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Echelle caractéristique indépendante de la résolution
et application aux images satellitaires

Résumé : Nous nous intéressons dans cet article a la définition de 1’échelle caractéristique d’une image satellitaire.
Nous imposons a cette caractéristique une invariance par changement de résolution. Notre approche est fondée sur
I’utilisation d’une espace échelle linéaire et de la variation totale. L’échelle caractéristique est définie comme
I’échelle a laquelle la variation totale normalisée de 1’image atteint son maximum.
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Abstract— We study the problem of finding the characteristic works report experimental results showing that a lineatesca
scale of a given satellite image. We want to define this feater gpace applied to two sensors may provide convenient results

so that it does not depend on the spatial resolution of the inge. (see for instance Figure 1 of [4]), it is our experience that
Our approach is based on the use of a linear scale space and the ’

total variation. The critical scale is defined as the one at wich W'thOUt, taking |nt9 ConS|derat|qn _the |mpact. of the sensor
the normalized total variation reaches its maximum. resolution, the derived characteristic scale is biasedréfbre,

we propose a solution which explicitly incorporates thessen
impulse response in the characteristic scale estimatiomeS
l. INTRODUCTION preliminary results were presented in [5].

Scale is usually regarded as one of the most significant - . .

. o . . Many definitions of characteristic scales for images have

features for image characterization. A wide body of literat been proposed in the literature. The most popular one is
has been devoted to the examination of images at different_ ProP ' Pop

. . ) probably the aforementioned definition relying on lineaalsc
scales, giving birth to the popular scale-space theoryeév sf:?]ace [2], [6]. Many alternatives also relying on the use of

mathematical tools have concurrently been used to perfo[ L Jinear scale space have been proposed in the field of
such an analysis : mathematical morphology, wavelet decoEI-

. ) . : : o omputer Vision, see e.g. [4]. Definitions relying on exteem
positions, differential equations, pyramid decompoasicetc. » .
) A . of wavelet decompositions, see e.g. [7], can be put in theesam
While scale has a clear definition in several domains g

. ; ; . Category, as we will briefly see in Appendix D. Recently, it
engineering (architecture, cartography, etc.) and alsmaiog . ; L
. . . . .2 has been proposed to use non-linear scale spaces in a similar
imagery (there it stands for the ratio of an object size in the

image to the actual size of this object in the real world ay, [8]. Several alternative approaches rely on infororati

it has a much fuzzier meaning in digital image processin heory : in [9] the maximum entropy between consecutive
9 9 ge p %ﬁvelet subbands, in [10] the maximum Kullback divergence

There, as in Physics, it reflects to some extent the level g er increasing filtering by diffusion equations, in [1Het

refinement of the representation of the observed world [ﬂi . . :
. . : . aximum change of entropy, in [12] the maximum change
In this rationale, a scale space representation offers iasser

. . . X of generalized entropy, and in [13] the maximum entropy
of images where details are progressively filtered, from th . ) .

. - . of grey level differences in the Gaussian scale space are
thinnest to the coarsest ones, each level providing an image

where no detail smaller than a given size is left, ed as definitions. A third kind of approach, popular in

. : remote sensing imaging, relies on the use of the variogram
If absolute scale remains a rather uncertain concept, ch

e . .  CI¢ images, see [14]. However, most methods relying on the
racteristic scale receives a more widely accepted meaiting. L )
: . . use of second order statistics assume that images follove som
is attached to a structure (object, group of objects or teXtu

srp[g(_:ific model, such as various point processes [15] or gierio

a_lnd denotes t.hls precise _scale, ina scalg space represeiittiions [16] and are not suited to complex images for which
tion, where this structure is the most easily perceived. For

: L ; .~ such assumptions are not realistic. In this paper, we choose
thinner scales than the characteristic scale, fine detailg .
. . T Lo o follow the approach proposed by Lindeberg because the
interfere with the structure making it less salient; for rsea

scales, the contrast of the structure is blurred by low pa%%e of a linear scale space naturally allows us to take the

