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NL-InSAR: Estimation Non-Locale d’Interférogrammes

Charles-Alban Deledalle, Loı̈c Denis et Florence Tupin

Résumé

Les données interférométriques radar à synthèse d’ouverture (InSAR) fournissent des images de

réflectivité, de différence de phase et de cohérence, qui sont essentielles pour l’interprétation de l’image et

les traitements de bas niveaux tels que la segmentation et la reconstruction 3D. Ces images sont obtenues

en pratique à partir du produit hermitien estimé sur des fenêtres locales. Ces fenêtres produisent un biais et

une perte de résolution au niveau des contours et des textures due à leur hétérogénéité spatiale. Ce rapport

propose une approche non-locale pour l’estimation conjointe des images de réflectivité, de différence de

phase et de cohérence à partir d’un couple interférométrique d’images radar complexes mono-vues (SLC)

préalablement recalées. Les techniques non-locales sont connues pour réduire efficacement le bruit sans

dégrader les structures de l’image en procédant à une moyenne pondérée des pixels similaires. Deux

pixels sont considérés comme similaires si les patchs qui les recouvrent sont ressemblants. La similarité

entre patchs est communément définie par la distance euclidienne entre les vecteurs de niveaux de gris.

Elle n’est pas applicable aux images radar interférométrique perturbées par un bruit de speckle. Dans

ce rapport, un critère de similarité entre patchs, basé sur des considérations statistiques, est dérivé pour

les images SLC. Une estimation au sens du maximum de vraisemblance pondérée est réalisée avec des

poids obtenus à partir des données InSAR. Ces poids sont définis sur l’intensité et la différence de

phase, et sont itérativement raffinés par la similarité entre patchs bruités et par la similarité des patchs

de l’estimation précédente. L’efficacité de cette nouvelle technique de construction des interférogrammes

est illustrée qualitativement et quantitativement sur des données synthétiques et réelles.
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NL-InSAR: Non-Local Interferogram Estimation

Charles-Alban Deledalle, Loı̈c Denis et Florence Tupin

Abstract

Interferometric synthetic aperture radar (InSAR) data provides reflectivity, phase difference and

coherence images, which are paramount to scene interpretation or low-level processing tasks such as

segmentation and 3D reconstruction. These images are estimated in practice from hermitian product on

local windows. These windows lead to biases and resolution losses due to local heterogeneity caused by

edges and texture. This paper proposes a non-local approach for joint estimation of the reflectivity, phase

difference and coherence images from an interferometric pair of co-registered single-look complex (SLC)

SAR images. Non-local techniques are known to efficiently reduce noise while preserving structures by

performing a weighted averaging of similar pixels. Two pixels are considered similar if the surrounding

image patches are ”resembling”. Patch-similarity is usually defined as the Euclidean distance between

the vectors of graylevels. In this paper a statistically grounded patch-similarity criterion suitable to SLC

images is derived. A weighted maximum likelihood estimation of the SAR interferogram is then computed

with weights derived in a data-driven way. Weights are defined from intensity and phase difference, and

are iteratively refined based both on the similarity between noisy patches and on the similarity of patches

from the previous estimate. The efficiency of this new interferogram construction technique is illustrated

both qualitatively and quantitatively on synthetic and true data.
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I. INTRODUCTION

Interferometric synthetic aperture radar (InSAR) aims to recover information about heights or displace-

ments in a scene. Two SAR complex images are sensed by two parallel-passes separated by a spatial

baseline. The amplitude components provide information on the reflectivity, and, after co-registration

of the two images, the phase difference is directly related to the path delay between the two waves.

This phase difference can be used to recover the height or the movement [1]. The amplitudes and the

phase differences are damaged by speckle noise. Due to temporal and spatial variations between the

two acquisitions, the speckle components between the two acquisitions present a small decorrelation

which affects the phase difference. The coherence between the two acquisitions appears then as a crucial

indicator of the reliability of the phase difference. This paper focuses on the joint estimation of the three

InSAR parameters: the reflectivity of the scene, the phase difference and the coherence. Note that the

orbital component of the interferometric phase is assumed to have been previously removed from the

phase images to insure the phase stationarity in homogeneous areas.

An interferometric pair of co-registered single-look complex (SLC) SAR images can be well-modeled

on each pixel with a joint parametric distribution grounded on three physical parameters: the reflectivities,

the actual phase difference and the coherence. Let z and z′ be two complex values of two corresponding

pixels in the two SLC images. According to Goodman’s model [2], z and z′ follow a zero-mean complex

circular Gaussian distribution:

p(z, z′|Σ) =
1

π2det(Σ)
exp




−

(
z∗z′∗

)
Σ−1






z

z′









 (1)

with Σ a 2× 2 covariance matrix, which can be decomposed as follows:

Σ = E












z

z′






(

z∗z′∗
)







=






R
√
RR′Dejβ

√
RR′De−jβ R′




 (2)

where R and R′ are the underlying reflectivities, β the actual phase difference, D the coherence between

the two acquisitions and E denotes the mathematical expectation.

