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Abstract

Many researchers argue that fusing multiple cues incredfgeseliability and robustness of visual tracking.
However, how the multi-cue integration is realized durirecking is still an open issue. In this work, we present
a novel data fusion approach for multi-cue tracking usingigla filter as the underlying framework. Our method
differs from previous approaches in the following wayssEiwe carry out the integration of cues both in making
predictions about the object to be tracked and in verifyihgnt through observations. Our second and more
significant contribution is that both stages of integratitirectly depend on the dynamically-changing reliabititie
of the visual cues. These two aspects of our method allowrttker to easily adapt itself to the changes in the
context, and accordingly improve the tracking accuracydsolving the ambiguities.

Résune

Il est couramment admis que la fusion d’'informations viksepermet d’améliorer la fiabilité et la robustesse
du suivi d'objets. Cependant la maniere dont est faiteedeion pendant le suivi reste une question ouverte. Dans
ce rapport, nous proposons une nouvelle méthode de fusionle suivi par filtrage particulaire. Les principales
originalités de notre approche par rapport aux méthodestamtes sont les suivantes : la fusion est integrée a la
fois dans I'étape de prédiction et dans la mise a jour erctfon des observations, et ces deux étapes de fusion
prennent en compte la fiabilité de chaque informationa#éi et son évolution au cours du temps en fonction
du contexte. Ces caractéristiques de la méthode preppsénettent un suivi adaptatif en fonction du contexte,
qui conduit a de meilleurs résultats que les approchessicjaes, comme le montrent les expériences menées sur
plusieurs séquences d’'images.

. INTRODUCTION

Visual tracking is a widely studied topic in computer visior a wide range of application areas.
These include visual surveillance, activity analysis, maachine interaction, augmented reality, etc. Here
we consider the task of locating an object of interest on deamtme of a given video sequence. This
object of interest can be an actual object in the scene, gugrson, or a specific image region of prime
importance, e.g. a face. For real-world applications, gaserally accepted that tracking based on a single
visual feature would be likely to fail due to the complexitlytbe data and the tracking process. Thus, it
has been argued in many works that considering multi-modtl tbads to an improvement in tracking.
It increases the robustness by letting complementary wasens from different sources work together.

Erkut Erdem and Isabelle Bloch are with Institut TELECOMI&Eom ParisTech, CNRS LTCI, Paris, France.
Séverine Dubuisson is with the Laboratoire d’'Informaéicile Paris 6, UPMC, Paris, France.



These sources are either the visual features extractedthrersame image sequence, such as color and
motion cues, or the visual cues coming from different phglssensors, such as from a CCD or an infrared
camera. However, how the information extracted from theseces is combined in tracking is still an
open problem.

A. Related Work

Tracking methods generally involve two key processes: gimg hypotheses through a prediction
step and then verifying these hypotheses through some mesasuots. Considering the vast number of
studies in tracking literature, the most general way of grening data fusion is in the measurement step.
For example, in an early work [5], Birchfield suggested to bora two orthogonal visual cuesdlor
and intensity gradientswithin a hypothesize-and-test procedure. In these ssudiach cue provides a
likelihood or a matching score for the possible positionshef object, and the final output is determined
by taking into account the product of individual likelihaodr the summation of the matching scores. The
main problem with this approach is that all the modalities given an equal reliability, which is a very
unrealistic assumption. Thus, if one of visual cues becoumesliable, it may result in a wrong estimate.
There are two main approaches to overcome this issue andobtiiem focus oradaptivity.

The first group of works [21], [19], [15], [6] assigns differtereliability values to different visual
cues, and takes them into consideration in the measureremtis [21], [19], the authors formulate the
fusion as the weighted average of saliency maps extractedaith cue with the weights corresponding
to the cues’ reliabilities. Similarly, the Sequential Mentarlo based framework proposed in [15], [6]
use adaptive weights for the cues utilized in estimatingatmbined likelihoods. Since the reliabilities
of cues are now taken into account in the computations, mdpproach, the overall likelihood is more
precise. On the other hand, the weakness of these studleat ithé fusion is carried out only in verifying
object hypotheses against observations. The multiple gtikzed are not involved in making predictions
and generating hypotheses in any way. In terms of robusthessver, this is an important direction that
should be pursued as well.

