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filtrage particulaire et fusion d’informations, prenant

en compte leur fiabilit́e
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Abstract

Many researchers argue that fusing multiple cues increasesthe reliability and robustness of visual tracking.
However, how the multi-cue integration is realized during tracking is still an open issue. In this work, we present
a novel data fusion approach for multi-cue tracking using particle filter as the underlying framework. Our method
differs from previous approaches in the following ways. First, we carry out the integration of cues both in making
predictions about the object to be tracked and in verifying them through observations. Our second and more
significant contribution is that both stages of integrationdirectly depend on the dynamically-changing reliabilities
of the visual cues. These two aspects of our method allow the tracker to easily adapt itself to the changes in the
context, and accordingly improve the tracking accuracy by resolving the ambiguities.

Résuḿe

Il est couramment admis que la fusion d’informations visuelles permet d’améliorer la fiabilité et la robustesse
du suivi d’objets. Cependant la manière dont est faite cette fusion pendant le suivi reste une question ouverte. Dans
ce rapport, nous proposons une nouvelle méthode de fusion pour le suivi par filtrage particulaire. Les principales
originalités de notre approche par rapport aux méthodes existantes sont les suivantes : la fusion est intégrée à la
fois dans l’étape de prédiction et dans la mise à jour en fonction des observations, et ces deux étapes de fusion
prennent en compte la fiabilité de chaque information utilisée et son évolution au cours du temps en fonction
du contexte. Ces caractéristiques de la méthode proposée permettent un suivi adaptatif en fonction du contexte,
qui conduit à de meilleurs résultats que les approches classiques, comme le montrent les expériences menées sur
plusieurs séquences d’images.

I. INTRODUCTION

Visual tracking is a widely studied topic in computer visionfor a wide range of application areas.
These include visual surveillance, activity analysis, man-machine interaction, augmented reality, etc. Here
we consider the task of locating an object of interest on eachframe of a given video sequence. This
object of interest can be an actual object in the scene, e.g. aperson, or a specific image region of prime
importance, e.g. a face. For real-world applications, it isgenerally accepted that tracking based on a single
visual feature would be likely to fail due to the complexity of the data and the tracking process. Thus, it
has been argued in many works that considering multi-modal data leads to an improvement in tracking.
It increases the robustness by letting complementary observations from different sources work together.

Erkut Erdem and Isabelle Bloch are with Institut TELECOM, T´elécom ParisTech, CNRS LTCI, Paris, France.
Séverine Dubuisson is with the Laboratoire d’Informatique de Paris 6, UPMC, Paris, France.
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These sources are either the visual features extracted fromthe same image sequence, such as color and
motion cues, or the visual cues coming from different physical sensors, such as from a CCD or an infrared
camera. However, how the information extracted from these sources is combined in tracking is still an
open problem.

A. Related Work

Tracking methods generally involve two key processes: generating hypotheses through a prediction
step and then verifying these hypotheses through some measurements. Considering the vast number of
studies in tracking literature, the most general way of performing data fusion is in the measurement step.
For example, in an early work [5], Birchfield suggested to combine two orthogonal visual cues (color
and intensity gradients) within a hypothesize-and-test procedure. In these studies, each cue provides a
likelihood or a matching score for the possible positions ofthe object, and the final output is determined
by taking into account the product of individual likelihoods or the summation of the matching scores. The
main problem with this approach is that all the modalities are given an equal reliability, which is a very
unrealistic assumption. Thus, if one of visual cues becomesunreliable, it may result in a wrong estimate.
There are two main approaches to overcome this issue and bothof them focus onadaptivity.

The first group of works [21], [19], [15], [6] assigns different reliability values to different visual
cues, and takes them into consideration in the measurement step. In [21], [19], the authors formulate the
fusion as the weighted average of saliency maps extracted for each cue with the weights corresponding
to the cues’ reliabilities. Similarly, the Sequential Monte Carlo based framework proposed in [15], [6]
use adaptive weights for the cues utilized in estimating thecombined likelihoods. Since the reliabilities
of cues are now taken into account in the computations, in this approach, the overall likelihood is more
precise. On the other hand, the weakness of these studies is that the fusion is carried out only in verifying
object hypotheses against observations. The multiple cuesutilized are not involved in making predictions
and generating hypotheses in any way. In terms of robustness, however, this is an important direction that
should be pursued as well.

Indeed the second line of works [12], [22], [18], [7] concentrates on this issue and lets the multi-modal
data interact with each other more explicitly throughout the tracking process. The common characteristics
of these works is that the integration is also carried out in the prediction step. For instance, the ICON-
DENSATION algorithm [12] uses a fixed color model specific to the object of interest to detect blobs in
the current frame and uses them in the prediction step of a shape-based particle filter tracker. In [22], the
authors suggested an approximate co-inference among the modalities by decoupling the object state and the
measurements according to color and shape and by letting each visual cue provide hypotheses for the other
one. Thus, in their formulation, the shape samples are drawnaccording to the color measurements, and
the color samples are drawn according to the shape measurements. The tracker in [18] uses a two-layered
sampling structure. The first layer constructed considering either motion or sound cues provides a coarse
information regarding the object to be tracked, which is then refined by the second layer by taking account
of color cues. The work in [7] also suggests a two-level, but more centralized, particle filter architecture.
At the lower level, the individual trackers based on different cues perform tracking independently. At the
upper level, a fuser integrates the trackers’ outputs to construct more reliable hypotheses, and in return
provides a feedback to the individual trackers. Although the studies that can be categorized within this
latter group introduce explicit interactions between multiple cues, the way these interactions occur in each
study is mainly predetermined by the global scheme/architecture considered. Furthermore, the reliabilities
of the visual cues are not taken into account in the measurement steps of these studies.