Numerous estimators have been proposed to estimate the covariance matrix Σ. The majority have been

specially designed to estimate only one of the three parameters:

• Amplitude denoising is usually achieved by using spatially adaptive filtering based on local statistics

in order to cope with the signal-dependent multiplicative speckle noise [3]–[7]. We refer the reader

November 5, 2009



4

to the survey of R. Touzi [8] for a deeper analysis of such methods. The most recent approaches

use parametric distributions based wavelet soft-thresholding, with spatially adaptive filtering in

the wavelet domain [9], [10], or with logarithmically transformed amplitude [11]–[13]. Non-local

estimation of the reflectivity has been also proposed in [14].

• Phase difference restoration is usually expressed as a problem of phase denoising and phase un-

wrapping. This paper focuses only on the first problem namely the estimation of the noise-free

wrapped phase difference. Recent techniques achieve this goal by finding the best local polynomial

approximation in an adaptive window [15]–[17].

• The coherence is an indicator of the reliability of the phase quality but is also widely used to detect

temporal changes in remote sensing applications. The main problem in the coherence estimation

is the introduction of a bias toward highest values due to the low number of averaged samples.

Different methods have been proposed to improve the quality of the estimation in terms of bias and

variance [18]–[20].

Other estimators take advantage of the Goodman’s model to provide a joint estimation of the three

parameters. The majority of them are based on local statistics, and therefore affect the spatial resolution

while few estimators achieve this goal without significant loss of resolution:

• The usual parameter estimation approach is the direct application of the spatial coherence principle.

It considers noisy samples in a window centered on a given pixel as all following the distribution of

that pixel. This leads to the boxcar filter which locally estimates the complex covariance matrix Σ

over a sliding window. Known as complex multi-looking, this operation is largely used in practice to

provide an estimate of the reflectivity, the actual phase difference and the coherence. The fundamental

limitation of this technique comes from the loss of resolution on the estimated images, since the

same smoothing effect is equally applied to homogeneous regions, and to edges or textured zones.

Moreover, as mentioned above, the coherence estimate is biased toward highest values due to the

low number of samples in the local window.

• In [21], [22], Lee et al. proposed to use adaptive filtering for polarimetric and interferometric SAR

denoising. Instead of estimating the parameters over a rectangular sliding window, a directional

window is locally selected among eight edge-aligned windows, according to the local gradient of

the amplitude images. A complex covariance matrix is estimated over the obtained window which is

used in the linear minimum mean square error estimator to obtain the denoised covariance matrix Σ.

This preserves edge structures, since values of pixels on each side of the edge are never combined
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together, avoiding then smoothing effects. Unfortunately, this methods tends to leave a high variance

in homogeneous area and create some undesired artifacts.

• Intensity-driven adaptive-neighborhood (IDAN) technique has been proposed in [23] for polarimetric

and interferometric SAR parameter estimation. Following the idea of filtering over directional

windows, IDAN performs a complex multi-looking operation on an adaptive neighborhood. This

adaptive neighborhood is constructed with a region growing algorithm where the most similar

adjacent pixels are selected iteratively according to their intensity values. The adaptive neighborhood

aims to select as many pixels as possible, all following the same statistical population as the given

pixel. This decreases the bias (i.e, resolution loss) in the estimation since noisy values coming from

other populations are rejected. However, due to its connectivity constraint, IDAN leaves a high

variance in regions where there are only few adjacent similar pixels.

One may think that similar pixels are present in a local neighborhood such as rectangular windows,

directional windows or spatially connected components. Instead, similar pixels can be considered as far

apart. Our idea, based on the non-local means filter [24], is that SAR images present lots of redundant

patterns which can be used to select a large set of pixels to combine for the estimation of each given

pixel. A pixel is assumed to come from the same statistical population as the given pixel if the patches

that surround the two pixels are similar. This patch-based estimator can be considered as non-local

since pixel values somewhat far apart can be averaged together, depending on the surrounding patch-

similarity. The non-local interferometric SAR (NL-InSAR) estimator is based on the patch-based estimator

introduced in [14] for image denoising. Instead of combining pixels from a binary set, a membership

value is computed according to a patch-based similarity criterion. This membership value is then used in

a weighted maximum likelihood estimator to produce the desired parameters. Unlike directional windows

based filtering and IDAN which use only the intensity to select the suitable samples, NL-InSAR uses

a probabilistic criterion based on both the intensities and the phase differences that surround two given

patches (it is assumed that the orbital component has been previously removed from the phase images).

Moreover, the estimation is refined iteratively by including the similarity between pre-estimated patches

of the parameters. This iterative process noticeably improves the estimation performances.