Indeed the second line of works [12], [22], [18], [7] conaates on this issue and lets the multi-modal
data interact with each other more explicitly throughowt ttacking process. The common characteristics
of these works is that the integration is also carried outhm prediction step. For instance, the ICON-
DENSATION algorithm [12] uses a fixed color model specific e bbject of interest to detect blobs in
the current frame and uses them in the prediction step of pesbased particle filter tracker. In [22], the
authors suggested an approximate co-inference among tthalitres by decoupling the object state and the
measurements according to color and shape and by lettimgvesaical cue provide hypotheses for the other
one. Thus, in their formulation, the shape samples are dagording to the color measurements, and
the color samples are drawn according to the shape measuieriie tracker in [18] uses a two-layered
sampling structure. The first layer constructed consideeither motion or sound cues provides a coarse
information regarding the object to be tracked, which isithefined by the second layer by taking account
of color cues. The work in [7] also suggests a two-level, botercentralized, particle filter architecture.
At the lower level, the individual trackers based on différeues perform tracking independently. At the
upper level, a fuser integrates the trackers’ outputs testroat more reliable hypotheses, and in return
provides a feedback to the individual trackers. Although $iudies that can be categorized within this
latter group introduce explicit interactions between nplatcues, the way these interactions occur in each
study is mainly predetermined by the global scheme/arctite considered. Furthermore, the reliabilities
of the visual cues are not taken into account in the measuresteps of these studies.

B. Proposed Framework

In this paper, we present a Sequential Monte Carlo basekirigaalgorithm that combines multi-modal
data in an original way. Our main motivation is to developacking algorithm that has the properties of
the two groups of works mentioned previously. That is to s&y,suggest to carry out the integration of



the multiple cues in both the prediction step and in the nremsent step, in estimating the likelihoods.
In [16], Nickel and Stiefelhagen suggested a work in a limailsir to ours by combiningdemocratic
Integration [21] with two-staged layered sampling [18]. They used a ptednined layer structure with
each layer being adaptive in its own. For instance, the &igsrlis composed of stereo cues each describing
a part of the object to be tracked. However, compared togheur system architecture allows interactions
between multiple cues to be more dynamic and flexible.

For the prediction step, we associate each particle witheaip cue and accordingly with a specific
proposal function. The crucial point is that this processefined as an adaptive process which is governed
by the dynamically-changing reliabilities of the visualesu Thus, if one cue becomes unreliable, the
tendency is to lower the total number of particles assodiatigh it and to increase the total number of
particles associated with other visual cue(s). This dyoarocess improves the accuracy of the predictions
since less reliable proposal functions are utilized lesthensequential importance sampling. During the
prediction step no cue is given a preference over anothédrleminteractions between the cues are directly
determined by the current context in an adaptive manner. &stioned above, we take into account the
reliabilities of the visual cues in estimating the confidemaeasures of the particles as well. We define
the overall likelihood function so that the measuremerasfieach cue contribute the overall likelihood
according to its reliability. In return, we obtain more peeclikelihood values in the measurement step
as the misleading effects of the unreliable cues are reduced

The remainder of the paper is organized as follows: Sectiordalls the Sequential Monte Carlo
method with a focus on multi-modal tracking. Section Il ggvthe basis of our object model and the
corresponding state dynamics. Section IV introduces tbaalicues and the proposal functions that we
consider in our experiments. Section V gives the outline wf multi-modal tracking algorithm and our
main contributions. Section VI presents some illustrathaeking experiments in which we analyze the
performance of the proposed algorithm. Finally, Sectioh Mbkes a brief summary of our work, and
points out the future directions.

[I. SEQUENTIAL MONTE CARLO AND MULTI-MODAL TRACKING

In a classical filtering framework, the main aim is to estientite posterior distributiop(xy, | y1.x) of
the state vectok; through a set of measuremengs, up to the current time step. The Bayesian
sequential estimation approach computes this distribudcrording to a two-step recursionpeediction
step

Pl | ia-1) = [ Pt | xi-0)p(01 | Yiaoa)dxis o

followed by afiltering step
p(Xk \ Y1:k) (8 p(}’k | Xk)p(Xk | Y1:k—1)- (2)

This formulation requires two models to be defined: an ewwfu{transition) model for the state
dynamicsp(x, | x,x_1) and a likelihood model for the observatiop§y, | x;). One can obtain an
optimal solution to the posterior distribution under highéstrictive assumptions. For instance, the Kalman
filter [14] assumes these models to be linear and Gaussianeww, real data is generally non-linear,
non-Gaussian, multi-modal in nature, necessitating tree afssome approximation techniques. In this
regard, since its introduction over a decade ago, Seqliéitate Carlo based filteringa{so known as
particle filter) [10], [11], [3], [9] has proved to be an effe® method for visual tracking. It provides a
simple yet flexible solution to optimal state estimationtgemns.

The main idea behind particle filter is to approximate thetgrisr distributionp(x, | y1.x) by a
weighted set ofV particles{x\", w\”"}Y , as

P(Xk | Y1) Zwk5<)xk 3



with &y, denotlng the Dirac delta mass centeredazgnand each particle representing a possible state

and its We|ghtwk € [0, 1] describing its confidence measure.
The recursive estimation process is, then, characterigeivd main steps: with an approximation of

p(Xk—1 | y1.k—1) at hand new partlcles are generated from the old partlcle;éﬁtl,wk Y, by making
use of a known proposal functlomk ~ q(x | ka 1, ¥1.%). This prediction step is then followed by

an update step where the weights of the new partrwlfgé?sare determined from the new observatigns
using

(4) (1) | (@)
i o pyr | . )p(xy” | x321)
q(xy | Xo:k_1>Y1:k;)
with N 1wk = 1. As a further step, a resampling phase, which removes thgclpar with low

weights and accumulates the particles with high weights,bmaemployed to avoid the degeneracy of the
particles [10]. Generally, the final tracking decision isdaay taking into account the conditional mean,
the weighted average of the particl{as,(j)}, or the particles with the highest weights.