B. Proposed Framework

In this paper, we present a Sequential Monte Carlo based tracking algorithm that combines multi-modal
data in an original way. Our main motivation is to develop a tracking algorithm that has the properties of
the two groups of works mentioned previously. That is to say,we suggest to carry out the integration of
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the multiple cues in both the prediction step and in the measurement step, in estimating the likelihoods.
In [16], Nickel and Stiefelhagen suggested a work in a line similar to ours by combiningDemocratic
Integration [21] with two-staged layered sampling [18]. They used a predetermined layer structure with
each layer being adaptive in its own. For instance, the first layer is composed of stereo cues each describing
a part of the object to be tracked. However, compared to theirs, our system architecture allows interactions
between multiple cues to be more dynamic and flexible.

For the prediction step, we associate each particle with a specific cue and accordingly with a specific
proposal function. The crucial point is that this process isdefined as an adaptive process which is governed
by the dynamically-changing reliabilities of the visual cues. Thus, if one cue becomes unreliable, the
tendency is to lower the total number of particles associated with it and to increase the total number of
particles associated with other visual cue(s). This dynamic process improves the accuracy of the predictions
since less reliable proposal functions are utilized less inthe sequential importance sampling. During the
prediction step no cue is given a preference over another, and the interactions between the cues are directly
determined by the current context in an adaptive manner. As mentioned above, we take into account the
reliabilities of the visual cues in estimating the confidence measures of the particles as well. We define
the overall likelihood function so that the measurements from each cue contribute the overall likelihood
according to its reliability. In return, we obtain more precise likelihood values in the measurement step
as the misleading effects of the unreliable cues are reduced.

The remainder of the paper is organized as follows: Section II recalls the Sequential Monte Carlo
method with a focus on multi-modal tracking. Section III gives the basis of our object model and the
corresponding state dynamics. Section IV introduces the visual cues and the proposal functions that we
consider in our experiments. Section V gives the outline of our multi-modal tracking algorithm and our
main contributions. Section VI presents some illustrativetracking experiments in which we analyze the
performance of the proposed algorithm. Finally, Section VII makes a brief summary of our work, and
points out the future directions.

II. SEQUENTIAL MONTE CARLO AND MULTI -MODAL TRACKING

In a classical filtering framework, the main aim is to estimate the posterior distributionp(xk | y1:k) of
the state vectorxk through a set of measurementsy1:k up to the current time stepk. The Bayesian
sequential estimation approach computes this distribution according to a two-step recursion: aprediction
step

p(xk | y1:k−1) =
∫

p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1 (1)

followed by afiltering step
p(xk | y1:k) ∝ p(yk | xk)p(xk | y1:k−1). (2)

This formulation requires two models to be defined: an evolution (transition) model for the state
dynamicsp(xk | xk−1) and a likelihood model for the observationsp(yk | xk). One can obtain an
optimal solution to the posterior distribution under highly restrictive assumptions. For instance, the Kalman
filter [14] assumes these models to be linear and Gaussian. However, real data is generally non-linear,
non-Gaussian, multi-modal in nature, necessitating the use of some approximation techniques. In this
regard, since its introduction over a decade ago, Sequential Monte Carlo based filtering (also known as
particle filter) [10], [11], [3], [9] has proved to be an effective method for visual tracking. It provides a
simple yet flexible solution to optimal state estimation problems.

The main idea behind particle filter is to approximate the posterior distributionp(xk | y1:k) by a
weighted set ofN particles{x(i)

k , w
(i)
k }

N
i=1 as

p(xk | y1:k) ≈
N
∑

i=1

w
(i)
k δ

x
(i)
k

(xk). (3)
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with δx0 denoting the Dirac delta mass centered onx0, and each particle representing a possible statexk

and its weightw(i)
k ∈ [0, 1] describing its confidence measure.

