H1 (in contrast to H0), ps is an increasing
function of n, Q and a decreasing function of m. For instance, if m = 10.000, Q = 64,
then ps reaches 1 with only n ≥ 20 sample points in the reference logo. Clearly, this shows
that the procedure is able to correctly match very few interest points (in Sp) into a very
large collection (in Sq), with small uncertainty (i.e., P1 � P0), so the underlying detection
thresholds are easy to set as also corroborated through the next section and detection
results.

3.2 Logo Detection

Given a test image Sq and a reference logo Sp, the latter is declared as present into Sq if
the number of times the inequality (7) is satisfied is larger than τn (τ ∈]0, 1]); here (1− τ)
is the amount of occlusion that Sp might have in Sq while still can be detected3. Let Xs
(Xs → B(n, ps)) be a binomial random variable standing for the number of times good
matches are found in Sq, for the n points in Sp, using (7). In this section, we are interested
in lower bounding

P
(
Xs ≥ τn

)
, τ ∈]0, 1], (10)

here P is the probability distribution of Xs. Now, we provide our main result which allows
us under some conditions to lower bound (10)

Proposition 3 fix τ and consider Xs as a binomial random variable with parameter ps. If

ps (∈ [0, 1]) is at least
√
− ln(δ/2)

2n + τ , then

P
(
Xs ≥ τn

)
≥ 1− δ (11)

here δ � 1 is a fixed error rate.

Proof the left-hand side of the above inequality is equal to

P

(
n∑
i

Zi ≥ τn

)
, here Xs =

n∑
i

Zi, Zi → B(1, ps)

= 1− P

(
ps −

1
n

n∑
i

Zi ≥ ps − τ

)
≥ 1− 2 exp

(
− 2n(ps − τ)2

)
, (by Hoeffding’s inequality)

(12)

3. It reasonable to set τ = 0.5, which means that a reference logo is still detectable event-though half-occluded
in a test image.

9



Hichem Sahbi, Lamberto Ballan, Giuseppe Serra and Alberto Del Bimbo

the sufficient condition is

2 exp
(
− 2n(ps − τ)2

)
≤ δ ⇒ ps ≥

√
− ln(δ/2)

2n
+ τ, (13)

when n→ +∞, and if ps is at least equal to τ , then P
(
Xs ≥ τn

)
−→

n→+∞
1.

Now combining (9) and (13), the sufficient condition which guarantees (11) becomes under
H1

exp
(
n(1− 1/Q)

)
exp

(
n(1− 1/Q)

)
+ (m− 1)

≥
√
− ln(δ/2)

2n
+ τ, (14)

which holds true mainly for larger n, Q, but τ < 1, and even large m. For instance if
n = 20, m = 10.000, Q = 64, the left hand side is very close to 1 and hence the inequality
(14) will be satisfied even when τ → 1 (low occlusion factor) and δ → 0 (high lower bound).

3.3 Invariance Properties

The adjacency matrices Pθ,ρ, in K, provide the intrinsic properties and also characterize
the geometry of logos {Sp} in X . It is easy to see that Pθ,ρ is translation and rotation
invariant and can also be made scale invariant when εp (see (i)) is adapted to the scales
of ψg(Sp). It follows that the right-hand side of our similarity K is invariant to any 2D
similarity transformation. Notice, also, that the left-hand side of K(t) may involve similarity
invariant features ψf (.) (actually SIFT features), so K(t) (and also the matching process)
is similarity invariant.

4. Benchmarking

4.1 Test Data and Settings

In order to show the extra-value of our context dependent matching strategy (i.e., based on
“CDS”) with respect to context free one and other approaches, we evaluate the performances
of multiple-logo detection on a novel challenging dataset called TradeMark-720, containing
13 trademark classes each one represented with 14−87 real world pictures downloaded from
the web, resulting into a collection of 720 images. 13 reference logos are used and correspond
to trademarks: 1: ”Agip”, 2: ”Apple”, 3: ”Barilla”, 4: ”Birra Moretti”, 5: ”Cinzano”, 6:
”CocaCola”, 7: ”Esso”, 8: ”Ferrari”, 9: ”Heineken”, 10: ”Marlboro”, 11: ”McDonald”,
12: ”Pepsi”, 13: ”Starbucks”. Note that each reference logo is synthetically transformed in
order to generate 4 affine transformations. Interest points are extracted from test images
as well as reference logos and encoded using the usual SIFT features.
Each test image Sq is processed in order to evaluate the similarity function K (shown in
4) with respect to each reference logo Sp, using Gaussian power assist setting, i.e., K(0)

x,x′ =
exp(−d(x, x′)/β). Our goal is to show the improvement brought when using K(t), t ∈ N+,
so we compared it first against the standard context-free similarity (i.e., K(t), t = 0),
then with respect to standard matching techniques including RANSAC. First, the setting
of β is performed by maximizing the performance of the Gaussian similarity as the latter
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Thresholds (τ) .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Errors FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR FRR/FAR

