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Moyennes Non Locales pour le Bruit de Poisson

avec Réglage Automatique fondé sur la Minimisation du Risque

Charles-Alban Deledalle, Florence Tupin et Loı̈c Denis

Résumé

Une extension des moyennes non locales (MNL) est proposée pour les images dégradées par du bruit

de Poisson. La méthode proposée est guidée par l’image bruitée et une image pré-filtrée et est, de plus,

adaptée au modèle statistique du bruit de Poisson. L’influence relative des deux images dépend de deux

paramètres. Nous proposons un ajustement automatique de ces paramètres fondé sur la minimisation de

l’erreur quadratique moyenne (EQM) estimée. Cette sélection utilise un estimateur de l’EQM pour le

filtre MNL avec bruit de Poisson et une méthode de Newton pour trouver les paramètres optimums en

peu d’itérations.

Mots-clés
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Non Local Means under Poisson Noise

with Automatic Setting based on Risk Minimization

Charles-Alban Deledalle, Florence Tupin et Loı̈c Denis

Abstract

An extension of the non local (NL) means is proposed for images damaged by Poisson noise. The

proposed method is guided by the noisy image and a pre-filtered image and is adapted to the statistics of

Poisson noise. The influence of both images can be tuned using two filtering parameters. We propose an

automatic setting to select these parameters based on estimated mean square error (MSE) minimization.

This selection uses an estimator of the MSE for NL means with Poisson noise and a Newton’s method

to find the optimal parameters in few iterations.

Index Terms

Non local means, Poisson noise, mean square error, Newton’s method
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I. INTRODUCTION

Poisson noise appears in low-light conditions when the number of collected photons is small, such as

in optical microscopy or astronomy. Poisson noise is signal-dependent and, then, requires to adapt the

usual denoising approaches.

NL means have been proposed by Buades et. al in [1] to denoise images damaged by additive white

Gaussian noise. While local filters lead to biases and resolution loss, NL techniques are known to

efficiently reduce noise and preserve structures. Instead of combining neighbor pixels, the NL means

average similar pixels. NL means assume there are enough redundant pixels (pixel having identical

noise-free value) in the image to reduce the noise significantly. Let ks be the observed noisy value at

site s and λs its underlying noise-free value, NL means define the estimate λ̂s as a weighted average:

λ̂s =

∑

t ws,tkt
∑

t ws,t

(1)

where t is a pixel index and ws,t is a data-driven weight depending on the similarity between pixels with

index s and t. In practice, the pixels t are located in a search window centered on s. For robustness

reason, pixel similarity is evaluated by comparing surrounding patches around s and t. Patch-similarity

is classically defined by the Euclidean distance, leading to the following weight expression:

ws,t = exp

(

−

∑

b(ks+b − kt+b)
2

α

)

(2)

where s+b and t+b denote respectively the b-th pixels in the patches Bs and Bt centered on s and t, and

α is a filtering parameter.

In case of low signal-to-noise ratio images, it has been shown that the performances of the NL means

can be improved by refining the weights using a pre-estimate θ̂ of the noise-free image [2]–[5]. When the

weights are based only on the noisy image, they present a high variance since they are very sensitive to

the noisy content. However, if the weights are also based on a pre-estimate θ̂ of the noise-free image, the

weights are more suitable to increase the denoising performances are increased. The general expression

of refined NL means is:

λ̂s =

∑

t ws,tkt
∑

t ws,t

(3)

with ws,t = exp

(

−
Fs,t

α
−

Gs,t

β

)

,

Fs,t =
∑

b

f(ks+b, kt+b)

and Gs,t =
∑

b

g
(

θ̂s+b, θ̂t+b

)
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where α and β are filtering parameters and f and g are two similarity criteria suitable respectively to

compare noisy data and pre-estimated data. Note that the refined NL means include iterative NL means

[2]–[5] when θ̂ is the result of the previous iteration. A typical choice for f and g is the squared difference:

f(x, y) = g(x, y) = (x − y)2. The choice of the filtering parameters for α and/or β is a critical task

already explored in [1], [2], [4], [5] and [6]. The purpose is to find automatically, from the image k

and the knowledge on the noise statistics, the parameters which provide the best denoising performances

whatever the underlying image λ. According to our knowledge, there is no known method to jointly set

α and β in case of Poisson noise. Since Poisson noise is signal-dependent, the values for α and β must

be adapted to each observed image k.