The recursive estimation process is, then, characterized by two main steps: with an approximation of
p(xk−1 | y1:k−1) at hand new particles are generated from the old particle set{x(i)

k−1, w
(i)
k−1}

N
i=1 by making

use of a known proposal function,x(i)
k ∼ q(xk | x

(i)
0:k−1,y1:k). This prediction step is then followed by

an update step where the weights of the new particlesw
(i)
k are determined from the new observationsyk

using

w
(i)
k ∝ w

(i)
k−1

p(yk | x
(i)
k )p(x

(i)
k | x

(i)
k−1)

q(xk | x
(i)
0:k−1,y1:k)

(4)

with
∑N

i=1 w
(i)
k = 1. As a further step, a resampling phase, which removes the particles with low

weights and accumulates the particles with high weights, can be employed to avoid the degeneracy of the
particles [10]. Generally, the final tracking decision is made by taking into account the conditional mean,
the weighted average of the particles{x(i)

k }, or the particles with the highest weights.
For multi-modal tracking, the simplicity and the flexibility of the particle filter offer a wide variety of

solutions. One direction is to perform data fusion in the likelihood estimation step. In this regard, the most
straightforward way of integrating multiple measurement sources is to assume that these measurements
are conditionally independent given the state and subsequently factorize the overall likelihood as

p(y | x) =
M
∏

m=1

p(ym | x) (5)

with M representing the total number of sources. As we stated in theintroduction, it is possible to increase
the accuracy of the combined likelihood by further considering the reliabilities of the measurement sources
in the integration phase [19], [15], [6].

The studies [12], [22], [18], [7] consider another direction and suggest explicit interactions between
different modalities. In these works, the main emphasis is on the proposal functions utilized in the
prediction step, and how the candidate state hypothesis proposed by different modalities can be integrated.

III. OBJECT MODEL AND STATE DYNAMICS

The tracking framework that we propose in this work does not depend on a specific object model,
and any model suggested in literature can be utilized. However, it is important to note that the model of
choice restricts the visual cues employed in the tracking process. In this paper, we prefer to use a simple
model and represent the object to be tracked by a fixed reference rectangular region parameterized as
Ω = (xc, yc, w, h), where(xc, yc) denote the coordinates of the center of the rectangular region having a
width w and a heighth.

Considering the transformation of the reference region throughout the tracking sequence, we define the
object state asxk = (xk, yk, sk, tk) ∈ X . It describes a new regionΩxk

= (xk, yk, skw, tkh) with sk and
tk denoting the scaling factors for the width and the height of the reference region, respectively.

For the state evolution model, we assume mutually independent Gaussian random walk models along
with a small uniform component as in [18]. This uniform component is used to compensate the irregular
motion behavior of the object that is tracked and provides a kind of re-initialization. Accordingly, the
state evolution model can be written as:

p(xk | xk−1) ∼ βUU(0,xmax) + (1− βU)N (xk−1, Λ) (6)

whereU denotes the uniform distribution with the vectorxmax representing the maximum allowed values
over the setX , N (xk−1, Λ) denotes the Gaussian distribution with meanxk−1 and covarianceΛ =
diag(σ2

x, σ
2
y , σ

2
s , σ

2
t ), and βU is the weight of the uniform component which is generally setto a small

value. Additionally, the initial state of the object is assumed to be described by a uniform distribution
p(x0) = U(0,xmax). In all the experiments reported in this paper, we useσ2

x = σ2
y = 3, σ2

s = σ2
t = 0.01,

andβU = 0.01.
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IV. V ISUAL CUES AND PROPOSAL FUNCTIONS

This section describes the visual cues that we utilize in tracking an object of interest. These are simply
color, motion and infrared brightness, and are discussed in the following subsections in detail. Before
going into details, let us first present how we employ them throughout the tracking process in a more
general way.

In our work, while extracting these visual cues from an imageframe, we follow a conventional approach
and use measurements based on histograms. We compute the likelihoods and construct the individual
proposal functions by making use of reference histograms which are defined for each visual cue. There are
several strategies for designing these reference histograms. For example, they can be constructed manually
by hand by taking into account the properties of the object interms of the visual cue considered (e.g. a
color model for human skin) or they can be constructed from a particular frame of the tracking sequence by
letting the user specify the region of interest. We considerboth strategies while constructing our reference
histograms, and use these histograms throughout the whole tracking sequence without updating them.

Mainly, the construction of the proposal functions and the estimation of the likelihoods depend on the
comparison between the histograms extracted from the candidate regions and the reference histogram. For
that, we utilize the Bhattacharyya histogram similarity measure [4], which is defined as:

D(h1,h2) =

(

1−
B
∑

i=1

√

hi,1hi,2

)1/2

(7)

whereB denotes the number of bins, andhi,1 represents theith bin of histogram1.
It is important to note that, as in [18], the proposal functions described in the subsequent subsections

are defined only for suggesting the new values for the location component of the object state. For the
scaling factors, the proposal functions are taken as the corresponding component of the state evolution
model described in Equation (6).

A. Color Cue

Color is one of the most widely used visual cues in tracking frameworks. Its widespread use is due
to its characteristics that allow encoding the appearance of the object tracked in an efficient and robust
way. In this work, following [17], we adopt an observation model that is based on Hue-Saturation-Value
(HSV) color histograms withBC = BhBs + Bv bins. While we populate the firstBhBs bins with the
pixels having saturation and value greater than some pre-defined thresholds (in our experiments we used
0.1 and 0.5, respectively), we include the value information in the additional Bv bins considering the
remaining pixels. Using this definition, we define our color likelihood as

p(yC | x) ∝ exp
(

−D2(hC
x
,hC

ref)/2σ2
C

)

(8)

with hC
ref denoting theBC-bin normalized reference histogram,hC

x
representing the normalized color his-

togram which is obtained from a candidate object region specified by the object statex, andD2(hC
x
,hC

ref)
being the Bhattacharyya histogram similarity measure between them.