Sift Matching .29/.31 .50/.14 .63/.09 .73/.05 .77/.03 .82/.02 .85/.02 .89/.01 .92/.01 .95/.01
Ransac Matching .39/.08 .52/.03 .62/.01 .70/.01 .75/.01 .80/0.01 .82/.01 .84/.01 .86/.01 .87/.01
“CDS” Matching .09/.27 .10/.22 .11/.20 .12/.18 .12/.18 .12/.17 .13/.17 .13/.17 .13/.16 .13/.16

Table 1: This table shows a comparison of our method, with respect to Sift and Ransac
matching; in all these experiments we clearly see that the global error rates (de-
fined as 1

2(FAR + ERR)) of our method are better than those reported for stan-
dard matching techniques. Notice also that FAR is an increasing function of the
occlusion factor (1− τ) while FRR is a decreasing function.

corresponds to the left-hand side (and the baseline form) of K(t), i.e., when α = 0.4 For
our database, we found that the best performances are achieved for β = 0.1 and this also
guarantees condition (3) in practice. The influence (and the performance) of the right-hand
side of K(t), α 6= 0 (context term) increases as α increases nevertheless and as shown earlier,
the convergence of K(t) to a fixed point is guaranteed only if (2) is satisfied. Intuitively, the
weight parameter α should then be relatively high while also satisfying condition (2). We
found that the best α is 0.1.

4.2 Performance, Comparison and Discussion

We used criteria (7), (10) in order to decide whether a given reference logo Sp exists into
a test image Sq. Different values were experimented for the tolerance factor τ and per-
formances are measured using False Acceptance (FAR) and False Rejection Rates (FRR)
defined as

FAR = E

(
false positive

false positive+ true negative

)
, FRR = E

(
false negative

false negative + true positive

)
,

here the expectation is with respect to all possible test images. Diagrams in (3, Bottom),
show the FAR, FRR errors for different classes (trademarks) of our test set; we clearly see
the out-performance and the improvement of the our context dependent similarity function
(i.e., K(t), t ∈ N+), in logo detection, with respect to the baseline, i.e., context-free similarity
(K(0)). For almost all the classes of the test set, the improvement brought by the “CDS”
similarity is clear and consistent; except the classes “Apple” and “McDonald” as their
reference logos contain very few interest points (n < 12), and this makes (consistently with
our theoretical analysis) inequality (14) difficult to satisfy mainly for high expectations
about the lower bound in (11) (i.e., low δ) and when τ is relatively high.

Table 1 shows a comparison of our context dependent similarity for logo matching and
detection with respect to other techniques including SIFT matching and also with respect
to (iterative) Ransac matching using the inliers/outliers, obtained by estimating the affine
transformation between SIFT correspondences. In both cases, a match is declared if Lowe’s
second nearest neighbor test is satisfied. In particular, the SIFT matching technique follows
the approach presented in Bagdanov et al. (2007) where a logo is detected if the overall

4. Notice that selecting β independently from α is obviously “not sub-optimal” for the context dependent
similarity but “sub-optimal” for the Gaussian similarity.
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Figure 3: (Top) This figure shows a comparison of the matching results when using a naive
matching strategy without context and our context dependent matching (i.e.,
based on “CDS”). (Middle) Figures show the conditional probability distribution
K.|X for a particular interest point X in the reference logo. This distribution is
peaked when using context dependent similarity (Middle, right) so the underlying
entropy is close to 0 and the uncertainty about possible matches is dramatically
reduced. (Bottom) This figure shows a comparison of logo detection using our (i)
context-dependent similarity and (ii) context-free one (actually Gaussian). FAR
and FRR rates are shown for each class. In these experiments, β = α = 0.1
and τ = 0.5 while n and m vary of course with reference logos and test images.
Excepting the logos “Apple” and “Mc Donald’s” (which contain very few interest
points n < 12), the FRR errors are almost always significantly reduced while
FAR is globally reduced.
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Figure 4: These pictures show logo detection results; for every test images, all the 13 refer-
ence logos were checked using criterion (10). Match points are also displayed.

number of SIFT matches is above a fixed (trained) threshold. The Ransac approach follows
the same idea but it introduce a model-based (not necessarily always consistent) geometric
consistency test by selecting only matches that satisfy the affine transformation between
the query and the retrieved images (see Joly and Buisson (2009)). Even though, the FAR
and FRR results are variable depending on the setting of τ , in all these cases, the average
error rates, defined as (FAR+FRR)/2, of our method are lower than those reported for
SIFT matching and Ransac. Finally, our method is able to process images of 1500 × 1500
pixels and checks for the existence of 13 reference logos in less than 1(s) using a standard
2 GHz PC (see results in Figs. 4, 5, 6).

