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Abstract

In this document, we recall overall main definitions and basic properties of
Markov chains on finite state spaces, Green functions, partial differential equa-
tions (PDE’s) and their (approximate) resolution using diffusion walks in a discrete
graph. We apply then all these topics to the study of traffic propagation and repar-
tition in ad hoc networks. Last we also apply this framework to image restoration
(with and without boundaries.)
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la restauration d’images

Marc Sigelle∗ , Ian Jermyn† et Sylvie Perreau‡

Marc.Sigelle@telecom-paristech.fr

Ian.Jermyn@sophia.inria.fr

Sylvie.Perreau@unisa.edu.au

6 janvier 2009

Résumé

Nous rappelons dans un premier temps les définitions et propriétés fondamen-
tales des châınes de Markov à temps discret et à nombre d’états fini. Ce schéma
permet la résolution (approchée) de certaines classes d’équations aux dérivées par-
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1 Introduction

In this document, we present and recall several basic definitions and properties of:

• Markov chains on finite state spaces.

• Green functions.

• partial differential equations (PDE’s) and their (approximate) resolution using dif-
fusion walks in a discrete graph. In particular the role of boundary and source
conditions modeling has been emphasized.

• application of these to traffic propagation and repartition in ad hoc networks, and
to image restoration with eventual boundary process.

We try to present these topics in a pedagogical way, hoping this aim will be achieved.

2 Markov chains on a finite state space - Recalls

To start with we consider a discrete finite state space E with cardinal N .
Then we consider E = IR|E| as the vector space of real bounded functions on E :

E 7→ IR

x 7→ f(x) .

Two functions (or classes of functions) play a particular role in E:

• the family of indicatrix functions:

ex0 = 1lx=x0 ∀x0 ∈ E
which are identified to the canonical base vectors of E .

• the constant function 1 defined by:

x 7→ 1 ∀x ∈ E

Now a probability distribution P is a positive measure on E i.e., a (positive) linear form
with total mass 1 on E. Defining: Pr (X = x0) = P (ex0) = P (1lx=x0) ∀x0 ∈ E one has:

P (f) =
∑
x∈E

P (ex) f(x) =
∑
x∈E

Pr (X = x) f(x)

= IE [ f ]

with
∑
x∈E

Pr (X = x) = 1 of course

This last condition can be written as

P (1) = 1

Also useful in the sequel will be the uniform measure on E defined by:

µ0(ex) =
1

|E|
=

1

N
∀x ∈ E .
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2.1 stochastic matrices

definition
A stochastic matrix Q is such that

Q 1 = 1

right-wise multiplication of a probability measure by a stochastic matrix
Let P be a probability measure and Q a (stochastic) matrix in L(E). Then by definition:

(P Q)(f) = P (Qf) ∀f ∈ E

In particular one has:
(P Q)(1) = P (1) = 1

and P Q is thus definitely a probability measure on E .

Now, let y ∈ E . Then, the probability measure Qr = P Q applied to f(x) = 1lx=y writes:

Qr (1lx=y) = (P Q)(ey) = P (Q(ey))

=
∑
x∈E

Pr (X = x) Qx y

2.2 Markov chains on E

Let us consider a Markov chain with initial associated probability measure P0 and tran-
sition matrix Q. We have that:

Pr (X0 = x0, . . . .....XM = y) = Pr (X0 = x0) Qx0 x1 . . . QxM−1 y (1)

so that by noting PM = Pr (XM = .) one has very formally and concisely :

PM = P0 Q
M

In particular:

PM(y) = Pr (XM = y) =
∑
x0∈E

Pr (X0 = x0) (QM)x0 y

and thus

Pr (XM = y | X0 = x0) = (QM)x0 y

A useful formula for the sequel is the following: let us compute
the expectation of some function ψ ∈ E at step M (wrt. to previous Markov chain) .
Then:

IE [ψ(XM) ] = PM(ψ) = (P0 Q
M)(ψ) = P0(Q

Mψ)

=
∑
x0∈E

Pr (X0 = x0) (QM ψ)(x0) (2)

Results directly from previous formulaes. In particular:

∀ψ ∈ E, IE [ψ(XM) | X0 = x0 ] = (QM ψ)(x0) (3)
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2.3 invariant measure - convergence

Recall that E is endowed with the L∞ norm:

|| f ||∞ = sup
x∈E
|f(x)| .

so that the variation distance between two measures is defined equivalently as:

||µ− ν ||V = sup
|| f ||∞=1

|µ(f)− ν(f)| (4a)

=
∑
x∈E

|µ(ex)− ν(ex)| = 2−
∑
x∈E

min(µ(ex), ν(ex)) (4b)

and satisfies of course from the first previous equality (4a) :

|µ(f)− ν(f)| ≤ ||µ− ν ||V || f ||∞ ∀µ, ν, f

Now, the Dobrushin contraction coefficient of a stochastic matrix A is defined as:

c(A) =
1

2
sup
i,j
||Ai(.)− Aj(.) ||V , 0 ≤ c(A) ≤ 1

It ensures that Winkler (1995) :

|| (νA)− (µA) ||V ≤ c(A) || ν − µ ||V ∀µ, ν, A
c(A B) ≤ c(A) . c(B) ∀A,B

In the case when A is strictly positive, one has from the second equality (4b) :

0 ≤ c(A) < 1 (hence the contraction property)

In this case, Perron-Frobenius theorem ensures a unique invariant measure µ of A i.e., :

(µA) = µ

Thus one has:

∀M ≥ 0, || (P0 A
M)− µ ||V = || (P0 A

M)− (µAM) ||V

≤ c(A)M ||P0 − µ ||V ∀ initial P0 (5)

⇒ the measure P0 A
M converges to µ as M → +∞ , whatever initial measure P0 .

