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Abstract

Cache misses are central to processor performance. The analysis of memory
access patterns is widely used for performance prediction under monotasking.
The monotasking hypothesis gives a lower bound of the cache miss ratio. With
multitasking, which is the rule on mainstream operating systems, additional
misses are caused by context switches. We present a higher bound of the cache
misses overhead from context switches, based on a stochastic analysis of how
the cache warms up, i.e. fills up with useful data. We observe that the higher
bound is as close as the lower bound to the actual cache miss ratio. The resulting
segment covers the exact cache miss ratio in a finite time quantum, potentially
representative of the whole execution.

Les fautes de cache sont déterminantes pour la performance des processeurs.
L’analyse des patterns d’accès mémoire est largement utilisée pour la prédiction
de performance en l’absence de partage du cache entre processus. Cette hy-
pothèse permet d’obtenir une limite inférieure du ratio de fautes de cache. En
présence de concurrence entre processus, ce qui est le cas dans les système
d’exploitation habituels, un surplus de fautes de cache est du aux changements
de contexte. Nous proposons une limite supérieure du nombre de fautes addi-
tionnelles dues aux changements de contexte, à partir d’une analyse stochastique
de la façon dont le cache se ”réchauffe”, c’est-à-dire se remplit de données utiles
au processus en cours. Nous observons que la limite supérieure est aussi proche
que la limite inférieure de la valeur réelle. Le segment obtenu comprend la
valeur exacte du ratio de fautes de cache dans un quantum fini, potentiellement
représentatif de la totalité de l’execution.
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Chapter 1

Introduction

Processor caches are normally shared by multiple processes. A cache stores
a limited amount of memory for fast access. Processes scheduled on succes-
sive time quanta affect each other’s performance by erasing each other’s cached
items. This produces extra cache misses, i.e. failures to fetch items from cache.
The adverse effect on performance is called cache thrashing. It is in some cases
overwhelming, although reputedly difficult to quantify.

Performance prediction is particularly relevant to application, compiler and
platform developers, and to task schedulers. Developers evaluate cache perfor-
mance with expensive simulations. Online task schedulers require a faster al-
ternative to map tasks to heterogeneous platforms. Cache misses are to a great
extent responsible for performance variability between heterogeneous platforms.
However, former prediction algorithms make simplifying assumptions that ques-
tion their applicability to real cases, as with multiple concurrent processes.

This paper presents a stochastic approach to cache misses prediction in pres-
ence of multiple concurrent processes time-sharing a fully associative LRU1

cache.
The method gives a higher bound of the cache miss rate, i.e. the ratio of

cache misses per memory access.
Section 2 positions this work with current research. Section 3 introduces

useful concepts: age, rank, span, propagation. Section 4 shows their relation-
ships with the expected number of cache misses in a time quantum. Section 5
presents their calculation based on the stack distance distribution of the process.
Section 6 summarizes the algorithm and its complexity. Section 7 measures the
cost of its hypotheses on a set of benchmarks.

1A cache with Least Recently Used replacement policy
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Chapter 2

Position of this work

This section positions the present work in its context. Section 2.1 introduces
the metric that forms the basis of the analysis. Section 2.2 presents related
work on cache simulation and performance prediction. Section 2.3 identifies our
contributions.

2.1 Stack distance

In order to prepare for the complexity of the analysis, this section goes into
more details than paper ?? on the definition of the metrics.

The method relies on the following cache design principles. Given that con-
tiguous memory items are often accessed in a row, multiple contiguous items
are fetched from memory at a time, in a line or block. Moreover, given that the
same memory accesses often occur repeatedly, every line is stored on cache (is
cached) when accessed, in order to be available on subsequent accesses. Several
strategies may apply to determine the position of a new line on cache.

Associativity is a design choice. With a n-associative cache, a memory line
can only be stored on n different positions based on its memory address. A
fully-associative cache of size c lines is a c-associative cache. Fully-associative
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Figure 2.2: Misses under cache monopoly

caches make it possible to place a new line anywhere. When the cache is full,
the replacement policy determines which line is selected for eviction.

On fully associative caches with Least Recently Used (LRU) replacement
policy, every new line overwrites (evicts) the least recently used line, considered
one of the least likely to be reused in the future.

The method is based on the estimation of its stack distance probability dis-
tribution. This distribution describes the temporal locality of memory accesses.
An observation can be made for every memory access.

Definition 1 (Stack distance, adapted from [BD01]). The stack distance of a
memory access is the number of different lines accessed since the last reference
to the requested line, present and initial references excluded. Stack distance is
defined on N∪{+∞}. A stack distance of +∞ occurs on the first request of any
line.

