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Abstract

This article presents theoretical and experimental results about constrained non-negative matrix
factorization (NMF) in a Bayesian framework. A model of superimposed Gaussian components in-
cluding harmonicity is proposed, while temporal continuity is enforced through an inverse-Gamma
Markov chain prior. We then exhibit a space-alternating generalized expectation-maximization
(SAGE) algorithm to estimate the parameters. Computational time is reduced by initializing the
system with an original variant of multiplicative harmonic NMF, which is described as well. The
algorithm is then applied to perform polyphonic piano music transcription. It is compared to other
state-of-the-art algorithms, especially NMF-based. Convergence issues are also discussed on a theo-
retical and experimental point of view.

Bayesian NMF with harmonicity and temporal continuity constraints is shown to outperform
other standard NMF-based transcription systems, providing a meaningful mid-level representation
of the data. However, temporal smoothness has its drawbacks, as far as transients are concerned in
particular, and can be detrimental to transcription performance when it is the only constraint used.
Possible improvements of the temporal prior are discussed.

Keywords - Non-negative matrix factorization (NMF), music transcription, audio source sepa-
ration, unsupervised machine learning, Bayesian regression.

Résumé

Cet article présente des résultats théoriques et expérimentaux sur la factorisation en matrices à
coefficients positifs (NMF) en présence de contraintes et dans un cadre bayésien. Nous proposons
un modèle de mélange de composantes gaussiennes incluant une contrainte d’harmonicité, tandis
que la contrainte de continuité temporelle est imposée via un a priori markovien suivant une dis-
tribution inverse-Gamma. Un algorithme de type SAGE (space-alternating generalized expectation-

maximization) est proposé pour l’estimation des paramètres. Le temps de calcul est réduit grâce
l’initialisation du système par une variante originale de la NMF harmonique multiplicative, qui est
également décrit. L’algorithme proposé est ensuite appliqué à la transcription de musique poly-
phonique de piano. Ses performances sont comparées d’autres algorithme faisant état de l’art, en
particulier basés sur la NMF. La question de la convergence est galement discutée d’un point de vue
théorique et expérimental.

Nous montrons que la NMF bayésienne avec contraintes d’harmonicité et de continuité temporelle
permet d’obtenir de meilleures performances que d’autres systèmes de transcription également fondés
sur la NMF, en fournissant une représentation mi-niveau sémantiquement pertinente des données.
Cependant, la contrainte de régularité temporelle présente des inconvnients, en particulier en ce qui
concerne les transitoires, et peut nuire aux performances de transcription lorsqu’elle est la seule
contrainte utilisée. De possibles améliorations de l’a priori temporel sont discutées.

Mots-clefs - Factorisation en matrices à coefficients positifs (NMF), transcription musicale,
séparation de sources audio, apprentissage non supervisé, régression bayésienne.
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1 Introduction

Non-negative matrix factorization (NMF) is a powerful, unsupervised decomposition technique allowing
the representation of two-dimensional non-negative data as a linear combination of meaningful elements
in a basis.

NMF has been widely and successfully used to process audio signals, including various tasks such as
monaural sound source separation [1], audio stream separation [2], audio-to-score alignment [3], drum
transcription [4]. In particular, it has been efficiently used to separate notes in polyphonic music [5, 6]
and transcribe it in a symbolic format such as MIDI. In this case, a time-frequency representation of
the signal is factored as the product between a basis (or dictionary) of pseudo-spectra and a matrix
(decomposition) of time-varying gains. When obtained from harmonic instruments sounds, the basis
is shown to partially retain harmonic components, with a pitched structure, that can be interpreted
as musical notes, while the decomposition gives information about the onset and offset times of the
associated notes.

Meaningful is here a key word: we expect the basis to be formed of interpretable elements, exhibiting
certain semantics. The non-negativity constraint is a first step towards this interpretability, compared to
other well-known techniques such as Singular Value Decomposition (SVD). For instance, the basis learnt
by NMF from an image database is expected to contain meaningful images (the so-called “part-based
representation” [7]). This interpretability is often observed in practice, which is certainly one of the
reasons for NMF’s popularity; but it is not always as satisfying as expected (see, for instance, facial
images in [8], that are expected to retain facial parts like eyes, nose, mouth, but do not exactly). As
some other desirable characteristics of the decomposition, it is more observed as a welcome side-effect,
than enforced and controlled.

To alleviate this lack of control on the decomposition properties, most authors have proposed con-
strained variants of NMF, ensuring and enhancing those side-effects of baseline NMF: sparsity, spatial
localization, temporal continuity for instance. The typical approach for such constrained variants is
to add a penalty term to the usual cost function (reconstruction error) and minimize their sum, see
e.g. [1, 8, 9].

On the other hand, several authors have imported the idea of a non-negative constraint in other
frameworks than NMF, in particular statistical framework. We can cite non-negative variants of Inde-
pendent Component Analysis (ICA) [10] and non-negative sparse coding [11]. The Bayesian framework
offers both a strong theoretical framework, and the possibility to manage constraints through models
and priors.

In this paper, we focus on a Bayesian approach of NMF that allows to enforce harmonicity of the
dictionary components (a desired property for music transcription task) and temporal smoothness of
the decomposition. The paper is organised as follows. Section 2 recalls the baseline NMF model and
state-of-the-art constrained NMF algorithms. In particular, constraints of harmonicity and temporal
continuity are discussed and Bayesian approaches for NMF are presented. Our model, and an EM-like
algorithm for NMF with harmonicity and temporal smoothness are proposed in section 3, including
a multiplicative initialization phase that updates our previous work on harmonic NMF. Section 4 is
devoted to experimental results in the transcription task context. Conclusion and perspectives are
drawn in section 5.

2 Constrained non-negative matrix factorization

2.1 Notations

Matrices are denoted by straight bold letters, for instance, V, W, H. Lowercase bold letters denote
column vectors, such as wk = (w1k . . . wFK)T , while lowercase plain letters with a single index denote
rows, such that H = (hT

1 . . . hT
K)T . We also define the matrix V̂ = WH.