This can be generalized when some power of A, Ar is strictly positive (r > 1), although
A itself may be not so:
Indeed let us decompose in an euclidian manner: M = nr + p, 0 ≤ p < r :

||P0 A
nr+p − µr Ap ||V = ||P0 (Ar)n Ap − µr (Ar)n Ap ||V

≤ c(Ar)n ||P0 A
p − µr Ap ||V 0 ≤ p < r

≤ c(Ar)n c(A)p ||P0 − µr ||V 0 ≤ p < r (6)
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3 Discretization of a class of linear (elliptic) PDEs

We follow Ycart (1997); Rubinstein (1981) with slight changes. Find f ∈ E such that:
γ (A− I) f = φ , A ∈ L(E)

(eventually) subject to

f(xs) = b(xs) known ∀xs ∈ B ⊂ E
(7)

Here γ is a constant, and B represents the boundary of domain E wiewed as a multi-
dimensional (in general 2D) discrete lattice.

3.1 a linear algebra point of view

We split E in boundaries/non-boundaries, so that the following decomposition holds:

E = Ẽ ∪ B (state space)

E = Ẽ ⊕B (functional vector space)

f = f̃ + b (functions)

Problem (7) writes thus: γ (A− I) f̃ = φ+ γ (I − A) b with A ∈ L(E)

Now let us note P̃ the linear projector on susbspace Ẽ with kernel B . One has:

f̃ = P̃ f = P̃ f̃ and P̃ b = 0 . Left-application of P̃ to previous equation yields:

γ (Ã− I) f̃ = ψ = P̃ φ− γ P̃A b with Ã = P̃A ∈ L(Ẽ) (8)

Note that P̃AP̃ = ÃP̃ and P̃ φ are the restrictions of A (resp. φ) to Ẽ.
In the sequel A will often be a stochastic matrix (see below the Poisson-Laplace case)
so that 1 is an eigenfunction of A with eigenvalue λ1 = 1. In many cases the multiplicity
of λ1 is 1 (see below) and all other eigenvectors have eigenvalues such that |λi| < 1.
Thus solving (8) with proper invertibility conditions yields:

f̃ = −1

γ
(I− Ã)−1 ψ (9)

3.1.1 an example: the Laplace and Poisson equations

E is now a discrete sublattice of ZZ2 with lattice step h (and thus unit cell size: h× h .)
This sublattice is endowed with a non-oriented, connected graph structure, the neigbor-
hood relationship being noted as xt ∼ xs ( e.g. 4-connectivity .) Now:

∆f(xs) ≈

[
∑
xt∼xs

f(xt) ]− 4 f(xs)

h2
⇒ ∆f ≈ γ (A− I) f

with γ =
4

h2
and (Af)(xs) =

1

4
[
∑
xt∼xs

f(xt) ] ∀xs ∈ E (averaging operator)

In this case: B(xs) = γ P̃A b(xs) =
∑
xt∼xs

xt∈B

b(xt) ∀xs ∈ Ẽ . (10)
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It is of paramount importance to note here that A is a stochastic matrix on E .
A result of Mohar (1997) states that the multiplicity of λ1 = 1 is 1 for connected graphs.
Also the Perron-Frobenius theorem implies that all other eigenvectors have corresponding
eigenvalues |λi| < 1.

Now the corresponding solution of (7) for φ(x) =
1lx=y
h2

=
ey
h2

is noted as 1

Gx y ∀x, y ∈ Ẽ (“discrete” Green function) .

From (9) its closed form for null boundary conditions b = 0 writes as:

Gx y = − 1

4

(
(I− Ã)−1ey

)
(x) = − 1

4

(
(I− Ã)−1

)
x y

(11)

By previous argument (|λi| < 1) this expression can be expanded in series as

Gx y = −1

4

( ∑
M≥0

(Ã M)x y

)
x, y ∈ Ẽ (12)

We have thus solved the discrete analogue of the continuous Poisson problem:

find f(x) = G(x, y) such that:

∆xG(x, y) = δ(x, y) and G(x, y) = 0 ∀x ∈ ∂D (boundary conditions)

The conditions of convergence of the series (12) are examined in the following section .

3.2 interpretation in terms of Markov Random Fields (MRFs)

We follow Mohar (1997) 2 .

We first endow E (and thus Ẽ), with the usual `2-like, scalar product:

< f, g >=
∑
xs∈E

f(xs) g(xs)

Now the basic energy (quadratic form) associated to the Laplacian operator is:

U(f) =
∑
xs∼xt

as,t (f(xs)− f(xt))
2

where the positive weights as,t are noted with a comma to emphasize that they are
symmetric (most often they are equal to 1 in our case of interest: e.g. Laplace-Poisson).
This corresponds of course to a Gaussian Markov Random Field.
Notice also that the as,t can be interpreted as a contour process in image processing.