II. NON-LOCAL ESTIMATION

A. Weighted Maximum Likelihood Estimation

This section presents the method proposed for NL-InSAR to estimate the three parameters R, β and

D. It seems reasonable to consider equal the (true) reflectivities of each pair of corresponding pixels,
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i.e R = R′ in (2). This hypothesis is naturally verified in regions with good coherence. By reducing the

number of degrees of freedom (from 4 to 3 unknowns), the estimation variance is improved. Denoising

techniques must trade-off variance reduction and resolution preservation. As the sample size is restricted

by resolution preservation considerations, it is desirable to reduce the variance with such a hypothesis.

Let A = |z| and A′ = |z′| be the amplitudes and φ = arg (zz′∗) the noisy phase difference. From (1)

and (2), with the constraint R = R′, the InSAR observations are related to the InSAR parameters R,D

and β by [25]:

p(A,A′, φ|R,D, β) =
4AA′

π2R2(1−D2)
×

exp

(

−A
2 +A′2 − 2DAA′ cos(φ− β)

R(1−D2)

)

. (3)

NL-InSAR is based on the weighted maximum likelihood estimator (WMLE) where the weights are

defined in a patch-based approach. Formally, the WMLE defines at each site s the estimate Θ̂s =

(R̂s, β̂s, D̂s) as:

Θ̂s = arg max
Θ

∑

t

w(s, t) log p(Ot|Θ) (4)

where Ot = (At, A
′
t, φt) is the observation at site t and w(s, t) > 0 is a data-driven weight. WMLE is

known to reduce the mean squared error by reducing the variance of the estimate at the cost of a bias

introduced by samples that follow a distribution with parameters Θt different to Θs [26]. The WMLE

framework has already been applied successfully to image denoising in [27] and [14]. For InSAR data,

the maximum likelihood estimator of the covariance matrix Σ is well-known to be the sample estimate

of the covariance matrix. The parameters R, R′, β and D are then given by term identification which

leads to compute the sample estimate of the complex cross-correlation. Seymour and Cumming in [28]

derived the maximum likelihood estimator of (3) which differs from the classical sample estimate since

it assumes that R = R′. When this assumption holds, it is shown in [28] that their estimator is more

efficient than the classical sample estimate. For instance, an estimate of the coherence can be obtained

without complex multi-looking. From their work, we extend their formulation to the case of WMLE,

which is given, for Θs = (Rs, βs,Ds) and Ot = (At, A
′
t, φt), by:

R̂s =
a

2N
,

D̂s =
2

a

(

x cos β̂s + y sin β̂s

)

,

β̂s = − arg (x+ jy) (5)

with a =
∑

t

w(s, t)
(

A2
t +A′

t
2
)

,
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Figure 1. WMLE combines for each site s the information of pixels t according to the similarity between two patches ∆s

and ∆t centered respectively around the sites s and t.

x =
∑

t

w(s, t)Re
[

ztz
′
t
∗
]

,

y =
∑

t

w(s, t)Im
[

ztz
′
t
∗
]

,

N =
∑

t

w(s, t). (6)

In [14], we take inspiration of the non-local means algorithm to define the weights w(s, t). The two

observations Os and Ot are assumed to come from the same statistical population, i.e Θs = Θt, if the

patches ∆s and ∆t that surround the two pixels s and t are similar. Figure 1 illustrates the procedure.

At each site s, the pixels t are inspected sequentially to produce a weight by comparing the two noisy

patches ∆s and ∆t. Once all weights w(s, t) are computed, the WMLE is obtained according to (4).

Note that for complexity reasons, the pixels t are restricted to a large window Ws centered around the

site s. In the non-local means the similarity between the two patches ∆s and ∆t is given by an Euclidean

distance of the intensity values. On InSAR data, such a distance cannot be used directly since it does

not consider the statistical nature of the multi-dimensional observations. In [14], we showed that the

Euclidean distance can be substituted by a similarity criterion grounded on statistical considerations for

non-additive or non-Gaussian noises. The same approach can be applied here for InSAR data.

B. Similarity between noisy patches

The similarity between the two patches ∆s and ∆t can be defined according to the likelihood that the

two patches ∆s and ∆t have identical parameters given the noisy observationsO:∏k Pr(Os,k,Ot,k|Θs,k =

Θt,k) where s,k and t,k denotes the k-th pixel in each patch ∆s and ∆t [14]. Since this likelihood function
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is unknown, we define the weights with respect to a function f which fits as well as possible the likelihood

function:

w(s, t) ,
∏

k

f(Os,k,Ot,k|Θs,k = Θt,k)
1/h (7)

where h is a filtering parameter. For reason of readability, the pixels s,k and t,k will be denoted respectively

by 1 and 2 in the following. Under the assumption that the two observations O1 and O2 come from the

same statistical population, i.e Θ1 = Θ2, then the probability density function (pdf) of the similarity

likelihood is obtained by considering all possible values of the unknown parameter Θ [29]. This leads

to the following relation:

p(O1,O2|Θ1 = Θ2) ∝
∫

p(O1|Θ1 = Θ)p(O2|Θ2 = Θ)dΘ. (8)

