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Résumé : Nous nous intéressons dans cet article à la définition de l’échelle caractéristique d’une image satellitaire. 

Nous imposons à cette caractéristique une invariance par changement de résolution. Notre approche est fondée sur 

l’utilisation d’une espace échelle linéaire et de la variation totale. L’échelle caractéristique est définie comme 

l’échelle à laquelle la variation totale normalisée de l’image atteint son maximum. 
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Resolution independent characteristic scale with
application to satellite images

Bin Luo 1 & Jean-François Aujol2 & Yann Gousseau1 & Saı̈d Ladjal1 & Henri Maı̂tre 1

1 GET/Télécom Paris, CNRS UMR 5141 CNES-DLR-ENST Competence Center
2 CMLA, CNRS UMR 8536

Abstract— We study the problem of finding the characteristic
scale of a given satellite image. We want to define this feature
so that it does not depend on the spatial resolution of the image.
Our approach is based on the use of a linear scale space and the
total variation. The critical scale is defined as the one at which
the normalized total variation reaches its maximum.

I. I NTRODUCTION

Scale is usually regarded as one of the most significant
features for image characterization. A wide body of literature
has been devoted to the examination of images at different
scales, giving birth to the popular scale-space theory. Several
mathematical tools have concurrently been used to perform
such an analysis : mathematical morphology, wavelet decom-
positions, differential equations, pyramid decompositions, etc.

While scale has a clear definition in several domains of
engineering (architecture, cartography, etc.) and also inanalog
imagery (there it stands for the ratio of an object size in the
image to the actual size of this object in the real world),
it has a much fuzzier meaning in digital image processing.
There, as in Physics, it reflects to some extent the level of
refinement of the representation of the observed world [1].
In this rationale, a scale space representation offers a series
of images where details are progressively filtered, from the
thinnest to the coarsest ones, each level providing an image
where no detail smaller than a given size is left.

If absolute scale remains a rather uncertain concept, cha-
racteristic scale receives a more widely accepted meaning.It
is attached to a structure (object, group of objects or texture)
and denotes this precise scale, in a scale space representa-
tion, where this structure is the most easily perceived. For
thinner scales than the characteristic scale, fine details may
interfere with the structure making it less salient ; for coarser
scales, the contrast of the structure is blurred by low pass
filtering or the structure may even have disappeared. Lindeberg
strongly defended this approach [2] and, for an operational
implementation, proposed an efficient definition by relating the
characteristic scale to the scale where a suitable combination
of derivatives assumes a local maximum [3].

The problem we address in this paper is issued from the
world of remote sensing applied to Earth Observation, but
similar problems exist in microscopic imaging or robot vision.
Every time a same scene may be observed with different
sensors having different resolutions, the question arisesto
measure an identical characteristic scale for a given struc-
ture, independent of the sensor resolution. Although some

works report experimental results showing that a linear scale
space applied to two sensors may provide convenient results
(see for instance Figure 1 of [4]), it is our experience that
without taking into consideration the impact of the sensor
resolution, the derived characteristic scale is biased. Therefore,
we propose a solution which explicitly incorporates the sensor
impulse response in the characteristic scale estimation. Some
preliminary results were presented in [5].

Many definitions of characteristic scales for images have
been proposed in the literature. The most popular one is
probably the aforementioned definition relying on linear scale
space [2], [6]. Many alternatives also relying on the use of
the linear scale space have been proposed in the field of
Computer Vision, see e.g. [4]. Definitions relying on extrema
of wavelet decompositions, see e.g. [7], can be put in the same
category, as we will briefly see in Appendix D. Recently, it
has been proposed to use non-linear scale spaces in a similar
way, [8]. Several alternative approaches rely on information
theory : in [9] the maximum entropy between consecutive
wavelet subbands, in [10] the maximum Kullback divergence
after increasing filtering by diffusion equations, in [11] the
maximum change of entropy, in [12] the maximum change
of generalized entropy, and in [13] the maximum entropy
of grey level differences in the Gaussian scale space are
used as definitions. A third kind of approach, popular in
remote sensing imaging, relies on the use of the variogram
of images, see [14]. However, most methods relying on the
use of second order statistics assume that images follow some
specific model, such as various point processes [15] or periodic
functions [16] and are not suited to complex images for which
such assumptions are not realistic. In this paper, we choose
to follow the approach proposed by Lindeberg because the
use of a linear scale space naturally allows us to take the
acquisition process of the image into account when computing
a characteristic scale.