A few authors call stack distance circular sequence [CGKS05]. Others call
it reuse distance [SSkP+07]. However, for most authors, reuse distance is in-
cremented for every distinct access to the same line. On figure 2.1, the stack
distance of the last access to line 1 is 3 while its reuse distance is 4 because line
2 was accessed twice between the two accesses to line 1.

Definition 2 (Reuse distance, adapted from [BH04]). the reuse distance of
a memory access is the number of memory references since the same line was
previously accessed, present and initial references excluded. Reuse distance is
defined on N ∪ {+∞}. A reuse distance of +∞ occurs on the first request of
any line.

Stack distance allows to predict the number of cache misses for a process that
runs forever with a dedicated LRU, fully associative cache. An access is a miss
if and only if its stack distance is greater than the cache capacity. Figure 2.2
represents a stack distance histogram. For each stack distance, the histogram
stores the number of corresponding accesses. The miss rate appears on the
histogram as the ratio of the number of misses by the number of hits.
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There is indecision in current literature whether stack distance is a number
of different lines accessed between two successive accesses to the same line, or a
number of different items accessed between two successive accesses to the same
item. Counting lines is useful for prediction but cannot be done by looking at
the process only. Counting items can be done once for all for a process but
is not directly useful for performance prediction. We deliberately choose the
first alternative and assume that stack distance is known. Strictly speaking, it
depends on line size and on spatial distribution of data on memory. To obtain
stack distance from independent analysis of a process and a platform is a work
in progress.

2.2 Previous work

Agarwal, Hennessy and Horowitz show in [AHH89] that the impact of multi-
programming on cache misses is at least substantial and can be predominant.
In [LGS+08], Liu et al. confirm this observation on recent benchmarks and
processors.

A LRU, fully associative cache is comparable to a FIFO (first in first out)
queue with perturbations. In the absence of memory reads, the first line written
(first in the stack) is the first evicted (first out). Perturbations are caused by
memory accesses that reorder line rankings. After every access, the accessed
line is ranked first and the others are shifted down in the rankings. In this
perspective, the present work is related to queuing theory as described in [All90].
However, queueing theory is concerned with the time spent in the queue - the
queueing delay, while the present work is concerned with the probability that a
line is in the cache when the program needs to access it.

Strictly speaking, a stack is a LIFO (last in first out) queue. Caches resemble
stacks because of the programming artifact that the most recently used lines
(last in) generally have a high probability to be re-used soon (first ”out”). This
observation motivates the use of the LRU replacement policy, that dictates that
the least recently used line in cache is the first line evicted, i.e. overwritten by
a new entry.

Gecsei, Slutz, and Traiger introduced stack distances in 1970 [GST70]. In
[GAFN94], Grimsrud et al. show that stack distances describes a typical mem-
ory access pattern better than other models still in use today. In 1999, Brehob
and Enbody define the stack distance of a reference as the depth in the stack
from which it was fetched ; and use it for cache misses prediction [BE99]. They
exhibit prediction errors of a few percents when running a single process at a
time.

In [SDR01], Suh, Devadas and Rudolph calculate the average miss probabil-
ity on a finite time quantum, from the given miss probability as a known, convex
function of the number of cached lines. More recently, in [LGS+08], Liu et al.
use a Markov model to simulate the effect of cache thrashing. A three-states
Markov chain describes the last step to obtain a given distribution of data in
cache. Recursion on transition probabilities yields a simple cache simulation
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algorithm. To the best of our knowledge, these two works are representative
for the few attempts to predict or simulate context switch misses. Among these
references, other works in cache performance prediction are restricted to the
monotasking case, where the cache is dedicated to a single process.

Stack distance histograms are often used as tasks signatures, i.e. to store
memory access patterns. They can be computed at compile time, by analyzing
loops, and under some assumptions on the regularity of the references within
a loop, as is done in [CP03]. An alternative is to monitor memory accesses at
runtime on a short time period, and suppose that the extracted stack distance
histogram is representative of the full run [MMC04]. In [GJ08], we fit stack dis-
tance to known probability distributions to reduce the size of the task signature
to a few parameters and the complexity of the miss prediction to a constant
complexity, with measured risks on accuracy.

Results are often obtained for LRU, fully associative caches and said to ex-
trapolate to other types of cache. The impact of replacement policy is measured
for example in [GS06]. The impact of cache associativity is detailed in [HS89].
In [LZ09], Liu et al. generalize to associative caches the conditions on stack
distance under which an access yields a cache miss.