The construction of the proposal function also depends on the color likelihood model described above.
Typically, we first estimate the color likelihoods on a subset of image locations over the current frame. For
this, we use a pre-defined step size of 5 pixels through the current frame, and keep the scale factors fixed
ass = t = 1. The likelihoods estimated in this way define an approximateprobability distribution map for
the object tracked. Figure 1 illustrates a sample construction of these likelihoods. In fact, these approximate
distribution maps, which are estimated for each visual cue,are of critical importance in estimating the
reliabilities of the cues which guides the whole tracking process. The details of this procedure will be
given in Section V. Once these likelihoods are estimated, wedefine our proposal function as follows:

qC(xk, yk | xk−1, yk−1,y
C
k ) = βRWN

(

(xk−1, yk−1), (σ
2
x, σ

2
y)
)

+
(1− βRW )

NC

NC
∑

i=1

N
(

pC
i , (σ2

x, σ
2
y)
)

. (9)
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Fig. 1. Color likelihood. (a) The frame and the region where the reference histogram is contructed. (b) A sample frame from the tracking
sequence. (c) The approximate probability distribution map estimated for the frame given in (b). Observe the responsesin the true location
of the object of interest along with the other image regions having an appearance similar to the one of the reference region.

In Equation (9), the first component is the Gaussian random walk component for the object location that
we previously introduced in our state evolution model givenin Equation (6). The pointspC

i = (xi, yi), i =
1, · · · , NC denote the image locations having a likelihood greater thana threshold (i.e.p(yC | x) > τC),
and define the centers of Gaussians in the mixture model utilized in the second component, respectively.
Generally, the coefficientβRW is set to a relatively high value (e.g.,βRW = 0.75), and thus the main
tendency is to preserve the smoothness of the tracking trajectory. On the other hand, the second component
allows jumps in the state space to the image regions that likely contain the object which is tracked.

B. Motion Cue

The motion activity in a tracking sequence is an important indication for the object of interest, especially
when the video sequence was assumed to be captured by a staticcamera and the object that is tracked
is generally in motion. Considering such an assumption, theimage locations having a motion activity at
the framek can be determined from the absolute difference of the intensity images at the framesk and
k − 1. In the frame difference, the pixels with large values indicate the motion activity. If there is no
motion, the frame difference is either zero or has a very small value due to the noise and/or due to the
slight changes in the intensity.

To estimate the motion likelihood, we follow the approach suggested in [18]. For a region of interest
specified by the statex, we associate a motion histogramhM

x
= (hM

1,x, · · · , h
M
BM ,x) with BM denoting the

number of bins. During populating the histogram, we enlargethe regions of interest by a few pixels (five in
our experiments). This guarantees the inclusion of the silhouettes and allows capturing the motion activity
across them. On the other hand, the reference histogramhM

ref is defined considering a uniform distribution,
i.e.hM

i,ref = 1
BM

, i = 1, · · · , BM . The rationale behind this definition depends on the characteristics of the
motion histogram extracted from the candidate regions. Typically, when there is no motion in the candidate
region, only the lowest bins of the histogram are populated.For the case of motion, the candidate motion
histogram shows an irregular structure. Thus, comparing itto a uniform distribution reveals information
regarding the motion likelihood. In the case of no motion activity, the Bhattacharyya histogram similarity
measure yieldsD2

no motion = 1−
√

1/BM . Considering this, we define the motion likelihood as

p(yM | x) ∝ 1− exp
(

−(D2
no motion −D2(hM

x
,hM

ref))/2σ2
M

)

. (10)

Figure 2 illustrates the result of this procedure for a sample frame.
As in Section IV-A, the proposal function is constructed by estimating the likelihoods on a subset

of image locations over the current frame. While estimatingthem, again the scale factors are fixed as
s = t = 1 and the pre-defined step size is used. The locations having a likelihood greater than a threshold
(p(yM | x) > τM ) denoted bypM

i = (xi, yi), i = 1, · · · , NM are then used, as in [18], to define the
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Fig. 2. Motion likelihood. (a) The absolute frame difference for two successive frames. (b) The approximate probability distribution map
estimated from (b). Notice that we have two strong responseswhich leads to an ambiguity. This is due to a second person entering the scene
from bottom-left part of the frame.

proposal function as

qM(xk, yk | xk−1, yk−1,y
M
k ) = βRWN

(

(xk−1, yk−1), (σ
2
x, σ

2
y)
)

+
(1− βRW )

NM

NM
∑

i=1

N
(

pM
i , (σ2

x, σ
2
y)
)

. (11)

C. Infrared Brightness Cue

Besides color and motion, we additionally employ infrared brightness cue in our experiments. This
cue requires the tracking sequence to be imaged from an infrared camera, and allows us to consider
different thermal characteristics of an object of interestduring tracking. In estimating the likelihoods and
constructing the corresponding proposal function, we follow an approach similar to the ones explained
in the previous subsections. We populate our histograms using the brightness values within an infrared
image region. For the reference histogram, this region can be specified by the user from a particular frame.
Then, we define the infrared brightness likelihood as

p(yI | x) ∝ exp
(

−D2(hI
x
,hI

ref)/2σ2
I

)

. (12)

wherehI
ref = (hI

1,ref , · · · , h
I
BI ,ref) is theBI-bin normalized reference histogram, andhI

x
= (hI

1,x, · · · , h
I
BI ,x)

denotes the normalized brightness histogram obtained fromthe candidate object region. In Figure 3, we
illustrate a sample construction of these likelihoods.

