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Abstract

It is well-known that Total Variation (TV) minimization with L2 data fidelity terms
(which corresponds to white Gaussian additive noise) yields a restored image which
presents some loss of contrast. The same behavior occurs for TV models with non-convex
data fidelity terms that represent speckle noise. In this note we propose a new approach
to cope with the restoration of Synthetic Aperture Radar images while preserving the
contrast.
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Résumé

Il est bien connu que la minimisation de la Variation Totale (TV) avec une attache
aux données de type L2 (qui correspond à un bruit blanc Gaussian additif) aboutit à
une image restaurée présentant une perte de contraste. Ce même comportement se pro-
duit avec une attache aux données non-convexe comme dans le cas du bruit de speckle
(multiplicatif). Dans cette note nous proposons une nouvelle approche pour restaurer les
images de Radar à Ouverture Synthétique (ROS) tout en préservant le contraste.

Mots-clés : Restauration d’Image, Variation Totale, Minimisation d’Energie, Fonctions Ni-
velées, Radar à Ouverture Synthétique.
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1 Introduction

It is now well-known that when an image containing a bright object within a dark back-
ground and overall Gaussian noise corruption is restored using Total Variation (TV) regular-
ization [21], a significant loss of grey level contrast between recovered object and background
can happenn [18, 23]. We recently showed that TV is the paradigm of those regularization
energy functionals which can be minimized level-by-level, which we called levelable func-
tions [9]. We present in this paper the first application of this formalism to the denoising of
Synthetic Aperture Radar (SAR) images where this loss of constrast effect can be preponder-
ant.

Few works have addressed this loss of contrast issue under a Gaussian noise corrup-
tion assumption. In [20], Osher et al. propose an iterative regularization method which
replaces the Total Variation prior by a generalized Bregman distance. The method amounts
to minimizing a sequence of variational problems where each of them refine at each step a
degraded image. This approach yields very good results compared to many other classical
models. This scheme has been extended to a time-continuous nonlinear inverse scale space
in [7, 5]. A proof of convergence can be found in [15] and rates of convergence in [6]. Such
an approach has been succesfully extended to cartoon extraction from aerial images in [3],
image denoising using wavelets in [26] and blind deconvolution by Marquina in [17].

In this paper we focus on the use of variational methods or Markov Random Fields
(MRFs) [25] that make use of TV as priors. Note that many other approaches that do fit into
this framework are available to perform SAR image denoising, such as [1, 2, 10, 14, 16, 19].

The contributions of this paper are the following. We propose a new framework based
on MRF with levelable priors [9] for restoration of images corrupted by Gaussian or Speckle
noise. A theoretical study is conducted and describes the behavior of filters defined by
Levelable-MRFs. Some preliminary experiments suggest that this new approach performs
very well. The remainder of this paper is organized as follows. We introduce our notation
and briefly present Levelable and Nice-Levelable Markov Random Fields in Section 2. Sec-
tion 3 is devoted to the study of the shape of the restored objects using nicelevelable MRFs.
Section 4 describes the loss of contrast that occurs when performing the restoration using
a Total Variation prior [21] ( it is shown in [9] that the latter is levelable). In Section 5, we
show how to prevent the result to have a loss of contrast using levelable priors. In Section 6
some very promising results are presented for synthetic images that are corrupted by white
Gaussian additive noise and speckle noise. Finally, we draw some conclusions in Section 7.

2 Levelable and Nice-Levelable Markov Random Fields

In this section we briefly present Markov Random Fields with levelable priors. We refer the
reader to [9] for further details.

Assume an image defined on a discrete grid S of cardinal N . Grey levels take values in
the discrete set [0, L−1], and we denote by us ∈ [0, L−1] the label value of the image u at the
site s ∈ S. We assume that the grid is endowed with a neighborhood system and we denote
by s ∼ t the neighboring relationship between s and t and by (s, t) the second order clique.
In this paper, only pairwise interactions are considered. We consider the decomposition of
an image into its level sets using the decomposition principle [13, 12]. In other words we
consider all thresholded images uλ where uλ

s = 1lus≤λ ∀s ∈ S. The original image u can
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reconstructed via the formula us = min{λ, uλ
s = 1} ∀s ∈ S.