filtering or the structure may even have disappeared. Liadgb acquisition process of the image into account when comgutin
. . a characteristic scale.
strongly defended this approach [2] and, for an operational
implementation, proposed an efficient definition by relgtine The plan of the paper is the following. In Section Il, is
characteristic scale to the scale where a suitable conmatgiven a first definition of the characteristic scale based on
of derivatives assumes a local maximum [3]. the definition in [3], but differing by the mathematical norm
The problem we address in this paper is issued from thsed. In Section Ill, the main contribution of this paper is
world of remote sensing applied to Earth Observation, bptesented : we adapt the definition of the characteristitesca
similar problems exist in microscopic imaging or robot@isi by taking into account the acquisition process in order to
Every time a same scene may be observed with differeathieve resolution invariance. In Section IV, the behavior
sensors having different resolutions, the question arteesof the proposed characteristic scale definition is studied o
measure an identical characteristic scale for a given stru@rious synthetic images. In Section V we test our approach
ture, independent of the sensor resolution. Although soroa real data provided by the French space agency (CNES).



Il. BASIC TOOLS AND SCALE DEFINITION [20] of images, defined (when the image is regular enough)

In this section, we recall the models and mathematical to§ TV (f) = J [V f|. Indeed, the semi-norm TV is related to
to be used in this work, and give a definition of the charaé® geometry of the image through the coarea formula, which
teristic scale of an image. Namely, we define the simplifid@'Plies that for a binary imag€V'(f) is equal to the perimeter
acquisition process assumed for images, we introduce fethe objects. _
classical linear scale space to be used for scale chamatteri d) Scale definition:Following the general approach of
and we define the total variation of images. We then defifél; we define the characteristic scale of an image as the-maxi
the characteristic scale as the maximizer of the total tiaria Mizer of a suitably normalized differentiable operator.deal
in the linear scale space. with the geometric contents of the image, we choose to use a

a) Simplified sampling schemeWe assume that the Normalized total variationNT'V (t) = ¢(t) TV (k; * f). The
scene under study is represented by a continuous functi@ain idea is that the normalization term must compensate the
f, and that the digital imagg, at resolutionr is obtained decrease of the total variation caused by Gaussian smgothin
by convolution and sampling . Moreover, it is assumed th¥Ye denote by... the maximizer of the normalized TV over
the convolution kernel is Gaussian, with a standard deiatit- A nNatural requirement ot} ay i thattmax (f) = stmax (f*),

o = r/a proportional to the resolution. This can convenientiy/heref*(x) = f(sx). In Appendix B, we show thab(t) = ¢

be modeled as Is a good choice. That is, we define
r = I ko ’ 1
/ (F x ko) @ NTV(t) =t TV (k% f) = t/|th « fl, (4)
where : . 2, 2
Tty and
ko(z,9) = ——=exp | — , 2
() org2 P ( 202 ) @ tmax = argmax. NTV (t). (5)

. . ) .
andlL, is the Dirac comb orZ%, that is, This is in fact a special case of the normalization proposed

I, = Z 8 ir - by Lindeberg [2] for differential operators. Observe albatt
such a characteristic scale definition is invariant undezdr

. . ... contrast changes.
In this context, our goal is to extract frorf). a characteristic . L .
. . S Recall now that we are interested in discrete images ob-
scale related tgf. Equation (1) is a rough approximation of, _. : .
7 : : tained from f through Equation (1). In the next section, we
the real acquisition process, neglecting some importaecs - - .
. T ) . show how to adapt the definition of characteristic scale is th
such as noise or quantization and assuming a simple form
X . . . ._context.
for the modulation transfer function of the imaging device.
However, it will be shown in Section V that this model is
sufficient for our purpose.

b) Linear scale space:As previously explained, the The purpose of this section is to derive a method to ensure
basic idea to extract characteristic scales is to trackcstral that the computed characteristic scale does not depend upon
changes in scale spaces. In order to deal with images augarithe resolution of the image. Recall thdtis a continuous
resolution (as expressed by (1)) we are naturally led to usdugiction corresponding to a given scene and since we assume
linear scale space [17]. For an image R? — R, its linear that the acquisition system performs a convolution by a
scale space is a functioh: R2 x R, — R defined as : Gaussian kernet, followed by a sampling at rate = ao,

I Nk 3 we write :
(x7y7 )_ t*fa () fT:HT'(f*ko')a
where k, is defined by Formula (2). It is easily seen th
L(.,.,\/2t) is a solution of the heat equatiohl = AL,
with initial condition L(., .; 0) = f and that, under reasonabl

i,j€Z

IIl. RESOLUTION INVARIANCE

Ahere fr is the sampled version of at resolutionr. The
arametera is a characteristic of the acquisition process