The plan of the paper is the following. In Section II, is
given a first definition of the characteristic scale based on
the definition in [3], but differing by the mathematical norm
used. In Section III, the main contribution of this paper is
presented : we adapt the definition of the characteristic scale
by taking into account the acquisition process in order to
achieve resolution invariance. In Section IV, the behavior
of the proposed characteristic scale definition is studied on
various synthetic images. In Section V we test our approach
on real data provided by the French space agency (CNES).
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II. BASIC TOOLS AND SCALE DEFINITION

In this section, we recall the models and mathematical tools
to be used in this work, and give a definition of the charac-
teristic scale of an image. Namely, we define the simplified
acquisition process assumed for images, we introduce the
classical linear scale space to be used for scale characterization
and we define the total variation of images. We then define
the characteristic scale as the maximizer of the total variation
in the linear scale space.

a) Simplified sampling scheme:We assume that the
scene under study is represented by a continuous function
f , and that the digital imagefr at resolutionr is obtained
by convolution and sampling . Moreover, it is assumed that
the convolution kernel is Gaussian, with a standard deviation
σ = r/α proportional to the resolution. This can conveniently
be modeled as :

fr = Πr. (f ∗ kσ) , (1)

where :

kσ(x, y) =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

, (2)

andΠr is the Dirac comb onZ2, that is,

Πr =
∑

i,j∈Z

δ(ir,jr).

In this context, our goal is to extract fromfr a characteristic
scale related tof . Equation (1) is a rough approximation of
the real acquisition process, neglecting some important aspects
such as noise or quantization and assuming a simple form
for the modulation transfer function of the imaging device.
However, it will be shown in Section V that this model is
sufficient for our purpose.

b) Linear scale space:As previously explained, the
basic idea to extract characteristic scales is to track structural
changes in scale spaces. In order to deal with images at various
resolution (as expressed by (1)) we are naturally led to use a
linear scale space [17]. For an imagef : R

2 7→ R, its linear
scale space is a functionL : R

2 × R+ → R defined as :

L(x, y; t) = kt ∗ f, (3)

where kt is defined by Formula (2). It is easily seen that
L(., .,

√
2t) is a solution of the heat equation∂tL = ∆L,

with initial conditionL(., .; 0) = f and that, under reasonable
hypotheses, it is the only solution. For this reason,L(., .,

√
2t)

is the classical definition of linear scale-space. However,we
prefer the definition given by Formula (3) that simplifies
forthcoming computations and allows to directly define a scale
that is homogeneous to a distance.

Various non-linear scale-spaces could also be considered,
[18], [19], but we restrict ourselves to the linear one to be
able to deal with resolution changes, as it will become clear
soon.

c) Total variation: The structural changes to be quanti-
fied in the linear scale space are due to the objects present
in the scene. These objects disappear as the scale increases.
The basic idea of the proposed approach is to quantify the
evolution of geometric structures of the image in the linear
scale space. Therefore, we consider the total variation (TV)

[20] of images, defined (when the image is regular enough)
asTV (f) =

∫

|∇f |. Indeed, the semi-norm TV is related to
the geometry of the image through the coarea formula, which
implies that for a binary imageTV (f) is equal to the perimeter
of the objects.

d) Scale definition:Following the general approach of
[2], we define the characteristic scale of an image as the maxi-
mizer of a suitably normalized differentiable operator. Todeal
with the geometric contents of the image, we choose to use a
normalized total variation,NTV (t) = φ(t)TV (kt ∗ f). The
main idea is that the normalization term must compensate the
decrease of the total variation caused by Gaussian smoothing.
We denote bytmax the maximizer of the normalized TV over
t. A natural requirement ontmax is thattmax(f) = stmax(f

s),
wherefs(x) = f(sx). In Appendix B, we show thatφ(t) = t
is a good choice. That is, we define

NTV (t) = t TV (kt ∗ f) = t

∫

|∇kt ∗ f |, (4)

and
tmax = argmax

R
∗

+
NTV (t). (5)

This is in fact a special case of the normalization proposed
by Lindeberg [2] for differential operators. Observe also that
such a characteristic scale definition is invariant under linear
contrast changes.

Recall now that we are interested in discrete images ob-
tained fromf through Equation (1). In the next section, we
show how to adapt the definition of characteristic scale in this
context.

III. R ESOLUTION INVARIANCE

The purpose of this section is to derive a method to ensure
that the computed characteristic scale does not depend upon
the resolution of the image. Recall thatf is a continuous
function corresponding to a given scene and since we assume
that the acquisition system performs a convolution by a
Gaussian kernelkσ followed by a sampling at rater = ασ,
we write :

fr = Πr.(f ∗ kσ),

where fr is the sampled version off at resolutionr. The
parameterα is a characteristic of the acquisition process
(the largerα, the more aliased the image). In the numerical
experiments presented in the paper, we useα = 1.