2.3 Assumptions and contributions

The present work builds on the assumption that stack distance observations
are independent, identically distributed. To the best of our knowledge, this as-
sumption is always done for non cycle accurate cache performance prediction
and simulation. It underlies for example the use of stack distance histograms.
However, it removes some information contained in a stack distance trace. For
example, it hides the fact that because of program loops, successive accesses
often exhibit regular stack distance patterns. An alternative would be to con-
sider stack distance as a stochastic process, at the expense of a probably more
complex model.

In addition, the stack distance distribution Σ of the process of interest is
supposedly known, and representative of an identified phase of the execution.
Its cumulative distribution function F (k) = P(Σ ≥ k) is given at any point.
The computational complexity of the proposed algorithm is the number of calls
to F .

The method gives the first higher bound of the cache miss ratio in presence
of context switches. It complements prediction methods such as [LZ09] that do
not account for context switches and, therefore, present a lower bound of the
cache miss ratio in multitasking. It is consistent with other analysis of cache
thrashing ([SDR01] and [LGS+08]). However, by contrast with [SDR01], it does
not require prior knowledge or assumptions on the miss probability function,
and by contrast with [LGS+08], it results in a prediction algorithm faster than
a simulator.

We prove that the computation can be done with the initial approximation
of the singular values of a bidiagonal matrix, followed by a computation with
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cubic complexity of the cache size. We also indicate, but we fail to prove in the
general case, an exact method, quadratic of the cache size.

A detailed terminology is developed to elaborate from the observation of
stochastic processes. It cements a theoretical frame for the development of
more accurate or faster algorithms.
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Figure 3.1: Cached lines with their age at the beginning and the end of successive
time quanta.
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Figure 3.2: Relationship between time, age, rank and span.

Chapter 3

Metrics

This section introduces metrics to model the state of a cache as seen by a process
in competition with other time-shared processes. Memory accesses increment a
measure of time relative to the process. At a given time, age and rank charac-
terize cache lines, and span, characterizes the process by its number of cached
lines. Propagation measures consistency between two time quanta.
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3.1 Age

This section defines time and a line’s age to describe usage recency, and connects
age to reuse distance: the reuse distance of a hit is the age of the requested line.

Definition 3 (Time). The time of a memory access is the number of previous
memory accesses by the process since the beginning of the time quantum. Time
is defined on Z ∪ {+∞,−∞}. +∞ is the time of a non existent future access,
and −∞ is the time of a non existent past access.

Definition 4 (Duration). The duration of a period is the number of memory
accesses of the process on this period. Duration is defined on N.

Definition 5 (Age). The age of a line is the time minus the time of its last
request (fig. 3.2). Age is defined on N ∪ {+∞}.

Theorem 1. An access i of reuse distance r ∈ N is a hit on the line of age r
at i− 1 if it exists and a miss otherwise.

Proof. If i is the time of the access of reuse distance r, the previous access to
the same line is at time i−r−1. Therefore the age of the requested line at i−1
is r.

3.2 Rank

This section defines rank, that indexes lines according to their age, and connects
rank to stack distance: the stack distance of a hit is the rank of the requested
line.

Definition 6 (Rank). A line’s rank is the number of younger lines (fig. 3.2).

Definition 7 (Cache capacity). The cache capacity is the number of different
lines that the process is allowed to have in cache at a given time.

Lemma 1 (Necessary condition for eviction). If C is the cache capacity, a line
of rank r at i can be evicted at i+ 1 only if

r = C − 1

Proof. LRU replacement policy ensures that r is the maximum rank. Full as-
sociativity ensures that the allocated cache is fully occupied before eviction.
Therefore, the maximum rank is C − 1.

Theorem 2. An access i of stack distance s hits the line of rank s at i− 1 if it
exists and is a miss otherwise.

Proof. Suppose access i is a hit. Let s be its stack distance, l the line hit, and
x its rank l at access i− 1. There were s different lines l1, . . . , ls accessed since
last access n0 to the same line l, x of which have not been evicted at i − 1.
Therefore, x ≤ s.

10



Ad absurdum, suppose x < s. In this case ∃k ∈ [1, s] such that lk was
accessed at time i2 and evicted a time i3 with i0 < i2 < i3 < i. Therefore, if
rk,3 is the rank of lk at time i3− 1, rk,3 < x. In addition, since i3 is an eviction
and i is not, from lemma 1, rk,3 > x. By contradiction, x = s. Therefore, if i is
a hit, the requested line has rank s.

By contraposition, if there is no line of rank s, n is a miss.

3.3 Span

This section introduces the span, the number of lines that have been accessed
by the process, and its evolution in the quantum.