.. . . the largera, the more aliased the image). In the numerical
hypotheses, it is the only solution. For this reasbf, ., v/2t) gero ge)

is the classical definit i | ¥ experiments presented in the paper, we wse 1.
IS the classica’ detinition ot inear scaie-space. Howewer, Denoting byk, the discrete version of the Gaussian kernel

forth : tati d all o directly define 4 Swith standard deviation (¢ expressed in pixels), we hawg ~
orthcoming computations and allows to directly define escakrt (up to some normalization constant which can be dropped).

that IS homoger_1e0us to a distance. _ Lgt us define the discrete scale space as :
Various non-linear scale-spaces could also be considered,

[18], [19], but we restrict ourselves to the linear one to be f,: = l%tifr = k¥ (IL,. (ko % f)) m 1L (Kt % (Ko % ) .

able to deal with resolution changes, as it will become clear (6)

soon. where x is the discrete convolution. The last approximation
c) Total variation: The structural changes to be quantimeans that inverting convolution and sampling is possile,

fied in the linear scale space are due to the objects preskeaist for non-aliased images suchkgs f. In Figure 1, we test

in the scene. These objects disappear as the scale increabhesvalidity of this assumption on a real image. The resuly fu

The basic idea of the proposed approach is to quantify thepports the hypotheses. In addition we can assume (for well

evolution of geometric structures of the image in the linemampled images) that the total variation of the continuaub a

scale space. Therefore, we consider the total variation) (Tdiscrete versions are the same up to a hormalization dueto th



zooming of factorr (this will be confirmed by the numerical and, since,,x = argmax. (NT'V (t)), we may define :
experiments in the following sections). This leads to : i
tmax, = argma. G, (t), (12)

1 1
TV (fr) = =TV (kne % ko % f) = =TV (k frzppoz * f) - _ . . .
r r (7) Which provides the following relation :

o7 5 / 1
tmax = T2t12nax7« —|— 0’2 =T t12naxr + ? (13)

For a discrete image at resolutionwe measuré,,,,. and
derive the value oft,,,, using Equation (13). Notice that
it is impossible to find a characteristic scalg., smaller
thano (which is comparable t@). More generally, when the
resolution of the image is larger than the actual charastteri
scalet,,.x the computation becomes unreliable. Experiments
@) (b) show thatt,,., is retrievable as long az_s< tmax-

From now on, the values of, .« will be deduced from
Equation (13).

Remark about the normalization. In view of Equation
(4), the intuitive normalization would not take into acctthe
filtering process due to the change of resolution and, tbezef

L involve a factort instead ofh(t) :

Ar(t) =t X TV (frt) (14)

If, according to this intuition, we Settya.x, as
(c) argmax- (A.(t)) and deducetmax = 7 X tmax., then
we can check numerically that the obtained value,Qf. will
Fig. 1. Validation test of Equations (6) and (7). Figure (apws the total depend mu_Ch more On_the resqlutlon than Wlth the de_flnltlon
variations of the last two terms of Equality (6) as functiafso, where f  from Equation (13). This fact will be precised in Section V,
is the image (b) of Figure 9. One sees that both curves arerisypesed. gee Figure 14.

Figure (b) shows the ratio between the two total variatioispldyed in (a). It . -

is equal to 1 with precision0~7. In figure (c) is displayed the ratio between NOtI_Ce also that whent > .1’ then the def!n't'ons from

the two first terms of Equality 7; this ratio varies betweefgoand 1. This Equations (8) and (14) are equivalent. The choice of thescorr
experiment validates the assumption of Equation (7). normalization given by Equation (10) is important when

approaches,,.. (that istyax, approaches 1).
A normalization of the discrete total variation is now nesdde

in order to relate it to the continuous normalized total &&oin
NTV (defined in Equation (4)). Let us define : IV. RELATING tyax TO THE GEOMETRY OF THE IMAGE

G, (t) = h(t) TV (fr) . (8) In this section, we investigate the link between the charac-
' teristic scalet,,.x, as defined in Section Il for a continuous
where the normalization factdi(t) is to be chosen. Using image, and the geometric contents of the image. For this

Equation (7) : purpose, following the example in [2], we first consider va-
1 rious simple one-dimensional functions, for which we perfo
Gr(t) = ;h(t) TV (kyrogron * f) computations and numerical approximations. Then, we ¢ackl
1 h(t) the two-dimensional case by performing numerical simaieti
= ———— 2 NTV(f;\/r8 2). i ic i
Y (f, rétt +o on discrete synthetic images.
Hence :