1 we divide unit function ey by unit cell size h2 since it yields a “discrete approximation” of the δ

distribution. This can be seen for instance by the fact that:
∑
y∈E

ey

h2
h2 = 1 . Notice also that h disappears

in following discrete linear equations due to the particular case of a 2nd degree PDE in 2D.
2 notice that here we note xs, xt . . . the topological pixel sites instead of their values as usually done

with MRFs.
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3.2.1 Dirichlet boundary conditions

Let us minimize U(f) subject to f(xs) = b(xs) ∀xs ∈ B .

This corresponds to solve problem (8) with φ = 0 and we have thus:
(1− Ã) f̃ = P̃ A b and

Ãst =
as,t∑

xt∼xs

as,t
is a Laplacian transfer matrix.

This is a Laplace-like problem with Dirichlet boundary conditions, which correspond to
absorption (see subsection 3.3: Markov chains interpretation).
The matrix Ã is thus symmetric and semi-stochastic :∑
t

|Ãst| < 1 when ∃xt ∼ xs s.t. xt ∈ B i.e., near boundaries.

For this case, Magnus (2007) uses:

Theorem (Hadamard) 1 : A square matrix C verifying Cii >
∑
j 6=i

|Cij| ∀i = 1 . . . N

(strongly dominant [by lines]) is non-singular,

and namely, the following subsequent refinement:

Theorem (Magnus) 2 : A square real matrix C verifying:

(1) Cii > 0 ; Cij ≤ 0 ∀i, j = 1 . . . N, j 6= i ;

(2) Cii ≥
∑
j 6=i

|Cij| ∀i = 1 . . . N (dominance) ,

(3) Cii >
∑
j 6=i

|Cij| for at least one i ,

(4) C is undecomposable i.e., precisely the matrix C has no strictly smaller stable square
submatrix ,

is invertible and its inverse is a positive matrix.

by applying this Theorem to C = I − Ã, it is enough that one of the sum values satisfy∑
j

|Ãij| < 1 to ensure that I − Ã is invertible, ensuring thus (from Perron-Frobenius)

that the series (Ã M) converges.

Remark it is important to see that the non-decomposability condition (4) is necessary :
otherwise one could construct C as

C =


. . . 0
. 1− A′ . 0
. . . 0
0 0 0 1− α


with 0 < α < 1 and a block-stochastic matrix A′ not invertible.
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xs x0
s

B B̃

Figure 1: Von Neumann boundary conditions

3.2.2 Von Neumann boundary conditions

To each node xs ∈ B we associate a new node x0
s connected to s only (see Fig. (1)).

We note the related set of sites (states) as:

B̃ = {x0
s}xs∈B

Now define a new energy function

U(f) =
∑
xs∼xt

as,t (f(xs)− f(xt))
2+ ε

∑
s∈B

(f(xs)− f(x0
s))

2
(ε > 0)

Minimizing wrt. x0
s yields:

f(x0
s) = f(xs) , (13)

which in some sense is the discrete analogue of Von Neumann condition:

(
∂f

∂~n
)
xs

= 0 .

We can take 0 < ε� 1 in order not to perturbate optimal value at site xs ∈ B:

f(xs) =

∑
xt∼xs

as,t f(xt) + ε f(x0
s)∑

xt∼xs

as,t + ε
(14)

In this von Neumann case the matrix A is positive stochastic and non-symmetric:

from (13) one has: Ax0
sxs

= 1 , whereas Axsx0
s

=
ε∑

xt∼xs

as,t + ε

This corresponds to reflection. Since there is no need here to project on Ẽ , we go back
to the initial problem (7) with von Neumann boundary conditions using initial matrix A:

(I− A) f = Φ = −φ
γ

(15)

In this case Dautray (1989) elegantly proves the following
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Theorem (Dautray) 3 if A is strictly positive and stochastic,

then the series
∑
M≥0

(AM) Φ converges provided that Φ ∈ Im(I− A) .

Proof: from (5) the series
∑
M≥0

(P0A
M)(Φ)− µ(Φ) converges, at geometrical speed,

∀Φ ∈ E . Now it suffices that µ(Φ) = 0 to ensure the convergence of the series∑
M≥0

(P0A
M)(Φ) ∀P0

Lemma previous condition: µ(Φ) = 0, is equivalent to Φ ∈ Im(I− A).

a) indeed, if ∃g ∈ E s.t. Φ = g − Ag, then µ(Φ) = µ(g)− (µA)(g) = 0.

b) conversely, if µ(Φ) = 0 then, noting gn =
n∑

M=0

AMΦ we have that

P0(gn) = P0(A
0 Φ + A gn−1) ∀P0

and at the limit P0(g) = P0(Φ + Ag) i.e., P0(Φ) = P0(g − Ag) ∀P0 .

In other words, if problem (15) admits a solution, then the series expansion:
∑
M≥0

(AM) Φ

converges to its solution.
Easily generalized to Ar strictly positive for some r > 1:

Theorem 4 Previous Theorem also holds if A is irreducible i.e., there exists a positive
integer: r > 1 s.t. Ar > 0 .