Note that (8) holds by assuming the prior densities p(Θ1 = Θ) and p(Θ2 = Θ) are uniform improper

densities. Unfortunately, the pdf is not necessarily scale-invariant which is not satisfying to model the

weights in the WMLE. However, its definition depends on the chosen observation space of O. The choice
of O affects the pdf by a multiplicative factor namely the Lagrangian. Then, the search of a suitable

observation space can lead to obtain a scale-invariant similarity likelihood. Given the pdf function of

the original observation O and Φ a mapping function from the original observation space to the suitable

observation space, the function f can be defined as:

f(O1,O2|Θ1 = Θ2) =
∣
∣
∣
∣

dΦ

dO1
(O1)

∣
∣
∣
∣

−1 ∣∣
∣
∣

dΦ

dO2
(O2)

∣
∣
∣
∣

−1

p(O1,O2|Θ1 = Θ2). (9)

In case of InSAR data, a simple dimensional analysis shows that Φ : (A,A′, φ) 7→ (
√
A,
√
A′, φ) is a

good choice to have a scale-invariant similarity likelihood. According to the suitable Φ, equation (9) and

appendix A, the similarity likelihood, for Ok = (Ak, A
′
k, φk), k = 1..2, is given by:

f(O1,O2|Θ1 = Θ2) =
√

C
B

3


A+ B
A

√

B
A− B − arcsin

√

B
A



 (10)

with A = (A2
1 +A′

1
2 +A2

2 +A′
2
2)2,

B = 4(A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A

′
1A2A

′
2 cos(φ1 − φ2)),

C = A1A
′
1A2A

′
2.
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Figure 2. Similarity log-likelihood with respect to A1 and φ1 for the given values A′

1, A2, A′

2 and φ2.

Figure 2 represents the similarity likelihood defined in (10) with respect to the values of A1 and φ1 for

given values of A′
1, A2, A

′
2 and φ2. To emphasize the variations of the similarity likelihood, the negative

logarithm of the similarity likelihood − log f(O1,O2|Θ1 = Θ2) is plotted. The criterion is minimum

when observed data are identical: A1 = A2, A
′
1 = A′

2 and φ1 = φ2. Moreover, this criterion manages

well with the phase wrapping, without creating discontinuities when φ1 moves from −π to π. For a given

value of A1, the criterion is minimum when φ1 and φ2 are in-phase and maximum when they are out

of phase. An interesting property of the similarity likelihood is that for a given pair of observed phases

φ1 and φ2, the criterion is more discriminant when the observed amplitudes come closer, and is less

discriminant when the amplitudes move away.

C. Similarity between pre-estimated patches

In [14], it has been proposed to refine the weights iteratively by using at iteration i the previously

estimated parameters Θ̂i−1. Instead of approaching the similarity likelihood, we try to approach the a

posteriori probability defined by the Bayes relation:

Pr(Θ1 = Θ2|O) ∝ Pr(O1,O2|Θ1 = Θ2)
︸ ︷︷ ︸

likelihood term

×Pr(Θ1 = Θ2)
︸ ︷︷ ︸

prior term

(11)

The idea is to use the pre-estimated image Θ̂i−1 to measure the validity of the hypothesis Θ1 = Θ2. The

equality Θ1 = Θ2 is assumed to be more likely to hold as the data distributions with parameters Θ̂i−1
1

and Θ̂i−1
2 get closer. Polzehl and Spokoiny showed that the Kullback-Leibler divergence between these
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(a) (b)

Figure 3. Symmetric Kullback-Leibler divergence with respect to (a) R̂1 and β̂1 for the given values of R̂2, β̂2 with D̂1 =

D̂2 = 0.7, and (b) D̂1 and β̂1 for the given values of β̂2, D̂2 with R̂1 = R̂2.

two data distributions provides a statistic test of the hypothesis Θ1 = Θ2 [27]. The prior term is defined

by a symmetrical version of the Kullback-Leibler divergence over an exponential decay function:

Pr(Θ1 = Θ2) ∝ exp

[

− 1

T
SDKL(Θ̂i−1

1 , Θ̂i−1
2 )

]

where SDKL(Θ̂i−1
1 , Θ̂i−1

2 ) =
∫ (

p(O|Θ̂i−1
1 )− p(O|Θ̂i−1

2 )
)

log
p(O|Θ̂i−1

1 )

p(O|Θ̂i−1
2 )

dO (12)

and T > 0 is a positive real value. The parameters T and h act as dual parameters to balance the

trade-off between the noise reduction and the fidelity of the estimate [27]. According to appendix B, the

symmetrical Kullback-Leibler divergence in (12), for Θ̂k =
(

R̂k, β̂k, D̂k

)

, k = 1..2, is given by:

SDKL(Θ̂1, Θ̂2) =
4

π

[

R̂1

R̂2

(

1− D̂1D̂2 cos(β̂1 − β̂2)

1− D̂2
2

)

+

R̂2

R̂1

(

1− D̂1D̂2 cos(β̂1 − β̂2)

1− D̂2
1

)

− 2

]

.