A. Continuous one-dimensional examples

2

G, (t) ~ %& NTV (f; VAt 1 02) . (9)

r \/m In order to consider cases with tractable computations,
« we define ¢, for a one-dimensional functiory as in
If we choose : Formula (5). For 1D signals the gradient is replaced by
the derivative and:; by a one-dimensional Gaussian in the
h(t) = [t2 + LQ’ (10) computation of NT'V(¢) .
a a) Sinus function:Assuming thatf is a sinus of period
we then obtain : D, restricted td—T1,T] C R, it may be shown that if'/D —

1 oo (so that boundary effects can be neglected) then —
G, (t)~ 5 NTV (f; VrAt? + 02) (11) D/2r ~ 0.15D, as already mentioned in [21], [2].



b) Sum of GaussiansAssume thatf is a function where

defined on[-7,T] C R as : _J 1L zel0]
[ ] H(z) = { 0, otherwise (18)
fla) = Kz_:l 1 e%w (15) with v € (0, D). Assuming that << D andv ~ D/2, then
L V22 ’ it may be shown that :

ie., f is the restriction td—T7', T of a sum of Gaussians, the NTV(¢) ~ Ct (Qerf (M) —erf (M))

spatial period of this sum beinB. Assuming thatx’ > 1 (or 22t 2t

T > D) in order to neglect boundary effects, we obtain : i (2erf< v > _erf <L>) (19)

2K—1 2v2t V2t

NTV (t) ~ 2t (1 fe W 42 Z (—1)k€_k44%> , Where erfz) = % [ e~*" and C is a constant (see Appen-

Dqv2m pa dix E).

— . ) ) o (16) Figure 4 (a) shows numerical computationstgf, taken
whereq = /v 4 ¢2. This result is obtained by noticing thatyg the zero of the derivative of Formula (19) (cf. Equatic) (3

the total variation may be computed on each monotonous P#tAppendix E) as a function oD and Figure 4 (b) shows
The graph ofVT'V(¢) as a function ot is shown on Figure 2. 1o plot oft,ay/D as a function ofv. Here again we obtain

On Figure 3 (a), the graph of,.« is displayed as a function of tmax ~ 0.15D and observe thaty,../D depends very little
D, v being constant. One observes that, ~ 0.15D, aresult 4,

very similar to the one for the sinusoidal case. Figure 3 (b)

showstnax/D as a function ofv, D being constant. One can - o
check thatax/D =~ 0.15. In this caset.x is related to the a5 = 025
period of the signal but not to the width of each Gaussian. o o7 )
3 0.05
H
(@) tmax as function ofD (b) tmax/D as a function ofy
Fig. 4. tmax for a sum of Heaviside functions (see Equation (17)). We khec

numerically thatt,,ax =~ 0.15D where D is the spatial period. In Figure (a)
v = 10 and in Figure (b)D = 40.

Fig. 2. Plot of NT'V (t) as a function oft, when f is a sum of Gaussians

as in Equation (15) € [0.1,40] and K’ = 10, D = 40, v = 10. NTV(t) To summarize, in cases a), b) and c), it may be computed

reaches its maximum faf,ax = 6.4 N . L .
or observed that,,., ~ 0.15D, which indicates that neither
the shape nor the size of the pattern seem to influence much
tmax IN the cases ot-D functions.

i o B. Discrete synthetic images

45 001:,_ In order to confirm the linear relation betweeg.. and

3: - the spatial period of signaldX in the preceding examples)

8 005 in the case of images, we simulated periodic images using
28 ! - il i various patterns. Two instances of such images are digplaye
rr T in Figure 5 (sum of Gaussians with standard deviatipand 6

(8) tmax as function ofD (b) tmax/D as a function ofy (sum of squares with width), together with the associated

graphs ofNT'V as functions ot. Figure 7 (a) shows the graph
Fig. 3. PIot Oftmax for a sum of Gaussian functions (see Equation (15))9f tmax @s @ functlor! ofD and Figure 7 (b) ShPWS th? graph
(8) tmax s a function oD, with v = 5 (we check numerically thatnax ~  Of t1,ax /D @s a function ob for sums of Gaussians. Figures 8
0.15D, D being the spatial period) ; (b}max as a function ofv, with D = (a) and (b) show the same quantity for sums of squares.
40. . . . . .