A function is said levelable if and only if it can be rewritten as a sum on level sets, of
functions of its variable level-sets. Since in this paper we only cope with MRFs with pair-
wise interactions, we only give the form a levelable function for functions of one and two
variables. A function of one variable, f : [0, L − 1] 7→ IR , is always levelable since we have:

∀us ∈ [0, L − 1] f(us) =

L−1∑

λ=0

(f(λ + 1) − f(λ)) (1 − uλ
s ) + f(0) .

From a Markovian point of view, data fidelity terms are functions of one variable. Next we
consider functions of two variables that will corresponds to our priors. In it shown in [9]
that a levelable symmetric function g of two variables, g : [0, L− 1]2 7→ IR , necessarily takes
the following form

g(x, y) = F (max(x, y)) − G(min(x, y)) ,

where F and G are some functions that map [0, L − 1] to IR. Besides, if we also assume that
∀y ∈ [0, L − 1] g(·, y) attains a minimum at y, then g takes the following form:

g(x, y) = |S(x) − S(y)| + D(x) + D(y) ,

=
L−2∑

λ=0

R(λ)|1lλ<x − 1lλ<y| + D(x) + D(y) ,

where R(λ) = S(λ + 1) − S(λ) is a nonnegative function on [0, L − 2] and where D is some
mapping from [0, L − 1] to IR. Note that the non-negativeness of R implies that S is a non-
decreasing function.
In the sequel we always assign D ≡ 0 and we say in this case that g(x, y) = |S(x)−S(y)|, with
S non-decreasing is a nice-levelable function. It is thus immediate that the Total Variation [21],
which corresponds to g(x, y) = |x − y| and S(x) = x, is a nice-levelable function.

A levelable (resp. nice-levelable) Markov Random Field is a Markov random field whose
pairwise interaction terms are levelable (resp. nice-levelable) functions. Although a (nice)
levelable Markovian energy is generally not convex, a global minimizer can be computed
by mapping the problem to a binary submodular function minimization (for which efficient
algorithms are available). We refer the reader to [9] for details on this minimization. We
also refer the reader to the work of Zalesky in [24] for levelable MRFs which involve higher
order interaction terms. We are now ready to study the minimizers of a levelable Markovian
energy.

3 A Theorem for the Shape of Restored Objects

In this section, we assume that we observe an image v corrupted by some noise and the
restored version of v is referred to as u. We consider any nice-levelable posterior restoration
energy (see previous section) so that it takes the following form:

E(u|v) =
∑

s

U(vs|us) + β
∑

(s,t)

|S(us) − S(ut)| ,

where the fonction U measures the fidelity of the restored image u to the observed data v.

For instance, in the additive Gaussian noise case we have U(vs|us) =
(vs − us)

2

2σ2
. Recall that
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3 A THEOREM FOR THE SHAPE OF RESTORED OBJECTS ENST 2006D006

since we consider nice-levelable MRFs, the function S is non-decreasing on [0, L− 1] and that
for the TV prior we have S(λ) = λ ∀λ ∈ [0, L − 1] . In the reminder of this paper we use
the notation E(x|y) so signify that E is a function of x while y is a parameter fixed to some
value; formally we have E(·|y) = E(·, y). We may use the notation φs(x) = U(vs|x) which is
implicit in vs.

We now generalize the results of [8, 22, 23] and show that under reasonable conditions
only the constrast of object changes and not its shape. Levelable regularization functions
are thus needed to prevent the loss of contrast. Let us now consider a cartoon object O
with perimeter L(O), area S(O) and original luminance A, lying in a background of origi-
nal luminance B. The whole image is corrupted by some (not necessarily gaussian) noise.
We consider the posterior MRF energy when first regularizing by TV. In the following we
shall make use of a continuous analysis, most often concerning grey levels and sometimes
concerning the topology. Also, in the following the cardinal of some set E will be noted
|E| = Card(E) if no confusion ensures. For instance we shall often write S(O) ≈ |O| in the
discrete lattice framework.

The next theorem gives some sufficient conditions on the observed object and the Marko-
vian energy so that the shape of the object in the result is preserved.

Theorem 1 If the following conditions are met:

• Assumption 1 ∀s ∈ S, ∀vs ∈ IR, the attachment to data energy term

φs(µ) = U(vs | us = µ) is minimal for µ = vs .