(13)

Figure 3 represents the symmetric Kullback-Leibler divergence defined in (13). In 3.a, the variations

are given with respect to the values of R̂1 and β̂1, for given values of R̂2 and β̂2 with D̂1 = D̂2 = 0.7.

In 3.b, the variations are given with respect to the values of β̂1 and D̂1, for given values of β̂2 and D̂2

with R̂1 = R̂2. The criterion decreases when all parameters at pixel 1 get closer to the parameters at

pixel 2 and becomes null when the parameters are equal. Moreover, this criterion manages well with the
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phase wrapping, without creating discontinuities when β̂1 moves from −π to π. For a given value of R̂1,

the criterion is minimum when β̂1 and β̂2 are in-phase and maximum when they are out of phase. An

interesting property of this criterion is that the similarity of the phase parameters gains in importance

when the coherence comes higher, since it means that the phase parameters are more reliable.

D. Enforcing a minimum amount of smoothing

It is desirable to enforce a minimum amount of smoothing (i.e., variance reduction) in the denoising

technique. In an image, some patches are (almost) unique (i.e., not found elsewhere inside the search

window). The direct application of the algorithm would produce highly noisy estimates for the central

value of these patches since the weighted maximum likelihood estimation would be computed over too

few samples. In [14] this was not an issue for amplitude denoising. When considering iterative joint

amplitude-phase-coherence estimation, the high variance of the estimator for ”rare” patches leads to a

decrease of the similarity between pre-estimated patches with the iterations. At the algorithm end, the

resulting denoised images contains regions of high residual variance.

To guarantee a minimum amount of smoothing, and therefore limit the variance of the estimation, we

propose to estimate the equivalent number of looks of the denoised pixels. Due to our non-local (data

driven) approach, the equivalent number of looks varies from one pixel to another. It depends on the

number of similar patches found in the search window, and can be approximated, for each pixel s, by:

L̂s =
(
∑

tw(s, t))2

∑

tw(s, t)2
(14)

according to the variance reduction of a weighted average for the reflectivity and [17] for the phase

difference. To enforce a minimum amount of smoothing, we suggest to redefine the weights w(s, t)

in the cases where the equivalent number of looks L̂s falls below a given threshold Lmin. An option

is to redistribute equally the weights of the Lmin most similar patches whenever L̂s < Lmin. “Rare’

patches often contain a bright scatterer. To prevent from biaising the estimation, we propose to restrict

the selection of the Lmin patches to those whose central value is not too bright compared to that of the

reference patch, following the ideas of [30]–[32]. The correction of the weights can be performed as

follows:

• Compute L̂s for each pixel s,

• If L̂s < Lmin, redistribute the Lmin highest weights:

– Create a vector w containing all the weights w(s, t) such that At < 2As,

– Sort the vector w in descending order,
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Algorithm Non Local InSAR (NL-InSAR)

Input: O = (A,A′, φ) and Θ̂i−1 =
(

R̂i−1, β̂i−1, D̂i−1

)

Output: Θ̂i =
(

R̂i, β̂i, D̂i
)

for all pixels s of the image do

Initialize the accumulators a, x, y and N to zero

for all pixels t in Ws do

logw(s, t)← 0

for all pixels s, k and t, k in ∆s and ∆t do

Compute f(Os,k,Ot,k | Θs,k = Θt,k)

⊲ use Eq. 10

Compute SDKL(Θ̂i−1

s,k , Θ̂
i−1

t,k ) ⊲ use Eq. 13

logw(s, t)← logw(s, t)

+ 1

h
log f(Os,k,Ot,k | Θs,k = Θt,k)

− 1

T
SDKL(Θ̂i−1

s,k , Θ̂
i−1

t,k )

end for

Increment the accumulators a, x, y and N

⊲ use Eq. 6

end for

Insure a minimum noise reduction ⊲ see Sec. II-D

Compute β̂i
s, D̂

i
s and then R̂i

s ⊲ use Eq. 5

end for

return
(

R̂i, β̂i, D̂i
)

Figure 4. Pseudo-code of the non local InSAR algorithm. The procedure has to be repeated iteratively. At iteration i the

pre-estimated parameters R̂i−1, β̂i−1, D̂i−1 are used to refine the estimates. In practice, the first pre-estimates can be chosen

as constant parameter images, and at least ten iterations have to be performed to reach the best estimate.