Comparing these two figures respectively with Figure 3 and

¢) Sum of Heaviside functionsn order to investigate the Flg_ure_ 4, we co_nclu_de that the shape of patterns as well as
their size have little influence on the measure. Moreover, we

sensitivity oft,,.x to the shape of "objects”, we consider the . .. )
following example, still in 1D to yield tractable computatis : see thatms, ~ 0.15D still holds in dimension 2.

/ is defined on—T', T] by V. APPLICATION TO SATELLITE IMAGES

K In this Section several experiments are presented to demons
flz) = Z H(z —iD) (17) trate the invariance ofy,.x with respect to resolution on real
— K images in the domain of remote sensing.



t__/D as function of D (v=10) t__JD as function of v (D=40)
masd max

PUNE SR SHR TR SRS SRR S,

(@) timae as a function ofD (@) timae as a function ofD

B 0 3 2 2
scale

(a) Periodic sum of Gaussians (b) Graph of NTV

Fig. 8. (a) Graph oftmax as a function ofD (with v = 10) for sums of
squares, showing that,ax ~ 0.15D; (b) Graph oftmax/D as a function

Fig. 5. A periodic Gaussian function withh = 40 andv = 10 (standard ©f v (with D = 40) for sums of squares, showing thatax /D = 0.15.

deviation of each Gaussian) and the graph of the correspgnubrmalized
total variation. The maximum is reached foe 6.1.

(b) Graph of NTV

(a) Periodic sum of squares

Fig. 6. Animage composed of squares with spatial pefioe- 40, and the
side of each square equal 10 pixels, and the graph of the corresponding
normalized total variation. The maximum is reached ffet 6.1.

At first, starting from several images with resolution equag
to 25 cm, we create a series of lower resolution images usi
Formula (1), i.e. using a down-sampling scheme in whick&
filtering is made using a Gaussian impulse response. We call
it the ideal down-sampling.

Then, W_e make _use Of. series of 'm_ages prOV"?'ed by tnh% 9. Aerial images with 25 cm resolutig®CNES : (a) and (b) 2 cities
CNES which precisely simulate the images which wouldith different urban tissues, (c) a forest, (d) agricultdields.

be obtained with different sensors operating with various
resolutions from a satellite, i.e. by taking into accourg th
different effects of sampling, integration, acquisitiome, etc.
and therefore providing the actual impulse response ofosens

(c) Didrai

(d) Roujan

a) Computation oft,.x using Formula (13): On Fi-
gure 10, we display the graphs of the normalized total vianat
for the 4 images shown in Figure 9 (at resolutios: 25¢m).

t,.,/D as function of D (v=5) t,.,/D as function of v (D=40)

cities (Marseille or Toulouse), the characteristic scaleelated
. ‘ to the size of the buildings and streets. In the case of theaDid

5 Ee 02

There is at least one local maximum in each case. In the case of

Fig. 7.

2.5,

15

(a) tmasw as a function ofD

20 25 30

(a) Graph oftmax as a function ofD (with v = 5) for sums of
Gaussians, we obtaitiwax ~ 0.15D; (b) Graph oftmax/D as a function

D

35

_Eoisy

0.1

PO I T T TR SR SRS e

(b) tmaz/D as a function ofy

5 10 15
v

20

of v (with D = 40) for sums of Gaussians, we obtaifax/D ~ 0.15.

: image (forest), the scale is related to the vegetation. Nate

in the case of the Roujan image (fields), there are two local
maxima, the narrow one (zoomed in Figure 10 (e)) is related
to the vineyards, and the large one to the fields. Figure 11
displays a zoomed area of Figure 9 composed of vineyards.
The spatial period of the vineyard3 may be computed from
the characteristic scalg, .., using the relatior,,,, ~ 0.15D.

We find that the distance between two vineyard rows is roughly
2.7m, a result which we were able to check on the image for
such a regular and periodic structure.