Denoting byk̃t the discrete version of the Gaussian kernel
with standard deviationt (t expressed in pixels), we havek̃t ≈
krt (up to some normalization constant which can be dropped).
Let us define the discrete scale space as :

fr,t = k̃t∗̃fr = k̃t∗̃ (Πr. (kσ ∗ f)) ≈ Πr. (krt ∗ (kσ ∗ f)) .
(6)

where ∗̃ is the discrete convolution. The last approximation
means that inverting convolution and sampling is possible,at
least for non-aliased images such askσ∗f . In Figure 1, we test
the validity of this assumption on a real image. The result fully
supports the hypotheses. In addition we can assume (for well-
sampled images) that the total variation of the continuous and
discrete versions are the same up to a normalization due to the
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zooming of factorr (this will be confirmed by the numerical
experiments in the following sections). This leads to :

TV (fr,t) ≈
1

r
TV (krt ∗ kσ ∗ f) =

1

r
TV

(

k√r2t2+σ2 ∗ f
)

.

(7)
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Fig. 1. Validation test of Equations (6) and (7). Figure (a) shows the total
variations of the last two terms of Equality (6) as functionsof σ, wheref
is the image (b) of Figure 9. One sees that both curves are superimposed.
Figure (b) shows the ratio between the two total variations displayed in (a). It
is equal to 1 with precision10−7. In figure (c) is displayed the ratio between
the two first terms of Equality 7 ; this ratio varies between 0.98 and 1. This
experiment validates the assumption of Equation (7).

A normalization of the discrete total variation is now needed
in order to relate it to the continuous normalized total variation
NTV (defined in Equation (4)). Let us define :

Gr(t) = h(t)TV (fr,t) , (8)

where the normalization factorh(t) is to be chosen. Using
Equation (7) :

Gr(t) ≈ 1

r
h(t)TV

(

k√r2t2+σ2 ∗ f
)

=
1

r

h(t)√
r2t2 + σ2

NTV
(

f ;
√

r2t2 + σ2
)

.

Hence :

Gr(t) ≈
1

r2
h(t)

√

t2 + 1
α2

NTV
(

f ;
√

r2t2 + σ2
)

. (9)

If we choose :

h(t) =

√

t2 +
1

α2
, (10)

we then obtain :

Gr(t) ≈
1

r2
NTV

(

f ;
√

r2t2 + σ2
)

(11)

and, sincetmax = argmax
R

∗

+
(NTV (t)), we may define :

tmaxr
= argmax

R
∗

+
Gr(t), (12)

which provides the following relation :

tmax =
√

r2t2maxr
+ σ2 = r

√

t2maxr
+

1

α2
. (13)

For a discrete image at resolutionr we measuretmaxr
and

derive the value oftmax using Equation (13). Notice that
it is impossible to find a characteristic scaletmax smaller
thanσ (which is comparable tor). More generally, when the
resolution of the image is larger than the actual characteristic
scaletmax the computation becomes unreliable. Experiments
show thattmax is retrievable as long asr < tmax.

From now on, the values oftmax will be deduced from
Equation (13).

Remark about the normalization. In view of Equation
(4), the intuitive normalization would not take into account the
filtering process due to the change of resolution and, therefore,
involve a factort instead ofh(t) :

Ar(t) = t× TV (fr,t) (14)

If, according to this intuition, we set tmaxr as
argmax

R
∗

+
(Ar(t)) and deducetmax = r × tmaxr

, then
we can check numerically that the obtained value oftmax will
depend much more on the resolution than with the definition
from Equation (13). This fact will be precised in Section V,
see Figure 14.

Notice also that whent � 1, then the definitions from
Equations (8) and (14) are equivalent. The choice of the correct
normalization given by Equation (10) is important whenr
approachestmax (that is tmaxr

approaches 1).

IV. RELATING tmax TO THE GEOMETRY OF THE IMAGE

In this section, we investigate the link between the charac-
teristic scaletmax, as defined in Section II for a continuous
image, and the geometric contents of the image. For this
purpose, following the example in [2], we first consider va-
rious simple one-dimensional functions, for which we perform
computations and numerical approximations. Then, we tackle
the two-dimensional case by performing numerical simulations
on discrete synthetic images.