Subsequently, we construct the proposal function by estimating the likelihoods on a subset of image
locations over the current frame and using the locations having a likelihood greater than a threshold, i.e.
p(yI | x) > τ I , as follows:

qI(xk, yk | xk−1, yk−1,y
I
k) = βRWN

(

(xk−1, yk−1), (σ
2
x, σ

2
y)
)

+
(1− βRW )

NI

NI
∑

i=1

N
(

pI
i , (σ

2
x, σ

2
y)
)

(13)

wherepI
i = (xi, yi), i = 1, · · · , NI denote the image locations where the object tracked is likely to be.

In our experiments, we fixedσC = 0.2, σM = 0.4, σI = 0.25, Bh = Bs = Bv = 10, BM = 20, BI = 30,
and used detection ratesτC = τ I = 0.65, τM = 0.2. In Equations (9), (11) and (13), if respectivelyNC ,
NI or NM equals to zero, we use only the first Gaussian random walk component for the related proposal
function.
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Fig. 3. Infrared brightness likelihood. (a) The frame and the region where the reference histogram is constructed. (b) Asample frame from
the tracking sequence. (c) The approximate probability distribution map estimated for the frame given in (b). Notice the ambiguities; both
the object of interest and the van produce very strong responses.

V. TRACKING ALGORITHM

We propose a novel approach for integrating different visual cues during tracking. Unlike the previous
works summarized in Section I-A, we do not give preference toany cue and do not use a global scheme
with a predetermined structure. We mainly let the current visual context determine how the interactions
between the multiple cues are carried out. In all phases of the tracking process, we emphasize the
information derived from the reliable cues and ignore the information provided by the unreliable cues.
This view certainly involves discovering and using the relative reliabilities of the visual cues.

In this respect, the first and the most crucial step is adjusting cues reliabilities with respect to the
current context. For that, we adopt theDemocratic Integrationmethod [21]. InDemocratic Integration,
the reliabilities are determined by considering the correlation among the visual cues. Simply, different
cues try to reach an agreement on a joint result and they adaptthemselves considering the result currently
agreed on. This adaptive process is in accordance with the experimental results which conjectures that
humans use adaptive strategies to integrate information provided by different cues or modalities [13], [20].

Specifically,Democratic Integrationrequires a quality measuresℓ to be defined for each cue which
measures the degree of agreement between the joint result and the result the cue individually suggests.
These measures are utilized to adjust the reliabilities so that the cues that are not in agreement with the
joint result are suppressed and the cues that are in line withthe joint result are given a higher influence
in the future. In our work, we initialize the reliabilities with equal weights with their sum equal to 1 and
define these quality measures over the approximate probability distribution maps which are also utilized
in estimating the proposal functions (Section IV). As a result, the new reliabilities are estimated using
the reliability values over the previous frame and the current observations.

The context-sensitive structure of the prediction step involves an adaptive assignment procedure. Each
particle is assigned to a modality denoted byℓ with ℓ ∈ {C, I, M} (C for color, I for infrared brightness,
M for motion) and accordingly to a specific proposal functionqℓk(xk | xk−1,y

ℓk

k ). This assignment process
is defined as an adaptive process which is governed by the dynamically-changing reliabilities of the visual
cues. Thus, if one cue becomes unreliable relative to other visual cues, the tendency is to lower the total
number of particles associated with it and to increase the total number of particles associated with other
visual cue(s). As a result, the tracking accuracy increasesas less reliable proposal functions are utilized
less in the sequential importance sampling in predicting the position of the object to be tracked.

Second, we define the overall likelihood function so that themeasurements from a cueℓ contribute to
the overall likelihood according to its reliabilityrℓ as:

p(yk | xk) =
∏

ℓ∈{C,I,M}

p(yℓ
k | xk)

rℓ

k (14)

with
∑

ℓ∈{C,I,M} rℓ = 1. It should be noted that if we take the logarithm of the likelihood formula given
in Equation (14), we get an expression which is in a certain sense analogous to the weighted sum used
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in the Democratic Integrationmethod [21] to integrate multiple cues. Since we adjust the reliability of a
visual cue in accordance with the other cues considered, theassumption on the conditional independence
of the measurements gets relaxed in our formulation. This results in more precise likelihood values as it
reduces the misleading effects of the unreliable cues. However, an important point is that the individual
likelihoods having a value estimated as zero makes the overall likelihood zero as we take the product,
whether its reliability score is low or not. Thus, in our experiments, we adjust all such likelihoods values
and explicitly set them to a small value likep(yℓ | x) = 0.001.