For multi-modal tracking, the simplicity and the flexibyliof the particle filter offer a wide variety of
solutions. One direction is to perform data fusion in thelitkood estimation step. In this regard, the most
straightforward way of integrating multiple measurememirses is to assume that these measurements
are conditionally independent given the state and subsdiguctorize the overall likelihood as

ply | x) = Hp y™ | x) (5)

with M representing the total number of sources. As we stated imtregluction, it is possible to increase
the accuracy of the combined likelihood by further consitgthe reliabilities of the measurement sources
in the integration phase [19], [15], [6].

The studies [12], [22], [18], [7] consider another direatiand suggest explicit interactions between
different modalities. In these works, the main emphasisnistite proposal functions utilized in the
prediction step, and how the candidate state hypothespopeal by different modalities can be integrated.

IIl. OBJECTMODEL AND STATE DYNAMICS

The tracking framework that we propose in this work does reyggethd on a specific object model,
and any model suggested in literature can be utilized. Hewetvis important to note that the model of
choice restricts the visual cues employed in the trackinggss. In this paper, we prefer to use a simple
model and represent the object to be tracked by a fixed referegctangular region parameterized as
Q = (z°y% w, h), where(z¢, y°) denote the coordinates of the center of the rectangulaomduaving a
width w and a height..

Considering the transformation of the reference regioauhout the tracking sequence, we define the
object state ax;, = (v, Yk, sk, tx) € X. It describes a new regiofly, = (xy, yk, Spw, txh) with s, and
t denoting the scaling factors for the width and the heighthef teference region, respectively.

For the state evolution model, we assume mutually indepgndaussian random walk models along
with a small uniform component as in [18]. This uniform compat is used to compensate the irregular
motion behavior of the object that is tracked and providesna lof re-initialization. Accordingly, the
state evolution model can be written as:

p(Xk | Xp—1) ~ Buld (0, Xpmaz) + (1 — Bu)N (%51, A) (6)

wherel/ denotes the uniform distribution with the vectoy,,, representing the maximum allowed values
over the setX N(xx_1,A) denotes the Gaussian distribution with mean; and covariance\ =
diag(o?, o y,as, o?), and By is the weight of the uniform component which is generally e small
value. Additionally, the initial state of the object is assed to be described by a uniform distribution
p(x0) = U(0,Xmqz). In all the experiments reported in this paper, we w$e- o) = 3, 07 = o7 = 0.01,

and 5y = 0.01.



IV. VISUAL CUES AND PROPOSALFUNCTIONS

This section describes the visual cues that we utilize ickirey an object of interest. These are simply
color, motion and infrared brightnessand are discussed in the following subsections in detafoi@
going into details, let us first present how we employ thenoughout the tracking process in a more
general way.

In our work, while extracting these visual cues from an imfxgene, we follow a conventional approach
and use measurements based on histograms. We compute dhleolikls and construct the individual
proposal functions by making use of reference histogramshwdre defined for each visual cue. There are
several strategies for designing these reference histegaor example, they can be constructed manually
by hand by taking into account the properties of the objederms of the visual cue considered (e.g. a
color model for human skin) or they can be constructed froraréiqular frame of the tracking sequence by
letting the user specify the region of interest. We consiteh strategies while constructing our reference
histograms, and use these histograms throughout the wiaaleing sequence without updating them.

Mainly, the construction of the proposal functions and tegneation of the likelihoods depend on the
comparison between the histograms extracted from the datedregions and the reference histogram. For
that, we utilize the Bhattacharyya histogram similarityasere [4], which is defined as:

1/2
D(hl, hg) — (1 - i \/hi,lhi,2> (7)

where B denotes the number of bins, ahg, represents thé” bin of histogrami.

It is important to note that, as in [18], the proposal funetialescribed in the subsequent subsections
are defined only for suggesting the new values for the losatmmponent of the object state. For the
scaling factors, the proposal functions are taken as theegonding component of the state evolution
model described in Equation (6).