A. Continuous one-dimensional examples

In order to consider cases with tractable computations,
we define tmax for a one-dimensional functionf as in
Formula (5). For 1D signals the gradient is replaced by
the derivative andkt by a one-dimensional Gaussian in the
computation ofNTV (t) .

a) Sinus function:Assuming thatf is a sinus of period
D, restricted to[−T, T ] ⊂ R, it may be shown that ifT/D →
∞ (so that boundary effects can be neglected) thentmax →
D/2π ∼ 0.15D, as already mentioned in [21], [2].
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b) Sum of Gaussians:Assume thatf is a function
defined on[−T, T ] ⊂ R as :

f(x) =

K−1
∑

k=−K

1√
2πv2

e
−(x−(2k+1)D/2)2

2v2 , (15)

ie., f is the restriction to[−T, T ] of a sum of Gaussians, the
spatial period of this sum beingD. Assuming thatK � 1 (or
T � D) in order to neglect boundary effects, we obtain :

NTV (t) ≈ 2t

Dq
√

2π

(

1 + e
−K2D2

4q2 + 2

2K−1
∑

k=1

(−1)ke
−k2D2

4q2

)

,

(16)
whereq =

√
v2 + t2. This result is obtained by noticing that

the total variation may be computed on each monotonous part.
The graph ofNTV (t) as a function oft is shown on Figure 2.
On Figure 3 (a), the graph oftmax is displayed as a function of
D, v being constant. One observes thattmax ≈ 0.15D, a result
very similar to the one for the sinusoidal case. Figure 3 (b)
showstmax/D as a function ofv, D being constant. One can
check thattmax/D ≈ 0.15. In this case,tmax is related to the
period of the signal but not to the width of each Gaussian.

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

t

T
V

N

Fig. 2. Plot ofNTV (t) as a function oft, whenf is a sum of Gaussians
as in Equation (15),t ∈ [0.1, 40] andK = 10, D = 40, v = 10. NTV (t)
reaches its maximum fortmax = 6.4
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(a) tmax as function ofD
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0
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0.15

0.2

0.25

0.3

(b) tmax/D as a function ofv

Fig. 3. Plot oftmax for a sum of Gaussian functions (see Equation (15)) ;
(a) :tmax as a function ofD, with v = 5 (we check numerically thattmax ≈
0.15D, D being the spatial period) ; (b) :tmax as a function ofv, with D =
40.

c) Sum of Heaviside functions:In order to investigate the
sensitivity of tmax to the shape of ”objects”, we consider the
following example, still in 1D to yield tractable computations :
f is defined on[−T, T ] by

f(x) =

K
∑

i=−K

H(x− iD) (17)

where

H(x) =

{

1, x ∈ [0, v]
0, otherwise

(18)

with v ∈ (0, D). Assuming thatt << D andv ≈ D/2, then
it may be shown that :

NTV (t) ≈ Ct

(

2erf

(

D − v

2
√

2t

)

− erf

(

D − v√
2t

))

+

(

2erf

(

v

2
√

2t

)

− erf

(

v√
2t

))

(19)

where erf(x) = 2√
π

∫ x

0
e−u2

and C is a constant (see Appen-
dix E).

Figure 4 (a) shows numerical computations oftmax, taken
as the zero of the derivative of Formula (19) (cf. Equation (35)
in Appendix E) as a function ofD and Figure 4 (b) shows
the plot of tmax/D as a function ofv. Here again we obtain
tmax ≈ 0.15D and observe thattmax/D depends very little
on v.

16 18 20 22 24 26 28

3

3.5

4

4.5

(a) tmax as function ofD

14 16 18 20 22 24 26
0
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0.1

0.15

0.2

0.25

0.3

(b) tmax/D as a function ofv

Fig. 4. tmax for a sum of Heaviside functions (see Equation (17)). We check
numerically thattmax ≈ 0.15D whereD is the spatial period. In Figure (a)
v = 10 and in Figure (b)D = 40.

To summarize, in cases a), b) and c), it may be computed
or observed thattmax ≈ 0.15D, which indicates that neither
the shape nor the size of the pattern seem to influence much
tmax in the cases of1-D functions.

B. Discrete synthetic images

In order to confirm the linear relation betweentmax and
the spatial period of signals (D in the preceding examples)
in the case of images, we simulated periodic images using
various patterns. Two instances of such images are displayed
in Figure 5 (sum of Gaussians with standard deviationv) and 6
(sum of squares with widthv), together with the associated
graphs ofNTV as functions oft. Figure 7 (a) shows the graph
of tmax as a function ofD and Figure 7 (b) shows the graph
of tmax/D as a function ofv for sums of Gaussians. Figures 8
(a) and (b) show the same quantity for sums of squares.
Comparing these two figures respectively with Figure 3 and
Figure 4, we conclude that the shape of patterns as well as
their size have little influence on the measure. Moreover, we
see thattmax ≈ 0.15D still holds in dimension 2.