The whole algorithm is summarized below:

Algorithm

In the initialization, assume the initial states to be uniformly distributed over the state space, i.e.
p(x0) = UX (x0).

From the particle set{x(i)
k−1, w

(i)
k−1}

N
i=1 at the time stepk− 1, determine the new particle set for timek.

• update reliabilities
– estimatean approximate target position̂xk considering the reliabilities over the previous frame

and the current observations as

x̂k = arg max
x

(p̂(yk | x)) = arg max
x





∏

ℓ∈{C,I,M}

p̂(yℓ
k | x)rℓ

k−1



 (15)

with p̂(yℓ
k | x) denoting the approximate probability distribution map estimated for the modality

denoted byℓ
– estimatethe quality measures for each cue as follows:

sℓ
k =

{

0 if p̂(yℓ
k | x̂k) ≤ 〈p̂(yℓ

k | x)〉
p̂(yℓ

k | x̂k)− 〈p̂(yℓ
k | x)〉 if p̂(yℓ

k | x̂k) > 〈p̂(yℓ
k | x)〉

(16)

where〈· · ·〉 denotes the average over the approximate probability distribution map
– update reliabilities considering the current quality measures asfollows:

rℓ
k = rℓ

k−1 + η(sℓ
k − rℓ

k−1) (17)

with η denoting a time constant which we set to 0.1 in our experiments.
• simulate ℓ

(i)
k :

– generatea random numberα ∈ [0, 1), uniformly distributed.

– set ℓ(i)
k =











C if α < rC
k

I if rC
k ≤ α < rC

k + rI
k

M if α ≥ rC
k + rI

k

• simulate x
(i)
k ∼ qℓ

(i)
k (xk | x

(i)
k−1,y

ℓ
(i)
k

k )

• update weightsw
(i)
k ∝ w

(i)
k−1

p(yk|x
(i)
k

)p(x
(i)
k

|x
(i)
k−1

)

q
ℓ
(i)
k (x

(i)
k

|x
(i)
k−1

,y
ℓ
(i)
k

k
)

with
∑N

i=1 w
(i)
k = 1

• resample: simulateai ∼ {w
(n)
k }

N
n=1, and replace{x(i)

k , w
(i)
k } ← {x

(ai)
k , 1

N
}

• decision: use the conditional mean or the particles with the highest weights

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the proposed framework on illustrative video
sequences. We typically compare our results obtained considering multiple cues with context-sensitive
reliabilities with those obtained using a single cue or multiple cues with fixed reliabilities. For two of the
illustrative sequences, we further provide the tracking outcomes of the two-layered partitioned sampling
approach suggested in [18] (we use the proposal functions and the likelihoods defined in Sec. IV in
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our implementation). As we mentioned in the introduction, this approach uses a two-layered partitioned
sampling method in which the location of the object of interest is initially determined by using the motion
cues, and subsequently refined in accordance with the color cues.

Throughout tracking, we use a fairly small number of particles,N = 100, and employ the conditional
mean and the particles with the five highest weights to depictthe outcomes. We associate different colors
for the particles, and the rectangular regions they represent, depending on the cue they are attached to:
green for color, blue for motion, andred for infrared brightness. In addition, we draw the rectangle
represented by the conditional mean inwhite.

We first consider a sequence from the BEHAVE Interactions Test Case Scenarios [1] where we try
to track a person with a white shirt using color and motion information. The reference color model is
constructed from the rectangular region shown in Figure 4(a). Throughout the sequence, first, a group of
people goes after the person of interest and attacks him. During this time, he is completely occluded.
Next, at some point, the person of interest kneels down and stops moving. These different phenomena
observed throughout the video sequence exemplifies the contextual changes that we exploit in our tracking
framework.

As Figures 5 and 6 respectively demonstrate, the color-based tracking and the motion-based tracking
may lead to inaccurate results due to the ambiguities inherent to the processing of the video sequence
considering single modalities. There are objects in the background which have similar appearances to the
object of interest. Therefore, soon after the initialization, the framework based on color starts tracking the
wrong object and remains at this local minimum point during nearly half of the video sequence. However,
it is eventually able to recover the actual object of interest with the utility of the color-based proposal. The
outcomes of the motion-based tracker is much worse since thevideo sequence involves several persons
in motion. This generally makes the motion-based proposal generate particles that do not correspond to
the actual person of interest.

As one expects, considering color and motion cues all together with fixed values for reliabilities gives
better tracking results than using only one modality (Figure 7). Yet, such a scheme has some drawbacks.
Since equal weights are given for color and motion cues, if one of the sources becomes unreliable, it
directly affects the results. In the video sequence, the person entering the scene during which the actual
person of interest is at rest distracts tracking.