TABLE |
Available resolutions (meters)

0.250 | 0.281 | 0.315| 0.354 | 0.397 | 0.445| 0.500
0.561 | 0.630 | 0.707| 0.794 | 0.891| 1.00 | 1.12
126 | 141 | 159 | 1.78 | 200 | 225 | 252
283 | 317 | 356 | 400 | 449 | 5.04 | 5.66
635 | 7.13 | 8.00 | 8.98 | 10.08
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to the vineyards. But when gets larger, then the vineyards

disappear (one no longer sees them in the images)f.and
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Fig. 10. NTV as a function of/72t2 + o2 computed for the 4 images © % esolionotimagem © T esouionotimagem)
of Figure 9 with resolutionr = 0.25m. (a) Marseille :tmaz = 4.8m; (b) (C) Didrai (d) Roujan

Toulouse itmae = 2.4m; () Didrai : tmae = 1.2m; (d) Roujan : there are
two local maxima. The first one at positi@ndm, the second one at position

30m ; (€) Zoom around the first local maximum @i shown in (d). Fig. 12. Characteristic scalés,.. as a function of the resolution, for the 4

scenes shown in Figure 9. The images at different resokitiwa obtained by
down-sampling the 25 cm images using the ideal acquisitiodehpresented
in Section Il (with o = 1), i.e. with a Gaussian convolution kernel. Notice
that the characteristic scale is almost independent fraralolution.

|

c) Validation of the approximation of the acquisition

E

i model: In order to examine the case where different sensors
= with different resolutions and different impulse respanaee
=— oSN used, we take advantage of a series of images provided by the
- - _ CNES, including the four images of Figure 9. For each scene,
(a) Image of vineyards (b) NTV calculated on the vineyards 33 images are available at resolutions ranging from 25 cm to

10.08 m (see Table 1), each one taken with the exact impulse
Fig. 11.  Zoom on vineyards issued from the Roujan image @&l on  response of a real sensor. These images have been obtained
Figure 9 (d). The characteristic scale appears at resoltidm. Using the . . . . .
relation tmax ~ 0.15D, we see that the distanc® between 2 rows of by numerical simulations performed by the CNES, using &eria
vineyards is roughly 2.7m. images and a realistic model of data acquisition. The inguls

response is resolution dependant, isotropic, and highty no

Gaussian. The use of a non-Gaussian impulse response in

b) Resolution invarianceln order to confirm that the place of a Gaussian one makes the derivation of a relation
characteristic scale extracted from the images is indeg@ndsimilar to (13) difficult. However, we will see below that
from the resolution of the sensof,f{.. does not depend onapproximating the impulse response with a Gaussian kernel
r), we made the following experiments. For a given scenkads to good numerical results.
an imageg, at resolutionr is generated (using Formula (1) Figure 13 shows the graph ¢f,., as a function of the
with o = 1), and the maximizet,.x iS computed. Figure 12 resolution. Results are very similar those of Figure 12. We
shows the graph of,,.x as a function ofr. As expected, it observe that,,., is almost constant (as long as the resolution
shows that ., is almost constant (as long as< tyax)- r < tmax)- We conclude that even though the kernel is not
Remark that in the case of Roujan, where two differef@aussian, the approximations made in section Il are stitv

characteristic scales are present, the plot,Qf; is coherent If instead of using the original relation (13) introduced
with the result shown in Figure 10 (d). When the resolutionin this paper, we make use of the intuitive normalization of
is fine enought..x is the characteristic scale correspondingquation (14), we obtain the plots of Figure 14. As expected,



in this case, the estimated,,, is much more sensitive to thethe effect of sampling on total variation, especially whba t
resolution. resolution is close t@,,,x.

4 APPENDIX

/ ___/_/——~/ A. Localization issue

The scale measurement we have introduced can be localized

: using a sliding window. The scale of a single pixel is then
computed as the scale on the window centered around this

oonatmaze pixel. To illustrate this approach, we have processed the

(a) Marseille (b) Toulouse Marseille image (see Figure 15 a). We use the image at

resolution0.707m, with size 1440 x 1440. The analysis is

15 % made using a window with siz&56 x 256, and the window is

: / e? moved by32 pixels at each step. On Figure 15 (b), we show

the computed values af, ..

ax (M

t
m
N

t

(m)
b N w s o o N

1 2 3 4 0 05
resolution of image (m)

0s 1 Notice in particular that,,., is larger in the top left corner
° of the image . Looking at Figure 15 (a), one sees that this
© % oobionotimagem 00t ’ resoion o mage () * corresponds to larger buildings and structures in the maigi
(c) Didrai (d) Roujan image.