– Redistribute equally the weights of the Lmin most similar pixels:

wk ←
1

Lmin

Lmin∑

l=1

wl ∀k ∈ 0..Lmin (15)

III. ALGORITHM

This section describes the whole procedure used in NL-InSAR. At each site s, the pixels t present in

the search window Ws are inspected sequentially to produce a weight by comparing two surrounding
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patches ∆s and ∆t. For each corresponding pixels s,k and t,k in ∆s and ∆t, the similarity is computed by

comparing noisy observations Os,k and Ot,k (10) and the pre-estimated parameters Θ̂i−1
s,k and Θ̂i−1

t,k (13).

These similarities are aggregated to produce the weights w(s, t). In practice, the logarithm of the weights

is computed to limit numerical errors. The weight w(s, t) is then used to increment the accumulators

a, x, y and N (6). Once all weights are obtained for each site t, the minimum noise reduction procedure is

performed (Section II-D) before computing the parameters Θ̂i
s (5). The procedure is performed iteratively.

Indeed, at the end of the iteration i − 1, the estimated parameters provide the pre-estimated parameters

Θ̂i−1 used at iteration i. The procedure is repeated until there is no more change between two consecutive

estimates. In practice, the first pre-estimates can be chosen as constant parameter images, and at least

ten iterations have to be performed to reach the best estimate.

The pseudo-code of NL-InSAR is given in Figure 4. The algorithm complexity is O(|Ω||W ||∆|) where
|Ω|, |W | and |∆| are respectively the image size, the search window size and the similarity patch-size.

Several optimizations of the non-local means have been proposed in [33]–[35]. We have extended the

solution proposed by Darbon et al. in [36] for the NL-InSAR algorithm with a time complexity given

by O(4|Ω||W |). Finally, the computational time of our method is of about 160 seconds per iteration for

an image of size |Ω| = 512 × 512 and windows of size |W | = 21 × 21 and |∆| = 7× 7 using an Intel

Pentium D 3.20GHz.

IV. EXPERIMENTS AND RESULTS

A. Results on Synthetic Data

This section presents qualitative and numerical results obtained on simulated InSAR data. Given the

true images of reflectivity R, phase difference β and coherenceD, two single-look complex (SLC) images

z1 and z2 are generated according to the model presented in section I. The simulation procedure, similar

to that for simulating a polarimetric InSAR image [21], is as follow:

• Compute a matrix L such that Σ = LL∗. For example, the lower triangle matrix L in the Cholesky

decomposition is a good candidate:

L =
√
R






1 0

De−jβ
√

1−D2




 , (16)

• Generate two independent complex random variables x1, x2 according to (1) with an identity

covariance matrix,
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Figure 5. Statistical answer on a rectangular function for (a) the boxcar estimator, (b) the IDAN estimator and (c) the NL-InSAR

estimator.

• Finally, the correlated complex random variables z1, z2 are given by:





z1

z2




 = L






x1

x2




 . (17)

Once the two SLC SAR images are generated, the three InSAR parameters are estimated and compared

to the known actual parameters. Our NL-InSAR estimator is applied with a search window of size

|W | = 21×21 and a similarity window of size |∆| = 7×7. The parameters h and T are set as described

in [14]. A minimum noise reduction of level Lmin = 10 is maintained. We use 10 iterations of the

iterative NL-InSAR filter to reach a satisfying estimation. Comparisons have been performed with the

classical boxcar filter on a 7× 7 sliding window and the IDAN filter with an adaptive neighborhood of

maximum size 50 [23].
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(a) (b) (c)

Figure 6. (a) Reflectivity, (b) phase difference and (c) coherence of a resolution test pattern obtained from top to bottom by

the gound truth, the SLC images (maximum likelihood estimator of [28]), the boxcar estimator, the IDAN estimator [37] and

the NL-InSAR estimator.

Figure 5 shows the statistical answer of the three estimators on a cut through a line of width 10. The

statistics have been measured on denoised images over 10 000 noisy generated images. The ground truth,

the mean and an interval of variation (about 70% of the estimates) is represented on the graphics for

the three estimated components. It can be noticed that the boxcar filter is unbiased with a low variance

in homogeneous area but it presents a strong spatial bias around the edges of the rectangular function.

This spatial bias produces large underestimations of the coherence around edges wich is denoted in [21]

as the dark ring effect. IDAN introduces a bias in homogeneous area due to the region growing method

which tends to lower reflectivity and coherence values [23]. Moreover, the bias increases on the line since

the adaptive neighborhood selects samples out of the line. As a result the variance is bigger than the
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Table I

SNR VALUES OF ESTIMATED INSAR IMAGES USING DIFFERENT ESTIMATORS

Reflectivity Phase difference Coherence

SLC Image [28] -2.75 3.36 -1.19

WIN-SAR [13] 5.22 - -

PEARLS [16] - 5.27 -

Boxcar filter 6.47 5.90 -4.01

IDAN [37] 5.00 7.88 0.33

NL-InSAR 9.02 13.04 6.92

boxcar filter even if there are as many values to estimate the cross-correlation. NL-InSAR provides the

best bias-variance trade-off. Indeed, comparatively to the boxcar filter and IDAN, NL-InSAR is neither

biased in homogeneous area nor around edges. Moreover, its variance is equivalent to the one of the

boxcar filter in homogeneous area. NL-InSAR has a bigger variance around edges than in homogeneous

area since these regions present less redundant patterns.