A. Color Cue

Color is one of the most widely used visual cues in trackirggnieworks. Its widespread use is due
to its characteristics that allow encoding the appearamdbeoobject tracked in an efficient and robust
way. In this work, following [17], we adopt an observation adeb that is based on Hue-Saturation-Value
(HSV) color histograms withB- = B, B, + B, bins. While we populate the firsB, B, bins with the
pixels having saturation and value greater than some gneedethresholds (in our experiments we used
0.1 and 0.5, respectively), we include the value information in the iiddal B, bins considering the
remaining pixels. Using this definition, we define our colikelihood as

p(y© | %) o exp (—D*(hS, hS ) /202) (8)
with h{,, denoting theB-bin normalized reference histograixf, representing the normalized color his-
togram which is obtained from a candidate object regionifipddy the object state, and D?(h¢, hfef)
being the Bhattacharyya histogram similarity measure bebanthem.

The construction of the proposal function also depends ercthor likelihood model described above.
Typically, we first estimate the color likelihoods on a sulifemage locations over the current frame. For
this, we use a pre-defined step size of 5 pixels through theruframe, and keep the scale factors fixed
ass =t = 1. The likelihoods estimated in this way define an approxinpatdability distribution map for
the object tracked. Figure 1 illustrates a sample constmucif these likelihoods. In fact, these approximate
distribution maps, which are estimated for each visual ewe,of critical importance in estimating the
reliabilities of the cues which guides the whole trackinggass. The details of this procedure will be
given in Section V. Once these likelihoods are estimateddefene our proposal function as follows:
qc($k,yk | xk—layk—bylg) = BrwN ((xk—layk—1>7 (02705))

_ Nc
o B SN (of (2. ). ©
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(b)
Fig. 1. Color likelihood. (a) The frame and the region whére teference histogram is contructed. (b) A sample framm fitee tracking

sequence. (c) The approximate probability distributionpreatimated for the frame given in (b). Observe the respoinst® true location
of the object of interest along with the other image regioasifig an appearance similar to the one of the referencerregio

In Equation (9), the first component is the Gaussian randotk @gamponent for the object location that
we previously introduced in our state evolution model giireEEquation (6). The pointp{ = (z;, ;). =
1,---, No denote the image locations having a likelihood greater théimreshold (i.ep(y® | x) > 7°),
and define the centers of Gaussians in the mixture modetedilin the second component, respectively.
Generally, the coefficienbry, is set to a relatively high value (e.gizw = 0.75), and thus the main
tendency is to preserve the smoothness of the trackingtosje On the other hand, the second component
allows jumps in the state space to the image regions thdy ld@ntain the object which is tracked.

B. Motion Cue

The motion activity in a tracking sequence is an importadiaation for the object of interest, especially
when the video sequence was assumed to be captured by acstaéra and the object that is tracked
is generally in motion. Considering such an assumptionjrttegge locations having a motion activity at
the framek can be determined from the absolute difference of the iittemaages at the framek and
k — 1. In the frame difference, the pixels with large values iatiicthe motion activity. If there is no
motion, the frame difference is either zero or has a very buadlie due to the noise and/or due to the
slight changes in the intensity.

To estimate the motion likelihood, we follow the approaclg@Bted in [18]. For a region of interest
specified by the state, we associate a motion histogray = (2%, ---,hy, ) with B), denoting the
number of bins. During populating the histogram, we enlalr@ereglons of interest by a few pixels (five in
our experiments). This guarantees the inclusion of thegéttes and allows capturing the motion activity
across them. On the other hand, the reference hlstolgrﬁ‘éjms defined considering a uniform distribution,
e hll. = BL, i=1,---, By The rationale behind this definition depends on the charatts of the
motion hlstogram extracted from the candidate regionsiciiy, when there is no motion in the candidate
region, only the lowest bins of the histogram are populafed.the case of motion, the candidate motion
histogram shows an irregular structure. Thus, comparirig & uniform distribution reveals information

regarding the motion likelihood. In the case of no motion\atyt the Bhattacharyya histogram similarity
measure yield®?, .. =1 - ./1/By. Considering this, we define the motion likelihood as

p(y™ | %) o< 1= exp (—(D}

no_motion

- DZ(hM href))/2g]2\4) : (10)

Figure 2 illustrates the result of this procedure for a sani@me.

As in Section IV-A, the proposal function is constructed Istimating the likelihoods on a subset
of image locations over the current frame. While estimatingm, again the scale factors are fixed as
s =t =1 and the pre-defined step size is used. The locations havikgldnbod greater than a threshold
(p(y™ | x) > ™) denoted byp! = (x;,¥;),i = 1,---, Ny are then used, as in [18], to define the
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Fig. 2.  Motion likelihood. (a) The absolute frame differenfor two successive frames. (b) The approximate probghigtribution map
estimated from (b). Notice that we have two strong respondesh leads to an ambiguity. This is due to a second persariagtthe scene
from bottom-left part of the frame.
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proposal function as

qM(xkuyk | kalaykflayy) = BrwN ((Ik—layk—1> (05705))

-+ ( — Oaw) § ZN(pZ (02 02)) (11)

)Yy
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C. Infrared Brightness Cue