II. PATCH-SIMILARITIES UNDER POISSON NOISE

Let k be an image damaged by noise following a Poisson distribution with parameters described by

the underlying noise-free image λ:

p(ks|λs) =
λks

s e−λs

ks!
. (4)

The probabilistic approach of [5] can be applied to extend the refined NL means in (3) to Poisson noise

degradation model. The squared difference classically used for f is replaced by:

fL(k1, k2) = − log

∫

p(k1|λ1 = λ)p(k2|λ2 = λ)dλ

= log

(

k1!k2!

(k1 + k2)!

)

+ (k1 + k2 + 1) log 2. (5)

This similarity evaluates the joint likelihood for all possible values of the unknown parameter λ. Note

that this criterion is very similar by its theoretical definition and by its behavior to the criterion defined

in [7] also used in the case of Poisson noise. The squared difference generally used for g is replaced by

the symmetric Kullback-Leibler divergence:

gKL

(

θ̂1, θ̂2

)

= DKL

(

θ̂1‖θ̂2

)

=
(

θ̂1 − θ̂2

)

log
θ̂1

θ̂2

. (6)

This criterion is a good candidate to define similarities between estimated values since it can be considered

as a statistical test of the hypothesis λ1 = λ2 [8].

The setting of the parameters α and β in the case of Poisson noise is maybe a more critical problem

than in other denoising tasks. In [1], [2] and [5], the authors propose to define the parameters according

to the variance or the quantiles of the similarity criteria (subject to identical and independent distributed

random variables). Unfortunately, in case of Poisson noise, these quantities depend on the unknown

image λ since the noise is signal-dependent. Van De Ville et al. propose a risk minimization approach
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for Gaussian noise [6]. Their method selects the parameters minimizing the risk (without any specific

assumption on the underlying image λ). This kind of approach seems relevant in the case of Poisson

noise. We will extend this idea in the next section to Poisson noise.

III. AUTOMATIC SETTING OF PARAMETERS BASED ON RISK MINIMIZATION

The parameters of the denoising technique can be selected as those that minimize the expected MSE:

E

[

1

N
‖λ − λ̂‖2

]

=
1

N

∑

s

(

λ2
s + E

[

λ̂2
s

]

− 2E
[

λsλ̂s

])

(7)

with N the image size and E[.] the expectation operator. The MSE requires the knowledge of the noise-

free image λ but can still be estimated from the noisy image k alone. Since the first term λ2
s in (7) is

independent of λ̂s, it can be omitted when minimizing the MSE with respect to the denoising parameters.

The Stein’s unbiased risk estimator (SURE) is an estimator of the MSE under Gaussian noise [9]. It is

based on an estimator of E[λsλ̂s] which does not require λ. SURE has already been used successfully on

images damaged by additive white Gaussian noise for wavelet filtering [10] and NL means filtering [6].

The main result in [6] is that SURE for NL means can be obtained in closed form. For Poisson noise,

we use the result of Chen [11] to follow the same approach:

E [λsh(k)s] = E

[

ksh(k)s
]

(8)

with kt =











kt if t 6= s

kt − 1 otherwise

where h(.)s denotes the estimated value on site s obtained by the application of the estimator h on the

given noisy image. Considering the estimator h of the refined NL means defined in (3), we introduce the

Chen and Stein’s unbiased risk estimator (CSURE) as:

CSURE =
1

N

∑

s

(

λ2
s + λ̂2

s − 2ksλs

)

. (9)

The value λs refers to the denoised value obtained by the application of the NL means on the noisy

image k, i.e:

λs =

∑

t ws,tkt
∑

t ws,t

(10)

with ws,t = exp

(

−
F s,t

α
−

Gs,t

β

)

and F s,t =
∑

b

f(ks+b, kt+b).

February 15, 2010



6

According to (7), (8) and (9), it is straightforward to show that CSURE is unbiased: E[CSURE(λ, λ̂)] =

E[MSE(λ, λ̂)]. However, note that (10) holds by assuming that Gs,t (i.e the pre-estimate θ̂) does not

depend on the noise component of k. To satisfy this assumption, the noise variance in θ̂ has to be reduced

significantly. This assumption simplifies drastically the expression of λ.