We use the binary operators , to denote definitions and
c

= to denote equality up to a constant.
Calligraphic uppercase letters are used to denote probability distributions: N , P, IG denote Gaussian,

Poisson and inverse-Gamma distributions. Their expressions are recalled in appendix A.
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2.2 Baseline model and algorithms

Out of any applicative context, the NMF problem is expressed as follows: given a matrix V of dimensions
F ×N with non-negative entries, NMF is the problem of finding a factorization

V ≈WH = V̂ (1)

where W and H are non-negative matrices of dimensions F ×K and K ×N , respectively. K is usually
chosen such that FK + KN ≪ FN , hence reducing the data dimension. In typical audio applications,
the matrix V is chosen as a time-frequency representation (e.g. magnitude or power spectrogram), f
denoting the frequency bin and n the time frame.

The factorization (1) is generally obtained by minimizing a cost function defined by

D(V|V̂) =

F
∑

f=1

N
∑

n=1

d(vfn|v̂fn) (2)

where d(a|b) is a function of two scalar variables. d is typically non-negative and takes value zero if and
only if (iff) a = b. The most popular cost functions for NMF are the Euclidean (EUC) distance and
the generalized Kullback-Leibler (KL) divergence, which were particularly popularized (as NMF itself)
by Lee and Seung, see, e.g., [7]. They described multiplicative update rules under which D(V|WH) is
shown to be non-increasing, while ensuring non-negativity of W and H. The update rules are obtained
by using a simple heuristics, which can be seen as a gradient descent algorithm with an appropriate choice
of the descent step. By expressing the gradient of the cost function ∇D as the difference of two positive
terms ∇+D and ∇−D, the cost function is shown (in particular cases) or observed to be nonincreasing
under the rules:



















W←W ⊗ ∇
−
W

D(V|WH)

∇+
W

D(V|WH)

H← H⊗ ∇
−
H

D(V|WH)

∇+
H

D(V|WH)

(3)

For some choices of d, like EUC or KL, monotonicity of the criterion under these rules can be proven [7],
but in the general case, these updates do not guarantee any convergence.

2.3 Constrained approaches

2.3.1 Constraints imposed via penalty terms

In standard NMF, the only constraint is the elementwise non-negativity of all matrices. All other
properties of the decomposition, as satisfying as it is, come as uncontrolled side-effects and in a way,
the fact that the decomposition retains certain semantics of the original signal, performs separation or
provides meaningful and interpretable components is just “good news”. It sounds thus natural to try to
improve this potential by adding explicit constraints to the factorization problem, in order to enhance
and control desired properties.

Then, several constraints have been introduced to get NMF solutions that better fit certain expectan-
cies. Among other proposed constraints, we can cite sparsity [12], spatial localization [8], least correlation
between sources [9] or temporal continuity [1, 13].

The commun point between those algorithms, whichever constraint is considered, is the “penalty
term approach”. Rather than minimizing only a reconstruction error term Dr (EUC or KL, typically),
the minimized cost function includes a term Dc that quantifies the desired property. The constrained
NMF problem is then expressed as:

min
W,H

Dr(V|WH) + λDc(V|WH)

where λ is a weight parameter.
Table 1 gives a few examples of literature penalty terms. Temporal smoothness is one of these

examples. In standard NMF and most of its variants, time frames are considered as independent, non-
related observations, which is obviously not true for real-world sounds and in particular for music. In the
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Sparsity
∑K

k=1
1√

N−1

(√
N −∑N

n=1 |hkn|/
√

∑N
n=1 h2

kn

)

[12]

Spatial localization λ1

∑K
k=1

∑K
k′=1

[

WT W
]

kk′
− λ2

∑K
k=1

[

HHT
]

kk
[8]

Least correlation
∑K

k=1 log
[

HHT
]

kk
− log |HHT | [9]

Temporal continuity
∑K

k=1

∑N

n=1 |hkn − hk(n−1)|2 [1]

Table 1: Some state-of-the-art constraints Dc in NMF problem.

case of musical notes, the main part of the note (the sustain and decay parts, after the attack) possesses
a slowly time-varying spectrum. When expressed as the product between a template spectrum wk and
a time-varying gain hk, according to NMF formulation, it is equivalent to saying that the row hk is
smooth, or, in other words, that the coefficient hkn is not that different from hk(n−1). [1] and [13] thus
introduce penalty terms in the NMF cost function to take into account this temporal continuity. In [1]
the term is directly linked to the differences hkn − hk(n−1), while [13] variant relies on a ratio between
short-time and long-time variance of hk. Those terms are shown to favor smoothness in lines of H.
Another possible approach is the statistical approach from [14]. Temporal continuity is favored through
putting an appropriate prior on H. This solution will be exposed with more details and adapted to our
case in section 3.3.

It is interesting to notice that non-smoothness may also be an objective (see for instance [15]),
depending on the data and the application. [15] points out that smoothness of one of the NMF factors
(i.e. W or H) may enhance sparsity of the other one, thus establishing a link between those two popular
constraints. On the other hand, [1] combines sparsity and temporal continuity constraints on H, but
concludes to the non-efficiency of the sparsity constraint in his particular case.

The penalty approach has several drawbacks. First, a criterion quantifying the desired property must
be found. Second, no general proof of convergence is available for the update scheme (3). Moreover,
the parameter λ has to be chosen empirically. These reasons motivated our approach for harmonicity
constraint in previous and current work; this approach is exposed in section 2.3.2.

2.3.2 Deterministic constraints

Musical notes, excluding transients, are pseudo-periodic. Their spectra are then comb-alike, with reg-
ularly spaced frequency peaks. As we wish to use NMF to separate musical notes in a polyphonic
recording, we expect that elements in the basis W are as near as possible from a harmonic distribution.
This property is yet not easily quantified by a penalty term.

In [16], we rather proposed an alternative model to baseline NMF problem, enforcing the basis
harmonicity. We impose the basis components to be expressed as the linear combination of narrow-band
harmonic spectra (patterns), which are arbitrarily fixed:

wfk =
M
∑

m=1

emkPkm(f) (4)

For a given component number k, all the patterns Pkm share the same pitch (fundamental frequency
f0); they are defined by summation of the spectra of a few adjacent individual partials at harmonic
frequencies of f0, scaled by the spectral shape of subband k. This spectral envelope is chosen according
to perceptual modelling [16]. Figure 1 illustrates the patterns for one note and the corresponding atom
wk.

Coefficients emk are learned by NMF as well as the decomposition H. Update rules are obtained by
minimizing the same cost function as in baseline NMF, except that it is minimized with respect to (wrt)
E and H rather than W and H.