Besides color and motion, we additionally employ infrarg@ylitness cue in our experiments. This
cue requires the tracking sequence to be imaged from anredfreamera, and allows us to consider
different thermal characteristics of an object of inteidsting tracking. In estimating the likelihoods and
constructing the corresponding proposal function, weofelan approach similar to the ones explained
in the previous subsections. We populate our histogramygusie brightness values within an infrared
image region. For the reference histogram, this region easpecified by the user from a particular frame.
Then, we define the infrared brightness likelihood as

p(y" | x) o< exp (—~D?(h], h!,})/20}). (12)

whereh/ ; = (h{ ;.- -, hj, ,.r) is the B;-bin normalized reference histogram, anfd= (h{ .- -, hj, )
denotes the normallzed brlghtness histogram obtained thentandidate object region. In Flgure 3, we
illustrate a sample construction of these likelihoods.

Subsequently, we construct the proposal function by estgadhe likelihoods on a subset of image
locations over the current frame and using the locationsnigaa likelihood greater than a threshold, i.e.
p(y' | x) > 7!, as follows:

qI(SUk,yk: | -Tk:—layk—layli) = 5RWN (($k—layk—l) (U;%,U;))

( 5RW 2
+ N ZN (pz? 1;7 y)) (13)
wherep! = (z;,4;),7 = 1,---, N; denote the image locations where the object tracked isyliteebe.

In our experiments, we fixed- = 0.2, oy, = 0.4, 07 = 0.25, B, = B, = B, = 10, By, = 20, B; = 30,
and used detection rate§’ = 7/ = 0.65, 7™ = 0.2. In Equations (9), (11) and (13), if respectively,
Ny or Ny, equals to zero, we use only the first Gaussian random walk coem for the related proposal
function.



(b) (c)

Fig. 3. Infrared brightness likelihood. (a) The frame ane tégion where the reference histogram is constructed. @mple frame from
the tracking sequence. (c) The approximate probabilityriligion map estimated for the frame given in (b). Notice #mbiguities; both
the object of interest and the van produce very strong resgson

V. TRACKING ALGORITHM

We propose a novel approach for integrating different visuas during tracking. Unlike the previous
works summarized in Section I-A, we do not give preferencarny cue and do not use a global scheme
with a predetermined structure. We mainly let the currestia context determine how the interactions
between the multiple cues are carried out. In all phases efttacking process, we emphasize the
information derived from the reliable cues and ignore thferimation provided by the unreliable cues.
This view certainly involves discovering and using the tigiareliabilities of the visual cues.

In this respect, the first and the most crucial step is adjgstiues reliabilities with respect to the
current context. For that, we adopt tBemocratic Integratiormethod [21]. InDemocratic Integration
the reliabilities are determined by considering the catieh among the visual cues. Simply, different
cues try to reach an agreement on a joint result and they #uapiselves considering the result currently
agreed on. This adaptive process is in accordance with theriexental results which conjectures that
humans use adaptive strategies to integrate informatioviged by different cues or modalities [13], [20].

Specifically, Democratic Integrationrequires a quality measur€ to be defined for each cue which
measures the degree of agreement between the joint resutharresult the cue individually suggests.
These measures are utilized to adjust the reliabilitieshab the cues that are not in agreement with the
joint result are suppressed and the cues that are in linethahoint result are given a higher influence
in the future. In our work, we initialize the reliabilitiesith equal weights with their sum equal to 1 and
define these quality measures over the approximate pratyadigtribution maps which are also utilized
in estimating the proposal functions (Section V). As a lgghe new reliabilities are estimated using
the reliability values over the previous frame and the curmbservations.

The context-sensitive structure of the prediction steplves an adaptive assignment procedure. Each
particle is assigned to a modality denoted/with ¢ € {C, I, M} (C for color, I for infrared brightness,
M for motion) and accordingly to a specific proposal functionx;, | x;_1, yﬁk). This assignment process
is defined as an adaptive process which is governed by therdgally-changing reliabilities of the visual
cues. Thus, if one cue becomes unreliable relative to otiselalvcues, the tendency is to lower the total
number of particles associated with it and to increase tted tmmber of particles associated with other
visual cue(s). As a result, the tracking accuracy increaseless reliable proposal functions are utilized
less in the sequential importance sampling in predictirgbsition of the object to be tracked.

Second, we define the overall likelihood function so thatreasurements from a cdecontribute to
the overall likelihood according to its reliability’ as:

piyr |xi)= [ »pi| =) (14)
e{C,I,M}

With > s rcr01y r’ = 1. It should be noted that if we take the logarithm of the liketbd formula given
in Equation (14), we get an expression which is in a certaimsseanalogous to the weighted sum used



in the Democratic Integratiormethod [21] to integrate multiple cues. Since we adjust dlialility of a
visual cue in accordance with the other cues consideredggbgmption on the conditional independence
of the measurements gets relaxed in our formulation. THeglt® in more precise likelihood values as it
reduces the misleading effects of the unreliable cues. Mervan important point is that the individual
likelihoods having a value estimated as zero makes the IbVigedihood zero as we take the product,
whether its reliability score is low or not. Thus, in our expgents, we adjust all such likelihoods values
and explicitly set them to a small value likgy* | x) = 0.001.