As illustrated in Figure 8, considering a scheme with context-sensitive reliabilities eliminates most of
the ambiguities mentioned and results in an improvement in the outcomes. For instance, when the person
to be tracked is occluded by the group of people following him, the reliability of the color cue decreases,
and thus the motion cue particularly guides the tracking process during this time interval. Similarly, when
the person of interest becomes idle, the reliability of motion decreases, making the color cue the dominant
cue. Thus, the tracking process does not get distracted by the person entering the scene unlike in the case
with fixed reliabilities. In Figure 9, we provide color and motion likelihoods as well as their combinations
with two different strategies for a sample time instant (forthe frame where the person of interest is at
rest). Moreover, the changes in the reliabilities of the cues are illustrated in the plot given in Figure 10.

In Figure 11, we demonstrate the disadvantage of using a predetermined layered sampling approach by
considering the global scheme proposed by Perez et al. [18].As it can be clearly seen from the figure,

(a) (b) (c)

Fig. 4. The reference regions utilized in tracking (a)seq. #1, (b) seq. #2, and (c)seq. #3.
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113 260 461 700

Fig. 5. seq. #1Sample tracking results based on color. The background contains objects having similar appearances to the person of interest.
The tracker starts tracking the wrong object soon after the initialization, but eventually is able to recover the actualobject of interest with
the use of the color-based proposal.

40 90 380 700

Fig. 6. seq. #1Sample tracking results based on motion. The sequence contains several objects in motion, and thus during the tracking
process the particles are distributed all around these objects instead of the actual object of interest.

40 153 500 700

Fig. 7. seq. #1Sample tracking results based on both color and motion with fixed reliabilities. The results are better than those that are
obtained by considering single visual cues. However, this time a person entering the scene during which the actual person of interest is at
rest results in inaccurate tracking.

40 153 500 700

Fig. 8. seq. #1Sample tracking results based on both color and motion with context-sensitive reliabilities. Modifying the reliabilities of
the visual cues according to the context and using them accordingly eliminates most of the ambiguities that the previouscases (Figures 5-7)
cannot easily cope with. For example, the person of interestbeing at rest makes the reliability of the motion cue decrease, letting the color
cue be the key cue in tracking. As a result, the tracking process does not get distracted by the person entering the scene.

for the video sequence under consideration, the sampling strategy suggested in [18] results in inaccurate
tracking. The tracking process relies primarily on the motion information in the prediction step, and thus
the person entering the scene during the time the actual person of interest is at rest distracts the tracking
process as in the case with fixed reliabilities (Figure 7). Since this approach does not attach the particles
to any particular modality, we use a different color (yellow) for the particles representing the tracking
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Fig. 9. seq. #1Color and motion likelihoods, and their combinations with fixed and context-sensitive weights. Observe how the combined
likelihood changes when adaptive weights for the reliabilities are considered.
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Fig. 10. seq. #1Reliabilities throughout the sequence.

40 153 500 700

Fig. 11. seq. #1Sample tracking results based on the two-layered partitioned sampling approach suggested by Perez et al. [18]. Tracking
relies primarily on the motion information for the localization, and thus a person coming into the scene during the time the actual person
of interest becomes idle leads to inaccurate tracking.

outcomes.
At this point, we should mention that the detection thresholds utilized are of critical importance for

the proposal functions, and thus the results obtained here.For example, increasing the value ofτM to
a convenient value makes both the framework that uses fixed reliabilities for color and motion, and the
two-layered partitioned sampling approach [18] accurately track the person of interest. This highlights
that our proposed work is more robust against the values chosen for the detection parameters in terms of
the false positives given the current context.

In the second experiment, we consider a tracking sequence captured from an infrared camera along
with a CCD camera, taken from the OSU Color-Thermal Database[8]. This allows us to employ infrared
brightness as another source of information during tracking. We test our framework under four scenarios:
employing color and motion cues together, and using infrared brightness along with them, with and without
context-sensitive reliabilities. For the color and the infrared brightness models, we use the reference regions
given in Figure 4(b).

We show the results obtained by using fixed and adaptive weights for the cues’ reliabilities in Fig-
ures 12 and 13, respectively. In each figure, we provide the outcomes based on color and motion, and
color, motion and infrared brightness side by side. It can beseen from these figures that the results of the
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color + motion color + ir + motion

450 450 450

1200 1200 1200

1800 1800 1800

2200 2200 2200

Fig. 12. seq. #2Sample tracking results with fixed reliabilities. The scenecontains several objects that have similar appearances to the
person of interest, and the person’s view changes throughout the sequence. These make the reference color model quicklybecome inadequate.
Thus, the framework built upon color and motion cues leads toenlarged and inaccurate object regions. Considering all available modalities
(color, infrared brightness, and motion) improves the results but in a certain extent as the reliabilities are held constant during the tracking
process.

framework built upon color and motion are not good, whether fixed values for the reliabilities are used
or not. These cues both fail to account for the uncertaintiesin the tracking sequence. Specifically, the
reference color model quickly becomes inadequate for describing the appearance of the person of interest,
leading to enlarged and inaccurate object regions. This is mainly due to the changes in the person’s
view throughout the sequence and the nearby objects with a similar color. Introducing infrared brightness
as a complementary cue, in this respect, improves the performance and provides more accurate tracking.
However, it is important to note that refining the reliabilities in respect of the contextual information gives
more accurate results than using fixed values for the reliabilities most of the time as infrared brightness
is given a higher weight, or importance, than the other visual cues during tracking (Figure 14).