Proof: indeed since the Markov chain with transition matrix A is irreducible and
positive recurrent i.e., the return time

Ts = min { n ≥ 1 s.t. Xn = xs | X0 = xs }

to any state xs has finite expectation: indeed any state xs can be reached again at
every even step (nearest-neighbour interaction), then Wikipedia on the Web (2002); Fort
et al. (2005)) this chain admits a unique invariant measure µ, which is also the invariant,
positive measure µr of matrix Ar > 0 since:

µ A = µ⇒ µ Ar = µ ∀r ≥ 1

Now from (6) with M = nr + p, 0 ≤ p < r :

|P0 A
nr+p(Φ)− µ Ap(Φ)| ≤ c(Ar)n c(A)p ||P0 − µ ||V ||Φ ||∞ 0 ≤ p < r

so that it suffices that µ(Φ) = 0 = . . . µ Ap(Φ) to ensure the ”stepwise-geometrical” 3

convergence of the series with term P0 A
M(Φ) .

3of course the convergence will be slower that previously, depending on r which may be large: of the
order of the diameter of the lattice for the laplacian case.
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3.3 interpretation in terms of Markov chains

We saw in previous sections that in many cases the matrix A is stochastic and hence
the series expansion Ã M

xy can be interpreted as a transition probability for the Markov

chain with transition matrix Ã. Anyway, since we need to consider absorbing states (see
afterwards: Dirichlet conditions and attachment to data terms in image restoration), it
could be dangerous to modify A (or Ã) for tailoring them to a given application.
Therefore the best way is given by Rubinstein (1981)4 and Ycart (1997): it consists to
design a specific Markov chain with initial probability P0 adapted to our solution and
whose transition matrix Q is as close as possible to Ã .
For instance consider the problem (8). The solution being f and given measure a µ on E ,
we want to evaluate:

µ(f) =
∑
x0∈E

µ(x0) f(x0)

We consider for this purpose a Markov chain on

E ∪ {a}

where a is a new, absorbing state.
This chain being specified by (P0, Q), we consider the random variable

Z ′ =
µ(x0)

P0(x0)

 ∏
XM+1 6=a

ÃXM XM+1

QXM XM+1

 ψ(Xτ )

QXτ a

(16)

It must be understood here that a is the first absorbing state encountered, and at step
τ + 1 i.e.,

XM+1 6= Xτ+1 = a ∀M < τ .

The theory states that whatever the Markov chain considered,

−µ(f) = IE [Z ′ ] w.r.t. the chosen Markov chain

(the sign arises from (12)). This expression can be approximated by the empiric average

−µ(f) =

(
Ns∑
i=1

Z ′

)
/ N s

obtained over N s simulations of this Markov chain. In practice one chooses
P0(x0) = µx0

Qxs xt = Ãxs xt xs, xt ∈ Ẽ
Qy a = 1

The only difference being that a is an absorbing state for the Markov chain (P0, Q),
e.g. linked to a Dirichlet boundary value or to a data node, so that:

Z ′ = ψ(Xτ ) s.t. Xτ+1 = a

Thus the solution is estimated by the empiric average of values at nodes (states) connected
to absorbing state a 5

4 this is among the first instances of sequential importance sampling: see e.g. Liu (2001) .
5 it is fundamental to note the backward aspect of these equations: for instance y is treated as

a sink here whereas it is obviously a ”source”. This relates to backward Kolmogorov-Chapman versus
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3.4 summary

Neumann Dirichlet

Ẽ B B̃ Ẽ B a

Q =

Ẽ

B

B̃


. . . . 0
. . . . 0
. . . . .
. . . . .
0 0 1 . 0


Ẽ

B

a


. . . . 0
. . . . 0
. . . . .
. . . . .
0 0 0 0 1


Table 1: The specification of matrix Q according to boundary conditions

3.5 three ways to understand “time” in diffusion processes

This section is inspired from Dautray (1989). Let us consider a Markov chain with initial
measure P0 and stochastic matrix Q defined as in previous Section, according to the
problem considered (Dirichlet or Neumann conditions - Poisson or Laplace). One has:

∀M ≥ 0, PM = P0 Q
M i.e., ∀M ≥ 0, PM+1 = PM Q

⇔ ∀M ≥ 0, PM+1 − PM = PM (Q− I) (17)

Previous equation applies to the linear form PM ∈ E∗ (the dual space of E).
We turn it into a scalar equation by applying it to any function g ∈ E :

PM+1(g)− PM(g) = (PM (Q− I)) (g) = PM ((Q− I) g)

IEM+1 [ g ]− IEM [ g ] = IEM [ (Q− I) g ]

⇔ IE [ g(XM+1) ]− IE [ g(XM) ] = IE [ ((Q− I) g) (XM) ] (18)

Here three different possibilities occur:

1. assigning g(x) = ey(x) = 1lx=y and assuming Q symmetric (as for Dirichlet case):

P (XM+1 = y)− P (XM = y)︸ ︷︷ ︸
∂P (Xt = y)

∂t

= IE [ ((Q− I) ) 1lXM=y ]︸ ︷︷ ︸
1

γ
∆P (Xt=y)

This is the analogue of the heat equation for P (Xt) where here time t = M i.e., is
equal to the current Markov chain step. Of course, this applies (by identification)
to all conditional probabilities knowing initial condition X0 = x0:

∂P (Xt = y | X0 = x0)

∂t
=

1

γ
∆P (Xt = y | X0 = x0)

Fokker-Planck forward equations.