• Assumption 2 Moreover, ∀s ∈ S, ∀vs ∈ IR, φs(µ) is a quasi-convex function of parameter
µ (see Appendix A Definition 1).

• Assumption 3 The original (resp. restored) image are piecewise constant and verify:

background: brilliance B (resp. b) - object: brilliance A (resp. a)

B ≤ b ≤ a ≤ A

Then:
i) If the object O to be restored is convex, then consider the class of all homothecies with power λ ≷ 1
whose center is interior to the object. If both object and background sizes are statistically “signifi-
cant”, then either the object disappears, or the MRF posterior energy is minimal for λ = 1 i.e., the
shape of the object is preserved through MRF restoration, whatever the nice-levelable regularization
function employed.

ii) Accordingly, the posterior energy of original shape position is minimal wrt. all candidate transla-
tions of original object O (whatever its shape).

Please, note that assumptions 1 and 2 apply for Nakagami, Gamma and Gaussian laws
endowed with their usual parameter.

Proof: we proceed along the same line than [22, 23].
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i) Minimization wrt. homothecies

Let us note Oλ = Hλ O the candidate restoration object, supposed to be obtained from
original object O by homothecy Hλ. We define now a methodology for computing the total
attachment to data contribution to posterior energy

U =
∑

s∈S

U(vs | us)

Of course it decomposes always as

U =
∑

s∈Oλ

U(vs | us = a) +
∑

s∈S\Oλ

U(vs | us = b) (1)

Now, in each of these two terms, some observation random variables vs are either emitted
(we say “drawn”, see below) by us = A (if s ∈ O), or by us = B (if s ∈ S\O). Thus for
homothecies it appears that two cases have to be investigated:

Case I) λ ≥ 1: original object included in restored object O ⊂ Oλ

We split the first term of previous formula into two parts, yielding

U =
∑

s∈O

U(vs | us = a) +
∑

s∈Oλ\O

U(vs | us = a) +
∑

s∈S\Oλ

U(vs | us = b)

1) 2) 3)

since as a matter of fact (see Fig. 1 left part):

1) O cardinal: |O| is drawn from P (· | µ = A) i.e., A-drawn (see Appendix A) .

2) Oλ\O cardinal: |Oλ| − |O| is drawn from P (· | µ = B) i.e., B-drawn ( “ ) .

3) S\Oλ cardinal: N − |Oλ| is B-drawn .
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O2)

Figure 1: Homothecies. Left : case I) - Right : case II) .

Thanks to Proposition 3 of Appendix A the expression of U writes then approximately:

U ≈ |O| U(vs = A | µ = a) + (|Oλ| − |O|) U(vs = B | µ = a) + (N − |Oλ|) U(vs = B | µ = b)
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so that the total posterior energy noted E(λ) is approximately:

E(λ) = E(u | v) ≈

|O| U(vs = A | µ = a) + (|Oλ| − |O|) U(vs = B | µ = a) + (N − |Oλ|) U(vs = B | µ = b)

+ β L(Oλ) (S(a) − S(b)) (a ≥ b) ,

Here we make a continuous approximation for topology by setting: |Oλ| ≈ |O| λ2 and
L(Oλ) ≈ λ L(O) . Thus the “quadratic term in λ” in previous energy formula is

|Oλ| [ U(vs = B | µ = a) − U(vs = B | µ = b) ]

It appears that this is a positive term since

U(vs = B | µ = a) − U(vs = B | µ = b) ≥ 0 .

The latter inequality results indeed from the quasi-convex Hypothesis 2 and from the piece-
wise ordered Hypothesis 3. See Fig. 2 - left for an illustration.
Also, the linear term in λ which corresponds to regularization is almost by definition, posi-
tive and thus a non-decreasing function of λ.
Thus, as in Strong et al., the second-order polynomial (in λ) E(λ) is convex non-decreasing for
λ ≥ 1 . See right part of Fig. 3 .

Case II) λ ≤ 1: restored object included in original object Oλ ⊂ O

Using the same approach we find that in this case the attachment to data contribution writes

U =
∑

s∈Oλ

U(vs | us = a) +
∑

s∈O\Oλ

U(vs | us = b) +
∑

s∈S\O

U(vs | us = b)

1) 2) 3)

≈ |Oλ| U(vs = A | µ = a) + (|O| − |Oλ|) U(vs = A | µ = b) + (N − |O|) U(vs = B | µ = b)

since here (see Fig. 1 right part) :

1) Oλ is A-drawn, tested for us = a .
2) O\Oλ is A-drawn, tested for us = b .
3) S\O is B-drawn, tested for us = b .