Fig. 13. Characteristic scalg,.. as a function of the resolution, on the 4 &
scenes shown in Figure 9. The images at different resolitiwa issued from
the series of images provided by CNES (therefore, the catieol kernel is
no longer Gaussian). The characteristic scales are almeetiant when the
resolutions changes.

] _—

2 2.5

*° resotion ofimge () Fig. 15. (a) Image of Marseille (resolutidn707m, size 1440 x 1440) ; (b)
Image of the corresponding values ©f.x (the largerimax, the whiter the
gray level value in (b)).

ax (M

t
m
N

Fig. 14. Characteristic scalgnax as a function of the resolution, for the
Toulouse image. The scalg,ax is computed with the naive normalization
given by Equation (14). Notice that the result is less ira@trito resolution
changes than in the case of Figure 13(b). In the rdagks, 2m], the variation
of the value is18% with the proposed method (Figure 13 (b)) at@lo with  B. Normalization issue revisited
the naive normalization.

The characteristic scale of an imagédas been defined as :

VI. CONCLUSION AND FUTURE PROSPECTS tmax = argma>@*+¢(t) / [V (ke * f)],

A new method to compute a characteristic scale for a given
image has been proposed, which does not depend on Yt ¢(¢) = t. In this section, we show why it is reasonable to
resolution (as long as the objects are larger than one pixélooses(t) = t” while the next section explains why = 1
This method explicitly takes into account the role of filteyin has been be chosen.
the down-sampling. It has been shown to be robust and stabl&ince we want,,.. to be related to the size of objects in
on different images issued from the remote sensing domaliie imagef, we naturally assume that :

We have also shown on various examples that the position of b (f) = Stax(F) (20)
the maximizer of the normalized TV does not depend on the maxi/s /T ohmax ’
object shapes, but merely on the distances between stesctufyhere f(x) = f(sx). For anyt, > 0 ands > 0, let us define

This approach is foreseen to find applications for the pro-
plem of satellite image indexing. In this case, itis mdeel_iaa Fy(to) = 8, log (¢(t) / IV £° % kt|> (to).
jor asset that features does not depend on the resolutign [22
Moreover, we expect to find the texture/geometry behavior Ef
a scene [23], which indeed depends on the resolution and cal
be related to the characteristic scale. This could be useful
features selection. We also need to understand more deeply

uation (20) implies that

Filto) = 0= F, <%°) 0. 21)



Now, Let ¢» a wavelet. We define the wavelet coefficientsfoht

¢ positiony and scale by :
F, (;0) = 50, log (¢(t/s)/|st*kt/s|) (to)

Wiy s) =cs | f(E)0!/°(t —y)dt (23)
= s0;log (¢(t/s)3_1/|Vf*kt|) (to) /R

cs being a normalization coefficient which we will fix later.

/ H H .
_ ﬂ(to/s) +30,10g | [V * k(o) Let us now look at the following quantity :
(b/ ¢/ Cs T
= g(to/S) +s (Fl(t()) - E(tO)) : hy(s) = T [T Wi (y,s)| dy (24)
Then Equation (21) implies that A straightforward computation (change of variables in the
& & integral) leads to :
—(to/S) = S—(to), T/a
¢ ¢ hye(s) = -2 / /f(u)z/J (2_“) du| dz  (25)
1/a =
and therefores(t) = At? for two constantsA and B to be ! 2Ta ) ralJr as
chosen. hy o (s)
Hence, by definition ofif(as), we get : 425 = o

Now, remembering formula (22), one sees that in order to

achieve scale invariance, the following equality must hold
The constantd does not affect,,.x. The reason why we hyi/.(s) = hy(as). We thus conclude that :

choseB =1 is essentially of a numerical nature. f is too c

small, thenNTV decreases very fast, implying a very small — =a (26)

value oft,,... This becomes a severe drawback when compu- Cas

ting the scale of low resolution images. On the other hdahd, The exact form ok, is given by the next standard lemma

cannot be too large. Indeed, we have checked experimenta¥lyich we state without proof :

on the images provided by the CNES that in this case the grapibemma : Let us assume that; verifies (26) and that the

of NTV becomes flat and the relative error for the numericéinctions — ci is continuous in 0, then there exists a constant

value oft,,.x gets larger. In such a case, the localization of thé > 0 such that :

extremum is not reliable. We found experimentally thatisgtt - é 27)