V. A PPLICATION TO SATELLITE IMAGES

In this Section several experiments are presented to demons-
trate the invariance oftmax with respect to resolution on real
images in the domain of remote sensing.
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(a) Periodic sum of Gaussians

5 10 15 20 25
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

scale

va
ria

tio
n 

to
ta

le
 n

or
m

al
is

ée

(b) Graph ofNTV

Fig. 5. A periodic Gaussian function withD = 40 and v = 10 (standard
deviation of each Gaussian) and the graph of the corresponding normalized
total variation. The maximum is reached fort = 6.1.

(a) Periodic sum of squares
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(b) Graph ofNTV

Fig. 6. An image composed of squares with spatial periodD = 40, and the
side of each square equal to10 pixels, and the graph of the corresponding
normalized total variation. The maximum is reached fort = 6.1.

At first, starting from several images with resolution equal
to 25 cm, we create a series of lower resolution images using
Formula (1), i.e. using a down-sampling scheme in which
filtering is made using a Gaussian impulse response. We call
it the ideal down-sampling.

Then, we make use of series of images provided by the
CNES which precisely simulate the images which would
be obtained with different sensors operating with various
resolutions from a satellite, i.e. by taking into account the
different effects of sampling, integration, acquisition time, etc.
and therefore providing the actual impulse response of sensors.
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(a) tmax as a function ofD
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(b) tmax/D as a function ofv

Fig. 7. (a) Graph oftmax as a function ofD (with v = 5) for sums of
Gaussians, we obtaintmax ≈ 0.15D ; (b) Graph oftmax/D as a function
of v (with D = 40) for sums of Gaussians, we obtaintmax/D ≈ 0.15.
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(a) tmax as a function ofD
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(a) tmax as a function ofD

Fig. 8. (a) Graph oftmax as a function ofD (with v = 10) for sums of
squares, showing thattmax ≈ 0.15D ; (b) Graph oftmax/D as a function
of v (with D = 40) for sums of squares, showing thattmax/D ≈ 0.15.

(a) Marseille (b) Toulouse

(c) Didrai (d) Roujan

Fig. 9. Aerial images with 25 cm resolutionc©CNES : (a) and (b) 2 cities
with different urban tissues, (c) a forest, (d) agricultural fields.

a) Computation oftmax using Formula (13): On Fi-
gure 10, we display the graphs of the normalized total variation
for the 4 images shown in Figure 9 (at resolutionr = 25cm).
There is at least one local maximum in each case. In the case of
cities (Marseille or Toulouse), the characteristic scale is related
to the size of the buildings and streets. In the case of the Didrai
image (forest), the scale is related to the vegetation. Notethat
in the case of the Roujan image (fields), there are two local
maxima, the narrow one (zoomed in Figure 10 (e)) is related
to the vineyards, and the large one to the fields. Figure 11
displays a zoomed area of Figure 9 composed of vineyards.
The spatial period of the vineyardsD may be computed from
the characteristic scaletmax, using the relationtmax ≈ 0.15D.
We find that the distance between two vineyard rows is roughly
2.7m, a result which we were able to check on the image for
such a regular and periodic structure.
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(b) Toulouse
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(c) Didrai
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(d) Roujan
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(e) Roujan(zoomed)

Fig. 10. NTV as a function of
√

r2t2 + σ2 computed for the 4 images
of Figure 9 with resolutionr = 0.25m. (a) Marseille :tmax = 4.8m ; (b)
Toulouse :tmax = 2.4m ; (c) Didrai : tmax = 1.2m ; (d) Roujan : there are
two local maxima. The first one at position0.4m, the second one at position
30m ; (e) Zoom around the first local maximum at0.4m shown in (d).
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Fig. 11. Zoom on vineyards issued from the Roujan image displayed on
Figure 9 (d). The characteristic scale appears at resolution 0.4m. Using the
relation tmax ≈ 0.15D, we see that the distanceD between 2 rows of
vineyards is roughly 2.7m.

b) Resolution invariance:In order to confirm that the
characteristic scale extracted from the images is independent
from the resolution of the sensor (tmax does not depend on
r), we made the following experiments. For a given scene,
an imagegr at resolutionr is generated (using Formula (1)
with α = 1), and the maximizertmax is computed. Figure 12
shows the graph oftmax as a function ofr. As expected, it
shows thattmax is almost constant (as long asr < tmax).