The whole algorithm is summarized below:

Algorithm

In the initialization, assume the initial states to be umity distributed over the state space, i.e.
p(x0) = Ux(x0).

From the particle se{xk 1 w,(j)l ., at the time steg — 1, determine the new particle set for tirke

« update reliabilities

— estimatean approximate target positiot), considering the reliabilities over the previous frame
and the current observations as

X), = arg max (p(yy, | x)) = arg max ( [I pvhlx) (15)
Le{C,1,M}
with p(y% | x) denoting the approximate probability distribution magraeated for the modality
denoted by/
— estimatethe quality measures for each cue as follows:

. {0 it vl | %) < (P(y] | %)
Sk—{myim—@(ymx» it py! | ) > (B(¥E | %) (16)

where (- - -} denotes the average over the approximate probabilityildigion map
— update reliabilities considering the current quality measuregadsws:
7"1{; = 7"1{;—1 + 77(55; - T£—1) (17)
with 1 denoting a time constant which we set to 0.1 in our experiment
. simulate /\":
— generatea random numbedt € [0, 1), uniformly distributed.
' c if a<r?
- Setﬁl(j) =T if r{<a<r{+rl
M if a>r{ 4+l
) o9
qu (Xk |X/<; 173’;;;()) o
. update weightsw'” o w” ,~ (’Zf‘x P ) ith s wl® =1
o xR )
. resample simulatea; ~ {wk PN N, and replace{xk ,wk } — {x ,%}
« decision use the conditional mean or the particles with the highesgkts

. simulate x;’

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the megbdramework on illustrative video
sequences. We typically compare our results obtained @ensg multiple cues with context-sensitive
reliabilities with those obtained using a single cue or ipldtcues with fixed reliabilities. For two of the
illustrative sequences, we further provide the trackingcomes of the two-layered partitioned sampling
approach suggested in [18] (we use the proposal functiodstlaa likelihoods defined in Sec. IV in



10

our implementation). As we mentioned in the introductidns tapproach uses a two-layered partitioned
sampling method in which the location of the object of ing¢iis initially determined by using the motion
cues, and subsequently refined in accordance with the cobs. c

Throughout tracking, we use a fairly small number of pagsclV = 100, and employ the conditional
mean and the particles with the five highest weights to depebutcomes. We associate different colors
for the particles, and the rectangular regions they reptesiepending on the cue they are attached to:
green for color, blue for motion, andred for infrared brightness. In addition, we draw the rectangle
represented by the conditional meanwhite

We first consider a sequence from the BEHAVE Interactions Gase Scenarios [1] where we try
to track a person with a white shirt using color and motioroinfation. The reference color model is
constructed from the rectangular region shown in Figuré. 4{laroughout the sequence, first, a group of
people goes after the person of interest and attacks himn@uhnis time, he is completely occluded.
Next, at some point, the person of interest kneels down ampkssnoving. These different phenomena
observed throughout the video sequence exemplifies thextoat changes that we exploit in our tracking
framework.

As Figures 5 and 6 respectively demonstrate, the colorebaseking and the motion-based tracking
may lead to inaccurate results due to the ambiguities imbhdoethe processing of the video sequence
considering single modalities. There are objects in th&dpaaind which have similar appearances to the
object of interest. Therefore, soon after the initialiaatithe framework based on color starts tracking the
wrong object and remains at this local minimum point duriegnty half of the video sequence. However,
it is eventually able to recover the actual object of intevagh the utility of the color-based proposal. The
outcomes of the motion-based tracker is much worse sinceitte® sequence involves several persons
in motion. This generally makes the motion-based proposakrate particles that do not correspond to
the actual person of interest.

As one expects, considering color and motion cues all tegetlith fixed values for reliabilities gives
better tracking results than using only one modality (Fegdy. Yet, such a scheme has some drawbacks.
Since equal weights are given for color and motion cues, & ohthe sources becomes unreliable, it
directly affects the results. In the video sequence, theqmeentering the scene during which the actual
person of interest is at rest distracts tracking.

As illustrated in Figure 8, considering a scheme with cons@nsitive reliabilities eliminates most of
the ambiguities mentioned and results in an improvemertienoutcomes. For instance, when the person
to be tracked is occluded by the group of people following,Hime reliability of the color cue decreases,
and thus the motion cue particularly guides the tracking@ss during this time interval. Similarly, when
the person of interest becomes idle, the reliability of motiecreases, making the color cue the dominant
cue. Thus, the tracking process does not get distractedebgdison entering the scene unlike in the case
with fixed reliabilities. In Figure 9, we provide color and tiom likelihoods as well as their combinations
with two different strategies for a sample time instant (fioe frame where the person of interest is at
rest). Moreover, the changes in the reliabilities of thescaee illustrated in the plot given in Figure 10.