In terms of time complexity, we note as in [6] that the computation time is unchanged since the

computation of CSURE can be incorporated within the core of the NL means. Moreover, the scan of the

patches of k can be avoided thanks to the following relation:

F s,t = Fs,t +


































f(ks, ks) − f(ks, ks), if s = t,

f(ks, kt) − f(ks, kt)

+f(k2s−t, ks) − f(k2s−t, ks), if s ∈ Bt,

f(ks, kt) − f(ks, kt), otherwise.

Selecting parameters that minimize CSURE gives parameters close to that minimizing the MSE. In

the case of the classical NL means, the authors of [6] compute the optimal parameters by exhaustive

search. Optimization techniques can be applied to reach the optimal parameters in few iterations. In [12],

a gradient descent is performed to optimize SURE for wavelet shrinkage. We follow such a strategy

here to optimize CSURE for the refined NL means by using the Newton’s method on the joint filtering

parameters α and β. The Newton’s method iteratively refine α and β with the update:






αn+1

βn+1






=







αn

βn






− H−1∇ (11)

with H−1∇ =







∂2CSURE
∂α2

∂2CSURE
∂α∂β

∂2CSURE
∂β∂α

∂2CSURE
∂β2







−1





∂CSURE
∂α

∂CSURE
∂β






.

To perform the optimization procedure in (11), the two first order differentials are required. Their

expressions are given by substituting x and y by α or β in the following equations:

∂CSURE

∂x
=

2

N

∑

s

λ̂s
∂λ̂s

∂x
−

2

N

∑

s

ks
∂λs

∂x
,

∂2CSURE

∂x∂y
=

2

N

∑

s

λ̂s

∂2λ̂s

∂x∂y
+

2

N

∑

s

(

∂λ̂s

∂x

)(

∂λ̂s

∂y

)

−
2

N

∑

s

ks
∂2λs

∂x∂y
,
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Figure 1. The risk (MSE and CSURE) and their two first order variations (from top to bottom) with respect to the parameters

α (left) and β (right).

∂λ̂s

∂x
=

∑

Xs,tws,t(kt − λ̂s)

x2
∑

ws,t

,

∂2λ̂s

∂x2
,=

∑

X2
s,tws,t(kt − λ̂s)

x4
∑

ws,t

− 2
∂λ̂s

∂x

∑

(Xs,t + x)ws,t

x2
∑

ws,t

,

∂2λ̂s

∂x∂y
=

∑

Xs,tYs,tws,t(kt − λ̂s)

x2y2
∑

ws,t

−
∂λ̂s

∂x

∑

Ys,tws,t

y2
∑

ws,t

−
∂λ̂s

∂y

∑

Xs,tws,t

x2
∑

ws,t
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Table I

SNR VALUES OF ESTIMATED IMAGES USING DIFFERENT METHODS ON IMAGES DAMAGED BY POISSON NOISE WITH

DIFFERENT LEVELS OF DEGRADATION. THE OPTIMAL PARAMETERS AND THE NUMBER OF ITERATIONS OF THE PROPOSED

POISSON NL MEANS ARE GIVEN.

Barbara (256 × 256)

Noisy 1.13 4.08 9.31 14.04

MA filter 7.50 7.75 7.89 7.94

Poisson TV 8.07 9.16 9.39 9.45

NL means 9.43 11.54 14.64 16.92

Refined NL means 10.15 11.99 14.75 16.97

Poisson NL means 10.31 12.16 14.84 17.01

αopt (7.57) (6.95) (7.63) (9.09)

βopt (2.48) (3.77) (8.80) (24.25)

#iterations (10) (6) (7) (13)

Boat (256 × 256

Noisy −0.76 2.28 7.45 12.29

Conv. (pre-estimate) 6.85 7.11 7.30 7.35

Poisson TV 8.40 9.39 9.60 9.61

NL means 7.92 9.58 12.28 14.28

Refined NL means 8.75 10.22 12.54 14.37

Poisson NL means 9.03 10.42 12.59 14.36

αopt (8.90) (8.58) (7.13) (6.11)

βopt (1.72) (2.21) (4.13) (7.11)

#iterations (10) (7) (8) (12)

House (256 × 256)