2.3.3 Statistical constraints

Another way to induce properties in the NMF is to switch to a statistical framework and introduce
adequate prior distributions. Let us consider the following model, proposed in [17,18]: ∀n = 1, ..., N ,
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Figure 1: Example harmonic basis spectrum wk corresponding to the note C4 (MIDI pitch 72), with
underlying narrowband spectra Pkm and spectral envelope coefficients emk (with M= 6).

xn =

K
∑

k=1

ckn ∈ C
F (5)

where latent variables ckn are independent and follow a multivariate Gaussian distribution

ckn ∼ N (0, hkndiag(wk)) (6)

In [14], the estimation of the parameter θ = {W,H}, in a maximum likelihood (ML) sense is shown
to be equivalent to solving the NMF problem V ≈WH, when observing V = (|xfn|2)fn and choosing
the underlying cost function d as the Itakura-Saito divergence:

dIS(a|b) =
a

b
− log

a

b
− 1 (7)

Other authors, like [19], have proven similar equivalences between NMF with KL cost and ML
estimation in the model:

|xn| =
K
∑

k=1

|ckn| (8)
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under the assumption |ckn(f)| ∼ P(wfkhkn), where P(λ) is the Poisson distribution.
In [20], the authors propose a model where the factors W and H are expressed as two functions fh

and fw (called “link-functions”) of Gaussian latent variables. It can be seen as a generalization of the
previous model for appropriate choices of fh and fw (relatively soft assumptions are put on them). It is
another example of the power of the statistical approach to incorporate constraints or knowledge in the
NMF problem.

One main advantage of this statistical approach is the possibility to switch from ML estimation to
maximum a posteriori (MAP) estimation, thanks to Bayes rule:

p(W,H|V) =
p(V|W,H)p(W)p(H)

p(V)
(9)

Thus, choosing adequate prior distributions p(W) and p(H) is a way to induce desired properties in the
decomposition. Furthermore, the statistical framework provides a strong theoretical basis and efficient
algorithms with proven convergence, like the expectation-maximization (EM) algorithm and its variants,
to estimate NMF factors.

In next section, we propose to combine this framework and the previous model (4) to enforce both
harmonicity in columns of W and smoothness in rows of H, which are desired properties of the NMF of
musical signals.

3 Proposed algorithm

3.1 Probabilistic harmonic model

The direct usage of formulation (4) in the model (5) is possible, but leads to computational issues. An
equivalent model is obtained by assuming:

xn =

K
∑

k=1

M
∑

m=1

dkmn (10)

with

xn ∈ C
F

dkmn ∼ N (0, hknemkdiag(Pkm))

Pkm = [Pkm(1)...Pkm(F )]
T

Assuming the equality ckn =
∑

m dkmn and the independence of dkmn, we can verify that ckn ∼
N (0, hkn

∑

m emkdiag(Pkm)).

3.2 Maximum likelihood estimation

We now describe an EM-based algorithm for the estimation of the parameters θ = {E,H}. This al-
gorithm is adapted from ML estimation proposed in [14] for the model (10). In ML estimation, the
criterion to be maximized is the log-likelihood of the observations:

CML(θ) , log p(V|θ) (11)

We partition the set of all parameters into disjoint subsets θk = {{emk}m, hk} so that θ =
⋃K

k=1 θk. This
partition, and the additive form of the model (10) where the latent variables are supposed independent,
allow the usage of the Space Alternating Generalized EM algorithm (SAGE), introduced in [21], to
estimate the parameters. The hidden data-space associated with each subset θk is Dk = [Dk1 . . .DkN ],
where Dkm = [dkm1 . . .dkmN ] ∈ C

F×N . The use of SAGE implies maximizing the functional QML
k (θk|θ′)

which is the conditional expectation of the log likelihood of Dk:

QML
k (θk|θ′) ,

∫

Dk

log p(Dk|θk)p(Dk|V,θ′)dDk (12)

7



where θ′ contains the most up-to-date estimated values of all parameters.
We can however notice that QML

k can be expressed as the sum (over m) of auxiliary functionals QML
km

expressed as:

QML
km (θkm|θ′) ,

∫

Dkm

log p(Dkm|θkm)p(Dkm|V,θ′)dDkm (13)

where we define subsets θkm = {emk, hk}. The problem reduces to maximizing each QML
km (θkm|θ′) wrt

emk, and the sum QML
k (θk|θ′) wrt hkn iteratively. Maximizing these functionals makes the criterion

CML(θ) increase, according to [21].
At each iteration and for each k, the functionals QML

km are computed. The sum of the functionals
over m is formed and maximized by computing and zeroing its derivative wrt hkn. The derivative wrt
emk of each functional is computed and zeroed, resulting in an update rule for each emk. Details of the
computations are available in appendix B. Updates rules can be then expressed as follows:

h
(l+1)
kn = h

(l)
kn



1 +
1

FM

∑

f

∑

m

h
(l)
kne

(l)
mkPkm(f)

v̂fn

(

vfn

v̂fn

− 1

)



 (14)

e
(l+1)
mk = e

(l)
mk



1 +
1

FN

∑

n

∑

f

h
(l+1)
kn e

(l)
mkPkm(f)

v̂fn

(

vfn

v̂fn

− 1

)



 (15)

where the superscript l denotes the value at iteration l and where v̂fn is the current reconstruction of

vfn, i.e. v̂fn =
∑K

k=1

∑M
m=1 hknemkPkm(f) =

∑K
k=1 wfkhkn with the most up-to-date values of the

parameter (either (l) or (l + 1) depending on the most recent available values).
Using SAGE framework guarantees the monotonicity of the criterion CML(θ). Moreover, [21] proves

the existence of a region of monotone convergence in norm, i.e., θ converges in norm to a local minimum,
provided the algorithm was initialized in an appropriate neighborhood of that minimum.

3.3 Enforcing temporal smoothness

In terms of computational cost, this maximum likelihood estimation of E and H has no practical interest,
compared to multiplicative gradient descent update rules: as observed in [14] for a similar case (multi-
plicative vs. SAGE algorithm for standard NMF with Itakura-Saito divergence), it is computationnaly
slower and even more sensitive to local minima than usual multiplicative algorithms. However, it has two
main advantages: first, the theoretical framework guarantees convergence to a local minimum; second, it
opens the possibility of including priors on the parameters, possibly in a hierarchical fashion, and then
constraining NMF solutions in an elegant way.