In Figure 11, we demonstrate the disadvantage of using aefmedined layered sampling approach by
considering the global scheme proposed by Perez et al. fB]t can be clearly seen from the figure,

28 1
A
) (©)

(@) (b

Fig. 4. The reference regions utilized in tracking ¢&). #1 (b) seq. #2 and (c)seq. #3
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Fig. 5. seq. #1Sample tracking results based on color. The backgroundizenbbjects having similar appearances to the personereisit
The tracker starts tracking the wrong object soon after tiit@lization, but eventually is able to recover the actahject of interest with
the use of the color-based proposal.

Fig. 6. seq. #1Sample tracking results based on motion. The sequenceirm®rgaveral objects in motion, and thus during the tracking
process the particles are distributed all around thesectsbjestead of the actual object of interest.

Fig. 7. seq. #1Sample tracking results based on both color and motion wittdfreliabilities. The results are better than those that ar
obtained by considering single visual cues. However, thie ta person entering the scene during which the actual pexsmterest is at
rest results in inaccurate tracking.

Fig. 8. seq. #1Sample tracking results based on both color and motion wititext-sensitive reliabilities. Modifying the relialiigs of
the visual cues according to the context and using them dicggy eliminates most of the ambiguities that the previcases (Figures 5-7)
cannot easily cope with. For example, the person of intdyestg at rest makes the reliability of the motion cue deagebetting the color
cue be the key cue in tracking. As a result, the tracking m®acm®es not get distracted by the person entering the scene.

for the video sequence under consideration, the samplmategly suggested in [18] results in inaccurate
tracking. The tracking process relies primarily on the mtinformation in the prediction step, and thus
the person entering the scene during the time the actuabipefsinterest is at rest distracts the tracking
process as in the case with fixed reliabilities (Figure 7i)c8ithis approach does not attach the particles
to any particular modality, we use a different color (yel)olor the particles representing the tracking
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Fig. 9. seq. #1Color and motion likelihoods, and their combinations witkefi and context-sensitive weights. Observe how the cordbine
likelihood changes when adaptive weights for the relitibgiare considered.

Fig.

Fig. 11. seq. #1Sample tracking results based on the two-layered partiticcampling approach suggested by Perez et al. [18]. Tigckin
relies primarily on the motion information for the localiimn, and thus a person coming into the scene during the tiraeattual person
of interest becomes idle leads to inaccurate tracking.

outcomes.

At this point, we should mention that the detection thredbaltilized are of critical importance for
the proposal functions, and thus the results obtained lr@neexample, increasing the value of’ to
a convenient value makes both the framework that uses fiXabitiies for color and motion, and the
two-layered partitioned sampling approach [18] accuyatedck the person of interest. This highlights
that our proposed work is more robust against the valuesechfus the detection parameters in terms of
the false positives given the current context.

In the second experiment, we consider a tracking sequenuered from an infrared camera along
with a CCD camera, taken from the OSU Color-Thermal Dataisd his allows us to employ infrared
brightness as another source of information during tragkille test our framework under four scenarios:
employing color and motion cues together, and using inffrérgghtness along with them, with and without
context-sensitive reliabilities. For the color and theanéd brightness models, we use the reference regions
given in Figure 4(b).

We show the results obtained by using fixed and adaptive ugeifghh the cues’ reliabilities in Fig-
ures 12 and 13, respectively. In each figure, we provide theomes based on color and motion, and
color, motion and infrared brightness side by side. It carsdxn from these figures that the results of the
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color + motion

color + ir + motion

Fig. 12. seq. #2Sample tracking results with fixed reliabilities. The sceoatains several objects that have similar appearancdseto t
person of interest, and the person’s view changes throughesequence. These make the reference color model qliieklyme inadequate.
Thus, the framework built upon color and motion cues leadsniarged and inaccurate object regions. Considering alladble modalities
(color, infrared brightness, and motion) improves the ltsgout in a certain extent as the reliabilities are held tamsduring the tracking
process.

framework built upon color and motion are not good, whetheedivalues for the reliabilities are used
or not. These cues both fail to account for the uncertaintiethe tracking sequence. Specifically, the
reference color model quickly becomes inadequate for desgrthe appearance of the person of interest,
leading to enlarged and inaccurate object regions. This aslyn due to the changes in the person’s
view throughout the sequence and the nearby objects wittniéasicolor. Introducing infrared brightness
as a complementary cue, in this respect, improves the pesfoce and provides more accurate tracking.
However, it is important to note that refining the relialtég in respect of the contextual information gives
more accurate results than using fixed values for the rétiabimost of the time as infrared brightness
is given a higher weight, or importance, than the other Visuas during tracking (Figure 14).