Definition 8 (Active line). A cached line of age a is active at time i if a ≤ i,
i.e. if it has been accessed in the time quantum.

Definition 9 (Active span). The active span is the number of active lines
(fig. 3.2).

Lemma 2 (Active span and rank). If rmax is the maximum rank of active lines
and λ is the active span,

λ = rmax + 1

Proof. Let l be the active line of maximum rank rmax. All λ − 1 other active
lines are younger, therefore rmax ≥ λ−1. All rmax younger lines are also active,
therefore λ ≥ rmax + 1.

Definition 10 (Maximum span). With C the cache capacity and Σ the stack
distance distribution of the process (only the finite values), the maximum span
c is defined by

c = min(C,maxΣ + 1)

Theorem 3 (Convergence of active span). In a time quantum, the active span
is monotonic increasing and converges into the maximum span almost surely.

Proof. Let c be the maximum span, and ∀i ∈ N, λi the active span at time i.
The sequence (λi)i∈N ∈ NN gives the evolution of active span.

Let i ∈ N.

• If access i+ 1 requests a line active at i, λi+1 = λi.

• If access i+ 1 requests a line not active at i, λi+1 > λi.

Therefore, (λi) is monotonous increasing.
We show that ∀i ∈ N, λi ≤ maxΣ + 1 by recursion on time. λ0 = 1 ≤

maxΣ + 1. We suppose that λi ≤ maxΣ + 1 and examine every case for λi+1.

• If i + 1 requests a line active at i, λi+1 = λi and λi ≤ maxΣ + 1 by
hypothesis. Therefore, λi+1 ≤ maxΣ + 1.

• If i+ 1 requests a line not active at i, let s be its stack distance at i.

11



– If i+ 1 is a hit, let l be the requested line and r its rank at i. From
theorem 2, s = r. Since l is not active at i, l is older than all active
lines. If rmax is the maximum rank of active lines at i, r > rmax.
From lemma 2, rmax = λi − 1 and therefore r ≥ λi. Since r = s and
s ≤ maxΣ, λi ≤ maxΣ and therefore λi+1 ≤ maxΣ + 1.

– If i+ 1 is a miss, from theorem 2, there is no line of rank s at i. We
show that λi ≤ s ad absurdum. Suppose that λi > s. From lemma
2, there is a line l of rank rl = λi − 1. Therefore, rl ≥ s. Since there
is no line of rank s, rl > s. By definition 6, there are rl lines younger
than l, and the (s + 1)th youngest is of rank s. By contradiction,
λi ≤ s and therefore λi+1 ≤ s+ 1.

We showed that ∀i ∈ N, λi ≤ maxΣ + 1. In addition, ∀i ∈ N, λi ≤ C
by definition 9. By the monotone convergence theorem, (λi) converges and
lim
k→∞

λk ∈ [0, c].

Let λ ∈ [0, c − 1] and i ∈ N such that λi = λ. By theorem 2, an access
of stack distance c is a miss, and by lemma 1, it does not yield an eviction.
Therefore,

∀n ∈ N,P(λi+n = λ) ≤ (1− P(Σ = c))n

By taking the limit:

P
(

lim
k→∞

λk = λ

)
= 0

It remains that:

P
(

lim
k→∞

λk = c

)
= 1

Definition 11 (Time to fill). The time to fill is the time at which the active
span reaches the maximum span. If λi is the active span at time i and ∆ is the
time to fill:

∆ = min{i ∈ [1,+∞]|λi = c}

The time to fill may be greater than the quantum duration. In this case the
active span does not reach the maximum span during the quantum.

Figure 3.3 represents memory accesses in a single, isolated time quantum.
The x coordinate enumerates accesses in chronological order. The y coordinate
shows the stack distance of each access with a vertical bar and the active span
with a horizontal line.

3.4 Propagation

This section introduces propagation to measure cache consistency between two
time quanta.
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Figure 3.3: Memory accesses in a single, isolated time quantum.

Definition 12 (Propagation). The propagation is the proportion of cached
lines that are not erased between two time quanta of the process of interest.

The evaluation of propagation is not detailed in this paper.

Definition 13 (Propagated line). A cached line of age a is propagated at time
i if a > i, i.e. if it was last accessed by the process of interest in a previous time
quantum and not accessed ever since.

On a common operating system, many services run together with user pro-
cesses. Even with a single user process, the propagation between its time quanta
is low, as shown by figure 3.4.
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Chapter 4

Cache misses

This section shows how the probability of occurrence of cache misses in a time
quantum is linked to the cumulative distribution function of stack distance and
the metrics defined in section 3.