12



2. assigning g s.t. (Q−I) g(x) =
1

γ
1lx=y : namely g is solution of the Poisson problem,

and thus indeed the previous Green function g(x) = G(x, y) = Gx y , one has:

IE [G(XM+1, y) ]− IE [G(XM , y) ]︸ ︷︷ ︸
∂IE [G(Xt, y) ]

∂t

=
1

γ
P (XM = y)︸ ︷︷ ︸

P (Xt=y)

3. assigning g = f s.t. (Q − I) f =
1

γ
ψ , namely g = f is a solution of the Laplace

problem, and we obtain similarly to previous case:

IE [ f(XM+1) ]− IE [ f(XM) ]︸ ︷︷ ︸
∂IE [ f(Xt) ]

∂t

=
1

γ
IE [ψ(XM = y) ]︸ ︷︷ ︸

IE [ψ(Xt) ]

This applies by identification to every conditional probability knowing X0 = x0 :

∂IE [ f(Xt) | X0 = x0 ]

∂t
=

1

γ
IE [ψ(Xt) | X0 = x0 ]

Back to discrete analysis, let us assume finite time τ to reach boundary B from x0.
Then one has XM+1 = XM (= a) as soon as M > τ .
Summing down (!) the first τ steps in the Dirichlet case leads to:

IE [ f(Xτ ) | X0 = x0 ]
−−−−−−−−−−−−−−−−

− IE [ f(Xτ−1) | X0 = x0 ] =
1

γ
IE [φ(Xτ−1) | X0 = x0 ]

. . . − . . . =
1

γ
IE [φ(XM) | X0 = x0 ]

IE [ f(X1) | X0 = x0 ]− IE [ f(X0) | X0 = x0 ]
−−−−−−−−−−−−−−−

=
1

γ
IE [φ(X0) | X0 = x0 ]

⇒ f(x0)
−−−−

= − 1

γ

[ ∑
0≤M<τ

IE [φ(XM) | X0 = x0 ]

]
+ IE [ b(Xτ )Xτ∈B | X0 = x0 ]

−−−−−−−−−−−−−−−−−−−

This in full accordance with (3) and (16) for x0 /∈ B: :

f(x0) = f̃(x0) = − 1

γ

∑
0≤M≤τ

(QM ψ)(x0)

= − 1

γ

[ ∑
0≤M<τ

IE [φ(XM) | X0 = x0 ]

]
+ IE [B(Xτ ) | X0 = x0 ]

Thus in practice, simulate a series of Nx0 uniform random walks starting from x0

and terminating when reaching domain boundary Dautray (1989):

f(x0) ≈
1

Nx0

Nx0∑
n=1

 −1

γ

 ∑
M<τ (n)

φ(X
(n)
M )

+ B(Xτ (n))X
τ(n)∈B


The Poisson problem is treated in next Section.
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4 Application to path routing in ad hoc networks

We show in this Section that previous results are related to modeling the number of paths
arriving to a given point in a regular ad hoc network. During the course of this work
we became aware of the excellent work of Mabrouki et al. (2008b,a); Mabrouki (2008).
Interesting developments on ad hoc networks are also found in Hsin and Liu (2008); Beraldi
(2009). An application on Internet page finding is found in Ollivier and Senellart (2007).

The case of Poisson problem

a) First we want to “simulate” Gx0 y given by previous results.
This corresponds to assign µ(x) = 1lx=x0 , and we take thus:

- P0(x) = µ(x) = 1lx=x0 .

- the absorbing state a is related to “sink” node y .

- boundary conditions are accounted for in the following way:

• Neumman conditions:
since the optimal solution should verify: f(x0

s) = f(xs), we assign:

Qx0
s,xs

= 1 (reflection)

• Dirichlet condition (null/ non null):
we assign the same absorbing state a to each xs ∈ B.

From (16) we have simply that:

Z ′ = 1lXM=y | X0=x0

so that the solution (9) for null Dirichlet boundary conditions writes as:

−4 Gx0 y =
∑
M≥0

IE [ 1lXM=y | X0=x0 ]

= IE [ 1lexists M≥0 s.t. XM=y | X0=x0 ]

= Pr (∃ path: x0  y) !!

The last expression can be approximated by its empiric value

Pr (∃ path: x0  y) ≈ Nx0,y

Nx0

where Nx0,y counts the number of random paths with origin x0 arriving to y among the
Nx0 simulated random paths with origin x0.
Hence the discrete approximation of the Green function of the Poisson problem

∆xG(x, y) = δ(x, y)
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with null Dirichlet absorption conditions at boundary counts, up to sign and constant,
the number of paths 6 going from x to y .

b) Another application is the following: consider choosing

P0 = µ0

( i.e., . the starting point of the Markov chain is chosed at random uniformly in E).
Since the solution of the Poisson problem is f(x0) = Gx0 y ∀x0 ∈ E , this yields:

µ0(f) = −

∑
x0∈E

Gx0 y

( N = |E| )
=

1

4
Pr (∃ path  y) ≈ 1

4

Ny

N s

where Ny counts the number of paths arriving to the (absorbing) state y among the N s

simulated paths starting at random (uniform) in E .
A result for the continuous case (see Appendix A) shows that for a circular zone of radius

R and with absorbing conditions at the boundary,

∫
G(x, y) d2x =

r2 −R2

4
where point

y is at distance r from center O . This has been used to prove Perreau’s and Pham
formula Pham and Perreau (2002, 2004) for the average traffic passing through a given
node in a circular zone with uniform density of mobiles 7.
Thus for fixed radius R and at the ”continuous limit” i.e., N → +∞⇔ h→ 0:

−

∑
x0∈E

Gx0 y

N
=

1

4
P (∃ path:  y)

−→
N → +∞

−

∫
G(x, y) d2x

π R2
=

1

4 π
(1− r2

R2
)

and thus

P (∃ path:  y) −→
N → +∞

1

π
(1− r2

R2
) (19)

A curious consequence : the probability that any path (with absorbing conditions at the
boundary) arrives to the center of the circle is

1

π
.