Remark that in the case of Roujan, where two different
characteristic scales are present, the plot oftmax is coherent
with the result shown in Figure 10 (d). When the resolutionr
is fine enough,tmax is the characteristic scale corresponding

TABLE I

Available resolutions (meters)

0.250 0.281 0.315 0.354 0.397 0.445 0.500
0.561 0.630 0.707 0.794 0.891 1.00 1.12
1.26 1.41 1.59 1.78 2.00 2.25 2.52
2.83 3.17 3.56 4.00 4.49 5.04 5.66
6.35 7.13 8.00 8.98 10.08

to the vineyards. But whenr gets larger, then the vineyards
disappear (one no longer sees them in the images), andtmax

is then related to the size of the fields.
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(d) Roujan

Fig. 12. Characteristic scalestmax as a function of the resolution, for the 4
scenes shown in Figure 9. The images at different resolutions are obtained by
down-sampling the 25 cm images using the ideal acquisition model presented
in Section III (with α = 1), i.e. with a Gaussian convolution kernel. Notice
that the characteristic scale is almost independent from the resolution.

c) Validation of the approximation of the acquisition
model: In order to examine the case where different sensors
with different resolutions and different impulse responses are
used, we take advantage of a series of images provided by the
CNES, including the four images of Figure 9. For each scene,
33 images are available at resolutions ranging from 25 cm to
10.08 m (see Table I), each one taken with the exact impulse
response of a real sensor. These images have been obtained
by numerical simulations performed by the CNES, using aerial
images and a realistic model of data acquisition. The impulse
response is resolution dependant, isotropic, and highly non-
Gaussian. The use of a non-Gaussian impulse response in
place of a Gaussian one makes the derivation of a relation
similar to (13) difficult. However, we will see below that
approximating the impulse response with a Gaussian kernel
leads to good numerical results.

Figure 13 shows the graph oftmax as a function of the
resolution. Results are very similar those of Figure 12. We
observe thattmax is almost constant (as long as the resolution
r < tmax). We conclude that even though the kernel is not
Gaussian, the approximations made in section III are still valid.

If instead of using the original relation (13) introduced
in this paper, we make use of the intuitive normalization of
Equation (14), we obtain the plots of Figure 14. As expected,
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in this case, the estimatedtmax is much more sensitive to the
resolution.
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Fig. 13. Characteristic scaletmax as a function of the resolution, on the 4
scenes shown in Figure 9. The images at different resolutions are issued from
the series of images provided by CNES (therefore, the convolution kernel is
no longer Gaussian). The characteristic scales are almost invariant when the
resolutions changes.
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Fig. 14. Characteristic scaletmax as a function of the resolution, for the
Toulouse image. The scaletmax is computed with the naive normalization
given by Equation (14). Notice that the result is less invariant to resolution
changes than in the case of Figure 13(b). In the range[0.25, 2m], the variation
of the value is18% with the proposed method (Figure 13 (b)) and40% with
the naive normalization.

VI. CONCLUSION AND FUTURE PROSPECTS

A new method to compute a characteristic scale for a given
image has been proposed, which does not depend on the
resolution (as long as the objects are larger than one pixel).
This method explicitly takes into account the role of filtering in
the down-sampling. It has been shown to be robust and stable
on different images issued from the remote sensing domain.
We have also shown on various examples that the position of
the maximizer of the normalized TV does not depend on the
object shapes, but merely on the distances between structures.

This approach is foreseen to find applications for the pro-
blem of satellite image indexing. In this case, it is indeed ama-
jor asset that features does not depend on the resolution [22].
Moreover, we expect to find the texture/geometry behavior of
a scene [23], which indeed depends on the resolution and can
be related to the characteristic scale. This could be usefulfor
features selection. We also need to understand more deeply

the effect of sampling on total variation, especially when the
resolution is close totmax.

APPENDIX

A. Localization issue

The scale measurement we have introduced can be localized
using a sliding window. The scale of a single pixel is then
computed as the scale on the window centered around this
pixel. To illustrate this approach, we have processed the
Marseille image (see Figure 15 a). We use the image at
resolution0.707m, with size 1440 × 1440. The analysis is
made using a window with size256×256, and the window is
moved by32 pixels at each step. On Figure 15 (b), we show
the computed values oftmax.

Notice in particular thattmax is larger in the top left corner
of the image . Looking at Figure 15 (a), one sees that this
corresponds to larger buildings and structures in the original
image.
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(b)

Fig. 15. (a) Image of Marseille (resolution0.707m, size1440×1440) ; (b)
Image of the corresponding values oftmax (the largertmax, the whiter the
gray level value in (b)).