4.1 A typology of cache misses

Lines cached by the process were last accessed either in the current time quan-
tum or in a previous time quantum. They are either active or propagated. The
request of a line which is neither active nor propagated is a miss.

Definition 14. A blind access is the request of a non active line.

Definition 15. A blind hit is the request of a propagated line.

Lemma 3. If M is the set of misses over a time period, BA the set of blind
accesses and BH the set of blind hits,

M = BA\BH
with BA\BH = {x ∈ BA|x /∈ BH}.
Proof. A miss is the request of a line which is not in cache. Active lines are
in cache, therefore a miss is a request of a non active line, i.e. M ⊂ BA (1).
Propagated lines are in cache, therefore the request of a propagated line is not
a miss, i.e. M ∩BH = ∅ (2). (1) and (2) yield M ⊂ BA\BH .

Conversely, a line which is neither active nor propagated is not in cache.
Therefore, its request is a miss, i.e. BA\BH ⊂M .

4.2 Blind accesses count

Theorem 4. Let λi be the active span at i and si+1 the stack distance of i+ 1.
i+ 1 is a blind access if and only if

si+1 ≥ λi

15



Proof. By lemma 2, all active lines at i have ranks in [0, λi − 1]. Then theorem
2 applies.

Corollary 1. If Σ is the stack distance distribution, i is an access and λi is
the active span at i, the probability that i+ 1 is a blind access is

P(i+ 1 ∈ BA) = P(Σ ≥ λi)

Corollary 2. We write [0, i] the i + 1 first accesses of the time quantum,
[0, i]∩BA the corresponding blind accesses, λk the active span at k, Σ the stack
distance of the process, c the maximum span, ∆ the time to fill. The expected
number of blind accesses on [0, i] is:

E [|[0, i] ∩BA|]
= E[λi] + (i− E[∆|∆ < i])P(∆ < i)P(Σ ≥ c)

Proof. We use the indicator variable 1X . 1X = 1 in the eventX and 0 otherwise.
For all k ∈ [0, i], let sk be the stack distance at access k. From corollary 1:

E[|[0, i] ∩BA|] = E

[
1 +

i∑
k=1

1sk≥λk−1

]

= E

1 +
min(i,∆)∑
k=1

1sk≥λk−1


+ E

[
1i>∆

i∑
k=∆+1

1sk≥λk−1

]

By theorem 3, k < ∆⇔ λk < c and k ≥ ∆⇔ λk = c.

E

[
1i>∆

i∑
k=∆+1

1sk≥λk−1

]

= E

[
1i>∆

i∑
k=∆+1

1sk≥c

]

= E

[
1i>∆

i∑
k=∆+1

1

]
P(Σ ≥ c)

= E [1i>∆(i−∆+ 1)] P(Σ ≥ c)
= (i− E[∆|∆ < i])P(∆ < i)P(Σ ≥ c)

By recursion on i, we show that

1 +
min(i,∆)∑
k=1

1sk≥λk−1 = λi
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If i = 1, λ0 = 1. Suppose that the hypothesis is true for i, we examine case
i+ 1. If i+ 1 ≤ ∆

1 +
min(i,∆)∑
k=1

1sk≥λk−1 = λi + 1sk≥λk−1

= λi+1

If i+ 1 > ∆

1 +
min(i,∆)∑
k=1

1sk≥λk−1 = λi

= λi+1

4.3 Blind hits count

Theorem 5. Let i ∈ N. If i+ 1 is a request of line l with stack distance s, λi
the active span at i and Λi the total span at i,

λi ≤ s < Λi ⇔ l is propagated and not active at i

Proof. This implication is straightforward:

l is propagated and not active at i⇒ λi ≤ s < Λi

We prove that:

λi ≤ s < Λi ⇒ l is propagated and not active at i

Since s < Λi, there is a cached line of rank s at i. From theorem 2, this line is
l. Since its rank s ≥ λi, l is not active. However, l is in cache, and therefore, l
is propagated.