Lastly, we consider an image sequence from the CAVIAR ptoj2f It consists of several people
moving across the hallway in a mall, and we try to track thesperspecified in Figure 4(c) throughout
this sequence. We again compare the tracking outcomesebtaly using single visual cues, color and
motion, with that of obtained by combining these two. Foroediased tracking, we construct our reference
color histogram by using the rectangular region shown irufggi(c).

As illustrated in Figure 15, using motion data alone leads#ocurate tracking. The sequence contains
several persons moving across the hallway. The trackingegsocannot distinguish the actual person of
interest from the others, and the particles are distribatedver the moving persons. On the other hand,
the color-based tracking and our framework provide neartyilar tracking results (Figures 16 and 17).
They succeed in tracking the object for most part of the secgiebut they lose the track whenever a
person having a similar appearance enters the scene. Téenreahind the similar performance is that
with respect to the contextual information, color is detieved to be the main cue and is given a much
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color + motion color + ir + motion

Fig. 13. seq. #2Sample tracking results with context-sensitive religieid. For the framework built upon color and motion refinimg t
reliabilities with respect to the contextual informationes not provide a significant improvement in the outcomesesihese cues both fail
to account for the uncertainties in the tracking sequericgoés, however, result in more accurate tracking of thegpecos interest for the
framework in which infrared brightness is introduced as mglementary cue as infrared brightness is given a highepitapce than the
other cues during tracking (see Figure 14).

higher weight than motion during tracking (Figure 19). Thigperiment shows that combining several
visual cues does not always mean robustness. It improvesatiang results only when at least one of
the cues considered in tracking is effective in describimgdbject which is tracked. For instance, in this
example, color and motion both fail to account for the uraiaties. It should be added that the two-
layered sampling approach suggested in [18] produces maocseviracking results than ours as illustrated
in Figure 18 since it relies on first motion and then color infation for the localization of the person

of interest.

VIl. SUMMARY AND FUTURE WORK

We have presented a particle filter-based tracking algaritthich integrates multiple cues in a novel
way. Unlike previous approaches, our method performs thki-cue integration both in making predic-
tions about the object of interest and in verifying them tlgio observations. Both stages of the integration
depend on the reliabilities of the visual cues, which areptathin a dynamic way. Particularly, in the
prediction step, the reliabilities determine to which cod ¢ghe proposal function the particles are attached,
forcing reliable proposal functions to be employed morehm $equential importance sampling. Moreover,
in the measurement step, they specify the level of conidhubf each visual cue to the compound
likelihood, resulting in more precise weights for the paets.

We have demonstrated the potential of the proposed app@acstarious illustrative video sequences
with different tracking scenarios. As the experimentaltessreveal, dynamic structure of our formulation
makes tracking process easily adapt itself to changes icdhtext. The proposed framework is general
enough to easily include other sources of information. BEliengh in our experiments we use color, motion
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Fig. 14. seq. #2Reliabilities throughout the sequence.
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Fig. 15. seq. #3Sample tracking results based on motion. Employing motiata éilone cannot distinguish the actual person of interest
from the other persons in motion, and thus results in inateutracking.

Fig. 16. seq. #3Sample tracking results based on color. The framework isesasful in tracking the person of interest for most part of
the sequence, but it loses the track whenever a person hawingilar appearance enters the scene.

L] ..I"‘” j j] i 1

Fig. 17. seq. #3Sample tracking results based on both color and motion vattiext-sensitive reliabilities. With respect to the comtial
information, color is determined to be the main cue for thagkand is given a much higher weight than motion throughoatking (see
Figure 19). Thus, the proposed tracking framework givesamues similar to those obtained by using color data alorsdteeds in tracking

the person of interest until a person with a similar appezgappears in the video sequence.
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Fig. 18. seq. #3Sample tracking results based on the two-layered partiticsampling approach suggested by Perez et al. [18]. The vide
sequence involves several persons in motion, and sinceottadization of the person of interest is depend on primanilgtion and then
color information, the particles are distributed all arduhese persons.

200 400 600 800 1000 1200 1400

Fig. 19. seq. #3Reliabilities throughout the sequence.

and infrared brightness cues as the main sources of infamgidr tracking an object, we can extend this
list with further visual cues and integrate them in our framek without any difficulty. Moreover, the
suggested approach allows introducing new modalitiesnever available, throughout tracking. However,
it is important to note that combining several visual cuesstoot always increase the tracking accuracy as
our last experiment illustrates. Integrating various aistues does improve the outcomes by eliminating
the ambiguities only when at least one of the cues considerédhcking is effective in describing the
object of interest, which is not a very surprising result.

In updating the reliabilities of the visual cues, we adom #pproach suggested in [21]. As a future
work, it could be interesting to develop new quality measure updating the cues’ reliabilities. For
example, one can consider fuzzy measures instead of thedearsion utilized in [21].
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