6 Notice that the first terms M < ||x0 − y||1 (the L1 norm) are null since no transitions occurs from
x0 to y in less than ||x0 − y||1 steps.

7at least its analytical form as a function of the distance of the node to the center.
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5 Application to image restoration

Notice first that similar algorithms for image segmentation have been investigated in
Grady (2008); Grady and Sinop (2008); Sinop and Grady (2007); Grady (2006).
Let as before Φ denote the observed image data. The lattice step h is taken equal to 1.
The posterior restoration energy is then

U(f) =
∑
xs∼xt

as,t (f(xs)− f(xt))
2 + β

∑
s∈B

(f(xs)− φ(xs))
2 (20)

The connectivity is noted γ . Assume also free (or Von Neumann) boundary conditions.

5.1 simplest case : no boundary process

This corresponds to assign
as,t = 1 ∀xs ∼ xt

The optimal solution verifies then:

f(xs) =

∑
t∼s

f(xt) + β φ(xs)

γ + β
(21)

⇒ f = A f +
β

γ + β
φ (22)

with Axs xt =
1

γ + β
∀s, t ∈ E (23)

Assuming β > 0 safely implies the following series expansion:

f =
∑
M≥0

AM
β

γ + β
φ (24)

f(xs) =
∑
M≥0

∑
xt∈E

(AM)xs xt

β

γ + β
φ(xt) ∀xs ∈ E (25)

It is useful for the simulated interpretation to write

φ(xs) = φ(ys) ∀xs ∈ E

where ys is the supplementary (data) node associated to xs (see Fig(2))

and to assign: Axs ys =
β

γ + β

Previous equations write then

f(xs) =
∑
M≥0

∑
xt∈E

(AM)xs xt
Axt yt φ(yt) ∀xs ∈ E (26)

Thus considering all observed nodes ys as absorbing states we obtain the algorithm
described in Table 1.

16



xs

ys

xt

yt

Figure 2: Image restoration

Algorithm 1 Algorithm for image restoration by stochastic diffusion (without bound-
aries)

for each site s do
for k = 0 to N s times do

while (random uniform ρ ∈ [0, 1]) <
γ

γ + β
do

random 2D walk: xs → xi → xi+1 → . . . →xt
(using transition probability Axi xi+1

)
end while
as soon as ρ ≥ γ

γ + β
( transition xt → yt):

← pick up observed value φ(yt)
end for
f(xs) ← empiric average of these N s picked up values.

end for

Let us also show that the overall average length ( i.e., over the number of steps) of
simulated random walks is:

< L >= IE [M ] =
γ

β

A simple way to prove this is to consider the following auxiliary Markov chain of binary
“lifetime” variables specified by{

P (ξi+1 = 1 | ξi = 1) = α =
γ

γ + β
“lifetime prolongation”

P (ξi+1 = 0 | ξi = 0) = 1 “irreversible decay”

Since Axt yt = 1− α =
β

γ + β
, one can write:

f(xs) =
∑
xt∈E

∑
M≥0

(
γ

γ + β
)
M

︸ ︷︷ ︸
αM

(
1

γ
)
M

(1− α) φ(xt)

=
∑
xt∈E

∑
M≥0

P (ξM = 1, ξM+1 = 0 | ξ0 = 1)︸ ︷︷ ︸
decay at time M

(
1

γ
)
M

︸ ︷︷ ︸
“free random walk” of M steps

φ(xt)

=
∑
xt∈E

∑
M≥0

IE [ 1lξM=1, ξM+1=0 × φ(XM = xt) ]
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Figure 3: Constrained diffusion with boundary process

The expected lifetime of the “particle” ξ is classically:

α

1− α
=
γ

β
QED .

5.2 adding a boundary process

Assume that image boundary localization is known. The as,t are then specified as:

as,t =

{
1 if no boundary between xs and xt
0 if boundary between xs and xt

We obtain similar equations to (14) with ε replaced by β and x0
s by ys :

f(xs) =

∑
xt∼xs

as,t f(xt) + β f(ys)∑
xt∼xs

as,t + β
(27)

These equations can be interpreted by defining the effective connectivity at site xs:

Γs =
∑
xt∼xs

as,t so that:
Axs xt =

as,t
Γs + β

Axs ys =
β

Γs + β

This corresponds to constrained diffusion in the image (see Fig. 3): pick up only contri-
butions inside the region to which the investigated pixel xs belongs.
The corresponding algorithm is described in Table 2.
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Algorithm 2 Algorithm for image restoration by stochastic diffusion (with boundaries)

for each site s do
for k = 0 to N s times do

while (random uniform ρ ∈ [0, 1]) <
Γi

Γi + β
do

random 2D walk: xs → xi → xi+1 → . . . →xt
(using transition probability Axi xi+1

)
end while

as soon as ρ ≥ Γt
Γt + β

( transition xt → yt):

← pick up observed value φ(yt)
end for
f(xs) ← empiric average of these N s picked up values.

end for

5.3 experimental results

We created a synthetic mire image of size 160× 160 composed of four piecewise-constant
regions with respective grey levels 50, 100, 150 and 200. Then we superimposed additive
gaussian noise with STD σ = 30 and σ = 50. Restoration results are shown in figures 4
and 5 for number of simulated random walks N s = 256.
Fig. 6 shows instances of walks starting from a given pixel.