Corollary 3. Let i ∈ N. If i+ 1 is an access of stack distance s, λi the active
span at i, Λi the total span at i, the probability that i+ 1 is a blind hit is:

P(i+ 1 ∈ BH) = P(s < Λi)P(s ≥ λi)

And for i = 0, with ρ the propagation:

P(0 ∈ BH) = ρP(s < Λ−1)

Proof. The general case follows from theorem 5. We show the case i = 0. Access
0 is blind by definition. Supposing that ρ = 1, From theorem 2 it is a hit if and
only if the line l of rank s at −1 is still in cache before the access. l is in cache
at −1 with probability P(s < Λ−1) and l is still in cache before access 0 with
probability ρP(s < Λ−1).
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Figure 4.1: Accesses in successive time quanta

Corollary 4. For i ∈ N, the expected number of blind hits on [0, i] is

E [|[0, i] ∩BH |]

= ρP(s < Λ−1) +
c∑
s=1

i−1∑
k=0

P(Σ = s)P(Λk > s)P(λk ≤ s)

Proof. From corollary 3,

E [|[0, i] ∩BH |]

= ρP(s < Λ−1) +
i∑

k=1

P(Σ < Λk−1)P(Σ ≥ λk−1)

Figure 4.1 shows accesses in non-isolated time quanta. The x axis is time.
On the y axis, vertical bars represent stack distances and the horizontal line
represents active span. Positive x’s are accesses in current time quantum, and
negative x’s (left panel) are accesses in previous time quantum of the same
process. On current time quantum, accesses of stack distance greater than cache
capacity (also known as capacity misses in [HP06]) are shown with dark bars.
Blind accesses are shown with medium-light bars. Depending on propagation,
some are hits and others are misses. Requests of active lines are shown with
light bars. These are hits.

18



1

k

k+1
c

...

...

1

Figure 5.1: State diagram of active span indexed by time (λi)i∈N

Chapter 5

Stochastic analysis

The metrics defined and used in previous sections are related to stack distance.
This section explains how. They are based on a Markov process. The stack
distance distribution Σ appears in transition probabilities.

5.1 Active span

Theorem 6. The active span indexed by time in a quantum, (λi)i∈N, is a
Markov chain with the following transitions:

• ∀k ∈ [0, c− 1], ∀i ∈ N,

P(λi+1 = k|λi = k) = P(Σ ≤ k − 1)

P(λi+1 = s+ 1|λi = s) = P(Σ > k − 1)

• ∀i ∈ N, P(λi+1 = c|λi = c) = 1

19



Proof. Let i ∈ N. From theorem 4, i + 1 is a blind access with probability
P(Σ ≤ λi − 1). While the active span is not maximal, blind accesses increment
it (proof of theorem 3). Theorem 3 also states that when the active span is
maximal, it remains constant.

Figure 5.1 shows the state diagram of (λi)i∈N.
Let Pf be the transition matrix of (λi)i∈N. Diagonal elements are supposed

non zero. However, they can be chosen as small as necessary.
We write Fk = P(Σ ≤ k) and F̄k = P(Σ > k)

Pf =


F0 F̄0

. . . . . .
Fc−2 F̄c−2

Fc−1

 =
(
Tf T0

f

0 1

)

Since c ≥ maxΣ + 1, Fc = P(Σ ≤ c) = 1. This defines the 1 × (c − 1) vector
T0

f and the (c− 1)× (c− 1) substochastic matrix Tf .
Since Pf is triangular, Pf is diagonalizable and its eigenvalues are its diagonal

values. Therefore, there is a passage matrix APf
such that A−1

Pf
PfAPf

= DPf

with:

DPf
=

F0

. . .
Fc−1


Since APf

is invertible, ∀n ∈ N, Pfn = APf
DPf

nAPf

−1.
Let τf be the initial distribution of (λi)i∈N, i.e. the list of probabilities of

each state at access 0. Since P(λ0 = 0) = 1 and P(λ0 > 0) = 0, τf = [1, 0, . . . , 0].

Corollary 5. The expected active span is written:

E[λi] =
c∑

k=1

kP(λi = k)

= τfPf
i[1, . . . , c]t

5.2 Time to fill

Lemma 4. (λi)i∈N is terminating and c is an absorbing state.

Proof. This is a direct consequence of theorem 3. It can also be seen on Pf .
∀i ∈ [0, c− 1], 0 ≤ Fi < 1 and Fc = 1 therefore,

∃x ∈ Q| lim
n→∞

Pf
n =


0 0

. . .
...

0 0
0 . . . 0 x


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Since Pf is stochastic [0, . . . , 0, 1]Pnf 1 = 1. By taking the limit, x = 1.
As a consequence,

lim
n→∞

DPf

n =


0 0

. . .
...

0 0
0 . . . 0 1

with exponential speed

Theorem 7. The time to fill, ∆, is a discrete phase type distribution.

Proof. ∆ takes values in N. (λi)i∈N is a terminating Markov chain with finitely
many states. The maximum span, c, is its absorbing state. ∆ is the first passage
time to c, therefore, ∆, is a discrete phase type distribution.