5. Conclusion

We introduced in this work a novel logo detection and localization approach based on a new
class of similarities referred to as context dependent. The strength of the proposed method
resides in several aspects: (i) the inclusion of the information about the spatial configuration
in similarity design as well as visual features, (ii) the ability to control the regularization of
the solution via our energy function, (iii) the invariance to many transformations including

13
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Figure 5: Other logo detection results.

Figure 6: Further logo detection results.
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translation, scale, rotation and also partial occlusion, and (iv) the theoretical groundedness
of the matching framework which shows that under the hypothesis of existence of a reference
logo into a test image, the probability of success of matching and detection is high while
very low under background.
Further extensions of this work include the application of the method to logo retrieval in
videos and also the refinement of the definition of context in order to handle other rigid and
non-rigid logo transformations. Other extensions include searching duplicate objects/images
in the web and extensions to other objects including driving signs.

Appendix

Proof [Proposition 2] Let N θ,ρ(X), N θ,ρ(Y ) be two random variables standing for the
number of interest points falling inside the context cell (θ, ρ) of respectively a reference logo
and a test image. Here N θ,ρ(X)→ B(n, 1/Q), N θ,ρ(Y )→ B(m, 1/Q) and Q is the number
of cells in the context (Q = Na ×Nr, in practice Q = 64). Following the definition of our
fixed point KX,Y in (4), we have

KY |X ∝ 1
C

exp
(
N (X,Y )

)
, (15)

where N (X,Y ), stands for the number of matching points in the context of X, Y

N (X,Y ) =
Q∑
θ,ρ

N θ,ρ(X) N θ,ρ(Y ). (16)

Under H1 −→ ∃YJ s.t. (X,YJ) ∈ H1

Since KYJ |X +
∑m

j 6=J KYj |X = 1, using (8), ps, qs = 1− ps are respectively

E
(
KYJ |X

∣∣(X,YJ) ∈ H1

)
,

and
m∑
j 6=J

E
(
KYj |X

∣∣(X,Yj) ∈ H0

)
,

(17)

here the expectation E is with respect to {X,X1, . . . , Xn}, {Y1, . . . , Ym}. Now, combining
(15), (17), ps and qs are at least

1
C

exp
(
EH1

(
N (X,Y )

))
and

1
C

(m− 1) exp
(
EH0

(
N (X,Y )

))
, (by Jensen’s inequality)

(18)
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EH1 (resp. EH) denotes the expectation w.r.t data in H1 (resp. H0) equal to

EH0

(
N (X,Y )

)
= EH0

∑
θ,ρ

N θ,ρ(X)N θ,ρ(Y )


=

∑
θ,ρ

EH0

(
N θ,ρ(X)N θ,ρ(Y )

)
=

∑
θ,ρ

EH0

(
N θ,ρ(X)

)
EH0

(
N θ,ρ(Y )

)
,

N θ,ρ(X),N θ,ρ(Y ) i.i.d→ B(n, 1/Q)

= n2 (1/Q)2Q
= n2/Q.

(19)

EH1

(
N (X,Y )

)
= EH1

∑
θ,ρ

N θ,ρ(X)N θ,ρ(Y )

 . (20)

Under H1, N θ,ρ(X) ' N θ,ρ(Y ) and

EH1

(
N (X,Y )

)
' EH1

∑
θ,ρ

N θ,ρ(X)2


=

∑
θ,ρ

EH1

(
N θ,ρ(X)2

)
=

∑
θ,ρ

EH1

(
(
n∑
i

Zθ,ρ,i)2
)
,

Zθ,ρ,i → B(1, 1/Q)

=
∑
θ,ρ

EH1

 n∑
i,j

Zθ,ρ,iZθ,ρ,j


=

∑
θ,ρ

EH1

(
n∑
i

Z2
θ,ρ,i

)

+ EH1

 n∑
i,j 6=i

Zθ,ρ,iZθ,ρ,j

 .

(21)

Since Zθ,ρ,i, Zθ,ρ,j
i.i.d→ B(1, 1/Q)

EH1

(
N (X,Y )

)
'

∑
θ,ρ

n∑
i

EH1

(
Z2
θ,ρ,i

)
+

n∑
i,j 6=i

EH1 (Zθ,ρ,i)EH1 (Zθ,ρ,j)

= Q
(
n/Q+ n(n− 1)(1/Q)2

)
= n2/Q+ n(1− 1/Q),

(22)
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therefore,

ps ≥
1
C

exp
(
n2/Q+ n(1− 1/Q)

)
,

qs ≥
1
C

(m− 1) exp
(
n2/Q

)
.

(23)

Accordingly ps is at least

exp
(
n(1− 1/Q)

)
exp

(
n(1− 1/Q)

)
+ (m− 1)

(24)

Under H0 −→ @ YJ s.t. (X,YJ) ∈ H1

Equations (17) are updated as

E
(
KYJ |X

∣∣(X,YJ) ∈ H0

)
,

and
m∑
j 6=J

E
(
KYj |X

∣∣(X,Yj) ∈ H0

) (25)

ps is then 1/m.
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