6 Conclusion

This document has been intended to present in a completely discrete framework and in
a simple way if possible the complex theory of diffusion processes, which is itself linked
to stochastic differential equations (Ito calculus, Brownian processes) and its intrinsic
relationship to partial differential equations Dautray (1989); Ycart (1997).
We have tried to show two applications, namely in image restoration and in traffic path
routing for ad hoc networks.
For further in-depth investigation it is now needed:

• to establish a ”flow equation” more adapted to realistic traffic routing mechanism
between two points in a given network and derive the ”ensemble” equations associ-
ated to all couples of such nodes.

• to re-formulate the well-known image restoration by anisotropic diffusion framework
Perona and Malik (1990); Catte et al. (1992); Wei (1999) and even also non-local
image restoration A. Buades (2005, 2006) using this approach.

• to extend the adaptive (and iterative) algorithms enabling both pixel and boundary
processes estimation in image restoration such as the LEGENDRE and ARTUR
algorithms Charbonnier et al. (1993); Charbonnier (1994).

To conclude, this is not very difficult; one just needs to know: ‘‘de tout un peu’’ 8 !

8 “a little bit of everything” .
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original image noisy image

Datas

no boundaries with boundaries

β = 1 (average free diffusion length = 4)

no boundaries with boundaries

β = 0.1 (average free diffusion length = 40)

Figure 4: Restoration results for noisy image with σ = 30
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original image noisy image

Datas

no boundaries with boundaries

β = 1 (average free diffusion length = 4)

no boundaries with boundaries

β = 0.1 (average free diffusion length = 40)

Figure 5: Restoration results for noisy image with σ = 50
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no boundaries with boundaries

β = 1 (average free diffusion length = 4)

no boundaries with boundaries

β = 0.1 (average free diffusion length = 40)

Figure 6: Various random walks starting from O = (110, 110)
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Darbon (UCLA) for his helpful comments and suggestions as usual.

22



References

A. Buades, B. Coll, J. M. (2005). A review of image denoising algorithms, with a new one.
Multiscale Modeling and Simulation (SIAM interdisciplinary journal), 4(2), 490–530.
http://dmi.uib.es/~abuades/publicacions/61602.pdf.

A. Buades, B. Coll, J. M. (2006). Image enhancement by non-local reverse heat equation.
Technical Report 2006-22, CMLA. http://dmi.uib.es/~abuades/publicacions/

CMLA2006-22.pdf.

Beraldi, R. (2009). Random walk with long jumps for wireless ad hoc networks. Ad Hoc
Networks, 7(2), 294–306. http://dx.doi.org/doi:10.1016/j.adhoc.2008.03.001.

Catte, F., Lions, P.-L., Morel, J.-M., and Coll, T. (1992). Image selective smoothing and
edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29(1), 182–193.

Charbonnier, P. (1994). Reconstruction d’image: régularisation avec prise en compte
des discontinuités. Ph.D. thesis, Université de Nice-Sophia Antipolis, France. http:
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A A note on Green functions on the circle

A.1 Introduction and notations

In this appendix we try to explicite and summarize well-known properties of Green func-
tions in 2-dimensional domains. This gives place to a first formulation of the number of
paths going through a given point in a circular zone for traffic estimation purposes in ad
hoc networks Pham and Perreau (2002).
Our notations are the following: we shall denote by x,y, z some vectors (or points) of IR2

and by |x| their euclidian norms.

A.2 The third Green formula

Can be seen as a “vectorial wronskian” 9 formulation:

div
(
F (x) ~∇G(x)−G(x) ~∇F (x)

)
= F (x) ∆G(x)−G(x) ∆F (x) (28)

so that by the Green-Ostrogradsky formula one obtains:∫ ∫
D

(F (x) ∆G(x)−G(x) ∆F (x)) dx

=

∫
∂D

(
F (x) ~∇G(x)−G(x) ~∇F (x)

)
. ~n ds(x) (29)

where the right part member of the equation means the flux of the associated vector field
on the boundary of domain D.