Corollary 6. The f∆ be the probability mass function and F∆ the cumulative
distribution function of ∆, i.e. ∀k ∈ N,

f∆(k) = P(∆ = k)
F∆(k) = P(∆ ≤ k)

As a characterization of a discrete phase type distribution:

f∆(k) = τfTf
k−1T0

f

F∆(k) = 1− τfTf
k1

Corollary 7. If ∆ is the time to fill, ∀k ∈ N, Pf the transition matrix of active
span, Tf its sub-stochastic matrix, and Tf = ATf

DTf
A−1
Tf

the diagonalization of
Tf , The expected value of ∆ under the condition that ∆ ≤ i, is:

E[∆|∆ ≤ i] = τfATf

(
i∑

k=0

kDTf

k−1

)
A−1
Tf

T0
f

Proof. Let f∆(k) = P(∆ = k).

E[∆|∆ ≤ i] =
i∑

k=0

kf∆(k)

=
i∑

k=0

kτfTf
k−1T0

f

= τf

(
i∑

k=0

kTf
k−1

)
T0

f

= τfATf

(
i∑

k=0

kDTf

k−1

)
A−1
Tf

T0
f
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Chapter 6

Algorithm and complexity

The following expression gives the number of cache misses in a time quantum
based on knowledge of the stack distance distribution, the number of accesses
in the quantum, and the assumption that no line was propagated from previous
quantum.

Theorem 8. Let n be the duration of a time quantum, λn the active span
at n, ∆ the time to fill, and Σ the stack distance distribution. We write Pf
the transition matrix of the active span, Tf its sub-stochastic matrix, τf =
[1, 0, . . . , 0] of size c, T0

f = [0, . . . , 0, F̄ (c − 2)]t of size c − 1, 1 = [1, . . . , 1]t of
size c− 1, and ∀k ∈ N, F (k) = P(Σ ≤ c) and F̄ (k) = P(Σ > k).

In the absence of propagation, the number of cache misses in the quantum
is:

M = E[λn] + (n− E[∆|∆ < n])P(∆ < n)P(Σ ≥ c)
= τfPf

n[1, . . . , c]t

+

(
n−

n∑
k=0

kτfTf
k−1T0

f

)
(1− τfTf

n1)(1− F (c− 1))

In addition, the computational complexity is the complexity of the implicit-shifted
QR algorithm [DK90] on Pf and Tf , and the rest of the computation is done in
O(c3).

Proof. From corollary 2, M is the number of blind accesses in the time quantum.
Since there is no propagation, there is no blind hit by definition. Therefore, from
lemma 3, M is the number of cache misses in the time quantum.

From corollary 5,
E[λn] = τfPf

n[1, . . . , c]t

From corollary 6,
P(∆ < n) = 1− τfTf

n1

From corollary 7,

E[∆|∆ < n] = τfATf

(
n∑
k=0

kDTf

k−1

)
A−1
Tf

T0
f
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Pf and Tf are bidiagonal. The implicit-shifted QR algorithm can be used
to approximate their singular values.

Once Pf and Tf are diagonalized, Pnf and Tnf are computed in O(c3). There-
fore, E[λn], P(∆ < n) and E[∆|∆ < n] are computed in O(c3).

The QR algorithm approximates the singular value decomposition of a bidi-
agonal matrix. It is iterative, and new iterations are done until enough precision
is reached. In fact, we suspect that use of the QR algorithm is not necessary
and that the overall complexity is in fact in O(c2). This is due to the fact that
the transition matrix of active span Pf and its sub-stochastic matrix Tf are
bidiagonal stochastic. The following presents this faster alternative.

We consider a bidiagonal right-stochastic matrix Mn of size n and we write
its diagonal elements F0 . . . Fn−1 and ∀k ∈ [0, n− 1], F̄k = 1− Fk.

Mn =


F0 F̄0

. . . . . .
Fn−2 F̄n−2

Fn−1


If ∀k ∈ [0 . . . n − 1], Fk = P(Σ ≤ k), then Pf = Mc and Tf = Mc−1. We write
the diagonalization of Mn:

Mn = AnDnA
−1
n

with Dn diagonal and An invertible.
A pattern systematically appears in An and A−1

n , for every n. If Ani,j is the
element at row i and column j of An, and An

−1
i,j is the element at row i and

column j of A−1
n , ∀(i, j) ∈ [0, n− 1]2, we observe that:

Ani,j =
j−1∏
k=i

F̄k
Fj − Fk

δi≤j

An
−1

i,j =

j−1∏
k=i

F̄k

j∏
k=i+1

Fi − Fk

δi≤j

δ is the Kronecker symbol, i.e. δX = 1 if X is true, 0 otherwise.
Therefore, we express τnAnDAn