In [14], this framework is exploited to enforce temporal smoothness over the rows of H. We provide
a priori information on θ, expressed as a prior distribution p(θ). Thanks to the Bayes rule, recalled in
equation (9), we get a maximum a posteriori (MAP) estimator by maximizing the following criterion:

CMAP (θ) , log p(θ|V) (16)
c

= CML(θ) + log p(θ) (17)

We choose here to use the Markov chain prior structure proposed in [14]:

p(hk) = p(hk1)

N
∏

n=2

p(hkn|hk(n−1)) (18)

where p(hkn|hk(n−1)) reaches its maximum at hk(n−1), thus favoring a slow variation of hk in time. We
proposed for instance the following choice:

p(hkn|hk(n−1)) = IG(hkn|αk, (αk + 1)hk(n−1)) (19)

where IG(u|α, β) is the inverse-Gamma distribution with mode β/(α + 1) and the initial distribution
p(hk1) is Jeffrey’s non-informative prior (see appendix A). Parameters αk are here arbitrarily fixed,
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n = 1 n = 2 . . . N − 1 n = N

p0 h̃k1 h̃kn + αk+1
FM

hk(n−1) h̃kN + (αk+1)
FM

hk(N−1)

p1 1 + 1−αk

FM
1 + 1

FM
1 + 1+αk

FM

p2
1

FM
αk+1
hk2

1
FM

αk+1
hk(n+1)

0

Table 2: Coefficients of the order 2 polynomial to be solved in order to update hkn in Bayesian harmonic
NMF with an inverse-Gamma Markov chain prior. h̃kn denotes the ML update, given by the right
member of equation (14).

depending on the desired degree of smoothness (the higher αk, the smoother hk), but we could consider
in future work the possibility to learn it as well. We do not put here any prior on E.

As the prior respects the scheme p(H) =
∏K

k=1 p(hk), we can still use the SAGE formalism. The
functional (12) to minimize is now written:

QMAP
k (θk|θ′)

c

=

M
∑

m=1

QML
km (emk, hk|θ′) + log p(hk) (20)

QML
km being unchanged, we just have to incorporate the contribution of the prior in the computation and

zeroing of the gradients. In Appendix C, this is shown to be proportional to a second-order polynomial:

∇hkn
QMAP

k (emk, hk|θ′) =
−FM

h2
kn

(p2 h2
kn + p1 hkn − p0) (21)

The values of p0, p1, p2 are common for each n ∈ [2 . . . N − 1] and take different values at the borders
of the Markov chain (n = 1 and n = N). They obviously depend on k, n and l (though the notation
doesn’t mention it, for readability purpose). Their expressions are given in Table 2 and the detailed
computations are available in Appendix C. The resulting update rule is given by the only non-negative
root of the polynomial:

h
(l+1)
kn =

2p0
√

p2
1 + 4p2p0 + p1

(22)

(written here in a form avoiding possible division by zero) and the ML update of E (15) is unchanged.
In the following, we refer to this algorithm as “Harmonic Smooth NMF” (or, in short form, “HS-

NMF”).
We can also consider the current model of temporal smoothness, but without harmonicity constraint,

leading to the regularized NMF algorithm proposed in [14]. In the following, this algorithm will be
denoted as “S-NMF”.

3.4 Multiplicative initialization with harmonicity

Due to the slow convergence of EM-like algorithms, HS-NMF needs to be efficiently initialized. Theo-
retical results from [21] also suggest the interest of smart initialization in terms of convergence of the
algorithm. Harmonic multiplicative NMF could then be used to “bootstrap” SAGE algorithm. How-
ever, the multiplicative algorithm of [22] was originally designed for a perceptually weighted Euclidean
distance, which would not be coherent with HS-NMF criterion (based on IS divergence (7)). For this
reason, we wish to adapt harmonic NMF with multiplicative update rules from [22] to this distance. The
criterion to be minimized writes:

DIS(V|WH) =
F
∑

f=1

N
∑

n=1

dIS(vfn|
K
∑

k=1

wfkhkn) =
F
∑

f=1

N
∑

n=1

dIS(vfn|
K
∑

k=1

M
∑

m=1

hknemkPkm(f)) (23)

We compute its derivative wrt hkn, which is expressed as the difference of two positive terms:

∇hkn
DIS(V|WH) =

F
∑

f=1

wfk

v̂fn

−
F
∑

f=1

vfnwfk

v̂2
fn

(24)
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where v̂fn =
∑K

k′=1 wfk′hk′n =
∑K

k′=1

∑M

m′=1 em′k′Pk′m′(f)hk′n. The derivative wrt emk fits in the same
scheme:

∇emk
DIS(V|WH) =

F
∑

f=1

N
∑

n=1

hknPkm(f)

v̂fn

−
F
∑

f=1

N
∑

n=1

vfnhknPkm(f)

v̂2
fn

(25)

The update rules are derived from the heuristics (3) and write:

hkn ← hkn ×
∑F

f=1 vfnwfk/v̂2
fn

∑F

f=1 wfk/v̂fn

(26)

emk ← emk ×
∑F

f=1

∑N

n=1 vfnhknPkm(f)/v̂2
fn

∑F
f=1

∑N
n=1 hknPkm(f)/v̂fn

(27)

(28)

In the following, this algorithm will be referred to as “H-NMF/MU”.

4 Application to music transcription

Music transcription consists in converting a raw music signal into a symbolic representation of the music
within: for instance a score, or a MIDI file. Here, we focus on information strictly related to musical
notes, i.e. musical pitch, onset and offset time, discarding high level information usually available in a full
music sheet, such as bar lines or key signature. Automatic transcription is a very active field of research,
known to be difficult, in particular because of note overlapping in the time-frequency plane. Various
methods have been proposed to address the transcription issue, including neural network modelling [23],
parametric signal modelling and HMM tracking [24] or Bayesian approaches [25]. We propose here to
assess the efficiency of Bayesian harmonic and smooth NMF for this task.