Figure 6 presents the obtained estimated images for two generated single-look complex images rep-

resenting a resolution test pattern. The images obtained with the NL-InSAR estimator seem to be well

smoothed with a better edge and shape preservation. The images obtained by the boxcar and the IDAN

estimators are more noisy than the images obtained by the NL-InSAR filter (the remaining variance

is larger). Moreover, the boxcar estimator blurs the edges resulting to a loss of resolution and large

underestimations of the coherence around edges. The IDAN filter preserves the shapes but the noise

variance remains large essentially in the coherence image, and small details are lost essentially in the

phase difference image. Finally, our NL-InSAR estimator seems to work efficiently by preserving small

structures with a satisfying noise reduction.

To quantify the estimation qualities, Table I presents numerical results for the resolution test pattern

presents on Figure 6. The performance criterion used is the Signal to Noise Ratio (SNR)

SNR(û, u) = 10 log10
V ar[u]

1
|Ω|

∑

s∈Ω

(us − ûs)
2
. (18)

where u is one of the actual component and û its estimate. Note that for the phase difference, we measure

the SNR of the complex phase image ejβ̂ to deal with phase wrapping as proposed in [16]. The results in

term of SNR are compared again with the boxcar filter, IDAN and also with WIN-SAR [13] (a wavelet

based amplitude filter) and PEARLS [16] (an adaptive local phase filter). NL-InSAR outperforms all the
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(a) (b) (c)

Figure 7. (a) Reflectivity, (b) phase difference and (c) coherence of the CNES in Toulouse (France) c©DGA c©ONERA,

obtained from top to bottom by the SLC images (maximum likelihood estimator of [28]), the boxcar estimator, the IDAN

estimator [37] and the NL-InSAR estimator.

other filters for all components in term of SNR.

B. Results on True SLC SAR Data

This section presents an overview of results obtained on a pair of co-registered real single-look complex

SAR images with the same InSAR estimators as above. These images have been acquired over the CNES

in Toulouse (France) sensed by RAMSES and provided by the CNES. The pair of SAR images is assumed

to follow the Goodman’s model presented in section I. In this experiment, the algorithms are executed

with the same parameters as described in Section IV-A.

Figure 7 presents the obtained estimates for the different denoising filters. The results obtained with
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our NL-InSAR estimator seem to be well smoothed with a better edge and shape preservation than

other filters. For instance, IDAN is unable to restore the edges of the building when these edges are

not present in the amplitude images even though these edges are present in the phase difference image.

This is also the case for the three trees on the left side of the image. Since NL-InSAR considers both

the information of amplitude and phase, NL-InSAR restores the edges and the trees successfully. The

speckle effect is strongly reduced and the spatial resolution seems to be well preserved: buildings, streets,

and homogeneous areas are well restored in the three parameter images. Moreover, the bright scatterers

(numerous in urban area) are well restored. Note that NL-InSAR preserves well the three bright lines

on the left of the building whereas the boxcar filter blurs them and IDAN attenuates them. This attests

the efficiency of the patch-based approach: the three lines acts as a ramp on which the similarity patch

slides in order to combine all pixels parallel to the bright lines. One can notice that very thin and dark

structures are attenuated by NL-InSAR, such as the thin streets. This drawback might be avoided by

using a smaller search window size to reduce the bias. In [16], [17], [35], [38]–[40], the authors propose

to use adaptive search window size. Such approaches could be possibly used in NL-InSAR to reduce

this undesired effect.

V. CONCLUSION

A new method was proposed for SAR interferogram estimation. This method is based on the non-local

means filter [24] whose originality rests on the combination of pixel values which can be far apart. We

apply the general iterative methodology proposed in [14] to select suitable pixels by evaluating a patch-

based similarity considering noisy amplitudes, noisy phase differences and previous estimates. Finally, the

reflectivity, the actual phase difference and the coherence are jointly estimated. The proposed estimator

out-performs the boxcar estimator and the IDAN estimator [23] in terms of both noise reduction and

edge preservation. The noise, present in the input images, is well smoothed in the homogeneous regions

and the object contours are well restored (preservation of the resolution). Moreover we can consider from

our experiments that the reflectivity, the actual phase difference and the coherence are well recovered,

without introducing strong undesired artifacts, with a good restoration of bright scatterers. A drawback

of this estimator is the attenuation of thin and dark details in the regularized images. In a future work, we

will try to better preserve these structures, by using adaptive patch-size selection. The filter elaboration,

based on the statistics of the processed images, has led to define a suitable patch-similarity criterion

for InSAR images. This similarity criterion could be applied in the future to other applications such as

pattern tracking and displacement estimation.