−1 where D is diagonal with diagonal ele-
ments ds, s ∈ [0, n− 1], and τn = [1, 0, ..., 0] of size n.
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Let v = τnAnDAn
−1 and vj the element at index j in line v.

vj =
j∑
s=0

(
s−1∏
k=0

F̄k
Fs − Fk

)
δ0≤sds

j−1∏
k=s

F̄k

j∏
k=s+1

Fs − Fk

δs≤j

=
j∑
s=0

ds

j−1∏
k=0

F̄k

j∏
k = 0
k 6= s

Fs − Fk

=

(
j−1∏
k=0

F̄k

)
j∑
s=0

ds

j∏
k = 0
k 6= s

(Fs − Fk)−1

Since all members of the expression of the number of cache misses in theorem
8 are on this form, the complexity of the algorithm is in O(c2) for every size
c of bidiagonal stochastic matrix for which the pattern is observed, which we
suspect is all N. However, we have not been able to prove it.
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Chapter 7

Experimental validation

The ratio of cache misses on a single time quantum is representative of the whole
run if all quanta have same number of memory accesses, i.e. duration. Figure
7.1 shows the duration of successive time quanta for an execution of the Unix
command ls. We observe a wide variability on a logarithmic scale. However,
the effect of the hypothesis that the time quantum duration is constant is minor
compared to the effect of hypotheses on propagation.

The following measurements are taken with Simics, a full system micro-
architecture simulator described in [MCE+02]. The simulated platform is a x86
processor with a LRU, fully associative cache, running a Linux operating system.
Measurements are taken for different benchmarks running ”alone”, i.e. only in
competition with the default background services of the operating system.

Simics returns the actual number of cache misses in the whole run. In
addition, it allows to monitor memory accesses, and it provides access to cache
contents at any step in the execution. We use this information to monitor the
propagation at every time quantum, and we simulate the same memory accesses
on synthetic time quanta with modified propagation and duration. The goal is
to replicate the effect of the simplifying hypotheses made by the algorithm of this
paper, in comparison with other hypotheses made by existing or hypothetical
algorithms.

The instrumentation of Simics and the simulation of synthetic time quanta
required some programming. The code is written in Python using test-driven
development. It is available under Artistic License 2 on a public repository1.

Figures 7.2 to 7.6 show the relative number of cache misses under different
assumptions, with regards to the actual number of cache misses.

1. Warm cache is the common hypothesis of prediction algorithms that do
not account for the effect of context switches. A cache miss occurs for
every stack distance greater than the cache capacity.

2. Full propagation means that all lines are propagated between two quanta
1code.google.com/p/mtc-project
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Figure 7.1: Number of memory accesses (= duration) of successive time quanta.
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of the same process. By contrast with warm cache, a cache miss is counted
at every first access to a memory line.

3. Actual propagation only differs from the observation by the duration
of the time quanta. It is set constant, and equal to the average actual
duration.

4. Average propagation also sets quantum duration as the average of the
actual value. In addition, it differs from the observation by the propaga-
tion, which is set constant and equal to the average actual propagation.

5. Zero propagation is the result of the calculation proposed by theorem
8. It supposes that the time quantum duration is constant and the prop-
agation is zero, i.e. it counts a cache miss for every blind access.

Figures 7.2 to 7.6 confirm that the expression of theorem 8 gives a higher bound
of the cache miss ratio, and that the monotasking assumption gives a lower
bound. In addition, we observe the distance to the actual value is qualitatively
the same for the higher and the lower bounds. The lower bound, however,
remains much faster to compute, as shown in [GJ08].
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Chapter 8

Conclusion

Since the advent of multitasking, context switches have been known to generate
cache misses. However, prior to this work, there has been no mean other than
simulation to predict their impact from the observation of memory access pat-
terns. The apparent complexity of the analysis justifies this blank with regards
to the coverage of the monotasking case, and sustains the opinion that caches
are unpredictable.

Still, the process by which cache warms up at the beginning of a quantum
exhibits convenient properties for analysis. Prior algorithms consider that an
access of stack distance greater than the cache capacity is a miss. This is true
but it only gives a lower bound of the cache miss ratio. In fact, an access of
stack distance greater than the number of lines cached since the beginning of the
quantum is a possible miss, unless the requested line was written in a previous
quantum and not erased by other processes inbetween. Considering that no line
is kept between quanta gives a higher bound of the cache miss ratio. We observe
in exeriments that higher and lower bounds are equally distant to the actual
value.
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