4.1 Experimental setup

4.1.1 Database

To evaluate and quantify transcription performance, we need a set of polyphonic music pieces with
accurate MIDI references. The two most simple ways to get such data are either to record a MIDI
instrument (the acquisition of audio and MIDI being simultaneous), or to synthetize sound from given
MIDI files. For the sake of timbre realism and ease of acquisition, the piano is an instrument of choice:
very high quality software synthetizers are available on sale, and an acoustic piano can be equipped to
play mechanically, and produce a MIDI output, while retaining the timbre of a real instrument. In his
thesis [26], Valentin Emiya collected such a database. MAPS (MIDI-Aligned Piano Sounds) includes
isolated notes, random and tonal chords, pieces from the piano repertoire, recordings on an upright
DisKlavier and high quality software synthesis. From this very complete database, we excerpted two
subsets to evaluate our algorithms: a synthetic subset, produced by Native Instruments’ Akoustik Piano
(“Bechstein Bach” preset, from samples recorded on a Bechstein D280 piano), and a real audio subset,
recorded at TELECOM ParisTech on a Yamaha Mark III (upright DisKlavier). Each subset is composed
of 30 pieces of 30 seconds each (original pieces from MAPS were truncated).

4.1.2 Structure of NMF-based transcription

All NMF-based transcription systems used here follow the same workflow:

1. Computation of an adapted time-frequency representation of the signal, V;

2. Factorization V ≈WH;

3. Attribution of a MIDI pitch to each basis spectrum wk (either from original labelling of columns,
in harmonically-constrained cases, or by performing a single-pitch estimation);

4. Onset/offset detection applied to each time envelope hk.
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Abbr. Description Reference

NMF/MU Baseline NMF minimizing IS divergence [14]
Multiplicative update rules

S-NMF SAGE algorithm for NMF with smoothness constraint on H [14]
Virtanen’07 Multiplicative NMF with temporal continuity constraint [1]

Minimizing KL divergence plus a penalty term
Marolt’04 Neural network based transcription [23]

Table 3: Reference algorithms.

In [22], it is observed that using a nonlinear frequency scale resulted in a representation of smaller size,
with better temporal resolution in the higher frequency range, than usual Short-Time Fourier Transform
(STFT), while preserving the subsequent transcription performance. We then pass the signal through
a filterbank of 257 sinusoidally modulated Hanning windows with frequencies linearly spaced between 5
Hz and 10.8 kHz on the Equivalent Rectangular Bandwidth (ERB) scale. We then split each subband
into disjoint 23 ms time frames and compute the power within each frame.

Pitch estimation of basis spectra is superfluous in harmonically constrained NMF, since each basis
component can be labelled from the beginning with the pitch of the patterns Pkm used to initialize it.
For non harmonically constrained NMF, pitch identification is performed on each column of W by the
harmonic comb-based technique used in [16].

Note onsets and offsets are determined by a simple threshold-based detection, followed by a minimum-
duration pruning, see [16]. The detection threshold is denoted by AdB and expressed in dB under H

maximum.

4.1.3 Evaluation

Transcription performance is quantitatively evaluated according to usual information retrieval scores [27].
Precision rate (P) is the proportion of correct notes among all transcribed notes (quantifying the
number of notes that are transcribed, but should not). Recall rate (R) is the proportion of notes from
the MIDI reference which are correctly transcribed (thus quantifying the number of notes that should be
transcribed, but are not). F-measure (F) aggregates the two former criteria in one unique score and is
defined as F = 2PR/(P +R). A transcribed note is considered as correct if its pitch is identical to the
ground truth, and its onset time is within 50ms of the ground truth, according to community standards
(see, for instance, the MIREX competition). Note offset detection is also evaluated through the mean
overlap ratio (MOR) defined in [28]. For a correctly transcribed note, the overlap ratio onote between
the original note and its transcription is the ratio between the length of the intersection and union of
their temporal widths:

onote =
min(toff )−max(ton)

max(toff )−min(ton)
(29)

where ton and toff are the vectors of onset times (respectively offset times) of the original and corre-
sponding transcribed note. Mean Overlap Ratio (MOR) is the mean of overlap ratios for all correct
notes.

The original algorithms (H-NMF/MU and HS-NMF) previously proposed are compared to several
state-of-the-art algorithms listed in Table 3.

H-NMF/MU, HS-NMF and S-NMF were implemented by the authors for this work. Virtanen’07 and
NMF/MU are run from their author’s implementation, which they nicely shared, and Marolt’04 is run
from the SONIC software, distributed by its author. The order K is set to 88 (the number of keys on
a piano) for all NMF-based algorithms. When a multiplicative initialization is needed (HS-NMF and S-
NMF), 10 iterations of the associated multiplicative algorithm (H-NMF/MU and NMF/MU respectively)
are performed before switching to the tested algorithm. Note detection thresholds AdB are manually
tuned algorithm per algorithm (and reported in Tables 4 and 5), by maximizing the average F -measure
on each dataset. The minimum duration for a transcribed note is fixed to 50ms.
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Figure 2: Evolution of the criteria CMAP and DIS wrt the iteration number.

4.2 Results

4.2.1 Convergence

We monitor the values of CMAP and DIS at each iteration of HS-NMF to evaluate speed and efficiency
of convergence. At this occasion, we evaluate the interest of the multiplicative initialisation phase, by
comparing those values for HS-NMF with and without H-NMF/MU initialization Figure 2 presents this
evolution in these two cases, on one example piece of the dataset.

Though CMAP decreases sharply during the initialization (10 first iterations), the multiplicative
initialization phase allows the algorithm to reach a higher value of the criterion for the same number of
iterations, as well as a lower value of the reconstruction error term DIS (which is equal to the minus
log-likelihood up to a constant). After a few hundreds of iterations, the reconstruction error changes
very little, while the contribution from the prior still increases slowly, resulting in very few changes
in the transcription performance. More decisive, on the presented excerpt (one 30s piece from the
real audio subset), HS-NMF with multiplicative initialization reaches a good transcription performance
(F=54.5%), while its counterpart without HS-NMF/MU initialization is totally inefficient in separating
notes in the same time (F=0% after 500 iterations). An explanation for this is the relative weights
between the two terms in CMAP : the first goal is to reach a good reconstruction, smoothness is a bonus;
but if the contribution from the prior takes the most part of the criterion, reconstruction will be poor.
Multiplicative initialization allows to optimize first the reconstruction error term, then to focus on the
refinement that is the smoothness constraint.