B. Normalization issue revisited

The characteristic scale of an imagef has been defined as :

tmax = argmax
R

∗

+
φ(t)

∫

|∇(kt ∗ f)|,

with φ(t) = t. In this section, we show why it is reasonable to
chooseφ(t) = tB while the next section explains whyB = 1
has been be chosen.

Since we wanttmax to be related to the size of objects in
the imagef , we naturally assume that :

tmax(f) = stmax(f
s), (20)

wherefs(x) = f(sx). For anyt0 > 0 ands > 0, let us define

Fs(t0) = ∂t log

(

φ(t)

∫

|∇fs ∗ kt|
)

(t0).

Equation (20) implies that

F1(t0) = 0 ⇒ Fs

(

t0
s

)

= 0. (21)
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Now,

Fs

(

t0
s

)

= s∂t log

(

φ(t/s)

∫

|∇fs ∗ kt/s|
)

(t0)

= s∂t log

(

φ(t/s)s−1

∫

|∇f ∗ kt|
)

(t0)

=
φ′

φ
(t0/s) + s∂t log

∫

|∇f ∗ kt|(t0)

=
φ′

φ
(t0/s) + s

(

F1(t0) −
φ′

φ
(t0)

)

.

Then Equation (21) implies that

φ′

φ
(t0/s) = s

φ′

φ
(t0),

and thereforeφ(t) = AtB for two constantsA andB to be
chosen.

C. Power of normalization factor : why we setB = 1

The constantA does not affecttmax. The reason why we
choseB = 1 is essentially of a numerical nature. IfB is too
small, thenNTV decreases very fast, implying a very small
value oftmax. This becomes a severe drawback when compu-
ting the scale of low resolution images. On the other hand,B
cannot be too large. Indeed, we have checked experimentally
on the images provided by the CNES that in this case the graph
of NTV becomes flat and the relative error for the numerical
value oftmax gets larger. In such a case, the localization of the
extremum is not reliable. We found experimentally that setting
B = 1 is a good compromise between these two drawbacks.
Moreover, this choice is coherent with the one in [2]. As an
example, Figure 16 displays the graph of NTV withB = 1.3
in the case of Didrai image. We may see that this value already
makes it difficult to computetmax, whereas it is easier from
Figure 10 (c).

2 4 6 8

14

16

18

20

22

24

Fig. 16. NTV calculated on the image of Didrai with normalization factor
φ(t) = t1.3 .

D. Relations with wavelet-based approaches

For the sake of clarity, we only deal with the 1-Dimensional
case in this appendix. For a detailed presentation of the wavelet
theory, we refer the interested reader to [24], [25]. Let us
consider a signalf with spatial period2T . We recall that we
denote

f1/s(t) = f

(

t

s

)

(22)

Let ψ a wavelet. We define the wavelet coefficients off at
positiony and scalet by :

Wf (y, s) = cs

∫

R

f(t)ψ1/s(t− y) dt (23)

cs being a normalization coefficient which we will fix later.
Let us now look at the following quantity :

hf (s) =
cs
2T

∫ T

−T

|Wf (y, s)| dy (24)

A straightforward computation (change of variables in the
integral) leads to :

hf1/a(s) =
cs

2Ta

∫ T/a

−T/a

∣

∣

∣

∣

∫

R

f(u)ψ

(

z − u

as

)

du

∣

∣

∣

∣

dz (25)

Hence, by definition ofhf (as), we get :
hf1/a

(s)

hf (as) = 1
a

cs

cas
.

Now, remembering formula (22), one sees that in order to
achieve scale invariance, the following equality must hold:
hf1/a(s) = hf (as). We thus conclude that :

cs
cas

= a (26)

The exact form ofcs is given by the next standard lemma
which we state without proof :

Lemma : Let us assume thatcs verifies (26) and that the
functions 7→ 1

cs
is continuous in 0, then there exists a constant

A > 0 such that :

cs =
A

s
(27)

Let us chooseψ = φ
′

, with φ the 1-Dimensional gaussian

defined by :φ(x) = 1√
2π

exp
(

−x2

2

)

. Noticing that
(

φ1/s
)

′

=
1
sψ

1/s, we get from (26) that :

hf (s) =
As

2T

∫ T

−T

∣

∣

∣

∣

∣

(

1

2πs
φ1/s ∗ f

)
′

(y)

∣

∣

∣

∣

∣

dy (28)

Up to some positive multiplicatice constant, we therefore get
the same expression as formula (4) (notice that the norma-
lization by the standard deviation is already included inkt

(defined by (2)) in (4), contrary toφ1/s). This computation
also confirms our choice ofB = 1 in Appendix C.