This quadratic term in λ (we make the same topological approximation as above) writes
thus:

|Oλ| [ U(vs = A | µ = a) − U(vs = A | µ = b) ] ≤ 0

by invoking the same quasy-convexity and piecewise ordered hypotheses as above. See Fig.
2 - right for an illustration. Thus the second-order polynomial E(λ) = E(u | v) is concave for
0 ≤ λ ≤ 1 . Two possibilities occur at this point:

• a) E(λ = 0) < E(λ = 1) : E(λ) is minimal for λ = 0 i.e., the object disappears
completely!

• b) E(λ = 0) > E(λ = 1) : E(λ) is minimal for λ = 1 i.e., the shape of the object is
recovered!

7
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U(vs = B | µ) U(vs = A | µ)

B b a A µ B b a A µ

Figure 2: The quasi-convex behaviour of U(vs | µ) and its consequence. Left : case I) - Right
: case II) .

a)

b)

λ 1 

Ε(λ)

Figure 3: Sketch of the posterior energy E(λ) as a function of the homothecy ratio λ .
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We find the same “concave-convex” behaviour as Strong et al. as depicted in Fig. 3. This
concludes the proof. �

Of course, some lack of accuracy of this development occurs around λ = 0 (resp. λ = 1),
where |Oλ| (resp. |O| − |Oλ|) are ”statistically small”. Thus anything concerning the precise
shape of the recovered object can happen around these ranges. Anyway we shall assume in
the sequel that the theoretical conditions of Theorem 1 are met.

ii) Minimization wrt. translations

The same arguments as above apply to the set of translations of object O. Let Ot be the
translated candidate restored object and D = O \ (O ∩Ot ) , with 0 ≤ |D| ≤ |O| .
Now S can be decomposed in four subsets (see Fig. 4) :

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

3)

O

4)

2)1)

Ot

Figure 4: The case of translations.

1) S \ (O ∪Ot ) cardinal: N − |O| − |D| B-drawn tested for us = b
2) O \ (O ∩Ot ) |D| A-drawn tested for us = b
3) O ∩Ot |O| − |D| A-drawn tested for us = a
4) Ot \ (O ∩Ot ) |D| B-drawn tested for us = a

Since the regularization component of posterior energy is translation invariant (!) we just
cope with the attachment to data energy, and make use of previous statistical arguments:

U ≈ (N − |O| − |D|) U(vs = B | µ = b) + |D| U(vs = A | µ = b)

1) 2)

+ (O| − |D|) U(vs = A | µ = a) + |D| U(vs = B | µ = a)

3) 4)

The linear component in |D| of this expression is thus

|D| [ U(vs = A | µ = b) − U(vs = A | µ = a) + U(vs = B | µ = a) − U(vs = B | µ = b) ] .

The sum of two first terms as well as that of the two last ones is positive from the quasi-
convexity hypothesis and B ≤ b ≤ a ≤ A .
The posterior energy is thus minimum for |D| = 0 . �
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Once again this statistical-based demonstration is no more valid for ”small” translations of
the object. Anyway we shall assume that the restored object does not move at all.

We would also like to emphasize that this proof holds for any nice-levelable priors. In the re-
mainder of this paper, we assume that conditions of theorem 1 are fulfilled and furthermore
that the shape of the object is completely recovered.

4 A Theorem for the Brilliance of Restored Objects

We have cope with the shape of the restored object in the previous section and now we
study its gray level value. The following theorem explains how there is necessarily a loss of
contrast when one is using a suitable levelable prior to do the filtering.

Theorem 2 If the requirements and results of Theorem 1 hold, namely:

• Hypotheses 1 and 2: ∀vs attachment to data energy φs(µ) = U(vs|µ) is a quasi-convex
function of µ, (Appendix A Definition 1) and attains its minimum at µ = vs .

• Hypothesis 3 (mild): the brilliance of piecewise constant restored image satisfies b ≤ a .

• Theorem 1: the shape and position of the object O are preserved.