4.2.2 Overall transcription performance

Tables 4 and 5 report the transcription performance of tested algorithms on the synthetic and recorded
datasets respectively. HS-NMF outperforms other NMF-based algorithms in both cases, but remains less
performant than SONIC software. Smoothness constraint used alone seems detrimental to transcription
performance, may it be implemented by a multiplicative algorithm (Virtanen’07) or by a Bayesian
algorithm (S-NMF), but improves the performance of harmonically constrained NMF (H-NMF vs. HS-
NMF).
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Algorithm P R F MOR AdB

NMF/MU 63.4 56.1 54.9 51.2 -62
H-NMF/MU 58.7 59.1 52.4 46.0 -33

S-NMF 62.4 43.3 49.5 50.7 -51
Virtanen’07 55.9 56.4 53.6 52.1 -22
HS-NMF 65.8 64.5 60.7 44.3 -38
Marolt’04 83.5 70.1 75.8 53.5 -

Table 4: Transcription scores on synthetic data.

Algorithm P R F MOR AdB

NMF/MU 43.3 43.4 40.8 47.7 -60
H-NMF/MU 43.0 42.7 41.3 44.6 -30

S-NMF 46.2 32.0 36.6 45.6 -49
Virtanen’07 34.2 34.8 33.6 47.1 -21
HS-NMF 46.6 45.3 45.0 43.2 -32
Marolt’04 63.7 53.6 58.0 50.0 -

Table 5: Transcription scores on real audio data.

Results are comparable to scores from [24] obtained on a database including ours, and place our
algorithm performance at the state-of-the-art level.

4.2.3 Harmonicity of the basis

On figure 3, we display bases W after convergence, with columns sorted by increasing pitch. We can see
that non-harmonically constrained NMF exhibits a dictionary that has a pitched structure but a rather
noisy look, whereas bases from harmonically constrained algorithms are much cleaner. S-NMF produces
a much less sparser dictionary than unconstrained NMF, which is coherent with observations from [15]
and could explain its lower performance.

Another noticeable result is the pitch repartition in the basis. In non harmonically-constrained
NMF, as the basis is completely free, pitch repartition in the basis follows the same trend as pitch
repartition in the original piece; NMF tends to use more components to represent faithfully the most
frequent notes, while possibly neglecting rare passing tones. Moreover, some components do not exhibit
a pitched structure (5, in average). On the contrary, harmonically-constrained NMF have a fixed number
of components per pitch (one, in our case). This guarantees representation of all notes, including notes
played only a few times in the piece, but implies also useless computation on components corresponding
to absent notes in the piece, and does not allow representation of non-harmonic parts of the signal. This
could be alleviated by adding unconstrained components to the harmonic dictionary, updated separately
under usual multiplicative rules, for instance.

4.2.4 Smoothness of components

Temporal envelopes hk, for k corresponding to the note C4, obtained by NMF/MU (without constraint),
H-NMF, S-NMF and HS-NMF are displayed on Figure 4. The ground truth pianoroll (time-pitch rep-
resentation) is displayed as well. S-NMF and HS-NMF produce indeed smoother envelopes, which can
be noticed in particular when the note is supposed to be off. We can notice several spurious peaks in
NMF/MU and H-NMF/MU, for instance during the first 750 milliseconds or around t = 10s, whose
amplitude is reduced or zeroed by the associate smooth version (S-NMF and HS-NMF respectively).
Another noticeable result is that harmonic constraint seems to disfavour smoothness of the envelopes.
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Figure 3: Example basis matrices W for algorithms without and with harmonicity contraint. Columns
are sorted by increasing pitch.

4.2.5 Detection threshold

In Tables 4 and 5, the optimal detection threshold is manually determined to get the best mean F-
measure over the test database. Varying this threshold allows to display Precision-Recall curves and
have a deeper insight on algorithms performance. Figure 5 presents these curves for NMF/MU, H-
NMF/MU, S-NMF and HS-NMF. The curve confirms the good performance of HS-NMF. It reaches a
better trade-off between precision and recall and is more robust to the choice of the threshold. Both
multiplicative algorithms (H-NMF/MU and NMF/MU) are comparable around the optimal F-measure.
S-NMF gives the poorest results at every threshold. We can also notice that a 100% recall is never
reached, even at very low threshold, which points a limit of NMF-based transcription algorithms.

These curves, as well as Tables 4 and 5, are obtained by averaging the scores over the dataset, but it is
important to note an important variability between pieces, in terms of performance and optimal thresh-
old. At fixed threshold AdB , F standard deviation is worth about 12% for all NMF-based algorithms
(from 9% for Virtanen’07, to 16% for HS-NMF).
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Figure 4: Temporal activation of note C4 for four different algorithms on the same excerpt. The pianoroll
of the corresponding excerpt is on top, with C4 in black and neighbour notes in gray.

5 Conclusion and perspectives

In this paper, we proposed an original model for including harmonicity and temporal smoothness con-
straints in non-negative matrix factorization of time-frequency representations, in a unified framework.
The resulting algorithm we propose, HS-NMF, is derived from a Bayesian framework and outperforms
other benchmarked NMF approaches in a task of polyphonic music transcription, evaluated on a realis-
tic music database. The Bayesian framework also offers theoretical results about convergence, that are
generally not available in usual multiplicative approaches of NMF. We also proposed a novel multiplica-
tive NMF with harmonicity constraint, minimizing Itakura-Saito divergence, which has links with the
exposed statistical approach and was shown to suit well for the representation of audio signals in this
context [14]. Thus, the contributions of this paper are theoretical, algorithmic and experimental at a
time, in the very active domains of music transcription and NMF study.
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Figure 5: Precision-Recall curves for four different algorithms. The detection threshold varies from 0 to
-100 dB under H maximum. The couple (P,R) realizing the F maximum is represented with a star.

The temporal smoothness constraint does not bring all improvements we could expect, in particular
in terms of robustness to the detection threshold and efficiency of the note duration estimation. However,
it seems useful to compensate the tendency of harmonically-constrained NMF to produce non-smooth
decomposition, and lead therefore to a better transcription performance when both constraints are used.
A limitation of our common NMF framework (NMF core algorithm plus detection threshold based post-
processing) appears here, as a 100% recall rate is never reached, for any value of the threshold or any
tested algorithm.

Using a statistical model relies of course on the fact that the ground truth actually follows this model.
Performance obtained here let hope it is more or less the case, but adequation between the data and
the model should be further investigated on. In particular, the choice of the shape parameter α of the
inverse-Gamma prior put on temporal envelopes should be discussed, and its learning, as well as NMF
factors are learnt, should be considered.