B =1 is a good compromise between these two drawbacks. S

Moreover, this choice is coherent with the one in [2]. As an

example, Figure 16 displays the graph of NTV with= 1.3 , _ N 2 o sy

in the case of Didrai image. We may see that this value alrea@ffined by :¢(z) = = exp (T) Noticing that(¢'/*) =

makes it difficult to compute,, .., whereas it is easier from %wl/s, we get from (26) that :

Figure 10 (c). .
A
m) =g [ (50 1) @)

2 Up to some positive multiplicatice constant, we therefoeé g

C. Power of normalization factor : why we sBt=1

Let us choose) = ¢, with ¢ the 1-Dimensional gaussian

dy  (28)

& ‘ the same expression as formula (4) (notice that the norma-
1“ lization by the standard deviation is already includedkjn

b (defined by (2)) in (4), contrary t@'/*). This computation
. also confirms our choice aB = 1 in Appendix C.

Fig. 16. NTV calculated on the image of Didrai with normaliaa factor E. Computation of ., for a sum of Heaviside functions
o(t) = t"2. . . . )
We detail here the computation 6f,.. when f is defined
by Formula (17). To simplify notations, we defifi¢ = v and
TQ =D —w.
D. Relations with wavelet-based approaches

For the sake of clarity, we only deal with the 1-Dimensional
case in this appendix. For a detailed presentation of theleav TVN(fit) = t/ |00 (f * ki ()| dae (29)
theory, we refer the interested reader to [24], [25]. Let us
consider a signaf with spatial period27". We recall that we = t/ (02 f(2)) * ku(z)| dz (30)

denote
t Recall that, in the sense of distributions, we haye =
FHe) = f( > (22) dhe(x)

s 5(0) — 4(T») where ¢ is the Dirac distribution [26]. We



therefore have :

NTV(t) (31)
- ft’(ZkK__ 5(kD)—6(k:D+T2)) s ky| da
- tf‘zk__ x—kD)—kt(:v—kD—Tg)‘da:
_ (z—kD)? _ (z—kD-Ty)? [1]
= \/%f‘zg__}{e nZ  —e 222 dx.
We make the assumption tha > 1. In the above [2]

integration, we can thus restrict our attention to the irder
[T, Ts]. Besides, we also assume thHats ¢. We therefore
have to take into account three Gaussians orly(a(+ T7),
ki(x) and k;(x — T)), and neglect the influences of the
other ones in the interval-T1, T»]. We then split the interval [5]
[-T1,T] into two intervals [-T73,0] and [0,73], and we
suppose that is close toD/2, so that we do not take into [g)
accountk;(z — T») when we calculate the integral in the
interval [-T1,0] (and in the same way, we will neglect the [7]
influence ofk,(x + T1) in the interval [0, T3]). We denote
the integral in the intervdl-T3, Tz] by TV Np(f;t). Remark
that the interva[—Ty, —T1 /2] and the interva]—T}/2,0] are
symmetric, as well as the interv@l, 7> /2] and[T>/2, T»]. We
therefore get :

(3]
(4]

(8]
El

TVND(fit) ~ g [ e 5 +e—§‘ 0
b [ e e E "
\/%72 Pt e (_6_@:?)2 +eda [12]
(- SR e—%) [13]
(4fT1/2 Y ()
:

+4fT2/2 Y

~ (2f ¢ (2erf(2 L) — erf

+2v/2t (2erf(2ft) — erf( ?t)

[15]

5%»)

(32)
. We then denote

[16]

where we recall that eff) = \/_ Jo e (17]

byz_2ft |et_22 Then we have [18]
TVNp(f;z) = 7; (2erf(zTy) — erf(22T1))
+7—% (2erf(zTg) — erf(2zTg)) . (33) (19]
Recall thato,erf(x) = %e*“z. We then have : 20]
0TV Np(f;t) = 0.TVNp(f;z)0z(t). (34)

Recall thatt,,,. is such that, TV Np(f;t) = 0. Sinced;z(t) (21]

cannot be zero, we just need to sOWEl'VNp(f;z) = 0.
Therefore we have to solve the following equation :

0. TVNp(f;z) (2erf(z1y) — erf(22T1))

[22]

22

o2 2z2
—;7 (2erf(2T>) — erf(2213)) (23]
+\/L§ zT/lE eI T — 4T
24
_,_\%Z% o213 _ 42T {25%
=0. (6]

(35)

Hence we deduce Formula (19).
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