Lastly, we consider an image sequence from the CAVIAR project [2]. It consists of several people
moving across the hallway in a mall, and we try to track the person specified in Figure 4(c) throughout
this sequence. We again compare the tracking outcomes obtained by using single visual cues, color and
motion, with that of obtained by combining these two. For color-based tracking, we construct our reference
color histogram by using the rectangular region shown in Figure 4(c).

As illustrated in Figure 15, using motion data alone leads toinaccurate tracking. The sequence contains
several persons moving across the hallway. The tracking process cannot distinguish the actual person of
interest from the others, and the particles are distributedall over the moving persons. On the other hand,
the color-based tracking and our framework provide nearly similar tracking results (Figures 16 and 17).
They succeed in tracking the object for most part of the sequence, but they lose the track whenever a
person having a similar appearance enters the scene. The reason behind the similar performance is that
with respect to the contextual information, color is determined to be the main cue and is given a much
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color + motion color + ir + motion

450 450 450

1200 1200 1200

1800 1800 1800

2200 2200 2200

Fig. 13. seq. #2Sample tracking results with context-sensitive reliabilities. For the framework built upon color and motion refining the
reliabilities with respect to the contextual information does not provide a significant improvement in the outcomes since these cues both fail
to account for the uncertainties in the tracking sequence. It does, however, result in more accurate tracking of the person of interest for the
framework in which infrared brightness is introduced as a complementary cue as infrared brightness is given a higher importance than the
other cues during tracking (see Figure 14).

higher weight than motion during tracking (Figure 19). Thisexperiment shows that combining several
visual cues does not always mean robustness. It improves thetracking results only when at least one of
the cues considered in tracking is effective in describing the object which is tracked. For instance, in this
example, color and motion both fail to account for the uncertainties. It should be added that the two-
layered sampling approach suggested in [18] produces much worse tracking results than ours as illustrated
in Figure 18 since it relies on first motion and then color information for the localization of the person
of interest.

VII. SUMMARY AND FUTURE WORK

We have presented a particle filter-based tracking algorithm which integrates multiple cues in a novel
way. Unlike previous approaches, our method performs the multi-cue integration both in making predic-
tions about the object of interest and in verifying them through observations. Both stages of the integration
depend on the reliabilities of the visual cues, which are adapted in a dynamic way. Particularly, in the
prediction step, the reliabilities determine to which cue and the proposal function the particles are attached,
forcing reliable proposal functions to be employed more in the sequential importance sampling. Moreover,
in the measurement step, they specify the level of contribution of each visual cue to the compound
likelihood, resulting in more precise weights for the particles.

We have demonstrated the potential of the proposed approachon various illustrative video sequences
with different tracking scenarios. As the experimental results reveal, dynamic structure of our formulation
makes tracking process easily adapt itself to changes in thecontext. The proposed framework is general
enough to easily include other sources of information. Eventhough in our experiments we use color, motion
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Fig. 14. seq. #2Reliabilities throughout the sequence.

350 750 1030 1083

Fig. 15. seq. #3Sample tracking results based on motion. Employing motion data alone cannot distinguish the actual person of interest
from the other persons in motion, and thus results in inaccurate tracking.

350 750 1030 1160

Fig. 16. seq. #3Sample tracking results based on color. The framework is successful in tracking the person of interest for most part of
the sequence, but it loses the track whenever a person havinga similar appearance enters the scene.

350 750 1030 1160

Fig. 17. seq. #3Sample tracking results based on both color and motion with context-sensitive reliabilities. With respect to the contextual
information, color is determined to be the main cue for tracking and is given a much higher weight than motion throughout tracking (see
Figure 19). Thus, the proposed tracking framework gives outcomes similar to those obtained by using color data alone; itsucceeds in tracking
the person of interest until a person with a similar appearance appears in the video sequence.
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350 750 1030 1083

Fig. 18. seq. #3Sample tracking results based on the two-layered partitioned sampling approach suggested by Perez et al. [18]. The video
sequence involves several persons in motion, and since the localization of the person of interest is depend on primarilymotion and then
color information, the particles are distributed all around these persons.
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Fig. 19. seq. #3Reliabilities throughout the sequence.

and infrared brightness cues as the main sources of information for tracking an object, we can extend this
list with further visual cues and integrate them in our framework without any difficulty. Moreover, the
suggested approach allows introducing new modalities, whenever available, throughout tracking. However,
it is important to note that combining several visual cues does not always increase the tracking accuracy as
our last experiment illustrates. Integrating various visual cues does improve the outcomes by eliminating
the ambiguities only when at least one of the cues consideredin tracking is effective in describing the
object of interest, which is not a very surprising result.

In updating the reliabilities of the visual cues, we adopt the approach suggested in [21]. As a future
work, it could be interesting to develop new quality measures in updating the cues’ reliabilities. For
example, one can consider fuzzy measures instead of the harddecision utilized in [21].
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