A.3 Green functions - Laplace and Poisson cases

It is easy to check that in 2D one has:

∆x log |x− y| = 2π δ(x, y) ∀x,y ∈ D

where ∆x means that the Laplacian is taken with respect to the variable x.
As a matter of fact let us consider a small disk Dρ of radius ρ centered on y. First Green

9indeed one can consider that

div
∣∣∣∣ F (x) Gx)

~∇F (x) ~∇G(x)

∣∣∣∣ = ∣∣∣∣ F (x) G(x)
∆F (x) ∆G(x)

∣∣∣∣
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formula∫ ∫
Dρ

∆x log |x− y| dx =

∫
∂Dρ

~∇ log |x− y| . ~n ds(x) =

∫ 2π

θ=0

1

ρ
ρ dθ = 2π

Any function G(x, y) of two points on D which satisfies the Poisson equation:

∆xG(x, y) = δ(x, y) ∀x, y ∈ D (30)

is called a Green function for the Laplacian operator on domain D.
In all this approach we have to be cautious when defining the distribution δ(., .). Previous
(Poisson equation) means indeed that∫ ∫

D

F (x) ∆xG(x, y) dx = F (y) ∀y ∈ D ∀F ∈ F

where F is some functional space to define
(also I do not know what occurs for y ∈ ∂D in previous definition)
This framework is especially of use for solving Laplace-like equations

∆F = u with

{
F (x) = f(x) ∀x ∈ ∂D (Dirichlet)

~∇F(x) = ~g(x) ∀x ∈ ∂D (von Neumann)
(31)

As a matter of fact, for the the simple case of Dirichlet boundary conditions
F (x) = 0 ∀x ∈ ∂D one obtains from (29):

F (y) =

∫ ∫
D

∆F (x) G(x, y) dx =

∫ ∫
D

u(x) G(x, y) dx (32)

Here we see the “propagator” aspect of Green functions in the sense that they convey
“information” from point x to point y via the factor G(x, y).

A.4 Green functions for the 2D circle

Our goal is to find a Green function G(x, y) on the disk domain C with radius R and
with Dirichlet condition say, boundary value 0 on the circle Γ = ∂C.
Thus exactly as for Electrostatic Images we take the harmonic conjugate y′ of y, i.e., its
inverse for the inversion I of center O and power R2, see Fig. 7). We check easily that
since y′ lies outside C:

∆x(log |x− y| − log |x− y′|) = 2π ( δ(x, y)− δ(x, y′) )

= 2π δ(x, y) ∀x,y ∈ C (33)

Moreover, from the inversion I the triangles Oxy′ and Oyx′ are anti-similar, so that a
forthcoming useful relationship writes:

|y|
|x|

=
|x′ − y|
|x− y′|

(34)
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y y′

x

x′

O

Figure 7: The Green function with null Dirichlet boundary conditions

In particular for x = x′ ∈ C one has

|x− y|
|x− y′|

=
|y|
R
∀x ∈ C (35)

so that

G(x, y) =
1

2π

(
log
|x− y|
|x− y′|

− log
|y|
R

)
(36)

is the announced Green function.
Also from (34) one sees that

log
|y − x|
|y − x′|

− log
|x|
R

= log
|y − x|
|x− y′|

|x|
|y|
− log

|x|
R

= log
|x− y|
|x− y′|

− log
|y|
R

(37)

Thus the Green function is symmetric although not it does not depend on |x− y|.

A.5 The Dirichlet problem on the circle

This classical problem consists in retrieving an harmonic real function in C from its
boundary values on ∂C. From the third Green equation (29) one has

F (y) =

∫
∂D

F (x) ~∇xG(x, y) . ~n ds(x) (38)

From the formula (37) one has

F (y) =
1

2π

∫
∂D

F (x)

(
cosφ

|x− y|
− cosφ′

|x− y′|

)
ds(x) (39)
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Then from triangles relations we have:

|y|2 = R2 + |x− y|2 − 2 R |x− y| cosφ

⇒ cosφ

|x− y|
=

1

2 R
+

R2 − |y|2

2 R |x− y|2︸ ︷︷ ︸
A(x)

|y′|2 = R2 + |x− y′|2 − 2 R |x− y′| cosφ′

⇒ cosφ′

|x− y′|
=

1

2 R
+

R2 − |y′|2

2 R |x− y′|2︸ ︷︷ ︸
A′(x)

Now it is very easy to check that A′(x) = −A(x) from the inversion property: |y′| = R2

|y|

y y′

~n

x

φ
φ′

O

θ

Figure 8: The Green function with non-null Dirichlet boundary conditions

and from relation (35), so that:

F (y) =
1

2π

∫
∂D

2A(x) dx =
1

2π

∫ 2π

θ=0

F (x)
R2 − |y|2

|x− y|2
dθ (40)

Of course this can be proved from Cauchy relation for analytic functions, whose real and
imaginary components are harmonic functions.

A.6 Application to the number of paths going through some
point y ∈ C

Suppose that we demonstrate that this number is

Ny =

∫ ∫
D

ρ G(x, y) ρ G(y, z) dx dz (41)
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where ρ is the density of stations in our area. Then

Ny =

∫ ∫
D

ρ G(x, y) dx×
∫ ∫

D

ρ G(y, z) dz (42)

= ρ2

(∫ ∫
D

G(x, y) dx

)2

(43)

since the Green function is symmetric. Then consider the quantity

γ(y) =

∫ ∫
D

G(x, y) dx (44)

From (32) it is the solution of the Poisson equation

∆γ(y) = 1 with γ(y) = 0 ∀y ∈ ∂D

It is fairly simple to exhibit this solution:

γ(y) =
1

4

(
|y|2 −R2

)
(45)

(since ∆(x2 + y2) = 4). Thus

Ny = (ρ γ(y))2 =
1

16
ρ2
(
|y|2 −R2

)2
(46)

Quite similar to the result of Pham and Perreau (2002).
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