November 5, 2009



19

APPENDIX A

SIMILARITY LIKELIHOOD

The similarity likelihood is given by the triple integral

I3=
∫∫∫

p(A1, A
′
1, φ1|R,D, β)p(A2, A

′
2, φ2|R,D, β)dRdDdβ.

Starting the integration calculus on the variable β, the following simple integral has to be solved:

I1 =

∫

exp
[
λ
(
A1A

′
1 cos(φ1 − β) +A2A

′
2 cos(φ2 − β)

)]
dβ

with λ = 2D
R(1−D2) . Integrating by substitution ψ ← β + φ2 and developing the cosine functions gives:

I1 =

∫

exp
[
λ
(
A2A

′
2 +A1A

′
1 cos(∆φ)

)
cos(ψ)+

λ
(
A1A

′
1 sin(∆φ)

)
sin(ψ)

]
dψ

with ∆φ = φ1 − φ2. Then, by using eq. 3.937.2 in [41]:

I1 = 2πJ0



j
2D
√

A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A′

1A2A′
2 cos ∆φ

R(1−D2)





with Jn the Bessel function of the first kind. Pursuing on the variable R gives the following integral:

I2 =

∫
1

R4
exp

(

−A
2
1 +A′

1
2 +A2

2 +A′
2
2

R(1−D2)

)

I1dR.

Using the integration by substitution x← 1/R(1 −D2) gives:

I2 = 2π(1−D2)3
∫

x2 exp
(

−x(A2
1 +A′

1
2 +A2

2 +A′
2
2)
)

J0

(

jx2D
√

A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A

′
1A2A

′
2 cos ∆φ

)

dx.

According to eq. 6.621.4 in [41]:

I2 = 2π(1 −D2)3
(

2A +D2B
√
A−D2B5

)

with A = (A2
1 +A′

1
2 +A2

2 +A′
2
2)2

and B = 4(A2
1A

′
1
2 +A2

2A
′
2
2 + 2A1A

′
1A2A

′
2 cos ∆φ).

Finally, the triple integral can be expressed by the following single integral on the variable D:

I3 =
32

π3
C
∫

(1−D2)(2A +D2B)
√
A−D2B5 dD.

with C = A1A
′
1A2A

′
2
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Developing the expression and using integration by substitution x← D2, the following holds:

I3 =
32

π3
C
[

1
√
A3

∫
x−1/2

√

1− xB/A5 dx+

B − 2A
2
√
A5

∫
x1/2

√

1− xB/A5dx−

B
2
√
A5

∫
x3/2

√

1− xB/A5 dx

]

.

According to eq 3.194.1 in [41]:

I3 =
32

π3
C
[

1
√
A3

(

22F1(
5

2
,
1

2
;
3

2
;
B
A)

)

+

B − 2A
2
√
A5

(
2

3
2F1(

5

2
,
3

2
;
5

2
;
B
A)

)

−

B
2
√
A5

(
2

5
2F1(

5

2
,
5

2
;
7

2
;
B
A)

)]

with 2F1 an hyper-geometric function. Finally, by developing the hyper-geometric function, the triple

integral is equal to:

I3 =
32C

π3
√
B3




A+ B
A

√

B
A− B − arcsin

√

B
A



 .

APPENDIX B

SIMILARITY ON THE ESTIMATES

The similarity on the estimate is defined from the Kullback Leibler divergence between two data dis-

tribution p(A,A′,∆φ|R1,D1, β1) and p(A,A′,∆φ|R2,D2, β2). It is equivalent to consider the Kullback

Leibler divergence between p(z|Σ1) and p(z|Σ2) with Σk as defined in (2) and Rk = R′
k, k = 1..2. The

Kullback Leibler divergence between two zero-mean complex circular Gaussian distributions is given by:

DKL(Σ1|Σ2) =
2

π

[

log

(
detΣ1

detΣ2

)

+ tr
(

Σ−1
1 Σ2

)

− 2

]

.

The symmetrical version of the Kullback Leibler divergence is then:

SDKL(Σ1|Σ2) = DKL(Σ1|Σ2) +DKL(Σ2|Σ1)

=
2

π

[

tr
(

Σ−1
1 Σ2

)

+ tr
(

Σ−1
2 Σ1

)

− 4
]

.

Note that with Rk = R′
k, k = 1..2:

tr(Σ−1
1 Σ2) = 2

[

R2(1−D1D2e
j(β1−β2))

R1(1−D2
1)

]

,

tr(Σ−1
2 Σ1) = 2

[

R1(1−D2D1e
j(β2−β1))

R2(1−D2
2)

]

.
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Then the symmetrical Kullback Leibler divergence is given by:

SDKL(Σ1,Σ2) =
4

π

[
R1

R2

(
1−D1D2 cos(β1 − β2)

1−D2
2

)

+

R2

R1

(
1−D1D2 cos(β1 − β2)

1−D2
1

)

− 2

]
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