Then, regularizing with a nice-levelable pairwise energy implies that the brilliance of object decreases
whereas that of background increases: B ≤ b ≤ a ≤ A : i.e., Hypothesis 3 (strong) holds.

Proof: this Theorem can be proved either in a continuous or even in a discrete grey-level
framework. The total posterior energy, noted E(a, b) = E(u | v) writes indeed:

E(a, b) =
∑

s∈O

U(vs | µ = a) +
∑

s∈S\O

U(vs | µ = b) + β L(O) (S(a) − S(b)) (a ≥ b)

From the statistical hypothesis that both object and backgound sizes are large, this writes as:

E(a, b) ≈ |O| U(vs = A | µ = a) + (N − |O|) U(vs = B | µ = b) + β L(O) (S(a) − S(b))

Thus for fixed b the total energy term wrt. variable a writes:

E(a) ≈ |O| U(vs = A | µ = a) + β L(O) S(a) (a ≥ b) (2)

From the quasi-convex hypothesis + the levelable hypothesis (S(·) is a non-decreasing func-
tion), this is a non-decreasing function of a for a ≥ A. Thus the minimizer value a∗ verifies
b ≤ a∗ ≤ A .
Conversely for a fixed the total energy term wrt. variable b writes as

E(b) ≈ (N − |O|) U(vs = B | µ = b) − β S(b) (b ≤ a) (3)

Using the same arguments as above this is a non-increasing function of b for b ≤ B . Thus
the minimizer value b∗ verifies a ≥ b∗ ≥ B . This concludes the proof. �

We propose in the next section a new approach to circumvent this loss of contrast ob-
tained using a modified TV prior.

10
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5 Why do we need levelable regularization energies?

Let us apply previous results to the usual Gaussian noise case. Previous equation 2 for the
posterior energy of candidate restored object O with brilliance a writes then

E(a) = E(u | v) = S(O)
(A − a)2

2σ2
+ β L(O) S(a) (S(a) > 0)

Now, in the continuous grey level framework the following typical loss of brilliance is found

by minimizing E(a) wrt. a, i.e. by setting
∂E

∂a
= 0 :

a∗ − A = −
L(O)

S(O)
σ2 β

(
∂S

∂a

)

a∗

(

(
∂S

∂a

)

a

= 1 ∀a for TV ) .

The magnitude of this contrast loss will be lower if the “effective” regularization parame-

ter at grey level A, namely (
∂S

∂a
)
a=A

is low ! We are thus set between two contradictory

objectives: regularization and contrast preservation. Thus we design and use an adapted
levelable function with low (discrete) “slope” R(λ) = S(λ + 1) − S(λ) for each convenient
grey level values λ = A to be recovered!
This approach can be generalized to other types of noise as Gamma and Nakagami laws for
instance. We present just an outline for this purpose: assume that minimizer a∗ ≈ A. Then

(
∂U(A | a)

∂a

)

a∗

≈

(
∂U(A | a)

∂a

)

A
︸ ︷︷ ︸

0

+ (a∗ − A)

(
∂2U(A | a)

∂a2

)

A

The minimizer value a∗ is thus given by

a∗ − A ≈
L(O)

S(O)
β

(
∂S

∂a

)

A

/

(
∂2U(A | a)

∂a2

)

A

It remains to show that indeed a∗ ≈ A, and also that a similar reasoning holds for back-
ground (which is more likely since its size is usually quite larger than that of the object
itself).

Recall that in this section we have assumed that S is a differentiable function and that
U(A|·) is twice differentiable. Since a levelable MRF is defined on a finite set of labels, the
above consideration does not apply directly. However, although in this paper we have as-
sumed that the set of label is the discrete set {0, L − 1}, one can chose an arbitrary fine
quantization of the continuous segment [0, L − 1], i.e., {0, δ, . . . , L − δ} with δ > 0 and thus
getting a fine approximation of the first and second derivatives using classical finite differ-
ence schemes.

6 Experiments

In this section we present some results on synthetic images corrupted by Gaussian additive
noise or speckle noise.