E. Computation oftmax for a sum of Heaviside functions

We detail here the computation oftmax whenf is defined
by Formula (17). To simplify notations, we defineT1 = v and
T2 = D − v.

TVN(f ; t) = t

∫

|∂x (f ∗ kt(x))| dx (29)

= t

∫

|(∂xf(x)) ∗ kt(x)| dx (30)

Recall that, in the sense of distributions, we have∂xd(x) =
δ(0) − δ(T2) where δ is the Dirac distribution [26]. We
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therefore have :

NTV (t) (31)

=
∫

t
∣

∣

∣

(

∑K
k=−K δ(kD) − δ(kD + T2)

)

∗ kt

∣

∣

∣
dx

= t
∫

∣

∣

∣

∑K
k=−K kt(x − kD) − kt(x− kD − T2)

∣

∣

∣
dx

= 1√
2π

∫

∣

∣

∣

∣

∑K
k=−K e−

(x−kD)2

2t2 − e−
(x−kD−T2)2

2t2

∣

∣

∣

∣

dx.

We make the assumption thatK � 1. In the above
integration, we can thus restrict our attention to the interval
[−T1, T2]. Besides, we also assume thatD � t. We therefore
have to take into account three Gaussians only, (kt(x + T1),
kt(x) and kt(x − T2)), and neglect the influences of the
other ones in the interval[−T1, T2]. We then split the interval
[−T1, T2] into two intervals [−T1, 0] and [0, T2], and we
suppose thatv is close toD/2, so that we do not take into
accountkt(x − T2) when we calculate the integral in the
interval [−T1, 0] (and in the same way, we will neglect the
influence ofkt(x + T1) in the interval [0, T2]). We denote
the integral in the interval[−T1, T2] by TV ND(f ; t). Remark
that the interval[−T1,−T1/2] and the interval[−T1/2, 0] are
symmetric, as well as the interval[0, T2/2] and[T2/2, T2]. We
therefore get :

TV ND(f ; t) ≈ 1√
2π

∫ 0

−T1

∣

∣

∣

∣

−e−
(x+T1)2

2t2 + e−
x2

2t2

∣

∣

∣

∣

+ 1√
2π

∫ T2

0

∣

∣

∣

∣

−e−
(x−T2)2

2t2 + e−
x2

2t2

∣

∣

∣

∣

≈ 1√
2π

2
∫ 0

−T1/2

(

−e−
(x+T1)2

2t2 + e−
x2

2t2

)

+2 1√
2π

∫ T2/2

0

(

−e−
(x−T2)2

2t2 + e−
x2

2t2

)

≈ 1√
2π

(

4
∫ T1/2

0
e−

x2

2t2 − 2
∫ T1

0
e−

x2

2t2

+4
∫ T2/2

0 e−
x2

2t2 − 2
∫ T2

0 e−
x2

2t2

)

≈ 1√
2π

(

2
√

2t
(

2erf( T2

2
√

2t
) − erf( T2√

2t
)
)

+2
√

2t
(

2erf( T1

2
√

2t
) − erf( T1√

2t
)
))

.

(32)
where we recall that erf(x) = 2√

π

∫ x

0 e
−u2

. We then denote
by z = 1

2
√

2t
, i.e. t = 1

2
√

2z
. Then we have

TVND(f ; z) ≈ 1
2
√

2
1
z (2erf(zT1) − erf(2zT1))

+ 1
2
√

2
1
z (2erf(zT2) − erf(2zT2)) .

(33)

Recall that∂xerf(x) = 2√
π
e−x2

. We then have :

∂tTV ND(f ; t) = ∂zTVND(f ; z)∂tz(t). (34)

Recall thattmax is such that∂tTV ND(f ; t) = 0. Since∂tz(t)
cannot be zero, we just need to solve∂zTV ND(f ; z) = 0.
Therefore we have to solve the following equation :

∂zTV ND(f ; z) ≈ − 1
2
√

2
1
z2 (2erf(zT1) − erf(2zT1))

− 1
z2

1
2
√

2
(2erf(zT2) − erf(2zT2))

+ 1√
2

T1

z
√

π

(

e−z2T 2
1 − e−4z2T 2

1

)

+ 1√
2

T2

z
√

π

(

e−z2T 2
2 − e−4z2T 2

2

)

= 0.
(35)

Hence we deduce Formula (19).
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