Possible improvements include a refinement of the temporal prior, which suits for modelling the
sustain and decay parts of the note, but disfavour attacks and silences. An option to alleviate this
mismatch between the model and the data could be the use of switching state models for the rows
of H, that would explicitly model the possibility for hkn to vary quickly (attack) or to be strictly
zero (absence of the note). As far as W is concerned, transients are badly represented in an entirely
harmonic dictionary, but this could be solved by adding a few unconstrained (non harmonic) components
in the representation. At last, as many EM-based algorithms, HS-NMF remains very slow compared to
multiplicative gradient descent approaches; an alternative to it could be the direct minimization of the
criterion it optimizes by the usual multiplicative heuristics (3), possibly losing the proof of convergence
but reducing computational time.
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A Standard distributions

Complex valued Gaussian N (u|µ,Σ) = |π Σ|−1 exp−(u− µ)H Σ−1 (u− µ)
Poisson P(u|λ) = exp(−λ) λu

u!

Inverse-Gamma IG(u|α, β) = βα

Γ(α) u−(α+1) exp(−β
u
), u ≥ 0

B SAGE update rules with harmonicity

In this appendix we detail the derivations leading to update rules of equations (14) and (15). The
functional QML

km (θkm|θ′) defined in equation (13) may be processed in two steps. First, we write the
hidden data log-likelihood:

log p(Dkm|θkm) = log

N
∏

n=1

F
∏

f=1

p(dkmn(f)|θkm) (30)

As dkmn(f) ∼ N (0, hknemkPkm(f)), we have:

log p(Dkm|θkm)
c
= −

N
∑

n=1

F
∑

f=1

log(hknemkPkm(f)) +
|dkmn(f)|2

hknemkPkm(f)
(31)

The second term to be computed is the hidden data posterior p(Dkm|V,θ′). It may be obtained by
writing xn = dkmn +

∑∑

(k′,m′) 6=(k,m) dk′m′n and using the Wiener filtering method proposed in [17]

for the separation of two sources. According to it, the posterior mean and variance of dkmn(f) write
respectively:

µpost
kmn(f) =

hknemkPkm(f)

v̂fn

xn(f) (32)

λpost
kmn(f) =

hknemkPkm(f)

v̂fn

∑

(k′,m′) 6=

∑

(k,m)

hk′nek′m′Pk′m′(f) (33)

Then, by taking the expectation of the log-likelihood with regard to the posterior, we get the functional
expression:

QML
km (θkm|θ′) = −

N
∑

n=1

F
∑

f=1

log(hknemkPkm(f)) +

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

hknemkPkm(f)
(34)

Zeroing the gradients of QML
km wrt emk and the gradient of their sum over m wrt hkn leads to the update

rules:

h
(l+1)
kn =

1

FM

∑

f

∑

m

∣

∣

∣
µpost′

kmn (f)
∣

∣

∣

2

+ λpost′

kmn (f)

e
(l)
mkPkm(f)

(35)

e
(l+1)
mk =

1

FN

∑

n

∑

f

∣

∣

∣µ
post′

kmn (f)
∣

∣

∣

2

+ λpost′

kmn (f)

h
(l+1)
kn Pkm(f)

(36)

where the superscript ′ indicates that λpost′

kmn and µpost′

kmn are computed with most up-to-date values of E

and H. This form lets appear possible numeric errors if hkn = 0 or emk = 0. This can be avoided by
replacing λpost

kmn and µpost
kmn by their expressions (32) and (33). This leads to update rules proposed in

equations (14) and (15).
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C SAGE update rules with harmonicity and temporal smooth-

ness

We write the functional QMAP
k =

∑M

m=1 QML
km + log p(hk) as the sum of the ML functional and contri-

butions from the prior. For n = 2 . . . N − 1:

∇hkn
QMAP

k (θk|θ′) = ∇hkn

(

M
∑

m=1

QML
km (θkm|θ′)

)

+∇hkn

(

log p(hk(n+1)|hkn) + log p(hkn|hk(n−1))
)

(37)

As log IG(u|α, β)
c
= α log β − (α + 1) log u− β/u, we have:

∇hkn
QMAP

k (θk|θ′) = − αk + 1

hk(n+1)
− FM + 1

hkn

+
1

h2
kn





F
∑

f=1

M
∑

m=1

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

emkPkm(f)
+ (αk + 1)hk(n−1)





Then, this gradient is proportional to a second-order polynomial:

∇hkn
QMAP

k (θk|θ′) =
−FM

h2
kn

(

p2h
2
kn + p1hkn − p0

)

with p2 =
1

FM

αk + 1

hk(n+1)

p1 = 1 +
1

FM

p0 = h̃kn +
αk + 1

FM
hk(n−1)

where h̃kn is the ML estimator (see equation (35)). For n = N the term p(hk(n+1)|hkn) is simply removed
from equation (37). For n = 1, the Markov chain structure imposes to choose a prior p(hk1). We take
Jeffreys’ non-informative prior: p(hk1) ∝ 1/hk1. The corresponding gradients are written:































∇hk1
QMAP

k (θk|θ′) = −FM

hk1
+

1

h2
k1





F
∑

f=1

M
∑

m=1

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

emkPkm(f)



− αk − 1

hk1
− αk + 1

hk2

∇hkN
QMAP

k (θk|θ′) = −FM

hkN

+
1

h2
kN





F
∑

f=1

M
∑

m=1

∣

∣µpost
kmn(f)

∣

∣

2
+ λpost

kmn(f)

emkPkm(f)
+ (αk + 1)hk(N−1)



− αk + 1

hkN

This leads to p0, p1 and p2 values reported in Table 2.
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en Éléments Sonores et Applications Musicales (DESAM).

The authors would like to thank Cédric Févotte for his decisive influence on the Bayesian orientation
of this work, wise advice on literature review, and support. We also wish to credit Valentin Emiya for
its incredible work on collecting and sharing MAPS database, and Tuomas Virtanen for gently sharing
code and usage advice.

References

[1] T. Virtanen, “Monaural sound source separation by nonnegative matrix factorization with temporal
continuity and sparseness criteria,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 3, pp. 1066–1074, mar 2007.

18



[2] B. Wang and M. Plumbley, “Musical audio stream separation by non-negative matrix factorization,”
in Proceedings of the DMRN Summer Conference, Glasgow, UK, July 23-24, 2005.

[3] A. Cont, “Realtime audio to score alignment for polyphonic music instruments using sparse non-
negative constraints and hierarchical HMMs,” in Proc. of International Conference on Acoustics,
Speech and Signal Processing (ICASSP’06), Toulouse, France, May 14-17, 2006.