11
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6.1 L
2
+ TV

First we investigated the validity of previous developments on the usual L2 + TV model:
a circle was created with diameter D = 40, brilliance of background (resp. object) µ1 = 60
(resp. µ2 = 80) . Gaussian noise was then added with standard deviation σ = 30 i.e., similar
to that of a Rayleigh distribution for these mean values. In our experiment the levelable
function is prescribed as R(λ) = S(λ + 1) − S(λ) = 0.01 for both λ = λ1 = 59 and λ = λ2 =
79 , whereas R(λ) = 1 ∀λ 6= λ1, λ2 as for TV ! Comparison of results with standard TV is
shown on Figs. 5 and 6. We clearly see on Fig. 6 that the minimization using the latter nice-
levelable function achieves both noise removal and contrast preservation. This is to compare
to TV regularization which only successes in noise removal, as predicted by the theory.

A B C

Figure 5: A: original noisy image (Gaussian noise) - B: result with TV - C: result with adapted
levelable function.

 60

 65

 70

 75

 80

 0  50  100  150  200  250

Figure 6: Slices of the noisy and restored images at vertical line x = 128. Red: TV regulariza-
tion - Green: levelable regularization (L2+ modified TV ).
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6.2 Rayleigh + TV model

We now generalize previous effect to M -look speckled SAR images following a Nakagami
law [11]:

E(vs|us) = M [
v2
s

u2
s

+ 2 log us]

To this end we synthetize a mire with original grey levels 20, 40, 60 and 80 on which we
superimpose a Nakagami law of parameter M = 1 (this is a Rayleigh distribution). This
noisy image is depicted on figure 7-A. The restored images using TV and adapted levelable
regularization are respectively presented in Figure 7-B and -C. Note that for visualization
purposes, we have applied a change of contrast on these images. Although both results
are visually very similar, the effect of adaptive levelable regularization is clearly seen on
figure 8: contrast is better preserved, while still removing noise.

The size of the images in these experiments in 256 × 256. Although the minimization
method described in [9] may require a huge amount of memory (almost 3 Gigabytes for the
images in this report) it takes only about 20 seconds a Pentium 4 3GHz to perform the opti-
mization. Recall that the obtained minimizer are exact although the functional is not convex.
These time results are much lower than the ones presented in [9] (using exactly the same
algorithm) which restore images corrupted by impulsive noise using TV as a prior.We con-
jecture that this behavior is due to the fact the the functionals we minimize in this paper are
somehow more ”convex” than the one used in [9]. This behavior is currently under inves-
tigation. Approximate energy minimization approaches for these problems which require
much less memory will be presented in a forthcoming paper.

7 Conclusion

In this paper we first presented a statistical-based extension of [22, 23] concerning the shape
conservation and loss of contrast for piecewice-constant restored images with Total Varia-
tion and general noise such as speckle. We then showed how a judicious use of levelable
regularization functions i.e., decomposable on level sets [9] can overcome this loss of con-
trast effect, and applied this formalism to the denoising of Synthetic Aperture Radar (SAR)
images while preserving the reflectivity of each region of interest. Preliminary results are
very promising. A main issue is how to estimate automatically the levelable functions. This
point will be addressed in a forthcoming paper.

Appendix A: recall on sufficient statistics and exponential families

In this Appendix we sketch our definitions and notations and recall the main properties of
sufficient statistics [4] in the case of exponential families, which is well adapted to the MRF
approach.

Definitions and notations

Definition 1 A quasi-convex function of several variables is a function whose level-sets are convex.

In one-dimension, this means that the function is non-increasing, attains its minimal value
and then increases.
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A B C

Figure 7: A: original noisy image (Rayleigh speckle noise)- B: result with TV - C: result with
adapted levelable function.

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250

Figure 8: Slices of the noisy and restored images at horizontal line y = 128. Grey-Blue:
non-noisy image - Red: TV - Green: levelable regularization (Rayleigh + modified TV ).
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Definition 2 Expectation of random variable X under parametric distribution Pa(·) is noted : IEa [X]

Definition 3 A subset E ⊂ S is said to be A-drawn if (V1, . . . Vs)s∈E is drawn according to the
conditional law

PA(V 1, . . . Vs) = P (V 1, . . . Vs | µ = A) = P (V 1, . . . Vs | u1 = . . . us = A) (4)

Sufficient statistics and exponential families for MRF observation pdf’s

We address a µ-drawn subset E ⊂ S with cardinal |E| = Card(E) and write:

P (V1 = v1 . . . Vs = vs | µ) = h(v1 . . . vs) exp− [ χ(µ) T (v1 . . . vs) + Γ(µ) ] (5)

∝ exp−U(v1 . . . vs | u1 = . . . = us = µ)

with
U(v1 . . . vs | u1 = . . . = us = µ) = χ(µ) T (v1 . . . vs) + Γ(µ) .