Noisy −1.18 1.83 7.07 11.88

MA filter 10.20 10.87 11.34 11.57

Poisson TV 10.87 13.46 13.96 14.21

NL means 10.67 13.37 16.97 19.63

Refined NL means 12.98 14.76 17.48 19.79

Poisson NL means 13.18 14.91 17.70 19.99

αopt (33.40) (34.07) (15.89) (10.00)

βopt (1.27) (1.59) (3.41) (9.42)

#iterations (9) (11) (8) (6)

Lena (256 × 256)

Noisy −0.34 2.68 7.89 12.64

MA filter 8.69 9.07 9.38 9.45

Poisson TV 9.53 11.68 12.23 12.30

NL means 9.81 11.65 14.68 17.05

Refined NL means 11.14 12.45 14.71 17.26

Poisson NL means 11.46 12.86 15.48 17.44

αopt (14.78) (13.69) (10.22) (10.39)

βopt (1.75) (2.01) (4.21) (9.64)

#iterations (8) (8) (10) (8)

where X = F (resp. Y = F ) when x = α (resp. y = α) and X = G (resp. Y = G) when x = β (resp.

y = β). The differentials for λ are the same with respect to k, w and F .

The Newton’s method finds in few iterations the best trade-off between the information brought by

the noisy image and the pre-estimated image to define the weights. For instance, β will get a high value

when the pre-estimated image has a poor quality, resulting to weights determined only from the noisy

image. Reciprocally, α will get a high value when the pre-estimated image has a high quality: the weights

will be determined only from the well pre-estimated image.

IV. EXPERIMENTS AND RESULTS

The proposed extension of the NL means (Poisson NL means) is applied with a search window of size

21 × 21 and patches of size 7 × 7. The Newton’s method is performed until CSURE does not change
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between two successive iterations. The pre-estimated image is obtained by a moving average (MA) filter

with a 9 × 9 disk kernel. Using the optimization of [13], the computational time is of about 20s per

iteration on a 256 × 256 image and C implementation on an Intel Pentium D 3.20GHz.

Figure 1 shows the risk and its two first order differentials with respect to α and β. These curves have

been computed by applying the proposed method on a 150 × 150 noisy image for different values of

the parameters. The MSE and its differentials have been computed from the noise-free image and finite

differences. CSURE and its differentials have been evaluated using the expressions given in Section III.

Table I gives the signal-to-noise ratio (SNR) values obtained by different denoising methods on four

256 × 256 reference images damaged by synthetic Poisson noise with different degradation levels. The

MA filter is applied with a 9×9 disk kernel. We performed a Poisson based total-variation minimization

(Poisson TV) as proposed in [14]. Three versions of NL means are applied. NL means denotes the classical

one i.e f(x, y) = (x−y)2 and β = ∞. We call the refined NL means when f(x, y) = g(x, y) = (x−y)2.

Poisson NL means denotes our proposed method with f and g defined as in Section II. For all NL means

versions, the optimal parameters are obtained by CSURE minimization using the Newton’s method. The

table gives the optimal parameters αopt and βopt and the number of iterations for the Poisson NL means.

The refined and the Poisson NL means use both the pre-estimated image obtained by the MA filter.

Poisson NL means provides the best performances with 6 to 13 iterations. The parameters behave as

predicted with respect to the relative qualities of the noisy image and the pre-estimated image.

Figure 2 presents visual results obtained by Poisson TV and Poisson NL means on three images. The

two first images are degraded by synthetic Poisson noise and the third one is an image1 of a mito-

chondrion2 sensed in low-light conditions by confocal fluorescence microscopy [15]. On both examples,

Poisson NL means seem to better preserve the resolution while reducing the noise.

V. CONCLUSION

The methodology of [5] has been used successfully to extend the NL means to images damaged by

Poisson noise. It is based on probabilistic similarities to compare noisy patches and patches of a pre-

estimated image. An estimator of the risk for NL means, based on the idea of [6], has been derived for

Poisson noise. This risk estimator is used in an optimization method to select automatically the filtering

parameters in few iterations. Numerical results as well as visual results support the efficiency of the

proposed method.

1image courtesy of Y. Tourneur

2Tetramethylrhodamine methyl ester (TMRM).
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(a) (b) (c)

Figure 2. (a) Original images damaged by Poisson noise, denoised images obtained by (b) Poisson TV [14] and (c) the proposed

Poisson NL means.
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