[4] J. Paulus and T. Virtanen, “Drum transcription with non-negative spectrogram factorisation,” in
Proc. of the 13th European Signal Processing Conference (EUSIPCO), Antalya, Turkey, Sep 4-8,
2005.

[5] P. Smaragdis and J. Brown, “Non-negative matrix factorization for polyphonic music transcription,”
in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA’03), New
Paltz, New York, USA, Oct. 19-22 2003, pp. 177–180.

[6] N. Bertin, R. Badeau, and G. Richard, “Blind signal decompositions for automatic transcription of
polyphonic music: NMF and K-SVD on the benchmark,” in Proc. of International Conference on
Acoustics, Speech and Signal Processing (ICASSP’07), vol. 1, Honolulu, Hawaii, USA, Apr. 15-20,
2007, pp. 65–68.

[7] D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature,
vol. 401, pp. 788–791, Oct. 1999.

[8] S. Li, X. Hou, H. Zhang, and Q. Cheng, “Learning spatially localized, parts-based representation,”
in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, Hawaii, USA, Dec. 11-13, 2001, pp. 207–212.

[9] Y. Zhang and Y. Fang, “A NMF algorithm for blind separation of uncorrelated signals,” in Proc.
of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China,
Nov. 2-4, 2007, pp. 999–1003.

[10] M. Plumbley, “Algorithms for nonnegative independent component analysis,” IEEE Transactions
on Neural Networks, vol. 14, no. 3, pp. 534–543, Mar 2003.

[11] S. Abdallah and M. Plumbley, “Polyphonic music transcription by non-negative sparse coding of
power spectra,” in Proceedings of the 5th International Conference on Music Information Retrieval
(ISMIR’04), Barcelona, Spain, Oct. 10-14, 2004, pp. 318–325.

[12] P. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal of Machine
Learning Research, vol. 5, pp. 1457–1469, Nov. 2004.

[13] Z. Chen, A. Cichocki, and T. M. Rutkowski, “Constrained non-negative matrix factorization method
for EEG analysis in early detection of Alzheimers disease,” in Proc. of International Conference on
Acoustics, Speech and Signal Processing (ICASSP’06), vol. 5, Toulouse, France, May 14-19, 2006,
pp. 893–896.

[14] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the Itakura-
Saito divergence. With application to music analysis,” Neural Computation, 2008, in press. http:
//www.tsi.enst.fr/∼fevotte/TechRep/techrep08 is-nmf.pdf.

[15] A. Pascual-Montano, J. Carazo, K. Kochi, D. Lehmann, and R. Pascual-Marqui, “Nonsmooth non-
negative matrix factorization (nsNMF),” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 28, no. 3, pp. 403–415, Mar 2006.

[16] E. Vincent, N. Bertin, and R. Badeau, “Harmonic and inharmonic nonnegative matrix factorization
for polyphonic pitch transcription,” in Proc. of International Conference on Acoustics, Speech and
Signal Processing (ICASSP’08), Las Vegas, Nevada, USA, March 30 - April 4, 2008, pp. 109–112.

[17] L. Benaroya, L. McDonagh, R. Gribonval, and F. Bimbot, “Non negative sparse representation
for Wiener based source separation with a single sensor,” in Proc. of International Conference on
Acoustics, Speech and Signal Processing (ICASSP’03), Hong Kong, China, Apr. 6-10, 2003, pp.
613–616.

19



[18] L. Benaroya, R. Blouet, C. Févotte, and I. Cohen, “Single sensor source separation using multiple-
window STFT representation,” in Proc. of the International Workshop on Acoustic Echo and Noise
Control (IWAENC06), Paris, France, Sep. 12-14, 2006.

[19] T. Virtanen, A. T. Cemgil, and S. Godsill, “Bayesian extensions to non-negative matrix factorisation
for audio signal modelling,” in Proc. of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP’08), Las Vegas, Nevada, USA, March 30 - April 4, 2008, pp. 1825–1828.

[20] M. Schmidt and H. Laurberg, “Nonnegative matrix factorization with gaussian process priors,”
Computational Intelligence and Neuroscience, In press. 2008.

[21] J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation maximization algorithm,”
IEEE Transactions on Signal Processing, vol. 42, no. 10, pp. 2664–2677, Oct 1994.

[22] E. Vincent, N. Bertin, and R. Badeau, “Two nonnegative matrix factorization methods for poly-
phonic pitch transcription,” in Proc. Music Information Retrieval Evaluation eXchange (MIREX),
University of Vienna, Austria, September 23-30, 2007.

[23] M. Marolt, “A connectionist approach to automatic transcription of polyphonic piano music,” IEEE
Trans. on Multimedia, vol. 6, no. 3, pp. 439–449, June 2004.

[24] V. Emiya, R. Badeau, and B. David, “Automatic transcription of piano music based on HMM
tracking of jointly-estimated pitches,” in Proc. Eur. Conf. Sig. Proces. (EUSIPCO), Lausanne,
Switzerland, Aug 25-29, 2008.

[25] A. Cemgil, H. Kappen, and D. Barber, “A generative model for music transcription,” IEEE Trans.
on Audio, Speech and Language Processing, vol. 14, no. 2, pp. 679–694, March 2006.

[26] V. Emiya, “Transcription automatique de la musique de piano,” Ph.D. dissertation, Institut TELE-
COM; TELECOM ParisTech, 2008.

[27] C. van Rijsbergen, Information retrieval, 2nd ed. London, UK: Butterworths, 1979.

[28] M. Ryynänen and A. Klapuri, “Polyphonic music transcription using note event modeling,” in
Proc. 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New
Paltz, New York, USA, Oct. 2005, pp. 319–322.

20



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Dépôt légal : 2009 – 1
er

 trimestre 
Imprimé à l’Ecole Nationale Supérieure des Télécommunications – Paris 

ISSN 0751-1345 ENST D (Paris) (France 1983-9999) 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TELECOM ParisTech 

Institut TELECOM - membre de ParisTech 

46, rue Barrault - 75634 Paris Cedex 13  -  Tél. + 33 (0)1 45 81 77 77  -  www.telecom-paristech.frfr 

Département TSI
 

 

©
  

In
st

it
u
t 

T
E

L
E

C
O

M
 -

T
é

lé
c
o
m

 P
a

ri
s
T

e
c
h

 2
0
0
9

 

 