Here T (v1 . . . vs) is the sufficient statistics associated to Pµ(V 1, . . . Vs). In the following we
shall always assume that the random variables V1 . . . Vs are i.i.d for sake of simplicity, which
corresponds to conditional independance of observations in the MRF framework. Thus:

T (V1 . . . Vs) =
∑

s∈E

T (Vs) and

U(v1 . . . vs | u1 = . . . = us = µ) =
∑

s∈E

U(vs | us = µ) (6)

= χ(µ)

(
∑

s∈E

T (Vs)

)

+ Γ(µ) (7)

with Γ(µ) = |E| γ(µ) .

For instance in the Nakagami law, one has:

T (v1 . . . vs) =
∑

s∈E

v2
s , h(v1 . . . vs) ∝

∏

s∈E

v2M−1
s

χ(µ) =
M

µ2
, Γ(µ) = |E| γ(µ) with γ(µ) = 2M log(µ) .

Also, definition of the MRF observation energy in last equation (7) is coherent, since from a
MRF point of view vs is observed and fixed.
Parameter µ in (5) can be defined up to a monotone function change. In the sequel, we
shall make the fundamental assumption that parameter µ has the following precise, physical
meaning:

Hypothesis 4 For any µ-drawn subset E ⊂ S and ∀A ∈ IR fixed, the likelihood

LE(µ) = P (V1 = . . . = Vs = A | µ) = P (Vs = A | µ)|E|

is maximal at µ = A. In a MRF context, this means that the attachment to data energy
∑

s∈E

U(vs = A | us = µ) is minimal for µ = A.
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This is in fact Hypothesis 1 of this paper.
We are now equipped to state the two following Propositions:

Proposition 1 ∀A ∈ IR and for any A-drawn subsetE ⊂ S :

IEA [T (V1 . . . Vs)] = T (V1 = . . . Vs = A)

Proof: from the ML Hypothesis 4 one has






∂
∑

s∈E

U(Vs = A | µ)

∂µ







µ=A

=

(
∂χ(µ)

∂µ

)

µ=A

T (V1 = . . . Vs = A) +

(
∂Γ(µ)

∂µ

)

µ=A

= 0 (8)

On the other hand, a classical result of Probability theory establishes that for any parametric
pdf Pµ(·) :

IEµ

[
∂log Pµ(V1 . . . Vs)

∂µ

]

= 0 ∀µ ∈ IR

In our case this writes as:

IEµ







∂
∑

s∈E

U(Vs | µ)

∂µ







=
∂χ(µ)

∂µ
IEµ [T (V1 . . . Vs)] +

∂Γ(µ)

∂µ
= 0 ∀µ ∈ IR (9)

Now, setting µ = A in this formula and identifying with previous equation (8) establishes

the result, provided that χ(µ) is invertible at µ = A i.e. ,

(
∂χ(µ)

∂µ

)

µ=A

6= 0 . �

Proposition 2 Let E ⊂ S be A-drawn, and V1 . . . Vs i.i.d.

Then lim
|E|→+∞

T (V1 . . . Vs)

|E|
=

IEA [T (V1 . . . Vs)]

|E|
= T (A)

Hence the name “sufficient statistics”: for instance, estimator of parameter µ = A for the

Nakagami law is given by Â2 =

(
∑

s∈E

V 2
s

)

/|E| .

Proof: this relies immediately from the (weak) law of large numbers for i.i.d. random vari-
ables Vs and from Proposition 1. �

The next result, of significant physical interpretation, follows at once:

Proposition 3 Let E ⊂ S be A-drawn, and V1 . . . Vs i.i.d. Then:

∀µ ∈ IR, lim
|E|→+∞

∑

s∈E

U(vs | us = µ)

|E|
= U(vs = A | us = µ)

Proof: indeed one has from (7):

Q =

∑

s∈E

U(vs | us = µ)

|E|
= χ(µ)

∑

s∈E

T (v1 . . . vs)

|E|
+

Γ(µ)

|E|

lim
|E|→+∞

Q = χ(µ) T (A) + γ(µ) = U(vs = A | us = µ)
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